
Network Coding for Robust Wireless Networks

by

MinJi Kim

B.Sc., Massachusetts Institute of Technology, 2006
B.Sc., Massachusetts Institute of Technology, 2006
M.Eng., Massachusetts Institute of Technology, 2007

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 11, 2012

Certified by. .
Muriel Médard

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/7372528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

Network Coding for Robust Wireless Networks

by

MinJi Kim

Submitted to the
Department of Electrical Engineering and Computer Science

on January 11, 2012, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract

Wireless networks and communications promise to allow improved access to services and
information, ubiquitous connectivity, and mobility. However, current wireless networks
are not well-equipped to meet the high bandwidth and strict delay requirements of future
applications. Wireless networks suffer from frequent losses and low throughput.

We aim to provide designs for robust wireless networks. This dissertation presents proto-
cols and algorithms that significantly improve wireless network performance and effectively
overcome interference, erasures, and attacks. The key idea behind this dissertation is in
understanding that wireless networks are fundamentally different from wired networks, and
recognizing that directly applying techniques from wired networks to wireless networks lim-
its performance. The key ingredient underlying our algorithms and protocols is network
coding. By recognizing the algebraic nature of information, network coding breaks the con-
vention of routing networks, and allows mixing of information in the intermediate nodes and
routers. This mixing has been shown to have numerous performance benefits, e.g. increase
in throughput and robustness against losses and failures.

We present three protocols and algorithms, each using network coding to harness a
different characteristic of the wireless medium. We address the problem of interference,
erasures, and attacks in wireless networks with the following network coded designs.

• Algebraic NC exploits strategic interference to provide a distributed, randomized code
construction for multi-user wireless networks. Network coding framework simplifies
the multi-user wireless network model, and allows us to describe the multi-user wireless
networks in an algebraic framework. This algebraic framework provides a random-
ized, distributed code construction, which we show achieves capacity for multicast
connections as well as a certain set of non-multicast connections.

• TCP/NC efficiently and reliably delivers data over unreliable lossy wireless networks.
TCP, which was designed for reliable transmission over wired networks, often ex-
periences severe performance degradation in wireless networks. TCP/NC combines
network coding’s erasure correction capabilities with TCP’s congestion control mecha-
nism and reliability. We show that TCP/NC achieves significantly higher throughput
than TCP in lossy networks; therefore, TCP/NC is well suited for reliable communi-
cation in lossy wireless networks.

4

• Algebraic Watchdog takes advantage of the broadcast nature of wireless networks to
provide a secure global self-checking network. Algebraic Watchdog allows nodes to
detect malicious behaviors probabilistically, and police their neighbors locally using
overheard messages. Unlike traditional detection protocols which are receiver-based,
this protocol gives the senders an active role in checking the nodes downstream. We
provide a trellis-based inference algorithm and protocol for detection, and analyze its
performance.

The main contribution of this dissertation is in providing algorithms and designs for
robust wireless networks using network coding. We present how network coding can be
applied to overcome the challenges of operating in wireless networks. We present both
analytical and simulation results to support that network coded designs, if designed with
care, can bring forth significant gains, not only in terms of throughput but also in terms of
reliability, security, and robustness.

Thesis Supervisor: Muriel Médard
Title: Professor of Electrical Engineering and Computer Science

5

To umma and appa

6

Acknowledgments

It has been almost ten years since I arrived at MIT. Starting with my undergraduate, I

have spent most of my last ten years on MIT campus. During those years, I have learned

a great deal but more importantly had a tremendous amount of fun. I am thankful for all

that MIT has offered me.

I could not have had so much fun without the help of many people. I met some of the

most talented and amazing people during my career at MIT, and they have been invaluable

to me. They have guided me through my ups-and-downs, both personally and professionally.

My achievements are credit to their continued support and advice.

I would like to thank first and foremost my supervisor, Muriel Médard. She has been a

fantastic advisor, who has guided me throughout my graduate program. I started working

with her in 2006 while I was debating between a career in software engineering and con-

tinuing to a Ph.D. program. Her constant encouragement contributed significantly to my

decision to continue with my graduate education. Muriel’s insight and advice have kept

me focused, often stopping me from going astray. Her enthusiasm motivated me to keep

moving forward, and her patience encouraged me to continue even during the most difficult

times. She has been a great source of inspiration.

Likewise, I am indebted to my long-time collaborator, João Barros. He has been a

wonderful mentor. He has provided a great amount of guidance in most of my work, and

without him, I would not have accomplished many of what I have during my graduate

program. I am very grateful for his support and care.

I have had the great fortune to work with (late) Ralf Koetter, whose thoughtful advice

and pointers have guided me through the completion of my graduate program. I would also

7

8

like to thank Dina Katabi for her valuable feedback and comments as my thesis reader. I

thank my co-authors, Elona Erez, Atilla Eryilmaz, Bernhard Haeupler, Lúısa Lima, Daniel

Lucani, Shirley Shi, Jay Kumar Sundararajan, Edmund M. Yeh, and Fang Zhao. Working

with them has been a pleasure. They have each given me invaluable lessons, and I appreciate

the time and effort they have invested in me.

My life at MIT would not have been as fruitful and fun without my labmates and fellow

graduate students. I thank Georgios Angelopoulo and Shirley Shi for tolerating me as their

officemate and making my office a fun place to work in. I would like to thank Jay Kumar

Sundararajan who generously helped me as I was starting my M.Eng program, teaching me

the basics of network coding as well as what it is to do research. I also enjoyed the company

of Soheil Feizi, Daniel Lucani, Ali ParandehGheibi, Arman Rezaee, Guy Weichenberg, and

Fang Zhao.

I was able to enjoy my work as much as I did because of my wonderful friends and

family outside of work. I have known Nathan K. Davis, Shaun J. Foley, and Marjorie

Cheng since my undergraduate years. Nathan and Shaun have also been great roommates

during the last few years, allowing me to come home from long days in lab, vent and relax,

but most importantly, just be myself regardless of how quirky I am. Marjorie has always

been available for me. Although not in Boston, she kept me company virtually so much so

that I felt she never left Boston.

Finally but not least, I thank my mother Kyungsook Jeong, my father Ildoo Kim, my

sister Hyojeong Kim, and Colin R. Dillard for their love and patience. No words can de-

scribe the gratitude I have for them. Without their encouragement, care, and love, I could

not have made it this far. This dissertation is dedicated to my parents.

MinJi Kim

Cambridge, MA

January 2012

Research Sponsors

This research was supported by the following grants:

• Subcontract number S0176938 issued by University of California Santa Cruz and

supported by the United States Army under award number W911NF-05-1-0246,

• Subcontract number 069145 issued by BAE Systems National Security Solutions, Inc.

and supported by the Defense Advanced Research Projects Agency (DARPA) and the

Space and Naval Warfare System Center, San Diego under contract number N66001-

06-C-2020,

• Grant number CNS-0627021 supported by the National Science Foundation (NSF),

• Award number N00014-05-1-0197 supported by the Office of Naval Research, (ONR),

• Award number 018955-001 supported by NBC Universal, Inc.,

• Award number 016974-002 supported by the Air Force Office of Scientific Research

(AFOSR).

9

10

Previous Publications

This dissertation is based on previous publications as listed below.

Chapter 3 is based upon the following previous publications.

• [57] M. Kim and M. Médard, Algebraic Network Coding Approach to Determinis-

tic Wireless Relay Networks, In Proceedings of the Annual Allerton Conference on

Communication, Control, and Computing, pages 1518–1525, September 2010.

• [54] M. Kim, E. Erez, E. M. Yeh, and M. Médard, Deterministic Network Model

Revisited: An Algebraic Network Coding Approach, Submitted to IEEE Transactions

on Information Theory, March 2011.

Chapter 4 is based upon the following previous publications.

• [61] M. Kim, M. Médard, and J. Barros, Modeling Network Coded TCP Through-

put: A Simple Model and its Validation, In Proceedings of International ICST/ACM

Conference on Performance Evaluation Methodologies and Tools (Valuetools), May

2011.

Chapter 5 is based upon the following previous publications.

• [62] M. Kim, M. Médard, J. Barros, and R. Koetter, An Algebraic Watchdog for

Wireless Network Coding, In Proceedings of IEEE International Symposium on In-

formation Theory (ISIT), pages 1159–1163, June 2009.

11

12

• [59] M. Kim, M. Médard, and J. Barros, A Multi-hop Multi-source Algebraic Watch-

dog, In Proceedings of IEEE Information Theory Workshop (ITW) Dublin (invited

paper), pages 1–5, August 2010.

• [60] M. Kim, M. Médard, and J. Barros, Algebraic Watchdog: Mitigating Misbehav-

ior in Wireless Network Coding, IEEE Journal on Selected Areas in Communications

(JSAC) Advances in Military Networking and Communications, 29(10):1–11, Decem-

ber 2011.

There are several other previous publications, which are not directly incorporated into this

dissertation. The following publications may be of interest to the readers as supplementary

readings.

• [58] M. Kim, M. Médard, and J. Barros, Counteracting Byzantine Adversaries with

Network Coding: An Overhead Analysis, In Proceedings of IEEE Conference for Mil-

itary Communications (MILCOM), pages 1–7, November 2008.

• [56] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Médard, Network Coding for Multi-

Resolution Multicast, In Proceedings of IEEE Conference on Computer Communica-

tions (INFOCOM), pages 1–9, March 2010.

• [55] M. Kim, L. Lima, F. Zhao, J. Barros, M. Médard, R. Koetter, T. Kalker, and

K. Han, On Counteracting Byzantine Attacks in Network Coded Peer-to-Peer Net-

works, IEEE Journal on Selected Areas in Communications (JSAC) Mission Critical

Networking, 28(5):692–702, June 2010.

• [39] B. Haeupler, M. Kim, and M. Médard, Optimality of Network Coding in Packet

Networks, IEEE Information Theory Workshop (ITW) Paraty, pages 1–5, October

2011.

Contents

Acknowledgements 7

Research Sponsors 9

Previous Publications 11

1 Introduction 27

1.1 Algebraic NC: Network Coding for Interference Networks 30

1.2 TCP/NC: Network Coding for Erasure Networks 31

1.3 Algebraic Watchdog: Network Coding for Secure Communications 32

1.4 Outline . 33

2 Overview of Network Coding 35

3 Algebraic NC 41

3.1 Background . 45

3.2 Network Model . 48

3.2.1 An Interpretation of the Network Model 52

3.3 Algebraic Network Coding Formulation . 54

3.3.1 Adjacency Matrix F . 56

3.3.2 Encoding Matrix A . 57

3.3.3 Decoding Matrix B . 58

3.3.4 System Matrix M = A(I − F)−1BT 59

3.4 Definition of Min-cut . 59

13

14 CONTENTS

3.5 Min-cut Max-flow Theorem . 62

3.6 Extensions to Other Connections . 64

3.6.1 Multiple Multicast . 64

3.6.2 Disjoint Multicast . 65

3.6.3 Two-level Multicast . 67

3.6.4 General Connection Set . 68

3.7 Network with Random Erasures . 69

3.7.1 Robust against Random Erasures . 70

3.7.2 Time-average Min-cut . 71

3.8 Network with Cycles . 73

3.9 Conclusions . 75

4 TCP/NC 77

4.1 Overview of TCP/NC . 80

4.2 A Model for Congestion Control . 81

4.2.1 Maximum Window Size . 83

4.2.2 Erasures . 83

4.2.3 Performance Metric . 84

4.3 Intuition . 84

4.4 Throughput Analysis for TCP . 86

4.4.1 Triple-duplicate for TCP . 87

4.4.2 Time-out for TCP . 91

4.5 Throughput Analysis for E2E-TCP/NC . 92

4.5.1 E2E-TCP/NC Window Evolution 93

4.5.2 E2E-TCP/NC Average Throughput 99

4.5.3 The Effect of Redundancy Factor R 100

4.5.4 The Effect of Smoothed Round Trip Time SRTT 103

4.6 Simulation Results . 104

4.6.1 Probability of Erasure p . 105

4.6.2 Redundancy Factor R . 109

CONTENTS 15

4.6.3 Congestion Control . 112

4.6.4 Comparison to the Analytical Model 114

4.7 Conclusions . 115

5 Algebraic Watchdog 117

5.1 Intuition . 119

5.2 Background . 120

5.2.1 Secure Network Coding . 120

5.2.2 Secure Routing Protocol: Watchdog and Pathrater 122

5.2.3 Hypothesis Testing . 123

5.3 Problem Statement . 123

5.3.1 Threat Model . 126

5.4 Two-hop network: An Example . 126

5.4.1 Graphical Model Approach . 128

5.4.2 Algebraic Approach . 130

5.5 Algebraic Watchdog for Two-hop Network 133

5.5.1 Transition Matrix . 134

5.5.2 Watchdog Trellis . 136

5.5.3 Viterbi-like Algorithm . 136

5.5.4 Decision Making . 137

5.6 Analysis for Two-hop Network . 138

5.7 Protocol for Algebraic Watchdog . 140

5.8 Simulations . 142

5.9 Conclusions . 148

6 Conclusions 151

6.1 Future Work . 153

6.2 Final Remarks . 154

16 CONTENTS

List of Figures

2-1 The butterfly network. The example illustrates how network coding can

be used to achieve multicast capacity. 36

2-2 An example showing how a simple XOR code may increase through-

put. The example illustrates how two nodes may exchange information in

three transmissions instead of four transmissions (needed by routing solution). 38

3-1 An interpretation of the broadcast constraint in ADT networks. A

polynomial f(x) and a hyperplane g(x) with one variable x ∈ R. The black

dots represent the roots of f(x). When considering the space where f(x)

intersects g(x), the hyperplane g(x) limits the space in which f(x) operates

in; however, g(x) does not change the roots of f(x). Some of the roots of

f(x) may no longer be “feasible” given the additional constraint; thus, this

operation may reduce the number of roots that we have to consider. 43

3-2 An example network for a non-binary code. 47

3-3 A model of MAC in the high SNR regime. Additive MAC with two

users, and the corresponding rate region. The triangular region is modeled

as a set of finite field additive MACs. 48

3-4 An example network. We omit I(S) and O(T) in this diagram as they do

not participate in the communication. 50

3-5 An illustration of a supernode V . A supernode V consists of input ports

I(V) and output ports O(V). 50

17

18 LIST OF FIGURES

3-6 A set of linear equations relating the various processes from Figure

3-4. 52

3-7 A new interpretation of the example network from Figure 3-4. The

broadcast channel is modeled using an hyperedge. As a result, an output

port’s decision to transmit or not naturally affects all the input ports adjacent

to it. Furthermore, interference is modeled using a finite field additive MAC,

which provides a set of possible binary codes at the input ports. 53

3-8 An example of finite field additive MAC. 53

3-9 An example of a multicast network. Single multicast network with

source S and receivers T1, · · · , TN . 54

3-10 An example network with a supersource. A network with multiple

sources S1, S2, · · · , SK can be converted to a single source problem by adding

a super-source S with |O(S)| =∑K
i=1 |O(Si)|. Each e′j ∈ O(S) has a “one-to-

one connection” to a ej ∈ O(Si), for i ∈ {1, 2, · · · ,K}. Matrix Ai represents

the encoding matrix for source Si, while Bj is the decoding matrix at desti-

nation Tj . The white area represents the zero elements, and the shaded area

represents the coding coefficients. 55

3-11 The 12× 12 adjacency matrix F for the example network in Figure

3-4. 58

3-12 An example of the system matrix M for a multicast connection.

The system matrix M has components A, (I − F)−1, and B for the single

multicast connection with source S and destinations Ti, i ∈ {1, 2, · · · , N}. . 60

3-13 An example of the system matrix M for a disjoint multicast connec-

tion. Disjoint multicast problem can be converted into a single destination

problem by adding a super-destination T . The system matrix M for the

disjoint multicast problem is shown as well. Note that, unlike the multicast

problem in Figure 3-12, the system matrix M for the disjoint multicast is a

diagonal concatenation of Mi’s. 66

LIST OF FIGURES 19

3-14 An example of the system matrix M for a two-level multicast con-

nection. The structure of the system matrix M is a “concatenation” of the

disjoint multicast problem (shown in Figure 3-13) and the single multicast

problem (shown in Figure 3-12). 68

3-15 The 12 × 12 matrix (I − DF)−1 for the example network in Figure

3-4. The matrix F can be found in Figure 3-11. 75

4-1 An example of TCP’s and TCP/NC’s behavior in lossy networks.

In the case of TCP, the TCP sender receives duplicate ACKs for packet

p1, which may wrongly indicate congestion. However, for TCP/NC, the

TCP/NC sender receives ACKs for packets p1 and p2; thus, the TCP/NC

sender perceives a longer round-trip time (RTT) but does not mistake the

loss to be congestion. 78

4-2 The new network protocol stack with network coding layer. The

network coding layer sits between the transport layer and Internet Protocol

layer. This new layer introduces coding, which enables robustness against

erasures. 80

4-3 The effect of erasures on TCP and TCP/NC. TCP experiences triple-

duplicate ACKs, and results in Wi+2 ← Wi+1/2. However, E2E-TCP/NC

masks the erasures using network coding, which allows E2E-TCP/NC to

advance its window. This figure depicts the sender’s perspective, therefore,

it indicates the time at which the sender transmits the packet or receives the

ACK. 85

4-4 The evolution of TCP’s window size when random losses occur.

Random losses result in TD events or TO events, which decreases TCP’s

window size significantly. In round j − 2, losses occur resulting in triple-

duplicate ACKs. On the other hand, in round j+r−1, losses occur; however,
in the following round j + r losses occur such that the TCP sender only

receives two-duplicate ACKs. As a result, TCP experiences time-out. 87

20 LIST OF FIGURES

4-5 The evolution of E2E-TCP/NC’s window size when random losses

occur. E2E-TCP/NC’s window size does not decrease with erasures, which

would have led to a triple-duplicate ACKs event when using standard TCP.

Note that unlike TCP, the window size is non-decreasing. 92

4-6 The predicted E2E-TCP/NC’s window size when random losses are

present in the network. The figure presents the expected window size for

E2E-TCP/NC where Wmax = 90, W1 = 30. We usually assume W1 = 1; here

we use W1 = 30 to exemplify the effect of W1. 94

4-7 A Markov chain showing the E2E-TCP/NC’s window evolution.

Each state corresponds to the size of the congestion window. 95

4-8 The cofactors of matrix I −Q. These cofactors Cm1, m ∈ {1, 2, · · · ,S},
form the first row of N = (I −Q)−1. The structure of I −Q lends itself to a

simple characterization of Cm1 = (1− p)S−1 for all m ∈ {1, 2, · · · ,S}. . . . 98

4-9 The probability of E2E-TCP/NC fully decoding. The figure provides

the probability that the decoder is able to receive enough degrees of freedom

to fully decode in a given round as the redundancy factor R varies. As we

increase R, the probability increases. In addition, given a redundancy factor

R, the probability of fully decoding increases as the loss rate p decreases. . 102

4-10 Network topology for the simulations. All links, in both forward and

backward paths, are assumed to have a bandwidth of C megabits per second

(Mbps), a propagation delay of 100 ms, a buffer size of 200, and an erasure

rate of q. Since there are in total four links in the path from node 0 to node

4, the probability of end-to-end packet erasure is p = 1− (1− q)4. 105

4-11 The throughput of E2E-TCP/NC and TCP with varying end-to-

end erasure probability p. The figure shows that E2E-TCP/NC can

maintain high throughput even in very lossy networks, while TCP is unable

to do so as soon as the loss rates exceed a few percent. For each data point,

we average the performance of 100 independent runs of the simulations, each

of which is 1000 seconds long. 106

LIST OF FIGURES 21

4-12 The congestion window size of E2E-TCP/NC and TCP with vary-

ing end-to-end erasure probability p. The figure shows that E2E-

TCP/NC maintains a large window size despite losses in the network. An

interesting observation is TCP’s window size. TCP maintains a moderately

large window size, but TCP’s throughput is much smaller than the corre-

sponding window size. For each data point, we average the performance of

100 independent runs of the simulations, each of which is 1000 seconds long. 107

4-13 The round trip time estimate (SRTT) of E2E-TCP/NC and TCP

with varying end-to-end erasure probability p. The figure shows that

E2E-TCP/NC maintains a stable SRTT, which reflects the loss rate p present

in the network. On the other hand, TCP’s estimate varies significantly over

time, reflecting TCP’s performance degradation and fluctuations in through-

put. For each data point, we average the performance of 100 independent

runs of the simulations, each of which is 1000 seconds long. 108

4-14 The effect of redundancy factor R on E2E-TCP/NC’s throughput.

The figure presents the throughput of E2E-TCP/NC for p = 0.0963 with

varying redundancy factor R. Note that 1
1−p = 1.107. 110

4-15 The effect of redundancy factor R on E2E-TCP/NC’s throughput.

The figure presents the throughput of E2E-TCP/NC for p = 0.1855 with

varying redundancy factor R. Note that 1
1−p = 1.228. 111

4-16 Fairness of E2E-TCP/NC. The figure presents the throughput of E2E-

TCP/NC for p = 0.0963 and C = 0.7 Mbps. The two E2E-TCP/NC flows

share the C = 0.7 Mbps fairly, each achieving 0.3162 Mbps. 112

4-17 Fairness and congestion control of E2E-TCP/NC. The figure presents

the throughput of E2E-TCP/NC for p = 0.0963 with congestion (C = 0.9

Mbps, R = 1.2, Wmax = 50). Before NC1 joins the network, NC0 achieves

the maximum throughput of 0.5 Mbps. As the second flow of E2E-TCP/NC

(NC1) joins the network, both NC0 and NC1 share the bandwidth, each

achieving 0.37 Mbps. 113

22 LIST OF FIGURES

5-1 An example network showing how nodes may monitor their down-

stream nodes. 119

5-2 Packet structure for Algebraic Watchdog. The figure presents the

structure of a valid packet sent by well-behaving vi. 124

5-3 A small neighborhood of a wireless network with v1. The dotted

arrows represent the overhearing channels, and the solid arrows represent

the transmissions. 127

5-4 A graphical model of the inference process from v1’s perspective

for the two-hop example network. 129

5-5 An example of the transition matrix T (x̃i, y). A graphical representa-

tion of the inference process at a node which overhears node vi’s transmission.

The overheard information, which consists of x̃i and h(xi), is used to infer

what xi may be. 135

5-6 An example of the trellis for Algebraic Watchdog from node v1’s

perspective. In the trellis, the transition probability from Layer i − 1 to

Layer i is given by T (x̃i, xi), which is shown in Figure 5-5. 135

5-7 An example of the inverse transition matrix T−1(y, x̃m+1). A graph-

ical representation of the inference process at a node which overhears relay

vm+1’s transmission. The overheard information, which consists of x̃m+1 and

h(xm+1) is compared to what the node has inferred. 137

5-8 Simulation results showing that adversarial noise above the channel

noise can be detected. The average value p∗relay and p∗adv over 1000 random

iterations. The error bars represent the variance, varrelay and varadv . We set

m = 3, n = 10, δ = 2, and ps = pm+1,1 = 10%. We vary padv , the adversary’s

error injection rate. 144

5-9 Simulation results showing the effect of the hash length δ. The

average value of p∗relay and p∗adv over 1000 random iterations. We vary the

hash length, δ, and adversarial error rate, padv. The error bars represent the

variance, varrelay and varadv . We set m = 3, n = 10, and ps = pm+1,1 = 10%. 145

LIST OF FIGURES 23

5-10 Simulation results showing the effect of the overhearing channel,

ps. The average value of p∗relay and p∗adv over 1000 random iterations. We

vary the value of ps = pm+1,1, the quality of overhearing channels. The error

bars represent the variance, varrelay and varadv . We set m = 3, n = 10, and

padv = 10%. 146

5-11 Simulation results showing the effect of the number of neighbors,

m. The average value of p∗relay and p∗adv over 1000 random iterations. We

vary the value of m, the number of nodes using vm+1 as a relay. The error

bars represent the variance, varrelay and varadv . We set m = 3, n = 10, and

ps = pm+1,1 = padv = 10%. 147

24 LIST OF FIGURES

List of Tables

4.1 The performance of TCP and E2E-TCP/NC. The average simulated

or predicted long-term throughput of TCP and E2E-TCP/NC in megabits

per second (Mbps). ‘NC0’, ’NC1’, ‘TCP0’, ‘TCP1’ are average throughput

achieved in the NS-2 simulations with the corresponding redundancy factor

‘R’. ‘E2E analysis’ is calculated using Equation (4.55) with ⌊n · SRTT ⌋ =
1000. ‘TCP analysis’ is computed using Equation (4.35). 115

25

26 LIST OF TABLES

Chapter 1

Introduction

W
ireless networks and communications have emerged as a dominant mode of com-

munications, as they facilitate mobility and ubiquitous connectivity. A surge of

technical advances in wireless communications has brought faster and more affordable net-

work access. However, the technological advances are often matched, if not outmatched, by

users’ appetite for even faster, cheaper, and more robust wireless networks. For instance,

with the rise of new forms of data, in particular high quality multimedia, we are faced with

a challenge of transforming our communication networks to handle unparalleled growth in

traffic and strict delay constraints. In order to meet the future demands, we need to man-

age the existing wireless networks more efficiently in terms of, but not exclusively, energy,

latency, and bandwidth; and to build new infrastructure and design novel protocols that

take into account the high-bandwidth, dynamic, and diverse traffic that needs to be served

across wired and wireless medium.

There are several sources of challenges in designing a robust wireless networks, which

are not as prominent in wired networks.

• Wireless is a shared medium. Unlike in wired networks, senders and receivers are

limited to a certain number of channels, which they ultimately have to share either

in time, frequency, or space. When senders and receivers fail to share the wireless

medium appropriately, we observe a collision or an interference, which hinders efficient

communication.

27

28 CHAPTER 1. INTRODUCTION

• Wireless is stochastic in nature. The time varying nature of wireless results

in not only ever-changing capacity and delay but also errors and erasures. Various

physical phenomena, such as fading and interference, often cause packets to be lost

or delivered erroneously. Consequently, reliability is much more difficult to attain in

wireless networks than in wired networks.

• Wireless is a broadcast medium. Wireless networks are often insecure, prone

to adversarial eavesdropping and contamination attacks. There are tools and soft-

ware, easily accessible, that can allow an unauthorized user to access nearby wireless

networks, overhear other users’ messages, and even jam and intercept signals from

users.

These properties of wireless make designing and operating wireless networks vastly dif-

ferent from those of wired networks. However, our currently deployed wireless networks are

built using architecture rooted in wired networks, which does not adequately address these

problems.

Often measures to address the problems of wireless networks are appended to the exist-

ing architecture. For instance, the current design to combat erasures and errors is retrans-

missions. In wired networks, in which erasures and errors are rare, retransmissions are an

efficient way to correct erasures and errors; however, this is not the case in wireless networks.

Furthermore, interference and collisions in current systems are deemed unacceptable, and

wireless networks are designed to avoid interference and collisions. An unfortunate conse-

quence of such design decision is that, when there is interference, the system is unable to

cope with such scenario efficiently.

Motivated by these observations, we propose novel algorithms and protocols to build

more efficient, high performance wireless networks. In this dissertation, we present algo-

rithms that can better manage interference, overcome losses, and provide secure communi-

cations by recognizing and harnessing the characteristics of wireless.

The key idea behind this dissertation is in understanding that wireless networks are

fundamentally different from wired networks, and recognizing that directly applying tech-

niques from wired networks to wireless networks limits throughput and performance. The

29

key ingredient underlying our algorithms and protocols is network coding.

Network coding promises a fundamentally new way to operate networks. At present,

networks are based on routing solutions. In a router network, each data packet that enters a

node can only be relayed onto some outgoing link(s). Sources and destinations may generate

and modify the information; however, the intermediate nodes can only store, forward, or

replicate the information they receive. This “store-and-forward” approach is closely related

to the multi-commodity flow problem, and has been studied extensively owing to its wide

applications to communication networks. This approach views data packets as objects that

cannot be altered, e.g. commodities such as apples or books. However, this view that data

are non-malleable commodities can result in inefficient operations of the networks.

In an essence, network coding questions the fundamental assumption in our “store-and-

forward” network designs. The theory of network coding, first introduced in their seminal

paper by Ahlswede et al. [3], breaks the convention of router networks. Intermediate nodes,

e.g. routers, are allowed to algebraically combine flows, packets, and symbols. By recog-

nizing the malleable algebraic nature of data, network coding can bring performance gains.

This simple yet fundamental shift in network paradigm can yield significant throughput

improvements compared to the state of the art routing protocols.

We consider the problems of robust communication in wireless networks using network

coding. This dissertation shows that network coding is a powerful tool that can efficiently

and effectively overcome interference, erasures, and adversarial attacks. We provide support

for network coding as a new paradigm to operate networks and show that network coding

can deliver on the promise of a more efficient wireless network with higher throughput and

reliability.

We introduce three new designs: Algebraic NC, TCP/NC, and Algebraic Watchdog. Al-

gebraic NC, founded on the algebraic network coding framework introduced in [67], is a novel

code construction which exploits strategic interference and symbol-level network coding to

enhance throughput in wireless networks and, more importantly, achieve capacity in wire-

less multi-user networks. TCP/NC uses a packet-level network coding to overcome erasures

in wireless networks, allowing for efficient and reliable transport of data. TCP/NC focuses

on providing reliability and congestion control in intrinsically unreliable networks. Alge-

30 CHAPTER 1. INTRODUCTION

braic Watchdog harnesses interference and broadcast nature of wireless to provide secure,

self-checking network. Network nodes monitor their neighborhood locally in a distributed

manner to ensure that adversaries do not contaminate the information flow. At first glance,

network coding, which performs algebraic transformation to the information, may seem to

hinder the nodes from checking their neighbors. However, with a studied understanding,

this algebraic transformation can be harnessed to provide secure communication.

We begin, in Sections 1.1, 1.2, and 1.3, by briefly describing the three network coding

designs presented in this dissertation. Then, in Section 1.4, we outline the body of the

dissertation.

1.1 Algebraic NC: Network Coding for Interference Networks

In Chapter 3, we present Algebraic NC, a simple code construction using symbol-level

network coding and strategic interference to achieve capacity in multi-user wireless networks.

Finding the capacity as well as the code construction for the multi-user wireless networks,

unlike its wired counterparts, are generally open problems. Even the relatively simple relay

network with one source, one sink, and one relay, has not been fully characterized. There are

two sources of disturbances in multi-user wireless networks – channel noise and interference

among users in the network. In order to better approximate the Gaussian multi-user wireless

networks, Avestimehr et al. [6][7] proposed a binary linear deterministic network model

(known as the ADT model), which takes into account the multi-user interference but not

the channel noise.

The main role of network coding in Chapter 3 is to simplify the ADT model. In Chapter

3, we draw a connection between the ADT network and network coding, in particular

algebraic network coding introduced by Koetter and Médard [67]. We show that the ADT

network problems, including that of computing the min-cut and constructing a code, can

be captured by the algebraic network coding framework. We prove that the ADT network

problem can be described by a single matrix, and show that the min-cut of an ADT network

is the rank of this matrix; thus, eliminating the need to optimize over exponential number

of cuts between two nodes to compute the min-cut of an ADT network. We extend the

1.2. TCP/NC: NETWORK CODING FOR ERASURE NETWORKS 31

capacity characterization for ADT networks to a more general set of connections, including

a single unicast or multicast connection and non-multicast connections such as multiple

multicast, disjoint multicast, and two-level multicast. We also provide sufficiency conditions

for achievability in ADT networks for any general connection set. Furthermore, we extend

the ADT networks to those with random erasures and cycles; thus, allowing bi-directional

links.

In addition, we show that the random linear network coding [41], a randomized dis-

tributed algorithm for network code construction, achieves capacity for the connections

listed above. By using algebraic network coding framework, we show the solvability of a

given ADT network problem is reduced to determining an algebraic property of a single ma-

trix. The randomized, distributed code construction naturally falls from this reduction; it

is a by-product of understanding and reducing the problem of multi-user network to that of

algebraic network coding framework. Chapter 3 illustrates the elegance of network coding,

allowing a simple yet powerful framework for theoretical analysis.

1.2 TCP/NC: Network Coding for Erasure Networks

We present TCP/NC in Chapter 4 where the application of interest is reliable and efficient

transport of data across lossy and faulty networks. The Transmission Control Protocol

(TCP) is one of the core protocols of the Internet Protocol Suite. TCP provides reliable,

ordered delivery of a stream of bytes across networks. Many Internet applications, such

as the World Wide Web, email, file transfer, peer-to-peer file sharing, and multimedia

streaming, rely on TCP’s promise to deliver correctly the data stream without losses or

duplications. Furthermore, TCP plays an essential role in end-to-end flow control and

congestion control, which are important in enabling a diverse set of devices to share the

network resources. TCP uses several mechanisms to detect congestion in the network,

and controls its rate to avoid congestion collapse and to allow fair sharing of the network

resources among many flows.

However, TCP was designed for reliable transmission over wired networks, in which the

lower layers such as the MAC and the PHY layers can effectively correct for random losses

32 CHAPTER 1. INTRODUCTION

and errors. As a result, in wired networks, losses are generally indication of buffer overflow or

congestion. Therefore, TCP considers losses as congestion and reacts accordingly. However,

this is not the case in wireless networks, where losses are often due to fading, interference,

and other physical phenomena. With the proliferation of wireless networks and devices,

the assumption that MAC and PHY layers will effectively fix the problems of efficiency

and losses is no longer true. This results in TCP’s poor performance in wireless networks

compared to the wired counterparts.

To combat these harmful effects of wireless networks to TCP, we combine TCP with

network coding. In Chapter 4, we introduce network coding to complement TCP and make it

more robust to erasures. Using network coding’s erasure correction capability, we show that

TCP/NC is a novel reliable transport protocol which is resilient to losses while maintaining

TCP’s functionality in end-to-end flow control and congestion control. Our results confirm

that TCP/NC has significant throughput gain over TCP, where the gain increases with the

packet loss rate in the network. The key challenge in inserting network coding into TCP

is understanding how much coding is needed when and the effect of network coding on the

other TCP functionalities.

1.3 Algebraic Watchdog: Network Coding for Secure Com-

munications

In Chapter 5, we consider the problem of secure communication in wireless networks. Wire-

less networks and communications have great potential to improve access to services and

information. Unfortunately, wireless networks are often insecure, prone to adversarial eaves-

dropping and contamination. These dangers are not just theoretical. There are tools and

software, easily accessible, that can allow an unauthorized user to access nearby wireless

networks, overhear other users’ messages, and even jam and intercept signals from users.

Countering these types of threats is important in any type of networks. One key ap-

plication of secure wireless communications is in military communications and networking,

which are highly dynamic in nature and must not fail when adversaries succeed in com-

promising some of the nodes in the network. However, security often comes at a cost of

1.4. OUTLINE 33

network performance. For instance, many secure protocols require a significant amount of

control information to be sent and received among nodes, or need a certain infrastructure

(such as a public key infrastructure and certificate authorities) to manage and control the

communications network.

In Chapter 5, we leverage the performance gain provided by network coding to integrate

security without incurring significant transmission overhead or requiring additional infras-

tructure. By taking advantage of the broadcast nature of wireless, we present a scheme that

allows network nodes to monitor other nodes in the network in a distributed manner.

Algebraic Watchdog, the subject of Chapter 5, considers the problem of detecting ma-

licious behavior in wireless networks. The goal of Algebraic Watchdog is to allow network

nodes to monitor their neighborhood locally, and together the nodes can provide a se-

cure global self-checking network. Network coding plays two significant roles in Algebraic

Watchdog. First, network coding bolsters higher throughput in the wireless network; sec-

ond, network coding protects the network and prevents adversaries from injecting invalid

information without being detected. The latter benefit is obtained by understanding the

algebraic nature of network coding. Network coding performs algebraic transformation to

the information, which at first glance may seem to hinder the nodes from checking their

neighbors. However, with a studied understanding, this algebraic transformation can be

harnessed to provide secure communication.

1.4 Outline

The dissertation is organized as follows. Chapter 2 provides a brief overview of network

coding and its evolution. The dissertation focuses on designing a coded system that over-

comes the challenges posed by wireless networks, in particular interference, erasures, and

attacks. These solutions are contained in Chapters 3, 4, and 5. Each application is entirely

contained within each chapter; therefore, depending on what the reader is looking for, each

chapter can be read independently.

The main body of the dissertation is organized in the order of “difficulty of manage-

ment”. We start with Algebraic NC in Chapter 3, which studies the effect of interference

34 CHAPTER 1. INTRODUCTION

among users in wireless networks. We investigate how network coding can manage and

exploit strategic interference to better understand multi-user wireless networks. We then

consider the problem of erasures in Chapter 4. Interference is generated by participants

of the networks, and therefore, can be managed and designed using appropriate schedul-

ing algorithms and coding techniques; however, erasures are an innate property of wireless

which we have to cope with. The subject of Chapter 4 is TCP/NC, which aims to provide

reliable and efficient transport of data in lossy and faulty networks. Finally, in Chapter 5,

we introduce Algebraic Watchdog, a sophisticated inference algorithm that takes advantage

of interference to provide secure communication in wireless networks. Algebraic Watch-

dog detects misbehaviors or contamination within the network, and ultimately limits the

adversarial attacks to that of channel noise.

Finally, in Chapter 6, we present a summary and give a final perspective on this disser-

tation. Chapter 6 also provides a few pointers for potential extensions to the body of work

presented in this dissertation.

Chapter 2

Overview of Network Coding

N
etwork coding [3] has emerged as a new paradigm to operate networks, promising a

more efficient network with higher throughput and reliability. Network coding allows

and encourages mixing of data at intermediate nodes, which has been shown to increase

throughput and robustness against failures and erasures [67]. The growth in network coding

has been explosive. This chapter presents only a few selected works in this area, and does

not attempt to provide a comprehensive overview of network coding. A more detailed

background of network coding related to the specific applications is presented in each chapter

separately. In this chapter, we describe in a few broad brush strokes how the field of network

coding has evolved.

Network coding has evolved significantly from its inception. Initially, network coding

was proposed for wired multicast networks, in which one or more sources may wish to deliver

information to many receivers. References [3] showed that, if additional computing tasks are

performed at the intermediate nodes, the multicast capacity can be achieved. Thus, network

coding has been shown to extend the Max-flow Min-cut theorem for unicast connections to

multicast connections, which was not possible with traditional routing ideas.

The butterfly network [3], shown in Figure 2-1, is an iconic example used to illustrate the

advantage of network coding over routing in a multicast network. Assume that all links in

Figure 2-1 have capacity one. The two source nodes S1 and S2 wish to send information A

and B, respectively, to both destinations D1 and D2. In a routing network, the middle link

between the two intermediate nodes V1 and V2 becomes a bottleneck; the middle link needs

35

36 CHAPTER 2. OVERVIEW OF NETWORK CODING

A S1 S2

V1

V2

B

A B

A BA+B

A+B A+B

D1 D2

A B A B

Figure 2-1: The butterfly network. The example illustrates how network coding can be
used to achieve multicast capacity.

to be time shared between the two sources. On the other hand, if the intermediate node V1

is allowed to perform an XOR of A and B and send the result to V2, both destinations can

recover both A and B, as shown in Figure 2-1.

In the example in Figure 2-1, a simple XOR operation was sufficient to achieve capacity.

It was later shown by Li et al. [71] that linear operations are sufficient to achieve the

multicast capacity. Subsequently, Koetter and Médard [67] showed an algebraic framework

for linear network coding, and presented an equivalence between a network coding problem

and a certain algebraic condition. As a result, there has been a significant interest in

linear network coding due to its potential as practical, simple code with near-optimum

performance.

Efficient linear network codes were quickly introduced. References [44][46][43][41] in-

troduced low complexity linear network codes for multicast. In particular, Ho et al. [41]

proposed a randomized, distributed code construction algorithm, called random linear net-

work coding, which achieves multicast capacity with probability exponentially approaching

one with the field size. The network code introduced in [41] is particularly attractive for its

distributed nature.

Soon after the introduction of efficient linear network codes, network coding evolved

37

beyond wired multicast networks. Lun et al. [77] extended network coding from reliable

networks to unreliable networks with packet losses. A typical example of such unreliable

networks is wireless networks in which losses and failures are common. Therefore, reference

[77] showed that the benefit of network coding is not limited to multicast networks; a single

point-to-point connection may benefit from network coding in the presence of losses and

failures.

Despite its desirable properties, network coding is not an “one size fits all” solution to

problems in networking. Like many ideas, network coding is a tool among many others to

be chosen for appropriate circumstances; like many protocols and systems, network coded

systems have to be designed and implemented with the application of interest in mind. It is

crucial to understand the constraints of the network, the quality of service (QoS) required

by the application, and the security and privacy concerns of the users to design a good

network code.

An example of such engineering considerations is in weighing the computational cost of

coding and decoding against the throughput gain provided by network coding [11][70]. This

trade-off between throughput and complexity is at the core of designing a good network

code. If there are abundant network resources for all users, then there is no need to code.

A simple routing solution may suffice. However, this is often not the case, particularly

poignant in bandwidth limited wireless networks. If there is a bottleneck or a need to

manage and share network resources among many users, then the coding overhead may be

negligible compared to the benefits gained from using network coding.

Another example of such engineering decisions is in determining when and where to

use network coding. Network coding promises improved efficiency in the form of higher

throughput, especially in challenged network situations. For instance, network coding may

provide better utilization of network resources in bandwidth limited networks [52][50][49],

and resilience in lossy and faulty networks [77][91][66]. On the other hand, a highly pro-

visioned optical networks, such as the Internet backbone, may not benefit from network

coding as much. On the contrary, the computational cost of coding and decoding may be

undesirable in such networks.

As a result, there has been significant effort made to tailor and adjust network coding for

38 CHAPTER 2. OVERVIEW OF NETWORK CODING

Routing

A

A

B

B

Network Coding

A

A+B

B

A+B

Time 1

Time 2

Time 3

Time 4
B

Figure 2-2: An example showing how a simple XOR code may increase throughput. The
example illustrates how two nodes may exchange information in three transmissions instead
of four transmissions (needed by routing solution).

various applications. As the theory of network coding developed, the use of network coding

expanded to more practical and application-oriented work. Many areas of applications have

been considered, of which we mention only a few here.

In keeping with the original spirit of network coding, there has been work in implement-

ing network coding in multiple multicast scenarios, such as in multicast routers. Scheduling

algorithms and buffer management protocols for multicast routers with network coding were

presented in [88][90][63][64].

There are several protocols that take advantage of network coding in wireless networks

[52][50][49][15][73][10]. Reference [52] may be the most intuitive and simple implementation

of network coding. Figure 2-2 illustrates the basic concept behind [52], which uses simple

XOR codes to achieve higher throughput in wireless networks.

For secure communication, network coding has been used in [94][45][40][96]. These works

focus on algorithm and protocol designs for robustness and resilience against network attacks

such as snooping, eavesdropping, and pollution. Furthermore, application of network coding

in distributed storage [2][19] and peer-to-peer networks [35][34] have been of significant

interest. One of the key problems in peer-to-peer networks is, as poignantly presented in

[27], that of the coupon collector’s problem. Network coding’s ability to correct erasures

and remove scarce packets is heavily exploited in these systems.

39

The potential benefits and applications of network coding are wide. The key observation

is that there is no coding scheme which is optimal for all applications. Depending on the

design parameters, the network code may differ greatly. The list of applications presented in

this chapter is not an exhaustive one – there are many other applications that may benefit

from the use of network coding. This dissertation aims to reinforce the theoretical and

practical benefits of network coding, and to provide some guidance in designing network

coded systems for robust communication over wireless networks.

40 CHAPTER 2. OVERVIEW OF NETWORK CODING

Chapter 3

Algebraic NC:

Network Coding for Interference Networks

F
inding the capacity as well as the code construction for the multi-user wireless net-

works, unlike its wired counterparts, are generally open problems. Even the relatively

simple relay network with one source, one sink, and one relay, has not been fully character-

ized. There are two sources of disturbances in multi-user wireless networks – channel noise

and interference among users in the network. In order to better approximate the Gaussian

multi-user wireless networks, [6][7] proposed a binary linear deterministic network model

(known as the ADT model), which takes into account the multi-user interference but not

the noise. A node within the network receives a bit if the signal is above the noise level;

multiple bits that simultaneously arrive at a node are superposed.

References [6][7] showed that, for a multicast connection where a single source wishes to

transmit the same data to a set of destinations, the achievable rate is equal to the minimal

cut between the source and any of the destinations in an ADT network. As we shall discuss

in Section 3.4, the min-cut of an ADT network may not equal to the graph theoretical cut

value. In addition, [6][7] showed that the minimal cut between the source and a destination

is equal to the minimal rank of incidence matrices of all cuts between the two nodes. This

can be viewed as the equivalent of the Min-cut Max-flow criterion in the network coding for

wired networks [3][67]. It has been shown that for several networks, the gap between the

capacity of the deterministic ADT model and that of the corresponding Gaussian network

41

42 CHAPTER 3. ALGEBRAIC NC

is bounded by a constant number of bits, which does not depend on the specific channel

fading parameters [6][12][8].

In this chapter, we make a connection between the ADT network and network coding,

in particular algebraic network coding introduced by Koetter and Médard [67]. Other

approaches to operations in high SNR networks have been proposed [78], however, we do

not compare these different approaches but build upon the given model proposed by [6][7].

We show that the ADT network problems, including that of computing the min-cut and

constructing a code, can be captured by the algebraic network coding framework.

In the context of network coding, reference [67] showed that the solvability of the com-

munication problem [3] is equivalent to ensuring that a certain polynomial does not evaluate

to zero, i.e. avoid the roots of this certain polynomial. Furthermore, [67] showed that there

are only a fixed finite number of roots of the polynomial; thus, with large enough field size,

decodability can be guaranteed even under randomized coding schemes as shown in [41].

As we increase the field size Fq, the space of feasible network codes increases exponentially;

while the number of roots remain fixed.

We show that the solvability of ADT network problem can be characterized in a similar

manner. The important difference between the algebraic network coding in [67] and the

ADT network is that the broadcast constraints, as well as the interference constraints, are

embedded in the ADT network. The interference constraint, represented by the additive

multiple access channels (MAC), can be easily incorporated into the algebraic framework

in [67] by pre-encoding at the transmitting nodes (i.e. MAC users). This is due to the

fact that the MAC is modeled using a finite field additive channel; therefore, the operations

performed by the MAC can be “canceled” by the transmitter appropriately pre-encoding

the packets.

On the other hand, the broadcast constraint may seem more difficult to incorporate,

as the same code affects the outputs of the broadcast channel simultaneously and the

dependencies propagate through the network. Therefore, in essence, this chapter shows

that this broadcast constraint is not problematic.

To briefly describe the intuition, consider an ADT network without the broadcast con-

straint, i.e. the broadcast edges do not need to carry the same information. Using this

43

f(x)

x

g(x)

Figure 3-1: An interpretation of the broadcast constraint in ADT networks. A polynomial
f(x) and a hyperplane g(x) with one variable x ∈ R. The black dots represent the roots
of f(x). When considering the space where f(x) intersects g(x), the hyperplane g(x) limits
the space in which f(x) operates in; however, g(x) does not change the roots of f(x). Some
of the roots of f(x) may no longer be “feasible” given the additional constraint; thus, this
operation may reduce the number of roots that we have to consider.

“unconstrained” version of the ADT network, the algebraic framework in [67] can be ap-

plied directly; therefore, there are only a finite fixed number of roots that need to be

avoided. Furthermore, as the field size increases, the probability of randomly selecting a

root approaches zero. Now, we “re-apply” the broadcast constraints to this unconstrained

ADT network. The broadcast constraint fixes the codes of the broadcast edges to be the

same; this is equivalent to intersecting the space of network coding solutions with an hy-

perplane, which enforces the output ports of the broadcast to carry the same code. As

shown in Figure 3-1, this operations does not change the polynomial whose roots we have

to avoid, but changes the hyperspace we operate in. As a result, this operation does not

affect the roots of the polynomial; there are still only a fixed finite number of roots that

need to be avoided, and with high enough field sizes, the probability of randomly selecting a

root approaches zero. Note that intersecting the space of network coding solutions with an

hyperplane may even remove some roots of the polynomial from consideration; therefore,

we may effectively have fewer roots to avoid.

By the same argument as in [67][41], we can then show that the solvability of an ADT

network problem is equivalent to ensuring that a certain polynomial does not evaluate to

zero within the space defined by the polynomial and the broadcast constraint hyperplane.

44 CHAPTER 3. ALGEBRAIC NC

This enables us to describe the ADT network within the algebraic network coding framework

and extend the random linear network coding results to the ADT networks.

Using this insight, we prove that the ADT network problem can be captured by a single

matrix, called the system matrix. We show that the min-cut of an ADT network is the

rank of the system matrix; thus, eliminating the need to optimize over exponential number

of cuts between two nodes to compute the min-cut of an ADT network. We extend the

capacity characterization for ADT networks to a more general set of connections, including

single unicast or multicast connection and non-multicast connections such as multiple mul-

ticast, disjoint multicast, and two-level multicast. We also provide sufficiency conditions

for achievability in ADT networks for any general connection set. Furthermore, we extend

the results on ADT networks to those with random erasures and cycles (thus, allowing bi-

directional links). We emphasize that these generalizations are possible precisely because

we were able to take advantage of the algebraic structure within the ADT network.

We show that a direct consequence of this connection between ADT network problems

and algebraic network coding is that random linear network coding, a randomized dis-

tributed algorithm for network code construction, achieves the capacity for the connections

listed above. Note that Avestimehr et al.’s proposed code construction [6][7] is not guar-

anteed to be efficient and may potentially involve an infinite block length. Other coding

schemes [5][86][37] have been proposed for the ADT networks. Many of these code construc-

tion algorithms require coordination among nodes and/or some knowledge of the global or

local topology. We remove all these requirements from the algorithm by understanding

that the ADT network problems can be translated to those of algebraic network coding

framework, and present a randomized, distributed code construction for ADT networks.

The rest of this chapter is organized as follows. We provide a brief discussion on related

work in Section 3.1. We present the network model in Section 3.2, and an algebraic for-

mulation of the ADT network in Section 3.3. Using this algebraic formulation, we provide

a definition of the min-cut in ADT networks in Section 3.4. In Sections 3.5, we restate

the Min-cut Max-flow theorem using our algebraic formulation, and present new capacity

characterizations for ADT networks to a more general set of traffic requirements in Section

3.6. The results in Section 3.6 show the optimality of linear operations for non-multicast

3.1. BACKGROUND 45

connections such as disjoint multicast and two-level multicast connections. In Section 3.7,

we study ADT networks with link failures, and characterize the set of link failures such

that the network solution is guaranteed to remain successful. Furthermore, in Sections 3.8,

we extend the achievability results to ADT networks with delay. Finally, we conclude this

chapter in Section 3.9.

3.1 Background

Avestimehr et al. introduced the ADT network model to better approximate wireless net-

works [6][7]. In the same work, they characterized the capacity of the ADT networks, and

generalized the Min-cut Max-flow theorem for graphs to ADT networks for single unicast

or multicast connection.

It has been shown that for several networks, the ADT network model approximates the

capacity of the corresponding Gaussian network to within a constant number of bits. For

instance, [6] considered the single relay channel and the diamond network, and showed that

the gap between the capacity of the ADT model and that of Gaussian network is within 1 bit

and 2 bits, respectively. Reference [12] considered many-to-one and one-to-many Gaussian

interference networks. The networks in [12] are special cases of interference network with

multiple users, where the interference is either experienced (many-to-one) or caused by (one-

to-many) a single user. It was shown that in these cases, the gap between the capacity of the

Gaussian interference channel and the corresponding deterministic interference channel is

again bounded by a constant number of bits. The work in [12] provided an alternative proof

to [29] on the existence of a scheme that can achieve a constant gap from the capacity for

all values of channel parameters. In [8], the half-duplex butterfly network was considered.

They showed that the deterministic model approximates the symmetric Gaussian butterfly

network to within a constant.

As a result, there has been significant interest in finding an efficient code construction

algorithm for the ADT network model. However, the achievability proof in [7] is not con-

structive, and involves information theoretical arguments. Therefore, the code construction

is not guaranteed to be efficient and may potentially involve an infinite alphabet size or block

46 CHAPTER 3. ALGEBRAIC NC

length. An important problem is to find an efficient code construction for the deterministic

model of wireless multicast relay networks.

In the case of unicast communication, a number of previous code constructions have been

proposed for the ADT networks. It is important to observe that in the code constructions

for unicast communication, routing [86] or one-bit operations [5] are sufficient for achieving

the capacity of the deterministic model. Reference [5] proposed an algorithm which can be

viewed as an application of the Ford and Fulkerson flow construction to the deterministic

model. The complexity of the algorithm was shown to be O(|V||E|R5), where V is the

set of nodes in the network, E is the set of edges, and R is the rate of the code. In [86],

another algorithm for finding the flow for unicast networks was developed. The algorithm is

based on an extension of the Rado-Hall transversal theorem for matroids and on Edmonds’

theorem. The transmission scheme in [86] extracts at each relay node a subset of the input

vectors and sets the outputs to the same values as that subset. In [37], it was shown that the

deterministic model can be viewed as a special case of a more abstract flow model, called

linking network, which is based on linking systems and matroids. Using this approach,

[37] achieved a code complexity O(λN3
layer logNlayer), where λ is the number of layers in

the layered network, and Nlayer is the maximal number of nodes in a layer. Note that

linear network coding is known to be matroidal [22]; thus, the fact that ADT networks are

matroidal [37] is consistent with our result.

In the case for multicast communication, however, routing or one-bit operations may not

be sufficient to achieve the capacity in the ADT model. This can be shown by considering

the example in Figure 3-2, which is given in [30][84][32] for network coding. From the

analysis for network coding, it follows that in the case of the deterministic model, the

maximal rate of two can be achieved simultaneously for all sinks only with an alphabet

size which is at least three. To see this, observe that to achieve a rate of two the source

has to transmit at its outputs two statistically independent symbols x1 and x2. For node

v2i , 1 ≤ i ≤ 4 at the second layer, the transmitted symbol is a certain function of the symbols

x1 and x2, given by yi = fi(x1, x2). Node v3i , 1 ≤ i ≤ 4, at the third layer transmits at its

outputs two functions of yi, given by f1
i (yi) and f2

i (yi). Sink ti, 1 ≤ i ≤ 6 receives at its two

inputs symbols of the form f1
j (yj) and f2

j (yj)+ f1
k (yk) for some 1 ≤ j ≤ 4, 1 ≤ k ≤ 4, j 6= k.

3.1. BACKGROUND 47

S

t3

t4

t2

t5

t6

t1

v1

2

v2

2

v3

2

v4

2

v1

3

v2

3

v3

3

v4

3

t6

Figure 3-2: An example network for a non-binary code.

It follows that without rate loss, we can always assume f1
j (yj) = yj for each 1 ≤ j ≤ 4.

In that case, the sink ti receives yj at its upper input and can therefore find f2
j (yj) and

eliminate it from the second symbol it received. Therefore, it is equivalent to the situation

in which the sink receives yj and yk. This in turn is exactly the situation in [84] (Theorem

3.1) for network coding. Since the channels are all binary in the deterministic model, it

follows that the minimal required alphabet size is in fact 22 = 4, and therefore the minimal

vector length is log2(4) = 2. Thus, for multicasting in ADT networks, we need to either

operate in a higher field size, Fq, q ≥ 2, or use vector coding (or both).

References [23][24][28] proposed a polynomial time algorithm for multicasting in ADT

networks. In particular, [24] extended the algebraic network coding result [67] to vector

network coding, and showed that constructing a valid vector code is equivalent to certain

algebraic conditions. This result [24] is supported by the result from [43]. Reference [43]

introduced network codes, called permute-and-add, that only require bit-wise vector opera-

tions to take advantage of low-complexity operations in F2. In addition, [43] showed that

48 CHAPTER 3. ALGEBRAIC NC

R1

R2

Y(e1)

Y(e2)

e1

e2

e3
Y(e3) = β1Y(e1) + β2Y(e2)

Model as

error free

links

R1

R2

High SNR

Figure 3-3: A model of MAC in the high SNR regime. Additive MAC with two users,
and the corresponding rate region. The triangular region is modeled as a set of finite field
additive MACs.

codes in higher field size Fq can be mapped to binary-vector codes without loss in perfor-

mance. This insight, combined with that of [67], suggests that an algebraic property of a

scalar code may translate into another algebraic property of the corresponding vector code.

3.2 Network Model

As in [6][7], we shall consider the high SNR regime, in which interference is the dominating

factor. In high SNR, analog network coding, which allows and encourages strategic inter-

ference, is near optimal [78]. Analog network coding is a physical layer coding technique,

introduced by [51], in which intermediate nodes amplify-and-forward the received signals

without decoding. Thus, the nodes amplify not only the superposed signals from different

transmitters but also the noise. Note that a network operating in high SNR regime is dif-

ferent from a network with high gain since a large gain amplifies the noise as well as the

signal.

In the high SNR regime, the Cover-Wyner region may be well approximated by the

combination of two regions, one square and one triangular, as in Figure 3-3. The square

(shaded) part can be modeled as parallel links for the users, since they do not interfere.

The triangular (unshaded) part can be considered as that of a time-division multiplexing

(TDM), which is equivalent to using noiseless finite-field additive MAC [85]. This result

3.2. NETWORK MODEL 49

holds not only for binary field additive MAC, but also for higher field size additive MAC

[85].

The ADT network model uses binary channels, and thus, binary additive MACs are

used to model interference. Prior to [6][7], Effros et al. presented an additive MAC over a

finite field Fq [25]. The Min-cut Max-flow theorem holds for all of the cases above. It may

seem that the ADT network model differs greatly from that of [25] owing to the difference

in field sizes used. In general, codes in Fq subsume binary codes, i.e. binary-vector codes in

(F2)
m. However, for point-to-point links with memory (or equivalently by allowing nodes

to code across time), we can convert a code in (F2)
m to a code in higher field size Fq and

vice versa by normalizing to an appropriate time unit. Note that ADT network model

uses binary additive MACs and point-to-point links. Therefore, our work in part shows an

equivalence of higher field size codes and binary-vector codes in ADT networks.

As noted in Section 3.1, reference [43] presented a method of converting between binary-

vector codes and higher field size codes. We can achieve a higher field size in ADT networks

by combining multiple binary channels. In other words, consider two nodes V1 and V2 with

two binary channels connecting V1 to V2. Now, instead of considering them as two binary

channels, we can “combine” the two channels as one with capacity of 2-bits. In this case,

instead of using F2, we can use a larger field size of F4. Thus, selecting a larger field size

Fq, q > 2 in ADT network results in fewer but higher capacity parallel channels. Reference

[43] also provides a conversion from a code in a higher field Fq to a binary-vector scheme in

F2m where q ≤ 2m. Therefore, a solution in Fq may be converted back to a binary-vector

scheme, which may be more appropriate for the original ADT model. Furthermore, it is

known that to achieve capacity for multicast connections, F2 is not sufficient [28]; thus, we

need to operate in a higher field size. Therefore, we shall not restrict ourselves to F2.

We now proceed to defining the network model precisely. A wireless network is modeled

using a directed graph G = (V, E) with a supernode set V and an edge set E , as shown

in Figure 3-4. A supernode V ∈ V is a node of the original network. We use the term

supernode to emphasize the fact that supernode V consists of input ports I(V) and output

ports O(V), as shown in Figure 3-5. Let S,T ⊆ V be the set of source and destination

supernodes. An edge (e1, e2) may exist from an output port e1 ∈ O(V1) to an input port

50 CHAPTER 3. ALGEBRAIC NC

e2

e1

X(S, 1)

X(S, 2)
S

e8

e7

e4

e3

e10

e9

e6

e5

e12

e11

Z(T, 1)

Z(T, 2)

V1

V2

T

a

b

a

c

d

f

Figure 3-4: An example network. We omit I(S) and O(T) in this diagram as they do not
participate in the communication.

e1

e2

en

e'1

e'2

e'm

I(V) O(V)

Figure 3-5: An illustration of a supernode V . A supernode V consists of input ports I(V)
and output ports O(V).

e2 ∈ I(V2), for any V1, V2 ∈ V. Let E(V1, V2) be the set of edges from O(V1) to I(V2). All

edges are of unit capacity, where capacity is normalized with respect to the symbol size of

Fq.

Noise is embedded, or hard-coded, in the structure of the ADT network in the following

way. Parallel links of E(V1, V2) deterministically model noise between V1 and V2. Let

SNR(Vi,Vj) be the signal-to-noise ratio from supernode Vi to supernode Vj . Then,

|E(V1, V2)| =
⌈

1

2
log SNR(Vi,Vj)

⌉

. (3.1)

Thus, the number of edges between two supernodes Vi and Vj represents the channel quality

(equivalently, the noise) between the two supernodes.

Given such a wireless network G = (V, E), let S be the set of sources. A source super-

node S ∈ S has independent random processes X (S) = [X(S, 1),X(S, 2), · · · ,X(S, µ(S))],

µ(S) ≤ |O(S)|, which it wishes to communicate to a set of destination supernodes T (S) ⊆ T .
In other words, we want T ∈ T (S) to replicate a subset of the random processes, denoted

3.2. NETWORK MODEL 51

X (S, T) ⊆ X (S), by the means of the network. This algebraic formulation is not restricted

to multicast connections; different sources may wish to communicate to different subsets of

destinations.

We define a connection c as a triple (S, T,X (S, T)), and the rate of c is defined as

R(c) =
∑

X(S,i)∈X (S,T)

H(X(S, i)) = |X (S, T)| (symbols). (3.2)

Information is transmitted through the network in the following manner. A supernode

V sends information through e ∈ O(V) at a rate at most one symbol per time unit. Let

Y (e) denote the random process at port e. In general, Y (e), e ∈ O(V), is a function of

Y (e′), e′ ∈ I(V). In this chapter, we consider only linear functions; therefore,

Y (e) =
∑

e′∈I(V)

β(e′,e)Y (e′), for e ∈ O(V). (3.3)

For a source supernode S and e ∈ O(S),

Y (e) =
∑

e′∈I(V)

β(e′,e)Y (e′) +
∑

X(S,i)∈X (S)

α(i,e)X(S, i). (3.4)

Finally, the destination T receives a collection of input processes Y (e′), e′ ∈ I(T). Su-

pernode T generates a set of random processes Z(T) = [Z(T, 1), Z(T, 2), · · · , Z(T, ν(T))]

where

Z(T, i) =
∑

e′∈I(T)

ǫ(e′,(T,i))Y (e′). (3.5)

A connection c = (S, T,X (S, T)) is established successfully if X (S) = Z(T).

A supernode V is said to broadcast to a set V ′ ⊆ V if E(V, V ′) 6= ∅ for all V ′ ∈ V ′. In

Figure 3-4, S broadcasts to supernodes V1 and V2. Superposition occurs at the input port

e′ ∈ I(V); therefore,

Y (e′) =
∑

(e,e′)∈E
Y (e) (3.6)

over a finite field Fq. We say there is a |V ′|-user MAC channel if E(V ′, V) 6= ∅ for all V ′ ∈ V ′.
In Figure 3-4, supernodes V1 and V2 are users, and T the receiver in a 2-user MAC.

52 CHAPTER 3. ALGEBRAIC NC

Y (e1) = α(1,e1)X(S, 1) + α(2,e1)X(S, 2)

Y (e2) = α(1,e2)X(S, 1) + α(2,e2)X(S, 2)

Y (e3) = Y (e6) = Y (e1)

Y (e4) = Y (e2)

Y (e5) = Y (e8) = 0

Y (e7) = β(e3,e7)Y (e3) + β(e4,e7)Y (e4)

Y (e9) = Y (e11) = β(e6,e9)Y (e6)

Y (e10) = β(e6,e10)Y (e6)

Y (e12) = Y (e7) + Y (e10)

Z(T, 1) = ǫ(e11,(T,1))Y (e11) + ǫ(e12,(T,1))Y (e12)

Z(T, 2) = ǫ(e11,(T,2))Y (e11) + ǫ(e12,(T,2))Y (e12)

Figure 3-6: A set of linear equations relating the various processes from Figure 3-4.

For a given network G and a set of connections C, we say that (G, C) is solvable if it is

possible to establish successfully all connections c ∈ C. The broadcast and MAC constraints

are given by the network; however, we are free to choose the variables α(i,e), β(e′,e), and ǫ(e′,i)

from Fq. Hence, the problem of checking whether a given (G, C) is solvable is equivalent to

finding a feasible assignment to α(i,e), β(e′,e), and ǫ(e′,(T,i)).

Example 3.2.1 The equations in Figure 3-6 relate the various processes in the example

network in Figure 3-4. Note that in Figure 3-4, we have set Y (e1) = a, Y (e2) = b, Y (e7) =

c, Y (e9) = d, and Y (e10) = f for notational simplicity.

3.2.1 An Interpretation of the Network Model

The ADT network model uses multiple channels from an output port to model broadcast.

In Figure 3-4, there are two edges from output port e1 to input ports e3 and e6; however, due

to the broadcast constraint, the two edges (e1, e3) and (e1, e6) carry the same information a.

This introduces considerable complexity in constructing a network code as well as computing

the min-cut of the network [6][7][5][37]. This is because multiple edges from a port do not

capture the broadcast dependencies. Furthermore, the broadcast dependencies have to be

propagated through the network.

3.2. NETWORK MODEL 53

Use hyperedges to model

broadcast constraint
0/1 decision: To

transmit or not

fc

0 0 0

0 1 c

1 0 f

1 1 c+f

Possible “codes” at e12 , which

represents the MAC constraint
e2

e1

X(S, 1)

X(S, 2)
S

e8

e7

e4

e3

e10

e9

e6

e5

e12

e11

Z(T, 1)

Z(T, 2)

V1

V2

T
b

c

d

f

a

Figure 3-7: A new interpretation of the example network from Figure 3-4. The broadcast
channel is modeled using an hyperedge. As a result, an output port’s decision to transmit or
not naturally affects all the input ports adjacent to it. Furthermore, interference is modeled
using a finite field additive MAC, which provides a set of possible binary codes at the input
ports.

a

b

c

e1

e2

e3

e4

e5

e6

Figure 3-8: An example of finite field additive MAC.

In our approach, we remedy this by introducing the use of hyperedges, as shown in Figure

3-7 and further discussed in Section 3.3. An output port’s decision to transmit affects the

entire hyperedge; as a result, the output port transmits to all the input ports connected to

the hyperedge simultaneously. This removes the aforementioned difficulties of computing

the min-cut of ADT networks, as it naturally captures the broadcast dependencies. We

shall redefine the min-cut of ADT networks using our approach in Section 3.4.

The finite field additive MAC model can be viewed as a set of codes that an input port

may receive. As shown in Figure 3-7, input port e12 receives one of the four possible codes.

The code that e12 receives depends on output ports e7’s and e10’s decision to transmit or

not.

The difficulty in constructing a network code does not come from any single broadcast

or MAC constraint. The difficulty in constructing a code is in satisfying multiple MAC

and broadcast constraints simultaneously. For example, in Figure 3-8, the fact that e4 may

54 CHAPTER 3. ALGEBRAIC NC

O(S)

e1

e2

e3

e27

e28

e29

I(T1)

e43

e44

e45

I(TN)

Multicast

Network

Figure 3-9: An example of a multicast network. Single multicast network with source S
and receivers T1, · · · , TN .

receive a + b does not constrain the choice of a nor b. This is because we can choose any

a and b such that a+ b 6= 0, and ensure that both a and b are decoded as long as enough

degrees of freedom are received by the destination node. The same argument applies to e6

receiving a + c. However, the problem arises from the fact that a choice of value for a at

e2 interacts both with b and c. In such a case, we need to ensure that both a+ b 6= 0 and

a + c 6= 0. Therefore, our constraint is (a + b)(a + c) 6= 0. As the network grows in size,

we will need to satisfy more constraints simultaneously. As we shall see in Section 3.4, we

eliminate this difficulty by allowing the use of a larger field, Fq.

3.3 Algebraic Network Coding Formulation

We provide an algebraic formulation for the ADT network problem (G, C), and present an

algebraic condition under which the system (G, C) is solvable. We assume that G is acyclic

in this section; however, we shall extend the results in this section to ADT networks with

cycles in Section 3.8. For simplicity, we describe the multicast problem with a single source

S and a set of destination supernodes T , as in Figure 3-9. However, this formulation can

be extended to multiple source S1, S2, · · · SK by adding a super-source S as in Figure 3-10.

We define a system matrix M to describe the relationship between the source’s random

processes X (S) and the destinations’ processes Z = [Z(T1),Z(T2), · · · ,Z(T|T |)]. Thus, we

want to characterize M where

Z = X (S) ·M. (3.7)

3.3. ALGEBRAIC NETWORK CODING FORMULATION 55

eN-2
eN-1
eN

e1
e2
e3

I(SK)

e'1
e'2
e'3

O(SK)

I(S1)O(S1)O(S)

e'N-2
e'N-1
e'N

System matrix M

=

(I-F)-1 B1
T

BN
T

= M1 M2 MN
A1

AK

Figure 3-10: An example network with a supersource. A network with multiple sources
S1, S2, · · · , SK can be converted to a single source problem by adding a super-source S with
|O(S)| =∑K

i=1 |O(Si)|. Each e′j ∈ O(S) has a “one-to-one connection” to a ej ∈ O(Si), for
i ∈ {1, 2, · · · ,K}. Matrix Ai represents the encoding matrix for source Si, while Bj is the
decoding matrix at destination Tj. The white area represents the zero elements, and the
shaded area represents the coding coefficients.

56 CHAPTER 3. ALGEBRAIC NC

The matrix M is composed of three matrices, A, F , and B.

3.3.1 Adjacency Matrix F

Given G, we define the adjacency matrix F as follows:

Fi,j =



























1 if (ei, ej) ∈ E ,

β(ei,ej) if ei ∈ I(V), ej ∈ O(V) for V ∈ V,

0 otherwise.

(3.8)

Matrix F is defined on the ports, rather than on the supernodes. This is because, in the

ADT model, each port is the basic receiver or transmitter unit. Each entry Fi,j represents

the input-output relationships of the ports. A zero entry indicates that the ports are not

directly connected, while an entry of one represents that they are connected.

The adjacency matrix F naturally captures the physical structure of the ADT network.

A row of F with multiple entries of one represents the broadcast hyperedge; while a column

with multiple entries of one represents the MAC constraint. Note that the 0-1 entries of

F represent the fixed network topology as well as the broadcast and MAC constraints. On

the other hand, β(ei,ej) are free variables, representing the coding coefficients used at V

to map the input port processes to the output port processes. This is the key difference

between the work presented here and in [67]. The adjacency matrix F is partially fixed in

the ADT network model due to network topology, the broadcast constraints, and the MAC

constraints, while in [67], only the network topology affects F .

In [6][7], the supernodes are allowed to perform any internal operations; while in [5][37],

only permutation matrices (i.e. routing) are allowed. Note that [5][37] only consider a

single unicast traffic, in which routing is known to be sufficient. References [6][7] showed

that linear operations are sufficient to achieve the capacity in ADT networks for a single

multicast traffic. We consider a general setup in which β(ei,ej) ∈ Fq. Therefore, our setup

allows any matrix operation, as in [6][7].

Observe that F k, the k-th power of an adjacency matrix of a graph G, shows the

existence of paths of length k between any two nodes in G. Therefore, the series I + F +

3.3. ALGEBRAIC NETWORK CODING FORMULATION 57

F 2 + F 3 + · · · represents the connectivity of the network. It can be verified that F is

nilpotent, which means that there exists a k such that F k is a zero matrix. As a result,

I+F +F 2+F 3+ · · · can be written as (I−F)−1, and (I−F)−1 represents the connectivity

of the networks; thus, the impulse response of the network.

From our discussions above, the existence of (I − F)−1 or the invertibility of (I − F)

may be desirable for us. We show in the following lemma that (I − F) is indeed invertible

for all acyclic networks.

Lemma 3.3.1 Let F be the adjacency matrix of acyclic network G = (V, E). Then, I − F

is invertible.

Proof: Since G is cycle-free, there is a partial topological ordering of the nodes

in V. Since each port is associated with a node in V, there also is an ordering of the

ports. Therefore, F , which is defined over the ports, is a strict upper-triangle matrix.

This shows that I − F is an upper-triangle matrix with all diagonal entries equal to one.

Since the determinant of a triangular matrix is the product of its diagonal entries, we have

det(I − F) = 1.

Example 3.3.2 In Figure 3-11, we provide the 12×12 adjacency matrix F for the example

network in Figures 3-4 and 3-7. The first row (with two entries of one) represents the

broadcast hyperedge, e1 connected to both e3 and e6. The last column with two entries equal

to one represents the MAC constraint, both e7 and e10 transmitting to e12. The highlighted

elements in F represent the coding variables, β(e′,e), of V1 and V2 in Figure 3-7. For some

(e′, e), β(e′,e) = 0 since these ports of V1 and V2 are not used.

3.3.2 Encoding Matrix A

Matrix A represents the encoding operations performed at S. We define a |X (S)| × |E|
encoding matrix A as follows:

Ai,j =











α(i,ej) if ej ∈ O(S) and X(S, i) ∈ X (S),

0 otherwise.

(3.9)

58 CHAPTER 3. ALGEBRAIC NC











































0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 β(e3,e7) 0 0 0 0 0

0 0 0 0 0 0 β(e4,e7) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 β(e6,e9) β(e6,e10) 0 0

0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0











































Figure 3-11: The 12× 12 adjacency matrix F for the example network in Figure 3-4.

Example 3.3.3 We provide the 2× 12 encoding matrix A for the network in Figure 3-4.

A =





α1,e1 α1,e2 0 · · · 0

α2,e1 α2,e2 0 · · · 0



 . (3.10)

3.3.3 Decoding Matrix B

Matrix B represents the decoding operations performed at the destination T ∈ T . Since

there are |T | destination nodes, B is a matrix of size |Z|× |E| where Z is the set of random

processes derived at the destination supernodes. We define the decoding matrix B as follows:

Bi,(Tj ,k) =











ǫ(ei,(Tj ,k)) if ei ∈ I(Tj), Z(Tj , k) ∈ Z(Tj),

0 otherwise.

(3.11)

Example 3.3.4 We provide the 2×12 decoding matrix B for the example network in Figure

3-4.

B =





0 · · · 0 ǫ(e11,(T,1)) ǫ(e12,(T,1))

0 · · · 0 ǫ(e11,(T,2)) ǫ(e12,(T,2))



 . (3.12)

3.4. DEFINITION OF MIN-CUT 59

3.3.4 System Matrix M = A(I − F)−1BT

Theorem 3.3.5 Given a network G = (V, E), let A, B, and F be the encoding, decoding,

and adjacency matrices, respectively. Then, the system matrix M is given by

M = A(I − F)−1BT . (3.13)

Proof: The proof of this theorem is similar to that of Theorem 3 in [67]. As previously

shown in Lemma 3.3.1, (I − F)−1 = I + F + F 2 + · · · always exists for an acyclic network

G.

The algebraic framework shows a clear separation between the given physical constraints

(fixed 0-1 entries of F showing the topology, the broadcast constraints, and the MAC

constraints), and the coding decisions. As mentioned previously, we can freely choose the

coding variables α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej). Thus, solvability of (G, C) is equivalent to

assigning values to α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that each receiver T ∈ T is able to

decode the data it is intended to receive.

Example 3.3.6 We can combine the matrices F , A, and B from Examples 3.3.2, 3.3.3,

and 3.3.4 respectively to obtain the system matrix M = A(I − F)−1BT for the network in

Figure 3-4. We show a schematic of the system matrix M in Figure 3-12.

3.4 Definition of Min-cut

Consider a source S and a destination T . Reference [6] proves the maximal achievable rate

to be the minimum value of all S-T cuts, denoted mincut(S, T), which we reproduce below

in Definition 3.4.1.

Definition 3.4.1 (Min-cut of ADT networks [6][7]) A cut Ω between a source S and

a destination T is a partition of the supernodes into two disjoint sets Ω and Ωc such that

S ∈ Ω and T ∈ Ωc. For any cut, GΩ is the incidence matrix associated with the bipartite

graph with ports in Ω and Ωc. Then, the capacity of the given ADT network, equivalently

60 CHAPTER 3. ALGEBRAIC NC

System matrix M = A (I-F) -1 BT

= A

(I-F)-1

=

B1
T

M1

| |

BN
T

MN

Figure 3-12: An example of the system matrix M for a multicast connection. The system
matrix M has components A, (I − F)−1, and B for the single multicast connection with
source S and destinations Ti, i ∈ {1, 2, · · · , N}.

mincut(S, T), is defined as

mincut(S, T) = min
Ω

rank(GΩ). (3.14)

This rate of mincut(S, T) can be achieved using linear operations for a single unicast/multicast

connection.

In order to compute mincut(S, T) using Definition 3.4.1, we need to optimize over all

cuts between S and T . In addition, the proof of achievability in [6] is not constructive, as

it assumes infinite block length and does not consider the details of internal operations at

the supernodes.

We introduce a new algebraic definition of the min-cut, and show that it is equivalent

to that of Definition 3.4.1.

Theorem 3.4.2 The capacity of the given ADT, equivalently the minimum value of all

3.4. DEFINITION OF MIN-CUT 61

S − T cuts mincut(S, T), is

mincut(S, T) = min
Ω

rank(GΩ) (3.15)

= max
α(i,e),β(e′,e),ǫ(e′,i)

rank(M). (3.16)

Proof: By [6] and Definition 3.4.1, we know that mincut(S, T) = minΩ rank(GΩ).

Therefore, we show that maxα,β,ǫ rank(M) is equivalent to the maximal achievable rate in

an ADT network.

First, we show that mincut(S, T) ≥ maxα,β,ǫ rank(M). In our algebraic formulation,

Z(T) = X (S)M . Therefore, the rank of M represents the rate achieved. Let R =

maxα,β,ǫ rank(M). Then, there exists an assignment of α(i,e), β(e′,e), and ǫ(e′,i) such that

the network achieves a rate of R. By the definition of min-cut, it must be the case that

mincut(S, T) ≥ R = maxα,β,ǫ rank(M).

Second, we show thatmincut(S, T) ≤ maxα,β,ǫ rank(M). Assume that R = mincut(S, T).

Then, by [6][7], there exists a linear configuration of the network such that we can achieve

a rate of R such that the destination T is able to reproduce X (S, T). This configuration of

the network provides a linear relationship of the source-destination processes. Actually, the

resulting system matrix is an identity matrix, as the destination reproduced X (S, T). This
implies that there is an assignment of the variables α(i,e), β(e′,e), and ǫ(e′,i) for our algebraic

framework such that the system matrix has rank R. We denote M ′ to be the system matrix

corresponding to this assignment. Note that, by the definition, M ′ is an R×R matrix with

a rank of R. Therefore, maxα,β,ǫ rank(M) ≥ rank(M ′) = mincut(S, T).

The system matrix M (thus, the network and decodability at the destinations) depends

not only on the structure of the ADT network, but also on the field size used, supernodes’

internal operations, transmission rate, and connectivity. For example, the network topology

may change with a choice of larger field size, since larger field sizes result in fewer parallel

edges or channels. Furthermore, if we adjust the rate such that |X (S)| ≤ mincut(S, T), then

M is full rank. However, if |X (S)| > mincut(S, T), then M may have rank of mincut(S, T)

but not be full-rank. It is important to note that the cut value in the ADT network may

not equal the graph theoretical cut value as shown in Figure 2 in [5].

62 CHAPTER 3. ALGEBRAIC NC

3.5 Min-cut Max-flow Theorem

In this section, we provide an algebraic interpretation of the Min-cut Max-flow theorem

for a single unicast connection and a single multicast connection [6][7]. This result is a

direct consequence of [67] when applied to the algebraic formulation for the ADT network.

We also show that a distributed randomized coding scheme achieves the capacity for these

connections.

Theorem 3.5.1 (Min-cut Max-flow Theorem) Given an acyclic network G with a sin-

gle connection c = (S, T,X (S, T)) of rate R(c) = |X (S, T)|, the following are equivalent:

1. A unicast connection c is feasible.

2. mincut(S, T) ≥ R(c).

3. There exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that the R(c)×R(c)

system matrix M is invertible in Fq, i.e. det(M) 6= 0.

Proof: Statements 1 and 2 have been shown to be equivalent in ADT networks

[6][5][37]. We now show that statements 1 and 3 are equivalent. Assume that there exists

an assignment such that det(M) 6= 0 in Fq. Then, the system matrix M is invertible;

there exists M−1 such that X (S) = ZM−1 and a connection of rate R(c) = |X (S, T)|
is established. Conversely, if connection c is feasible, there exists a solution to the ADT

network G that achieves a rate of R(c). When using this ADT network solution, the

destination T is able to reproduce X (S, T); thus the resulting system matrix is an identity

matrix, M = I. Therefore, M is invertible.

Corollary 3.5.2 (Random Coding for Unicast) Consider an ADT network problem

with a single connection c = (S, T,X (S, T)) of rate R(c) = |X (S, T)| ≤ mincut(S, T).

Then, random linear network coding, where some or all code variables α(i,ej), ǫ(ei,(Tj ,k)),

and β(ei,ej) are chosen independently and uniformly over all elements of Fq, guarantees de-

codability at destination T with high probability at least (1− 1
q)

η, where η is the number of

links carrying random combinations of the source processes.

3.5. MIN-CUT MAX-FLOW THEOREM 63

Proof: From Theorem 3.5.1, there exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej)

such that det(M) 6= 0, which gives a capacity-achieving network code for the given (G, C).
Thus, this connection c is feasible for the given network. Reference [41] proves that random

linear network coding is capacity-achieving and guarantees decodability with high proba-

bility (1− 1
q)

η for such a feasible unicast connection c.

Theorem 3.5.3 (Single Multicast Theorem) Given an acyclic network G and connec-

tions C = {(S, T1,X (S)), (S, T2, X (S)), · · · , (S, TN ,X (S))}, (G, C) is solvable if and only

if mincut(S, Ti) ≥ |X (S)| for all i.

Proof: If (G, C) is solvable, then mincut(S, Ti) ≥ |X (S)|. Therefore, we only have to

show the converse. Assume mincut(S, Ti) ≥ |X (S)| for all i ∈ [1, N]. The system matrix

M = {Mi} is a concatenation of |X (S)|×|X (S)| matrices where Z(Ti) = X (S)Mi, as shown

in Figure 3-12. We can write

M = [M1,M2, · · · ,MN] = A(I − F)−1BT = A(I − F)−1[B1, B2, · · · , BN]. (3.17)

Thus, Mi = A(I − F)−1Bi. Note that A and Bi’s do not substantially contribute to the

system matrix Mi since A and Bi only perform linear encoding and decoding at the source

and destinations, respectively.

By Theorem 3.5.1, there exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such

that each individual system submatrix Mi is invertible, i.e. det (Mi) 6= 0. However, an

assignment that makes det (Mi) 6= 0 may lead to det (Mj) = 0 for i 6= j. Therefore, we need

to show that it is possible to achieve simultaneously det (Mi) 6= 0 for all i. In other words,

we need to show that
∏

i

det (Mi) 6= 0. (3.18)

By [41], we know that if the field size is larger than the number of receivers (q > N), then

there exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that det (Mi) 6= 0 for all i.

Corollary 3.5.4 (Random Coding for Multicast) Consider an ADT network problem

with a single multicast connection C = {(S, T1,X (S)), (S, T2,X (S)), · · · , (S, TN ,X (S))} with

64 CHAPTER 3. ALGEBRAIC NC

mincut(S, Ti) ≥ |X (S)| for all i. Then, random linear network coding, where some or all

code variables α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen independently and uniformly over all

elements of Fq, guarantees decodability at destination Ti for all i simultaneously with high

probability at least (1− N
q)

η, where η is the number of links carrying random combinations

of the source processes; thus, η ≤ |E|.

Proof: Theorem 3.5.3 shows that the multicast connection C is feasible. Given that

the multicast connection is feasible, reference [41] shows that random linear network coding

achieves the capacity for multicast connections, and allows all destination supernodes to

decode the source processes X (S) with high probability of at least (1− N
q)

η.

Theorem 3.5.1 and Theorem 3.5.3 provide an alternate proof of sufficiency of linear

operations for unicast and multicast in ADT networks, which was first shown in [6].

3.6 Extensions to Other Connections

In this section, we extend the ADT network results to a more general set of traffic re-

quirements. We use the algebraic formulation and the results from [67] to characterize the

feasibility conditions for a given problem (G, C).

3.6.1 Multiple Multicast

Theorem 3.6.1 (Multiple Multicast Theorem) Given a network G and a set of con-

nections C = {(Si, Tj ,X (Si)) | Si ∈ S, Tj ∈ T }, (G, C) is solvable if and only if Min-cut

Max-flow bound is satisfied for any cut that separates the set of source supernodes S and a

destination Tj , for all Tj ∈ T .

Proof: We first introduce a super-source S with |O(S)| =∑Si∈S |O(Si)|, and connect

each e′j ∈ O(S) to an input of Si such that ej ∈ O(Si) as shown in Figure 3-10. Then, we

apply Theorem 3.5.3, which proves the statement.

Corollary 3.6.2 (Random Coding for Multiple Multicast) Consider an ADT net-

work problem with multiple multicast connections C = {(Si, Tj ,X (Si))|Si ∈ S, Tj ∈ T } with
mincut(S, Tj) ≥

∑

i |X (Si)| for all i. Then, random linear network coding, where some

3.6. EXTENSIONS TO OTHER CONNECTIONS 65

or all code variables α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen independently and uniformly

over all elements of Fq, guarantees decodability at destination Ti for all i simultaneously

with high probability at least (1 − N
q)

η, where η is the number of links carrying random

combinations of the source processes; thus, η ≤ |E|.

The optimality of random coding in Corollary 3.6.2 comes from the fact that we allow

coding across multicast connections (Si, Tj ,X (Si))’s. In other words, the source supernodes

and the intermediate supernodes can randomly and uniformly select the coding coefficients.

Thus, intermediate nodes within the network do not distinguish the flow from source Si

from that of Sj , and are allowed to encode them together randomly.

3.6.2 Disjoint Multicast

Theorem 3.6.3 (Disjoint Multicast Theorem) Given an acyclic network G with a set

of connections C = {(S, Ti, X (S, Ti)) | i = 1, 2, · · · ,K} is called a disjoint multicast if

X (S, Ti) ∩ X (S, Tj) = ∅ (3.19)

for all i 6= j. Then, (G, C) is solvable if and only if the min-cut between S and any subset

of destinations T ′ ⊆ T is at least
∑

Ti∈T ′ |X (S, Ti)|, i.e. mincut(S,T ′) ≥∑Ti∈T ′ |X (S, Ti)|
for any T ′ ⊆ T .

Proof: Create a super-destination supernode T with |I(T)| = ∑K
i=1 |I(Ti)| and an

edge (e, e′) from e ∈ O(Ti), i ∈ [1,K] to e′ ∈ I(T), as in Figure 3-13. This converts the

problem of disjoint multicast to a single-source S, single-destination T problem with rate

X (S, T) =
∑

T ′∈T |X (S, T)|. The mincut(S, T) ≥ |X (S, T)|; so, Theorem 3.5.1 applies.

Therefore, it is possible to achieve a communication of rate X (S, T) between S and T .

Now, we have to guarantee that the receiver Ti is able to receive the exact subset of

processes X (S, Ti). Since the system matrix to T is full rank, it is possible to carefully choose

the encoding matrix A such that the system matrix M at super-destination supernode T is

an identity matrix. This implies that for each edge from the output ports of Ti (for all i) to

input ports of T is carrying a distinct symbol, disjoint from all the other symbols carried by

those edges from output ports of Tj , for all i 6= j. By appropriately permuting the symbols

66 CHAPTER 3. ALGEBRAIC NC

eN-2
eN-1
eN

e1
e2
e3

I(TK)

e'1
e'2
e'3

O(TK)

I(T1) O(T1)
I(T)

e'N-2
e'N-1
e'N

System matrix M

= A
(I-F)-1 B1

T

BN
T

M1

MN

= = I

Figure 3-13: An example of the system matrix for a disjoint multicast connection. Disjoint
multicast problem can be converted into a single destination problem by adding a super-
destination T . The system matrix M for the disjoint multicast problem is shown as well.
Note that, unlike the multicast problem in Figure 3-12, the system matrix M for the disjoint
multicast is a diagonal concatenation of Mi’s.

at the source, S can deliver the desired processes to the intended Ti as shown in Figure

3-13.

Random linear network coding with a minor modification achieves the capacity for

disjoint multicast. We note that only the source’s encoding matrix A needs to be modi-

fied. The intermediate supernodes can randomly and uniformly select coding coefficients

ǫ(ei,(Tj ,k)) and β(ei,ej) over all elements of Fq. Once these coding coefficients at the inter-

mediate supernodes are selected, S carefully chooses the encoding matrix A such that the

system matrix corresponding to the receivers of the disjoint multicast is an identity matrix,

as shown in Figure 3-13. To be more precise, when ǫ(ei,(Tj ,k)) and β(ei,ej) are randomly se-

lected over elements of Fq, with high probability, (I−F)−1BT is full rank. Therefore, there

exists a matrix A such that A(I−F)−1BT is an identity matrix I. Note that A(I−F)−1BT

does not need to be an identity matrix. It only needs to have a diagonal structure as shown

3.6. EXTENSIONS TO OTHER CONNECTIONS 67

in Figure 3-13; however, being an identity matrix is sufficient for proof of optimality.

We note another subtlety here. Theorem 3.6.3 holds precisely because we allow the

intermediate nodes to code across all source processes, even if they are destined for different

receivers. This takes advantage of the fact that the single source can cleverly pre-code the

data.

3.6.3 Two-level Multicast

Theorem 3.6.4 (Two-level Multicast Theorem) Given an acyclic network G with a

set of connections C = Cd ∪ Cm where

Cd = {(S, Ti,X (S, Ti))|X (S, Ti) ∩ X (S, Tj) = ∅, i 6= j, i, j ∈ [1,K]} (3.20)

is a disjoint multicast connection, and

Cm = {(S, Ti,X (S)) | i ∈ [K + 1, N]} (3.21)

is a single source multicast connection. Then, (G, C) is solvable if and only if the min-cut

between S and any T ′ ⊆ {T1, · · · , TK} is at least
∑

Ti∈T ′ |X (S, Ti)|, and the min-cut between

S and Tj is at least |X (S)| for j ∈ [K + 1, N].

Proof: We create a super-destination T for the disjoint multicast destinations as in

the proof for Theorem 3.6.3. Then, we have a single multicast problem with receivers T

and {Ti | i ∈ [K + 1, N]} and Theorem 3.5.3 applies. By choosing the appropriate matrix

A, S can satisfy both the disjoint multicast and the single multicast requirements, as shown

in Figure 3-14.

As in the disjoint multicast case, random linear network coding with a minor modifi-

cation at the source achieves the capacity for two-level multicast. Note that, receivers Ti,

i ∈ [K+1, N] are of no concern; the source S can randomly choose coding coefficients α(i,ej)

to achieve a full-rank system matrix Mi. Thus, S needs to carefully choose the encoding

matrix A to satisfy the disjoint multicast constraint, which can be done as shown in Section

3.6.2.

68 CHAPTER 3. ALGEBRAIC NC

System matrix M

= A
(I-F)-1

B1
T M1

MK

=

BK+1
T

BN
T

MK+1 MN

BK
T

Figure 3-14: An example of the system matrix M for a two-level multicast connection. The
structure of the system matrix M is a “concatenation” of the disjoint multicast problem
(shown in Figure 3-13) and the single multicast problem (shown in Figure 3-12).

Theorem 3.6.4 does not extend to a three-level multicast. Three-level multicast, in

its simplest form, consists of connections {(S, Ti,X (S, Ti))| i ∈ [1, 3]} where X (S, T1) ⊂
X (S, T2) ⊂ X (S, T3).

3.6.4 General Connection Set

In the theorem below, we present sufficient conditions for solvability of a general connection

set. This theorem does not provide necessary conditions as shown in [21].

Theorem 3.6.5 (Generalized Min-cut Max-flow Theorem) Given an acyclic network

G with a connection set C, let M = {Mi,j} where Mi,j is the system matrix for source pro-

cesses X (Si) to destination processes Z(Tj). Then, (G, C) is solvable if there exists an

assignment of α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that

1. Mi,j = 0 for all (Si, Tj ,X (Si, Tj)) /∈ C,

2. Let (Sσ(i), Tj ,X (Sσ(i), Tj)) ∈ C for i ∈ [1,K(j)]. Thus, this is the set of connections

with Tj as a receiver. Then, [MT
σ(1),j ,M

T
σ(2),j , · · · , MT

σ(Kj),j
] is a |Z(Tj)| × |Z(Tj)| is

a nonsingular system matrix.

Proof: Note that [MT
σ(1),j ,M

T
σ(2),j , · · · , MT

σ(Kj),j
] is a system matrix for source processes

X (Sσ(i)), i ∈ [1,K(j)], to destination processes Z(Tj).

Condition 2 states the Min-cut Max-flow condition; therefore, Condition 2 is necessary

to establish the connections. Condition 1 states that the destination supernode Tj should be

3.7. NETWORK WITH RANDOM ERASURES 69

able to distinguish the information it is intended to receive from the information that may

have been mixed into the flow it receives. These two conditions are sufficient to establish

all connections in C. The proof is similar to that of Theorem 6 in [67].

3.7 Network with Random Erasures

We consider the algebraic ADT problem where links may fail randomly and cause erasures.

Wireless networks are stochastic in nature, and random erasures occur dynamically over

time. However, the original ADT network models noise deterministically with parallel noise-

free bit-pipes. As a result, the min-cut defined in Definition 3.4.1 have to be recomputed

every time the network changes. Since the network codes introduced in [5][37][28] depend

on the hard-coded representation of noise, these network codes also have to be recomputed

every time the network changes.

We show that the algebraic framework for the ADT network is robust against random

erasures and failures. First, we show that for some set of link failures, the network code

remains successful. This translates to whether the system matrix M preserves its full rank

even after a subset of variables α(i,ej), ǫ(ei,(Dj ,k)), and β(ei,ej) associated with the failed links

is set to zero. Second, we show that the specific instance of the system matrix M and its

rank are not as important as the average rank(M) when computing the time average min-

cut. Note that the original min-cut defined in Definition 3.4.1 requires an optimization over

an exponential number of cuts for every time step to find the average min-cut. We shall use

the results from [77] to show that random linear network coding achieves the time-average

min-cut; thus, is capacity-achieving.

We assume that any link within the network may fail. Given an ADT network G

and a set of link failures f , we denote Gf to be the network G experiencing failures f .

We also denote B(f) to be the set of coding variables associated with the failing links f .

Representing failures f in the algebraic framework may be achieved by deleting the failing

links from G, which is equivalent to setting the coding variables in B(f) to zero.

We denote M be the system matrix for network G. Let Mf be the system matrix for

the network Gf . We do not assume that the link failures are static. Therefore, we can

70 CHAPTER 3. ALGEBRAIC NC

consider a static link failure pattern, a distribution over link failures patterns, or a sequence

f1, f2, f3 · · · of link failures.

3.7.1 Robust against Random Erasures

Given an ADT network problem (G, C), let F be the set of all link failures such that, for

any f ∈ F , the problem (Gf , C) is solvable. The solvability of a given (Gf , C) can be verified

using results in Sections 3.5 and 3.6.

We are interested in static solutions, where the network is oblivious of f . In other

words, we are interested in finding the set of link failures such that the network code is still

successful in delivering the source processes to the destinations. For a multicast connection,

we show the following surprising result.

Theorem 3.7.1 (Static Solution for Random Erasures) Given an ADT network prob-

lem (G, C) with a multicast connection C = {(S, T1,X (S)), (S, T2,X (S)), · · · , (S, TN ,X (S))},
there exists a static solution to the problem (Gf , C) for all f ∈ F . In other words, there

exists a fixed network code that achieves the multicast rate despite any failures f ∈ F .

Proof: By Theorem 3.5.3, we know that for any given f ∈ F , the problem (Gf , C) is
solvable. Therefore, there exists a code such that det (Mf) 6= 0. Now, we need to show that

there exists a code such that det (Mf) 6= 0 for all f ∈ F simultaneously. This is equivalent

to finding a non-zero solution to the following polynomial:

∏

f∈F
det (Mf) 6= 0. (3.22)

Reference [41] showed that if the field size is large enough (i.e. q > |F||T | = |F|N), then

there exists an assignment of α(i,ej), ǫ(ei,(Dj ,k)), and β(ei,ej) such that det (Mf) 6= 0 for all

f ∈ F simultaneously.

Corollary 3.7.2 (Random Coding against Random Erasures) Consider an ADT net-

work problem with a multicast connection C = {(S, T1,X (S)), (S, T2,X (S)), · · · , (S, TN ,X (S))},
which is solvable under link failures f , for all f ∈ F . Then, random linear network coding,

where some or all code variables α(i,ej), ǫ(ei,(Dj ,k)), and β(ei,ej) are chosen independently and

3.7. NETWORK WITH RANDOM ERASURES 71

uniformly over all elements of Fq guarantees decodability at destination supernodes Ti for

all i simultaneously and remains successful regardless of the failure pattern f ∈ F with high

probability at least (1− N |F|
q)η, where η is the number of links carrying random combinations

of the source processes.

Proof: Given a multicast connection that is feasible under any link failures f ∈ F ,
reference [41] showed that random linear network coding achieves the capacity for multicast

connections, and is robust against any failures f ∈ F with high probability (1− N |F|
q)η.

It is unclear whether this can be extended to the non-multicast connections, as noted

in [67]. Reference [67] shows a simple example network with a non-multicast connection in

which no static solution is available for a set of feasible failure patterns.

3.7.2 Time-average Min-cut

In this section, we study the time-average behavior of the ADT network given random

erasures. We use techniques from [77], which studies reliable communication over lossy

networks with network coding.

Consider an ADT network G. In order to study the time-average steady state behavior,

we introduce erasure distributions. Let F ′ be a set of link failure patterns in G. A set of

link failures f ∈ F ′ may occur with probability pf .

Theorem 3.7.3 (Min-cut for Time-varying Network) Assume an ADT network G

in which link failure pattern f ∈ F ′ occurs with probability pf . Then, the average min-

cut between two supernodes S and T in G, mincutF ′(S, T) is

mincutF ′(S, T) =
∑

f∈F ′

pf

(

max
α(i,e),β(e′,e),ǫ(e′,i)

rank(Mf)

)

. (3.23)

Proof: By Theorem 3.4.2, we know that at any given time instance with failure pattern

f , the min-cut between S and T is given by

max
α(i,e),β(e′,e),ǫ(e′,i)

rank(Mf). (3.24)

72 CHAPTER 3. ALGEBRAIC NC

Then, the above statement follows naturally by taking a time average of the min-cut values

between S and T .

The key difference between Theorems 3.7.1 and 3.7.3 is in the effect of the link failures.

In Theorem 3.7.1, any f ∈ F may change the network topology as well as min-cut; however,

mincut(S, T) ≥ |X (S)| holds for all f ∈ F (i.e. (Gf , C) is assumed to be solvable for all

f ∈ F). However, in Theorem 3.7.3, we make no such assumption about the connection as

we are evaluating the average value of the min-cut.

Unlike the case of static ADT networks, with random erasures, it may be necessary to

maintain a queue at each supernode in the ADT network. This is because, if a link fails

when a supernode has data to transmit on it, then it will have to wait until the link recovers.

In addition, a transmitting supernode needs to be able to learn whether a packet has been

received by the next hop supernode, and whether it was innovative. This can be achieved

using channel estimation, feedback and/or redundancy. In the original ADT network, the

issue of feedback was removed by assuming that the links are noiseless bit-pipes.

Therefore, in the remainder of this section, we assume the existence of queues and

feedback in ADT networks. We present the following corollaries under these assumptions.

Corollary 3.7.4 (Multicast in Time-varying Network) Consider an ADT network G

and a multicast connection C = {(S, T1,X (S)), · · · , (S, TN ,X (S))}. Assume that failures

occur where failure patten f ∈ F ′ occurs with probability pf . Then, the multicast connection

is feasible if and only if mincutF ′(S, Ti) ≥ |X (S)| for all i.

Proof: Reference [77] shows that the multicast connection is feasible if and only

mincutF ′(S, Ti) ≥ |X (S)| for all i. The proof in [77] relies on the fact that every supernode

behaves like a stable M/M/1 queuing system in steady-state, and thus, the queues (or the

number of innovative packets to be sent to the next hop supernode) has a finite mean if the

network is run for sufficiently long period of time.

Corollary 3.7.5 (Random Coding for Time-varying Network) Consider (G, C) where
C is a multicast connection. Assume failure pattern f ∈ F ′ occurs with probability pf . Then,

random linear network coding, where some or all code variables α(i,ej), β(ei,ej), ǫ(ei,(Dj ,k)) are

3.8. NETWORK WITH CYCLES 73

chosen randomly over all elements of Fq, guarantees decodability at destination nodes Ti for

all i simultaneously with arbitrary small error probability.

Proof: This is a direct consequence of Corollary 3.7.4 and results in [41][77].

3.8 Network with Cycles

ADT networks are acyclic, with links directed from the source supernodes to the destination

supernodes. However, wireless networks intrinsically have cycles as wireless links are bi-

directional by nature. In this section, we extend the ADT network model to networks with

cycles. In order to incorporate cycles, we need to introduce the notion of time since, without

the notion of time, the network with cycles may not be causal. To do so, we introduce delay

on the links. As in [67], we model each link to have the same delay, and express the network

random processes in the delay variable D.

We define Xt(S, i) and Zt(T, j) to be the i-th and j-th binary random process generated

at source S and received at destination T at time t, for t = 1, 2, · · · . We define Yt(e) to be

the process on edge e at time t = 1, 2, · · · , respectively. We express the source processes as

a power series in D, X (S,D) = [X(S, 1,D),X(S, 2,D), · · · ,X(S, µ(S),D)] where

X(S, i,D) =

∞
∑

t=0

Xt(S, i)D
t. (3.25)

Similarly, we express the destination random processes Z(T,D) = [Z(T, 1,D), · · · , Z(T, ν(Z),D)]

where

Z(T, i,D) =
∞
∑

t=0

Zt(T, i)D
t. (3.26)

In addition, we express the edge random processes as

Yt(e,D) =

∞
∑

t=0

Yt(e)D
t. (3.27)

Then, we can rewrite Equations (3.3) and (3.4) as

Yt+1(e) =
∑

e′∈I(V)

β(e′,e)Yt(e
′) +

∑

Xt(S,i)∈X (S)

α(i,e)Xt(S, i). (3.28)

74 CHAPTER 3. ALGEBRAIC NC

Furthermore, the output processes Zt(T, i) can be rewritten as

Zt+1(T, i) =
∑

e′∈I(T)

ǫe′,(T,i)Yt(e
′). (3.29)

Using this formulation, we can extend the results from [67] to ADT networks with cycles.

We show that a system matrix M(D) captures the input-output relationships of the ADT

networks with delay and/or cycles.

Theorem 3.8.1 Given a network G = (V, E), let A(D), B(D), and F be the encoding,

decoding, and adjacency matrices, as defined here:

Ai,j =











α(i,ej)(D) if ej ∈ O(S) and X(S, i) ∈ X (S),

0 otherwise.

(3.30)

Bi,(Tj ,k) =











ǫ(ei,(Tj ,k))(D) if ei ∈ I(Tj), Z(Tj, k) ∈ Z(Tj),

0 otherwise.

(3.31)

and F as in Equation (3.8). The variables α(i,ej)(D) and ǫ(ei,(Tj ,k))(D) can either be con-

stants or rational functions in D. Then, the system matrix of the ADT network with delay,

which now may include cycles, is given by

M(D) = A(D) · (I −DF)−1 · B(D)T . (3.32)

Proof: The proof for this is similar to that of Theorem 3.3.5.

Similar to Section 3.3, (I −DF)−1 represents the impulse response of the network with

delay. This is because the series I +DF +D2F 2 +D3F 3 + · · · represents the connectivity

of the network while taking delay into account. For example, F k has a non-zero entry if

there exists a path of length k between two ports. Now, since we want to represent the

time associated with traversing from port ei to ej , we use DkF k, where Dk signifies that

the path is of length k. Thus, (I −DF)−1 = I +DF +D2F 2 +D3F 3 + · · · is the impulse

response of the network with delay. An example of (I −DF)−1 for the example network in

Figure 3-7 is shown in Figure 3-15.

3.9. CONCLUSIONS 75



























1 0 D 0 0 D D2β(e3,e7) 0 D2β(e6,e9) D2β(e6,e10) D3β(e6,e9) D3β(e3,e7) +D3β(e6,e10)

0 1 0 D 0 0 D2β(e4,e7) 0 0 0 0 D3β(e4,e7)

0 0 1 0 0 0 Dβ(e3,e7) 0 0 0 0 D2β(e3,e7)

0 0 0 1 0 0 Dβ(e4,e7) 0 0 0 0 D2β(e4,e7)

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 Dβ(e6,e9) Dβ(e6,e10) D2β(e6,e9) D2β(e6,e10)

0 0 0 0 0 0 1 0 0 0 0 D
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 D 0
0 0 0 0 0 0 0 0 0 1 0 D
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



























Figure 3-15: The 12 × 12 matrix (I −DF)−1 for the example network in Figure 3-4. The
matrix F can be found in Figure 3-11.

Using the system matrix M(D) from Theorem 3.8.1, we can extend Theorem 3.5.1,

Theorem 3.5.3, Theorem 3.6.1, Theorem 3.6.3, and Theorem 3.6.4 to ADT networks with

cycles and/or delay. However, there is a minor technical change. We now operate in a

different field. Instead of having coding coefficients from the finite field Fq, the coding

coefficients α(i,ej)(D) and ǫ((ei,(Tj ,k)))(D) are now from Fq(D), the field of rational functions

of D. We shall not discuss the proofs in detail; however, this is a direct application of the

results in [67].

3.9 Conclusions

ADT networks [6][7] have drawn considerable attention for their potential to approximate

the capacity of wireless relay networks. ADT networks take into account the wireless inter-

ference among users, but not the ambient noise. Thus, ADT networks approximate wireless

networks in high SNR regime where interference is the dominating factor. In this chapter,

we showed that the ADT network can be described well within the algebraic network cod-

ing framework [67]. This connection between ADT network and algebraic network coding

allows the use of results on network coding to understand better the ADT networks.

In this chapter, we derived an algebraic definition of min-cut for the ADT networks, and

provided an algebraic interpretation of the Min-cut Max-flow theorem for a single unicast or

a multicast connection in ADT networks. Furthermore, by taking advantage of the algebraic

structure, we have shown feasibility conditions for a variety of sets of connections C, such as

76 CHAPTER 3. ALGEBRAIC NC

multiple multicast, disjoint multicast, and two-level multicast. Furthermore, we extended

the capacity characterization to networks with cycles, random erasures, and failures. We

proved the optimality of linear operations for multicast connections in ADT networks with

cycles.

We further showed that a randomized, distributed network code can achieve capacity in

ADT networks. We first showed optimality of linear operations for the connections listed

above in the ADT networks, and then showed that random linear network coding achieves

the capacity. By incorporating random erasures into the ADT network model, we showed

that random linear network coding is robust against failures and erasures.

Chapter 4

TCP/NC:

Network Coding for Erasure Networks

T
he Transmission Control Protocol (TCP) is one of the core protocols of today’s Inter-

net Protocol Suite. Many Internet applications, such as the World Wide Web, email,

file transfer, peer-to-peer file sharing, and multimedia streaming, rely on TCP’s promise to

correctly deliver the data stream without losses or duplications. Furthermore, TCP plays

an essential role in end-to-end flow control and congestion control, which are important in

enabling a diverse set of devices to share the network resources. TCP uses several mecha-

nisms to detect congestion in the network, and controls its rate to avoid congestion collapse

and allow fair sharing of network resources among many flows.

TCP was designed for reliable transmission over wired networks, in which losses are

generally an indication of congestion. This is not the case in wireless networks, where losses

are often due to fading, interference, and other physical phenomena. In wireless networks,

TCP often incorrectly assumes that there is congestion within the network and unnecessarily

reduces its transmission rate, when it should have actually transmitted continuously to

overcome the lossy links. Consequently, TCP’s performance in wireless networks is poor

when compared to wired counterparts as shown e.g. in [13][81].

There has been extensive research to combat these harmful effects of erasures and fail-

ures; however, TCP even with modifications does not achieve significant improvement. For

example, there have been suggestions to allow the TCP sender to maintain a large trans-

77

78 CHAPTER 4. TCP/NC

p1

p2

p3
Lost

ACK(p1)

ACK(p1)

p1+p2+p3

Lost
seen(p1)

seen(p2)

p1+2p2+p3

p1+2p2+2p3

TCP E2E-TCP/NC

Figure 4-1: An example of TCP’s and TCP/NC’s behavior in lossy networks. In the case of
TCP, the TCP sender receives duplicate ACKs for packet p1, which may wrongly indicate
congestion. However, for TCP/NC, the TCP/NC sender receives ACKs for packets p1

and p2; thus, the TCP/NC sender perceives a longer round-trip time (RTT) but does not
mistake the loss to be congestion.

mission window to overcome the random losses within the network. However, as we shall

show in this chapter, just näıvely keeping the window open does not lead to improvements

in TCP’s performance. Even if the transmission window is kept open, the sender can not

transmit additional packets into the network without receiving acknowledgments. Eventu-

ally, this leads to TCP’s performance degradation. References [9][93] give an overview and

a comparison of various TCP versions over wireless links.

Some relief may come from network coding. In order to combine the benefits of TCP and

network coding, reference [91] proposes a new protocol called TCP/NC. TCP/NC modifies

TCP’s acknowledgment (ACK) scheme such that it acknowledges degrees of freedom instead

of individual packets, as shown in Figure 4-1. This is done so by using the concept of “seen”

packets, in which the number of degrees of freedom received is translated to the number of

consecutive packets received.

In this chapter, we present a performance evaluation of TCP as well as TCP/NC in

lossy networks. We adopt the same TCP model as in [81], i.e. we consider standard TCP

with Go-Back-N pipelining. Therefore, the standard TCP discards packets that are out-

of-order. We analytically show the throughput gains of TCP/NC over standard TCP, and

present simulations results that support this analysis. We characterize the steady state

throughput behavior of both TCP and TCP/NC as a function of erasure rate, round-trip

time (RTT), and maximum window size. Our work thus extends the work of [81] for TCP

4.1. OVERVIEW OF TCP/NC 79

and TCP/NC in lossy wireless networks. Furthermore, we use NS-2 (Network Simulator

[1]) to verify our analytical results for TCP and TCP/NC. Our analysis and simulation

results show very close concordance and support that TCP/NC is robust against erasures

and failures. TCP/NC is not only able to increase its window size faster but also maintain

a large window size despite the random losses, whereas TCP experiences window closing

because losses are mistakenly attributed to congestion. Note that network coding only

masks random erasures, and allows TCP/NC to react to congestion; as a result, when there

are correlated losses, TCP/NC also closes its window. Therefore, TCP/NC is well suited

for reliable communication in lossy networks.

TCP/NC’s key achievement is in recognizing the stochastic nature of wireless channels,

and adapting the transport protocol to not overreact to random losses in wireless networks.

This is done by inserting a coding shim between TCP and IP layers, allowing the use

of network coding to mask random losses from the congestion control mechanisms and

significantly improve throughput in wireless. This chapter studies how this network coding

layer interacts with TCP’s congestion control mechanism, and the various effects parameters

such as redundancy factor and round-trip time have on the performance of TCP/NC.

There has been extensive research on modeling and analyzing TCP’s performance [76][75]

[4][16][33][74]. Our goal is to present an analysis for TCP/NC, and to provide a comparison

of TCP and TCP/NC in a lossy wireless environment. We adopt Padhye et al.’s model

[81] as their model provides a simple yet good model to predict the performance of TCP. It

would be interesting to extend and analyze TCP/NC in other TCP models in the literature.

The chapter is organized as follows. In Section 4.1, we provide a brief overview of

TCP/NC. In Section 4.2, we introduce our communication model. In Section 4.3, we provide

the intuition behind the benefit of using network coding with TCP. Then, we provide

throughput analysis for TCP and TCP/NC in Sections 4.4 and 4.5, respectively. In Section

4.6, we provide simulation results to verify our analytical results in Sections 4.4 and 4.5.

Finally, we conclude in Section 4.7.

80 CHAPTER 4. TCP/NC

Application

Source

TCP

Network Coding

Internet Protocol

Link/PHY

Application

Destination

TCP

Network Coding

Internet Protocol

Link/PHYLink/PHY Link/PHY

Figure 4-2: The new network protocol stack with network coding layer. The network coding
layer sits between the transport layer and Internet Protocol layer. This new layer introduces
coding, which enables robustness against erasures.

4.1 Overview of TCP/NC

Reference [91] introduces a new network coding layer between the TCP and IP in the

protocol stack as shown in Figure 4-2. The network coding layer intercepts and modifies

TCP’s acknowledgment (ACK) scheme such that random erasures do not affect the trans-

port layer’s performance. To do so, the encoder, the network coding unit under the sender

TCP, transmits R random linear combinations of the buffered packets for every transmit-

ted packet from TCP sender. The parameter R is the redundancy factor. Redundancy

factor helps TCP/NC to recover from random losses; however, it cannot mask correlated

losses, which are usually due to congestion. The decoder, the network coding unit under

the receiver TCP, acknowledges degrees of freedom instead of individual packets, as shown

in Figure 4-1. This uses the concept of “seen” packets, in which the number of degrees of

freedom received is translated to the number of consecutive packets received. Once enough

degrees of freedoms are received at the decoder, the decoder solves the set of linear equa-

tions to decode the original data transmitted by the TCP sender, and delivers the data to

the TCP receiver.

We briefly discuss the overhead associated with network coding. The main overhead

4.2. A MODEL FOR CONGESTION CONTROL 81

associated with network coding can be considered in two parts: 1) the coding vector (or the

coding coefficients) that has to be included in the header; 2) the encoding and the decoding

complexity. For receiver to decode a network coded packet, the packet needs to indicate the

coding coefficients used to generate the linear combination of the original data packets. The

overhead associated with the coefficients depend on the field size used for coding as well as

the number of original packets combined. It has been shown that even a very small field

size of F256 (i.e. 8 bits = 1 byte per coefficient) can provide a good performance [91][89].

Therefore, even if we combine 50 original packets, the coding coefficients amount to 50 bytes

overall. Since a packet is typically around 1500 bytes, the overhead associated with coding

vector is not substantial.

The second overhead associated with network coding is the encoding and the decoding

complexity, and the delay associated with such coding operations. However, to affect TCP’s

performance, the decoding and the encoding operations must be substantial enough to affect

the round-trip time estimate of the TCP sender and receiver. We note that the delay caused

the coding operations is negligible compared to the network round-trip time. For example,

the network round-trip time is often in milliseconds (if not in hundreds of milliseconds). On

the other hand, the encoding or decoding operations involve a matrix multiplication and

inversion in F256, which can be performed in a few microseconds.

In [91], the authors present two versions of TCP/NC – one that adheres to the end-to-

end philosophy of TCP, in which coding operations are only performed at the source and

destination; another that takes advantage of network coding even further by allowing any

subset of intermediate nodes to re-encode. Re-encoding at the intermediate nodes is an

optional feature, and is not required for TCP/NC to work. Here, we focus on TCP/NC

with end-to-end network coding, which we denote E2E-TCP/NC or in short E2E. However,

a similar analysis applies to TCP/NC with re-encoding.

4.2 A Model for Congestion Control

We focus on TCP’s congestion avoidance mechanism, where the congestion control window

size W is incremented by 1/W each time an ACK is received. Therefore, when every packet

82 CHAPTER 4. TCP/NC

in the congestion control window is ACKed, the window size W is increased to W + 1.

On the other hand, the window size W is reduced whenever an erasure or congestion is

detected.

We model TCP’s behavior in terms of rounds as in [81]. We denote Wi to be the size of

TCP’s congestion control window size at the beginning of round i. The sender transmit Wi

packets in its congestion window at the start of round i, and once all Wi packets have been

sent, it defers transmitting any other packets until at least one ACK for the Wi packets are

received. The ACK reception ends the current round, and starts round i+ 1.

For simplicity, we assume that the duration of each round is equal to a round trip time

(RTT), independent of Wi. This assumes that the time needed to transmit a packet is

much smaller than the round trip time. This implies the following sequence of events for

each round i:

1. Wi packets are transmitted. Some packets may be lost.

2. The receiver transmits ACKs for the received packets. TCP uses cumulative ACKs.

Therefore, if the packets 1, 2, 3, 5, 6 arrive at the receiver in sequence, then the receiver

ACKs packets 1, 2, 3, 3, 3. This signals that it has not yet received packet 4. Some of

the ACKs may also be lost.

3. Once the sender receives the ACKs, it updates its window size. Assume that ai packets

are acknowledged in round i. Then,

Wi+1 ←Wi + ai/Wi. (4.1)

Once the sender receives any ACK for the packets transmitted in the beginning of the

round, the current round terminates and the next round starts.

TCP reduces the window size for congestion control using the following two methods.

1. Triple-duplicate (TD): When the sender receives four ACKs with the same sequence

number, then

Wi+1 ←
1

2
Wi. (4.2)

4.2. A MODEL FOR CONGESTION CONTROL 83

2. Time-out (TO): If the sender does not hear from the receiver for a predefined time

period, called the “time-out” period (which is To rounds long), then the sender closes

its transmission window,

Wi+1 ← 1. (4.3)

At this point, the sender updates its TO period to 2To rounds and transmits one

packet. For any subsequent TO events, the sender transmits the one packet within its

window, and doubles its TO period until 64To is reached, after which the TO period

is fixed to 64To. Once the sender receives an ACK from the receiver, it resets its

TO period to To and increments its window according to the congestion avoidance

mechanism. During time-out, the throughput of both TCP and E2E-TCP/NC is zero.

Finally, in practice, the TCP receiver sends a single cumulative ACK after receiving β

number of packets, where β = 2 typically. However, we assume that β = 1 for simplicity.

Extending the analysis to β ≥ 1 is straightforward.

There are several variants to the traditional TCP congestion control. For example,

STCP [53], Compound TCP [92], and CUBIC TCP [38] modify the congestion control

mechanism for networks with high bandwidth-delay products, such as the high speed wide

area networks. Other variants of TCP include those with selective acknowledgment schemes

(SACK) [31]. It may be interesting to compare the performance of the TCP variants with

that of TCP/NC. However, we focus on traditional TCP here.

4.2.1 Maximum Window Size

In general, TCP cannot increase its window size unboundedly; there is a maximum window

size Wmax. The TCP sender uses a congestion avoidance mechanism to increment the

window size until Wmax, at which the window size remains Wmax until a TD or a TO event.

4.2.2 Erasures

We assume that there are random erasures within the network. We denote p to be the

probability that a packet is lost at any given time. We assume that packet losses are inde-

pendent. Our erasure model is different from that of [81] where losses are correlated within

84 CHAPTER 4. TCP/NC

a round, i.e. bursty erasures. Correlated erasures model well bursty traffic and congestion

in wired networks. In our case, however, we are aiming to model wireless networks, thus we

shall use random independent erasures.

We do not model congestion or correlated losses within this framework, but show by

simulation that when there are correlated losses, both TCP and E2E-TCP/NC close their

window; thus, E2E-TCP/NC is able to react to congestion.

4.2.3 Performance Metric

We analyze the performance of TCP and E2E-TCP/NC in terms of two metrics: the average

throughput T and the expected window evolution E[W], where T represents the total average
throughput while window evolution E[W] reflects the perceived throughput at a given time.

We define N[t1,t2] to be the number of packets received by the receiver during the interval

[t1, t2]. The total average throughput is defined as:

T = lim
∆→∞

N[t,t+∆]

∆
. (4.4)

We denote Ttcp and Te2e to be the average throughput for TCP and E2E-TCP/NC, respec-

tively.

4.3 Intuition

For traditional TCP, random erasures in the network can lead to triple-duplicate ACKs.

For example, in Figure 4-3a, the sender transmits Wi packets in round i; however, only ai

of them arrive at the receiver. As a result, the receiver ACKs the ai packets and waits for

packet ai +1. When the sender receives the ACKs, round i+ 1 starts. The sender updates

its window

Wi+1 ← Wi +
ai
Wi

, (4.5)

and starts transmitting the new packets in the window. However, since the receiver is still

waiting for packet ai + 1, any other packets cause the receiver to request for packet ai + 1.

4.3. INTUITION 85

sequence number

time
RTT (round i)

Wi

RTT (round i+1)

Received packet

Lost packet

ACK

ai

(a) TCP

sequence number

time
RTT (round i) RTT (round i+1)

Received packet

Lost packet

ACK

Wi

ai

(b) E2E-TCP/NC

Figure 4-3: The effect of erasures on TCP and TCP/NC. TCP experiences triple-duplicate
ACKs, and results in Wi+2 ← Wi+1/2. However, E2E-TCP/NC masks the erasures using
network coding, which allows E2E-TCP/NC to advance its window. This figure depicts
the sender’s perspective, therefore, it indicates the time at which the sender transmits the
packet or receives the ACK.

86 CHAPTER 4. TCP/NC

This results in a triple-duplicate ACKs event and the TCP sender closes its window:

Wi+2 ←
1

2
Wi+1 =

1

2
(Wi + ai/Wi). (4.6)

Notice that, as illustrated in Figure 4-3b, this window closing due to TD does not occur

when using E2E-TCP/NC. With network coding, any linearly independent packet delivers

new information. Any subsequent packet (in Figure 4-3b, the first packet sent in round

i+1) can be viewed as packet ai +1. As a result, the receiver is able to increment its ACK

and the sender continues transmitting data. It follows that network coding masks the losses

within the network from TCP, and prevents it from closing its window by misjudging link

losses as congestion. Network coding translates random losses as longer RTT , thus

slowing down the transmission rate to adjust for losses without closing down the window

in a drastic fashion.

Network coding does not mask correlated (or bursty) losses due to congestion. Network

coding is able to translate random losses as longer RTT; however, with enough correlated

losses, network coding cannot correct for all the losses present in the network. As a result,

E2E-TCP/NC’s transmission rate will be adjusted according to standard TCP’s congestion

control mechanism when E2E-TCP/NC detects correlated losses. As a result, network

coding allows TCP to maintain a high throughput connection in a lossy environment; at

the same time, allows TCP to react to congestion. Therefore, network coding naturally

distinguishes congestion from random losses.

4.4 Throughput Analysis for TCP

We consider the effect of losses for TCP. The throughput analysis for TCP is similar to that

of [81]. However, the model has been modified from that of [81] to account for independent

losses and allow a fair comparison with network coded TCP. TCP can experience a TD or a

TO event from random losses. As in [81], we first consider TD events, and then incorporate

TO events.

We note that, despite independent packet erasures, a single packet loss may affect sub-

sequent packet reception. This is due to the fact that TCP requires in-order reception. A

4.4. THROUGHPUT ANALYSIS FOR TCP 87

window size Wi

round i

j j+r-1

r rounds

Received packet

Lost packet

Out of order packets

Wj

Wj+r-1

j-2 (TD)

r+1 rounds = ∆ time interval

j+r (TO)

time-out

Figure 4-4: The evolution of TCP’s window size when losses occur. Losses result in TD
events or TO events, which decreases TCP’s window size significantly. In round j−2, losses
occur resulting in triple-duplicate ACKs. On the other hand, in round j+r−1, losses occur;
however, in the following round j + r losses occur such that the TCP sender only receives
two-duplicate ACKs. As a result, TCP experiences time-out.

single packet loss within a transmission window forces all subsequent packets in the window

to be out of order. Therefore, they are discarded by the TCP receiver. As a result, standard

TCP’s throughput behavior with independent losses is similar to that of [81], where losses

are correlated within one round.

4.4.1 Triple-duplicate for TCP

We consider the expected throughput between consecutive TD events, as shown in Figure

4-4. Assume that the TD events occurred at time t1 and t2 = t1 +∆, ∆ > 0. Assume that

round j begins immediately after time t1, and that packet loss occurs in the r-th round, i.e.

round j + r − 1.

First, we calculate E[N[t1,t2]]. During the time interval [t1, t2], there are no packet losses.

Given that the probability of a packet loss is p, the expected number of consecutive packets

that are successfully sent from sender to receiver is

E
[

N[t1,t2]

]

=

(∞
∑

k=1

k(1− p)k−1p

)

− 1 =
1− p

p
. (4.7)

88 CHAPTER 4. TCP/NC

The packets (in white in Figure 4-4) sent after the lost packets (in black in Figure 4-4)

are out of order, and will not be accepted by the standard TCP receiver. Thus, Equation

(4.7) does not take into account the packets sent in round j − 1 or j + r.

We calculate the expected time period between two TD events, E[∆]. As in Figure 4-4,

after the packet losses in round j, there is an additional round for the loss feedback from

the receiver to reach the sender. Therefore, there are r+ 1 rounds within the time interval

[t1, t2], and ∆ = RTT (r + 1). Thus,

E[∆] = RTT (E[r] + 1). (4.8)

We now derive E[r]. To derive E[r], we note that

Wj+r−1 = Wj + r − 1, (4.9)

assuming that there are no loss events between round j + r − 1 and j. This is because,

at every round, the window is incremented by one when all packets are acknowledged, as

discussed in Section 4.2.

When there are losses, however, TCP experiences a TD event and closes it’s window.

Following the Figure 4-4, we assume that losses occur before round j. Then,

Wj =
1

2
Wj−1 =

1

2

(

Wj−2 +
aj−2

Wj−2

)

. (4.10)

Equation (4.10) is due to TCP’s congestion control. TCP interprets the losses in round

j − 2 as congestion, and as a result halves its window.

Assuming that, in the long run, E[Wj+r−1] = E[Wj−2] (i.e. the window size before

a loss event is expected to be the same) and that aj−2 is uniformly distributed between

[0,Wj−2], we can derive an expression for E[Wj+r−1] and E[Wj] in terms of E[r].

Wj+r−1 = Wj + r − 1 (4.11)

=
1

2

(

Wj−2 +
aj−2

Wj−2

)

+ r − 1. (4.12)

4.4. THROUGHPUT ANALYSIS FOR TCP 89

Taking the expectation,

E[Wj+r−1] =
1

2

(

E[Wj−2] +
E[aj−2]

E[Wj−2]

)

+ E[r]− 1. (4.13)

Using the assumption that E[Wj+r−1] = E[Wj−2] and that E[aj−2] =
1
2E[Wj−2], we can

derive that

E[Wj+r−1] = 2

(

E[r]− 3

4

)

(4.14)

and

E[Wj] = E[r]− 1

2
. (4.15)

During these r rounds, we expect to successfully transmit 1−p
p packets as noted in Equation

(4.7). This results in:

1− p

p
=

r−1
∑

k=0

aj+k (4.16)

=

(

r−2
∑

k=0

Wj+k

)

+ aj+r−1 (4.17)

=

r−2
∑

k=0

(Wj + k) + aj+r−1 (4.18)

= (r − 1)Wj +
(r − 1)(r − 2)

2
+ aj+r−1. (4.19)

Taking the expectation of Equation (4.19) and using Equation (4.15),

1− p

p
= (E[r]− 1)E[Wj] +

(E[r]− 1)(E[r] − 2)

2
+ E[aj+r−1] (4.20)

= (E[r]− 1)

(

E[r]− 1

2

)

+
(E[r]− 1)(E[r]− 2)

2
+ E[aj+r−1] (4.21)

=
3

2
(E[r]− 1)2 + E[aj+r−1]. (4.22)

Note that aj+r−1 is assumed to be uniformly distributed across [0,Wj+r−1]. Therefore, by

Equation (4.14),

E[aj+r−1] =
E[Wj+r−1]

2
= E[r]− 3

4
. (4.23)

90 CHAPTER 4. TCP/NC

Finally, by substituting E[aj+r−1] in Equation (4.22), we solve for E[r]. Solving the

quadratic equation (Equation (4.22)) for E[r], we find:

E[r] =
2

3
+

√

− 1

18
+

2

3

1− p

p
. (4.24)

Note that E[r] ≈
√

2
3p + o

(

1√
p

)

for small p. For large p, E[r] < 1. This is consistent

with our intuition that for p→ 1, we expect the erasures to occur every round, resulting in

E[r] < 1.

The steady state average window size E[W] is the average window size over two consec-

utive TD events. This provides an expression of steady state average window size for TCP.

We use Equations (4.14) and (4.15) to find the average window size between two consecutive

TD events, E[W]:

E[W] =
E[Wj] + E[Wj+r−1]

2
=

3

2
E[r]− 1. (4.25)

Then, the average throughput can be expressed as

T ′
tcp =

E[N[t1,t2]]

E[∆]
=

1− p

p

1

RTT (E[r] + 1)
. (4.26)

Therefore, if we only consider TD events as loss indications, the long-term steady state

throughput is equal to that in Equation (4.26).

The analysis above assumes that the window size can grow unboundedly; however, this

is not the case. To take maximum window size Wmax into account, we make a following

approximation:

Ttcp = min

(

Wmax

RTT
,T ′

tcp

)

. (4.27)

We briefly discuss the behavior of TCP as described by Equation (4.26). For small p,

T ′
tcp ≈

1

RTT

√

3

2p
+ o(

1√
p
); (4.28)

and for large p,

T ′
tcp ≈

1

RTT

1− p

p
. (4.29)

4.4. THROUGHPUT ANALYSIS FOR TCP 91

For small p, this result in Equation (4.28) coincides with the results in [81]. This shows

that TCP is not well-suited for wireless networks. In [81], erasures were correlated as they

were modeling congestion. Here, we assume erasures are independent, modeling random

losses in wireless networks. However, TCP’s throughput behavior is the same in both cases

as captured by Equation (4.28).

4.4.2 Time-out for TCP

If there are enough losses within two consecutive rounds, TCP may experience a TO event

as shown in Figure 4-4. A TO event occurs if two consecutive rounds have losses with two

or fewer out-of-order packets transmitted in the latter round. Therefore, P(TO|W), the

probability of a TO event given a window size of W , is given by

P(TO|W) =











1 if W < 3;

∑2
i=0

(

W
i

)

pW−i(1− p)i if W ≥ 3.

(4.30)

When the window is small (W < 3), then losses result in TO events. For example,

assume W = 2 with packets p1 and p2 in its window. Assume that p2 is lost. Then, the

TCP sender may send another packet p3 in the subsequent round since the acknowledgment

for p1 allows it to transmit a new packet. However, this would generate a single duplicate

ACK with no further packets in the pipeline, and TCP sender waits for ACKs until it times

out.

We approximate W in above Equation (4.30) with the expected window size E[W] from

Equation (4.25). Therefore, for the remaining of this chapter, we estimate the probability

of time out to be

P(TO | E[W]) = P

(

TO

∣

∣

∣

∣

3

2
E[r]− 1

)

. (4.31)

The length of the TO event depends on the duration of the loss events. We denote the

duration of a TO event as rTO rounds. Therefore, the expected duration of TO period,

92 CHAPTER 4. TCP/NC

window size Wi

round i

j j+r-1 (No TD)

r rounds = ∆ time interval

Received packet

Lost packet

Received packets

only with TCP/NC

Wj

Wj+r-1

j-1 (No TD)

Figure 4-5: The evolution of E2E-TCP/NC’s window size when losses occur. E2E-
TCP/NC’s window size does not decrease with erasures, which would have led to a triple-
duplicate ACKs event when using standard TCP. Note that unlike TCP, the window size
is non-decreasing.

E[rTO event], is given as:

E[rTO event] (4.32)

= (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 +
∞
∑

i=0

(63 + i · 64)Top
6+i

]

(4.33)

= (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 + 63To
p6

1− p
+ 64To

p7

(1− p)2

]

. (4.34)

Finally, by combining the results in Equations (4.27), (4.30), and (4.34), we get an

expression for the average throughput of TCP, Ttcp, as:

Ttcp = min

(

Wmax

RTT
,
1− p

p

1

RTT (1 + E[r] +P(TO|E[W])E[rTO event])

)

. (4.35)

4.5 Throughput Analysis for E2E-TCP/NC

We consider the expected throughput for E2E-TCP/NC. The erasure patterns that result

in TD event or TO event under TCP may not yield the same result under E2E-TCP/NC, as

illustrated in Section 4.3. We emphasize again that this is due to the fact that any linearly

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 93

independent packet conveys a new degree of freedom to the receiver. Figure 4-5 illustrates

this effect. The packets (in white) sent after the lost packets (in black) are acknowledged

by the receivers, thus allowing E2E-TCP/NC to advance its window. This implies that

E2E-TCP/NC does not experience window closing owing to random losses often.

4.5.1 E2E-TCP/NC Window Evolution

From Figure 4-5, we observe that E2E-TCP/NC is able to maintain its window size despite

experiencing losses. This is partially because E2E-TCP/NC receiver is able to receive

packets that would be considered out of order by TCP receiver. As a result, E2E-TCP/NC’s

window evolves differently from that of TCP, and can be characterized by a simple recursive

relationship as

E[Wi] = E[Wi−1] +
E[ai−1]

E[Wi−1]
= E[Wi−1] + min{1, R(1 − p)}. (4.36)

The recursive relationship captures the fact that every packet that is linearly indepen-

dent of previously received packets is considered to be innovative and is therefore acknowl-

edged. Consequently, any arrival at the receiver is acknowledged with high probability;

therefore, we expect E[ai−1] packets to be acknowledged and the window to be incremented

by E[ai−1]
E[Wi−1]

. Note that E[ai−1] = (1−p) ·R ·E[Wi−1] since the encoder transmits on average

R linear combinations for every packet transmitted by the TCP sender.

Once we take the maximum window size Wmax into account, we have the following

expression for E2E-TCP/NC’s expected window size:

E[Wi] = min(Wmax, E[W1] + imin{1, R(1 − p)}), (4.37)

where i is the round number. E[W1] is the initial window size, and we set E[W1] = W1 = 1.

Figure 4-6 shows an example of the evolution of the E2E-TCP/NC window using Equation

(4.37).

94 CHAPTER 4. TCP/NC

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

round i

E
xa

pe
ct

ed
 w

in
do

w
 s

iz
e

E

[W
i]

E[W
1
]

W
max

−E[W
1
]

 min(1,R(1 − p))

W
max

Slope = min(1,R(1−p))

Figure 4-6: The predicted E2E-TCP/NC’s window size when random losses are present
in the network. The figure presents the expected window size for E2E-TCP/NC where
Wmax = 90, E[W1] = 30. We usually assume W1 = 1; here we use W1 = 30 to exemplify
the effect of W1.

Markov Chain Model

The above analysis describes the expected behavior of E2E-TCP/NC’s window size. We

can also describe the window size behavior using a Markov chain. Figure 4-7 presents the

Markov chain representing E2E-TCP/NC’s window evolution. The states of this Markov

chain represent the instantaneous window size, and are not specific to a round. Therefore,

in this subsection, we briefly abandon the notion of rounds.

A transition occurs whenever a packet is transmitted. We denote S(W) to be the state

representing the window size of W . Assume that we are at state S(W). If a transmitted

packet is received by the E2E-TCP/NC receiver and acknowledged, the window is incre-

mented by 1
W ; thus, we end up in state S(W + 1

W). This occurs with probability (1 − p).

On the other hand, if the packet is lost, then we stay at S(W). This occurs with proba-

bility p. Therefore, the Markov chain states represent the window size, and the transitions

correspond to packet transmissions.

State S(Wmax) is an absorbing state of the Markov chain. As noted in Section 4.3,

E2E-TCP/NC does not often experience a window shutdown unless there are correlated or

heavy losses. We remind the reader again that we assume that losses are random, and we do

not model correlated losses. As a result, E2E-TCP/NC’s window size is non-decreasing as

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 95

1 2 m m+2/m m+(m-1)/m m+1

p

1-p

p

1-p 1-p 1-p 1-p 1-p

p p p p p

2+½

p

m+1/m Wmax

1-p

1

Figure 4-7: A Markov chain showing the E2E-TCP/NC’s window evolution. Each state
corresponds to the size of the congestion window.

shown in Figure 4-7. Therefore, given enough time, E2E-TCP/NC reaches state S(Wmax)

with probability equal to 1. We analyze the expected number of packet transmissions needed

for absorption.

The transition matrix P of the Markov chain is

P =































p 1− p 0 0 0 · · · 0 0

0 p 1− p 0 0 · · · 0 0

0 0 p 1− p 0 · · · 0 0
...

. . .
. . . · · · ...

0 0 0 0 0 0 p 1− p

0 0 0 0 0 0 0 1































. (4.38)

The shaded part of the matrix in Equation (4.38) is denoted Q.

Matrix N = (I−Q)−1 is the fundamental matrix of the Markov chain, and can be used to

compute the expected rounds until the absorption state. Therefore, the fundamental matrix

N plays an important role in determining the number of packet transmissions needed for

absorption. The entry N(S1, S2) represents the expected number of visits to state S2 before

absorption, i.e. we reach state S(Wmax), when we start from state S1. Our objective is

to find the expected number of packets transmitted to reach S(Wmax) starting from state

S(E[W1]) where E[W1] = 1. Therefore, the partial sum of the first row entries of N gives

the expected number of packets transmitted until we reach the window size W .

96 CHAPTER 4. TCP/NC

We now derive the expression for the first row of N . First, we note that

I −Q =































1− p −(1− p) 0 0 0 · · · 0 0

0 1− p −(1− p) 0 0 · · · 0 0

0 0 1− p −(1− p) 0 · · · 0 0
...

. . .
. . . · · · ...

0 0 0 0 0 · · · 1− p −(1− p)

0 0 0 0 0 · · · 0 1− p































. (4.39)

We compute the inverse of N = (I −Q)−1 using matrix of cofactors, known as the adjugate

matrix. However, as noted above, we do not need to compute the inverse of (I−Q) entirely.

We are only interested in computing the first row of N . To compute the first row of

N = (I −Q)−1, we need the determinant of I −Q and a subset of its cofactors.

First, since I − Q is an upper triangular matrix, the determinant is the product of its

diagonal entries,

det(I −Q) = (1− p)S , (4.40)

where S is the number of states in the Markov chain minus the absorbing state S(Wmax).

To compute S, we observe that for the congestion window to increase from W to W +1,

we have to traverse states S(W), S(W + 1
W), S(W + 2

W), · · · , S(W + W−1
W). Therefore,

there are W states from state S(W) to S(W − 1). This leads to

S =

Wmax
∑

m=1

m− 1 =
Wmax(Wmax − 1)

2
. (4.41)

Second, we compute the cofactors Cm1 for m ∈ [1,S] as these cofactors form the first row

of the adjugate matrix and (I −Q)−1. As shown in Figure 4-8,

Cm1 = (1− p)S−1 (4.42)

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 97

for all m ∈ [1,S]. Now, we are ready to compute the first row of N = (I −Q)−1:

N(1, :) =
1

det(I −Q)
[C11, C21, · · · , CS1] (4.43)

=
1

(1− p)S
[

(1− p)S−1, (1− p)S−1, · · · , (1− p)S−1
]

(4.44)

=

[

1

1− p
,

1

1− p
, · · · , 1

1− p

]

. (4.45)

The sum of the elements in the first row of N represents Tp(Wmax), the number of packet

transmissions needed to reach a window size of Wmax starting from initial window size of

W1 = 1. Therefore, we can now compute Tp(Wmax):

Tp(Wmax) =
S
∑

m=1

N(1,m) (4.46)

=

S
∑

m=1

1

1− p
(4.47)

=
Wmax(Wmax − 1)

2(1 − p)
. (4.48)

Equation (4.48) is derived using Equation (4.41).

Tp(Wmax) is the number of packets we expect to transmit given the erasure probability

p. If we set p = 0, then T0(Wmax) =
Wmax(Wmax−1)

2 . Therefore, Wmax(Wmax−1)
2 is the minimal

number of transmission needed to achieve W since p = 0 assumes no packets are lost.

The ratio
Tp(Wmax)

T0(Wmax)
=

1

1− p
(4.49)

represents a lower bound on cost when losses are introduced, i.e. to combat random erasures,

the sender on average has to send at least 1
1−p packets for each packet it wishes to send.

This is exactly the definition of redundancy factor R. This analysis indicates that we should

set

R ≥ Tp(Wmax)

T0(Wmax)
. (4.50)

Furthermore, T0(Wmax) is equal to the area under the curve for rounds i ∈ [0, Wmax−E[W1]
min{1,R·(1−p)}]

in Figure 4-6 if we set R ≥ 1
1−p . This is consistent with our intuition since Figure 4-6 repre-

98 CHAPTER 4. TCP/NC

C11 = (−1)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− p −(1 − p) 0 0 0 · · · 0 0
0 1− p −(1− p) 0 0 · · · 0 0
0 0 1− p −(1− p) 0 · · · 0 0
0 0 0 1− p −(1− p) · · · 0 0
...

. . .
. . . · · ·

...
0 0 0 0 0 · · · 1− p −(1− p)
0 0 0 0 0 · · · 0 1− p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1− p)S−1

C21 = (−1)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(1 − p) 0 0 0 0 · · · 0 0
0 1− p −(1− p) 0 0 · · · 0 0
0 0 1− p −(1− p) 0 · · · 0 0
0 0 0 1− p −(1− p) · · · 0 0
..
.

. . .
. . . · · ·

..

.
0 0 0 0 0 · · · 1− p −(1− p)
0 0 0 0 0 · · · 0 1− p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1− p)S−1

C31 = (−1)4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(1 − p) 0 0 0 0 · · · 0 0
0 −(1− p) 0 0 0 · · · 0 0
0 0 1− p −(1− p) 0 · · · 0 0
0 0 0 1− p −(1− p) · · · 0 0
...

. . .
. . . · · ·

...
0 0 0 0 0 · · · 1− p −(1− p)
0 0 0 0 0 · · · 0 1− p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1− p)S−1

C41 = (−1)5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(1 − p) 0 0 0 0 · · · 0 0
0 −(1− p) 0 0 0 · · · 0 0
0 0 −(1− p) 0 0 · · · 0 0
0 0 0 1− p −(1− p) · · · 0 0
.
..

. . .
. . . · · ·

.

..
0 0 0 0 0 · · · 1− p −(1− p)
0 0 0 0 0 · · · 0 1− p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1− p)S−1

...

Figure 4-8: The cofactors of matrix I −Q. These cofactors Cm1, m ∈ [1,S], form the first
row of N = (I −Q)−1. The structure of I −Q lends itself to a simple characterization of
Cm1 = (1− p)S−1 for all m ∈ [1,S].

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 99

sents the evolution of window size, and the area under the curve represents the number of

packets transmitted. A more detailed discussion on the effect of R can be found in Section

4.5.3.

4.5.2 E2E-TCP/NC Average Throughput

Using the results in Section 4.5.1, we derive an expression for the throughput. Once we

have the expected value of the window size for any given round i, the long term average

throughput is straight forward to derive.

The throughput of round i, denoted Ti, the number packets received or acknowledged

by the receiver in that round over the round trip time. Therefore, Ti is directly proportional

to E[Wi], the window size, and 1 − p, the probability of a successful transmission. Thus,

we get

Ti =
E[Wi]

SRTT
min{1, R(1 − p)} packets per second, (4.51)

where R is the redundancy factor of E2E-TCP/NC, and SRTT is the round trip time

estimate.

We note that Ti ∝ (1 − p) · R · E[Wi]. At any given round i, E2E-TCP/NC sender

transmits R · E[Wi] coded packets, and we expect pR · E[Wi] packets to be lost. As a

result, E2E-TCP/NC receiver only receives and acknowledges (1− p) ·R ·E[Wi] degrees of

freedom, which results in the sender incrementing its window by min{1, (1−p)R}. Therefore,
Ti ∝ (1− p) · R · E[Wi] coincides with our intuition.

Taking Equation (4.51), we can average the throughput over n rounds to obtain the

average throughput for E2E-TCP/NC.

Te2e =
1

n

n
∑

i=1

E[Wi]

SRTT
min{1, R(1 − p)} (4.52)

=

∑n
i=1min(Wmax, E[W1] + imin{1, R(1 − p)})

n · SRTT
(4.53)

=

∑n
i=1min(Wmax, E[W1] + i)

n · SRTT
since R ≥ 1

1− p
(4.54)

=
1

n · SRTT
· f(n), (4.55)

100 CHAPTER 4. TCP/NC

where

f(n) =











nE[W1] +
n(n+1)

2 for n ≤ r∗

nWmax − r∗(Wmax − E[W1]) +
r∗(r∗−1)

2 for n > r∗
(4.56)

r∗ = Wmax − E[W1]. (4.57)

Note that as n→∞, the average throughput Te2e → Wmax
SRTT .

An important aspect of TCP is congestion control mechanism. This analysis may suggest

that network coding no longer allows for TCP to react to congestion. We emphasize that

the above analysis assumes that there are only random losses with probability p, and that

there are no correlated losses. The erasure correcting power of network coding is limited

by the redundancy factor R. If the network experiences packet erasures at a rate less than

p, then network coding can correct those erasures with redundancy R ≥ 1
1−p . However,

if there are enough losses (e.g., losses caused by congestion), network coding cannot mask

all the erasures from TCP. This will eventually lead E2E-TCP/NC to experience a TD or

TO event, depending on the variants of TCP used. In Section 4.6.3, we present simulation

results that show that TCP’s congestion control mechanism still applies to E2E-TCP/NC

when appropriate.

As shown in Equation (4.55), the RTT and its estimate SRTT play an important role

in E2E-TCP/NC. In addition, the choice of R can have significant effect on the behavior

of E2E-TCP/NC. We shall formally define and discuss the effect of R and SRTT in the

following sections.

4.5.3 The Effect of Redundancy Factor R

The redundancy factor R ≥ 1 is the ratio between the average rate at which linear combina-

tions are sent to the receiver and the rate at which TCP’s window progresses. For example,

if the TCP sender has 10 packets in its window, then the encoder transmits 10R linear com-

binations. If R is large enough, the receiver will receive at least 10 linear combinations to

decode the original 10 packets even in the presence of losses. This redundancy is necessary

to 1) compensate for the losses within the network, and 2) match TCP’s sending rate to

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 101

the rate at which data is actually received at the receiver.

As shown in Equation (4.51), setting R < 1
1−p can cause performance degradation since

network coding may no longer be able to compensate for the losses and this may lead

to window closing for E2E-TCP/NC. To maximize throughput, an appropriate value of

R ≥ 1
1−p should be chosen.

References [91][89] introduce the redundancy factor with TCP/NC, and show that R ≥
1

1−p is necessary. This coincides with our analysis in Section 4.5.1. Therefore, by references

[91][89] and Equation (4.51), it may seem that setting R = 1
1−p would maximize throughput

and minimize redundancy; making R = 1
1−p seem like the optimal value of R.

However, the redundancy factor R should be chosen with some care. Setting R ≫ 1
1−p

may over-compensate for the losses within the network; thus, introducing more redundant

packets than necessary. On the other hand, matching R to exactly 1
1−p may not be desirable

for two reasons: 1) The exact value of 1
1−p may not be available or difficult to obtain in

real applications; 2) As R → 1
1−p , it becomes more likely that E2E-TCP/NC is unable to

fully recover from losses in any given round. By fully recover, we mean that E2E-TCP/NC

decoder is able to acknowledge all packet transmitted in that round.

To analytically understand this intuition, consider an E2E-TCP/NC connection with

congestion window size W . Assume that loss probability is p, and the redundancy factor is

R. For E2E-TCP/NC to fully recover from the losses in a given round, the E2E-TCP/NC

decoder has to receive W out of ⌈RW ⌉ coded packets sent. Therefore, the probability that

the E2E-TCP/NC decoder will fully recover from losses is

P(E2E-TCP/NC decoder receives at least W out of ⌈RW ⌉ coded packets) (4.58)

= P(At most (R − 1)W out of ⌈WR⌉ coded packets are lost) (4.59)

=

(R−1)W
∑

i=0

(⌈RW ⌉
i

)

pi (1− p)⌈RW ⌉−i. (4.60)

Figure 4-9 shows the probability that E2E-TCP/NC will fully decode, as shown in Equation

(4.60), for various values of p and R.

E2E-TCP/NC can maintain a fairly high throughput with just partial acknowledgment

(in each round, only a subset of the packets are acknowledged). In Section 4.6, we show

102 CHAPTER 4. TCP/NC

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

redundancy R

pr
ob

ab
ili

ty
 o

f f
ul

ly
 d

ec
od

in
g

 p = 0.0199

 p = 0.0587

 p = 0.0963

 p = 0.1855

 B

 A
 C

 D

 E

 F

 G

 H

 A: (1.02, 0.73)
 B: (1.03, 0.92)
 C: (1.08, 0.79)
 D: (1.09, 0.90)
 E: (1.11, 0.71)
 F: (1.12, 0.82)
 G: (1.26, 0.73)
 H: (1.29, 0.86)

Figure 4-9: The probability of E2E-TCP/NC fully decoding. The figure provides the prob-
ability that the decoder is able to receive enough degrees of freedom to fully decode in a
given round as the redundancy factor R varies. As we increase R, the probability increases.
In addition, given a redundancy factor R, the probability of fully decoding increases as the
loss rate p decreases.

4.5. THROUGHPUT ANALYSIS FOR E2E-TCP/NC 103

empirically that setting the redundancy factor R such that

W (R−1)
∑

i=0

(⌈RW ⌉
i

)

pi (1− p)⌈RW ⌉−i ≥ 0.8 (4.61)

is sufficient for TCP/NC to overcome the losses and maintain high throughput.

In general, the value of R which satisfies Equation (4.61) is slightly larger than 1
1−p .

This is because R = 1
1−p is the average redundancy factor needed to overcome losses, and

does not account for the variance of loss patterns. Therefore, if R = 1
1−p , E2E-TCP/NC is

unable to recover consistently from losses, and we observe large fluctuations in performance

round to round. This results in performance degradation.

There are two points in Figure 4-9. First set of points corresponds to the value of

maximum value of R such that the probability of fully decoding is less than 0.8 (points A,

C, E, and G). Second set of points corresponds to the value of minimal value of R such that

the probability of fully decoding is greater than 0.8 (points B, D, F , and H). This second

set of points corresponds to the points that satisfy the heuristic from Equation (4.61). As

we shall show in Section 4.6.2, choosing the redundancy factor R according to this heuristic

is effective in overcoming losses and achieving large throughput.

4.5.4 The Effect of Smoothed Round Trip Time SRTT

SRTT is the round trip time estimate that TCP maintains by sampling the behavior of

packets sent over the connection. It is denoted SRTT because it is often referred to as

“smoothed” round trip time as it is obtained by averaging the time for a packet to be

acknowledged after the packet has been sent. In Equation (4.51), we use SRTT instead of

RTT because SRTT is the “effective” round trip time E2E-TCP/NC experiences.

In lossy networks, E2E-TCP/NC’s SRTT is often greater than RTT . This can be

seen in Figure 4-1. The first coded packet p1 + p2 +p3 is received and acknowledged

by seen(p1). Therefore, the sender is able to estimate the round trip time correctly;

resulting in SRTT = RTT . However, the second packet p1+ 2p2 + p3 is lost. As a result,

the third packet p1 + 2p2+ 2p3 is used to acknowledge the second degree of freedom

seen(p2). This increases the round trip time estimate SRTT > RTT . In our model,

104 CHAPTER 4. TCP/NC

we assume for simplicity that the time needed to transmit a packet is much smaller than

RTT; therefore, despite the losses, our model would result in SRTT ≈ RTT . However, in

practice, depending on the size of the packets, the transmission time may not be negligible.

This results in a longer round trip time estimate, which can be characterized as described

below. We define tp to be the time to transmit a packet. Then, the sender expects to receive

an ACK of a packet after SRTT time units, where

SRTT =
∞
∑

i=0

(RTT + i · tp)pi(1− p) (4.62)

= RTT + tp
p

1− p
. (4.63)

For simplicity, Equation (4.63) does not take into account the “edge effect” of packets that

are waiting to be acknowledged across rounds. As the window size grows, the edge effect

can safely be ignored.

4.6 Simulation Results

We use simulations to verify that our analysis captures the behavior of both TCP and

E2E-TCP/NC. We use NS-2 (Network Simulator [1]) to simulate TCP and E2E-TCP/NC,

where we use the implementation of E2E-TCP/NC from [89]. Two FTP applications (ftp0,

ftp1) wish to communicate from the source (src0, src1) to sink (sink0, sink1), respectively.

There is no limit to the file size. The sources generate packets continuously until the end

of the simulation. The two FTP applications use either TCP or E2E-TCP/NC. We denote

TCP0, TCP1 to be the two FTP applications when using TCP; and we denote NC0, NC1

to be the two FTP applications when using E2E-TCP/NC.

The network topology for the simulation is shown in Figure 4-10. All links, in both

forward and backward paths, are assumed to have a bandwidth of C megabits per second

(Mbps), a propagation delay of 100 ms, a buffer size of 200, and a erasure rate of q. Since

there are in total four links in the path from node 0 to node 4, the probability of packet

erasure is p = 1 − (1 − q)4. Each packet transmitted is assumed to be 8000 bits (1000

bytes). We set Wmax = 50 packets for all simulations. In addition, time-out period is

4.6. SIMULATION RESULTS 105

Figure 4-10: Network topology for the simulations. All links, in both forward and backward
paths, are assumed to have a bandwidth of C megabits per second (Mbps), a propagation
delay of 100 ms, a buffer size of 200, and an erasure rate of q. Since there are in total four
links in the path from node 0 to node 4, the probability of end-to-end packet erasure is
p = 1− (1− q)4.

To =
3

RTT = 3.75 rounds long (3 seconds). Therefore, our variables for the simulations are:

• p = 1− (1− q)4: End-to-end erasure rate,

• R: Redundancy factor,

• C: Capacity of the links in megabits per second (Mbps).

We study the effect these variables have on the following:

• T: Throughput of TCP or E2E-TCP/NC,

• E[W]: Average window size of TCP or E2E-TCP/NC,

• SRTT : Round-trip estimate.

For each data point, we average the performance over 100 independent runs of the simula-

tion, each of which is 1000 seconds long.

4.6.1 Probability of Erasure p

In this section, we set C = 2 Mbps and R = 1.25 regardless of the value of p. We vary q

to be 0, 0.005, 0.015, 0.025, and 0.05. The corresponding p values are 0, 0.0199, 0.0587,

0.0963, and 0.1855. The simulation results are shown in Figures 4-11, 4-12, and 4-13.

Firstly, we show that when there are no random erasures (p = 0), then E2E-TCP/NC

and TCP behave similarly as shown in Figures 4-11a, 4-12a, and 4-13a. Without any random

losses and congestion, all of the flows (NC0, NC1, TCP0, TCP1) achieve the maximal

throughput, Wmax
RTT · 8

106
= 0.5 Mbps.

106 CHAPTER 4. TCP/NC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(a) p = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(b) p = 0.0199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(c) p = 0.0587

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(d) p = 0.0963

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(e) p = 0.1855

Figure 4-11: Throughput of E2E-TCP/NC and TCP with varying end-to-end erasure prob-
ability p. The figure show that E2E-TCP/NC can maintain high throughput even in very
lossy networks, while TCP is unable to do so as soon as the loss rates exceed a few percent.
For each data point, we average the performance of 100 independent runs of the simulations,
each of which is 1000 seconds long.

4.6. SIMULATION RESULTS 107

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

(a) p = 0

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

(b) p = 0.0199

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

(c) p = 0.0587

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

(d) p = 0.0963

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

(e) p = 0.1855

Figure 4-12: The congestion window size of E2E-TCP/NC and TCP with varying end-to-
end erasure probability p. The figure shows that E2E-TCP/NC maintains a large window
size despite losses in the network. An interesting observation is TCP’s window size. TCP
maintains a moderately large window size, but TCP’s throughput is much smaller than
the corresponding window size. For each data point, we average the performance of 100
independent runs of the simulations, each of which is 1000 seconds long.

108 CHAPTER 4. TCP/NC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(a) p = 0

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(b) p = 0.0199

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(c) p = 0.0587

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(d) p = 0.0963

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(e) p = 0.1855

Figure 4-13: The round trip time estimate (SRTT) of E2E-TCP/NC and TCP with vary-
ing end-to-end erasure probability p. The figure shows that E2E-TCP/NC maintains a
stable SRTT, which reflects the loss rate p present in the network. On the other hand,
TCP’s estimate varies significantly over time, reflecting TCP’s performance degradation
and fluctuations in throughput. For each data point, we average the performance of 100
independent runs of the simulations, each of which is 1000 seconds long.

4.6. SIMULATION RESULTS 109

The more interesting result is when p > 0 as shown in Figures 4-11 and 4-12. As our

analysis predicts, E2E-TCP/NC sustains its high throughput despite the random erasures

in the network. We observe that TCP may close its window due to triple-duplicates ACKs

or timeouts; however, E2E-TCP/NC is more resilient to such erasure patterns. Therefore,

E2E-TCP/NC is able to increment its window consistently, and maintain the window size

of 50 even under lossy conditions when standard TCP is unable to (resulting in the window

fluctuation in Figure 4-12).

An interesting observation is that, TCP achieves a moderate average window size al-

though the throughput (Mbps) is much lower as shown in Figures 4-11 and 4-12. For

example, TCP’s throughput is near zero for p = 0.0587 and p = 0.0963; however, TCP’s

congestion window size is approximately 30 and 20, respectively. This shows that näıvely

keeping the transmission window open is not sufficient to overcome the random losses within

the network, and does not lead to improvements in TCP’s performance. Even if the trans-

mission window is kept open (e.g. during timeout period), the sender can not transmit

additional packets into the network without receiving ACKs. Eventually, this leads to a

TD or TO event.

TCP modifies its RTT estimation depending on the ACKs received. However, due to

random erasures, TCP’s RTT estimate fluctuates significantly. On the other hand, E2E-

TCP/NC is able to maintain a consistent estimate of the RTT; however, is slightly above

the actual 800 ms. As described in Sections 4.3 and 4.5.4, E2E-TCP/NC masks errors by

translating losses as longer RTT. For E2E-TCP/NC, if a specific packet is lost, the next

subsequent packet received can “replace” the lost packet; thus, allowing the receiver to send

an ACK. Therefore, the longer RTT estimate takes into account the delay associated with

waiting for the next subsequent packet at the receiver. In Figure 4-13, we verify that this

is indeed true.

4.6.2 Redundancy Factor R

We set C = 2 Mbps. We vary the value of p and R to understand the relationship between

p and R. In Section 4.5.3, we noted that R ≥ 1
1−p is necessary to mask random erasures

from TCP. However, as R→ 1
1−p , the probability that the erasures are completely masked

110 CHAPTER 4. TCP/NC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(a) R = 1.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(b) R = 1.11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(c) R = 1.12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(d) R = 1.13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(e) R = 1.15

Figure 4-14: The effect of redundancy factor R on E2E-TCP/NC’s throughput. The figure
presents the throughput of E2E-TCP/NC for p = 0.0963 with varying redundancy factor
R. Note that 1

1−p = 1.107.

4.6. SIMULATION RESULTS 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(a) R = 1.26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(b) R = 1.28

Figure 4-15: The effect of redundancy factor R on E2E-TCP/NC’s throughput. The figure
presents the throughput of E2E-TCP/NC for p = 0.1855 with varying redundancy factor
R. Note that 1

1−p = 1.228.

decreases. This may suggest that we need R≫ 1
1−p for E2E-TCP/NC to maintain its high

throughput. However, we shall show by simulations that R need not be much larger than

1
1−p for E2E-TCP/NC to achieve its maximal throughput.

In Figure 4-14, we present E2E-TCP/NC throughput behavior with p = 0.0963 and

varying R. Note that 1
1−p = 1.107 for p = 0.0963. There is a dramatic change in through-

put behavior as we increase R from 1.11 to 1.12. Note that R = 1.12 is only 1% additional

redundancy than the theoretical minimum, i.e. 1.12
1/(1−p) ≈ 1.01. Another interesting ob-

servation is that, even with R = 1.10 or R = 1.11, E2E-TCP/NC achieves a significantly

higher throughput than TCP (in Figure 4-11d) for p = 0.0963.

Figure 4-11e shows that, for p = 0.1855, E2E-TCP/NC throughput is not as steady

and does not achieve the maximal throughput of 0.5 Mbps. This is because 1
1−p = 1.23 is

very close to R = 1.25. As a result, R = 1.25 is not sufficient to mask erasures with high

probability. In Figure 4-15, we show that E2E-TCP/NC achieves an average throughput

of 0.5 Mbps once R ≥ 1.28 for p = 0.1855. Note that R = 1.28 is only 4% additional

redundancy than the theoretical minimum, i.e. 1.28
1/(1−p) ≈ 1.04.

Similar behavior can be observed for p = 0.0199 and 0.0587, and setting R to be slightly

above 1
1−p is sufficient to achieve maximal throughput with E2E-TCP/NC.

As mentioned in Section 4.5.2, a good heuristic to use in setting R is the following. Given

112 CHAPTER 4. TCP/NC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

Figure 4-16: Fairness of E2E-TCP/NC. The figure presents the throughput of E2E-TCP/NC
for p = 0.0963 and C = 0.7 Mbps. The two E2E-TCP/NC flows share the C = 0.7 Mbps
fairly, each achieving 0.3162 Mbps.

a probability of erasure p and window size W , the probability that losses in any given round

is completely masked is upper bounded by
∑W (R−1)

x=0

(

RW
x

)

px(1−p)RW−x. Ensuring that this

probability is at least 0.8 has proven to be a good heuristic to use in finding the appropriate

value of R. This is equivalent to ensuring that there are no more than W (R− 1) losses in

at least 80% of the rounds.

4.6.3 Congestion Control

We showed that E2E-TCP/NC achieves a good performance in lossy environment. This

may raise concerns about masking correlated losses from TCP, which would disable TCP’s

congestion control mechanism. We show that the network coding layer masks random losses

only, and allows TCP’s congestion control to take affect when necessary.

Given a capacity C and erasure rate p, the available bandwidth is C(1 − p) Mbps.

Therefore, given two flows, a fair allocation of bandwidth should be C(1−p)
2 Mbps per flow.

This is the available bandwidth, not the achieved bandwidth.

With E2E-TCP/NC flows, there is another parameter we need to consider: the redun-

dancy factor R. Since E2E-TCP/NC sends R coded packets for each data packet, the

achievable bandwidth is min{C(1 − p), CR} Mbps; if shared among two flows fairly, we ex-

pect 1
2 min{C(1− p), CR} Mbps per coded flow. Note that, if R is chosen appropriately (i.e.

slightly above 1
1−p), then E2E-TCP/NC can achieve rate close to C(1−p), which is optimal.

4.6. SIMULATION RESULTS 113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

 0

 10

 20

 30

 40

 50

 60

 0 250 500 750 1000

cw
n

d
 (

in
 p

ac
k

et
s)

time (s)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

Figure 4-17: Fairness and congestion control of E2E-TCP/NC. The figure presents the
throughput of E2E-TCP/NC for p = 0.0963 with congestion (C = 0.9 Mbps, R = 1.2,
Wmax = 50). Before NC1 joins the network, NC0 achieves the maximum throughput of 0.5
Mbps. As the second flow of E2E-TCP/NC (NC1) joins the network, both NC0 and NC1
share the bandwidth, each achieving 0.37 Mbps.

114 CHAPTER 4. TCP/NC

As we have seen, if p > 0, TCP may not be able to use fully the available bandwidth.

On the other hand, E2E-TCP/NC is able to use the available bandwidth efficiently. We

now show that multiple E2E-TCP/NC flows share the bandwidth fairly.

We consider two flows (NC0, NC1) with Wmax = 50, R = 1.2, and p = 0.0963. If

there is no congestion, each flow would achieve approximately 0.5 Mbps. However, we set

C = 0.7 Mbps. The two flows should achieve 1
2 min{0.7(1 − 0.0963), 0.7

1.2} = 0.2917 Mbps.

We observe in Figure 4-16 that NC0 and NC1 achieve 0.2878 Mbps and 0.2868 Mbps,

respectively. Note that C(1−p)
2 = 0.3162; thus, NC0 and NC1 is near optimal even though

R = 1.2 > 1
1−p = 1.106.

For our next simulations, we set C = 0.9 Mbps, Wmax = 50, p = 0.0963, and R = 1.2.

Furthermore, we assume that NC0 starts at 0s and runs for 1000s, while NC1 starts at time

350s and ends at time 650s. Each connection, without congestion, can achieve a throughput

of 0.5 Mbps. Therefore, before NC1 enters, NC0 should be able to achieve a throughput

of 0.5 Mbps; however, when NC1 starts its connection, there is congestion, and both NC0

and NC1 have to react to this. Figure 4-17 shows that indeed this is true. We observe that

when NC1 starts its connection, both NC0 and NC1 share the bandwidth equally (0.3700

and 0.3669 Mbps, respectively). The achievable bandwidth predicted by min{C(1− p), CR}
is 0.75 Mbps (or 0.375 Mbps per flow). Notice that both NC0 and NC1 maintains its

maximum window size of 50. Instead, NC0 and NC1 experience a longer RTT, which

naturally translates to a lower throughput given the same Wmax.

4.6.4 Comparison to the Analytical Model

Finally, we examine the accuracy of our analytical model in predicting the behavior of

TCP and E2E-TCP/NC. First, note that our analytical model of window evolution, which

is shown in Equation (4.37) and Figure 4-6, demonstrates the same trend as that of the

E2E-TCP/NC window evolution of NS-2 simulations shown in Figure 4-12.

Second, we compare the actual NS-2 simulation performance to the analytical model.

This is shown in Table 4.1. We observe that Equations (4.51) and (4.37) predict well the

trend of E2E-TCP/NC’s throughput and window evolution, and provides a good estimate of

E2E-TCP/NC’s performance. Furthermore, our analysis predicts the average TCP behavior

4.7. CONCLUSIONS 115

Table 4.1: The performance of TCP and E2E-TCP/NC. The average simulated or predicted
long-term throughput of TCP and E2E-TCP/NC in megabits per second (Mbps). ‘NC0’,
’NC1’, ‘TCP0’, ‘TCP1’ are average throughput achieved in the NS-2 simulations with the
corresponding redundancy factor ‘R’. ‘E2E analysis’ is calculated using Equation (4.55)
with ⌊n · SRTT ⌋ = 1000. ‘TCP analysis’ is computed using Equation (4.35).

p E2E SRTT R NC0 NC1 E2E analysis TCP0 TCP1 TCP analysis
0 0.8256 1 0.5080 0.5057 0.4819 0.5080 0.5057 0.5000

0.0199 0.8260 1.03 0.4952 0.4932 0.4817 0.1716 0.1711 0.0667
0.0587 0.8264 1.09 0.4926 0.4909 0.4814 0.0297 0.0298 0.0325
0.0963 0.8281 1.13 0.4758 0.4738 0.4804 0.0149 0.0149 0.0220
0.1855 0.8347 1.29 0.4716 0.4782 0.4766 0.0070 0.0070 0.0098

well. In Table 4.1, we see that Equation (4.35) is consistent with the NS-2 simulation results

even for large values of p. Therefore, both simulations as well as analysis support that E2E-

TCP/NC is resilient to erasures; thus, better suited for reliable transmission over unreliable

networks, such as wireless networks.

4.7 Conclusions

We have presented an analytical study and compared the performance of TCP and E2E-

TCP/NC. Our analysis characterizes the throughput of TCP and E2E-TCP/NC as a func-

tion of erasure rate, round-trip time, maximum window size, and the duration of the con-

nection. We showed that network coding, which is robust against erasures and failures, can

prevent TCP’s performance degradation often observed in lossy networks. Our analytical

model shows that TCP with network coding has significant throughput gains over TCP.

E2E-TCP/NC is not only able to increase its window size faster but also maintain a large

window size despite losses within the network; on the other hand, TCP experiences win-

dow closing as losses are mistaken to be congestion. Furthermore, NS-2 simulations verify

our analysis on TCP’s and E2E-TCP/NC’s performance. Our analysis and simulation re-

sults both support that E2E-TCP/NC is robust against erasures and failures. Therefore,

E2E-TCP/NC is well suited for reliable communication in lossy wireless networks.

116 CHAPTER 4. TCP/NC

Chapter 5

Algebraic Watchdog:

Network Coding for Secure Communications

T
here have been numerous contributions to secure wireless networks, including key

management, secure routing, Byzantine detection, and various protocols (for a general

survey on this topic, see [42][97][20][48][83][14][69][82]). Countering these types of threats

is particularly important in military communications and networking, which are highly

dynamic in nature and must not fail when adversaries succeed in compromising some of the

nodes in the network. We consider the problem of Byzantine detection. The traditional

approach is receiver-based – i.e. the receiver of the corrupted data detects the presence

of an upstream adversary. However, this detection may come too late as the adversary is

partially successful in disrupting the network even if it is detected. It has wasted network

bandwidth, while the source is still unaware of the need for retransmission.

Reference [79] introduces a protocol for routing wireless networks, called the watchdog

and pathrater. Upstream nodes police their downstream neighbors nodes using promiscuous

monitoring, where a node v within range of node v′ overhears communication to and from

v′ even if those communication do not directly involve v. This scheme successfully detects

adversaries and removes adversaries by dynamically adjusting the routing paths. However,

the protocol requires a significant overhead (12% to 24%) owing to increased control traffic

and numerous cryptographic messages [79].

Our goal is to design and analyze a watchdog-inspired protocol for wireless networks

117

118 CHAPTER 5. ALGEBRAIC WATCHDOG

using network coding. We propose a new scheme called the Algebraic Watchdog, in which

nodes can detect malicious behaviors probabilistically by taking advantage of the broadcast

nature of the wireless medium. Although we focus on detecting malicious or misbehaving

nodes, the same approach can be applied to faulty or failing nodes. Our ultimate goal is a

robust self-checking network.

The key difference between our work [62] and that of [79] is that we allow network coding.

Network coding [3][67] is advantageous as it increases throughput, robustness against failures

and erasures, and resilience in dynamic and unstable networks where state information may

change rapidly or may be hard to obtain.

The key challenge in Algebraic Watchdog is that, by incorporating network coding,

we can no longer recognize packets individually. In [79], v can monitor its downstream

neighbor v′ by checking that the packet sent by v′ is a copy of what v sent to v′. However,

with network coding, this is no longer possible as transmitted packets are a function of

the received packets. Furthermore, v may not have full information regarding the packets

received at v′; thus, node v is faced with the challenge of inferring the packets received at

v′ and ensuring that v′ is transmitting a valid function of the received packets. We note

that [72] combines source coding with watchdog; thus, [72] does not face the same problem

as the Algebraic Watchdog.

Algebraic Watchdog is one of many approaches to detecting malicious behavior in coded

networks. For example, there are end-to-end error corrections [94], packet signature schemes

[96], and generation-based detection schemes [40]. These schemes, including Algebraic

Watchdog, are effective in detecting or correcting different degrees of malicious behavior.

Depending on the severity of adversarial errors, different approaches should be employed as

shown in [55].

The chapter is organized as follows. In Section 5.1, we discuss the intuition behind

Algebraic Watchdog. In Section 5.2, we present the related material. We present the

main body of the Algebraic Watchdog in Sections 5.3 to 5.8. In Section 5.3, we introduce

our problem statement and network model. In Section 5.4, we analyze the protocol for a

simple two-hop network, first graphically in Section 5.4.1 and then algebraically in Section

5.4.2. In Section 5.5, we extend the analysis for Algebraic Watchdog to a more general two-

5.1. INTUITION 119

S0v1

v2

v3

v5

v6

v7

S1

v4

v8

Figure 5-1: An example network showing how nodes may monitor their downstream nodes.

hop network, and in Section 5.7, we present an Algebraic Watchdog protocol for a multi-

hop network. We present simulation results in Section 5.8, which show that an adversary

within the network can be detected probabilistically by upstream nodes. In Section 5.9, we

summarize our contribution.

5.1 Intuition

Assume that nodes in S0 = {v1, v2, v3} and v4 are well-behaving sources in Figure 5-1.

Nodes in S0 can monitor v5 collectively or independently. Furthermore, v3 and v4 can

monitor v6. This enforces v5 and v6 to send valid data. We do not make any assumption on

whether v5 and v6 are malicious or not. Nodes v5 and v6 are forced to send valid information

regardless of their true nature.

If v5 and v6 are well-behaving, then v5 or v6 can check v7’s behavior. Thus, propagating

trust within the network. Now, what if v5 or v6 are malicious? If both v5 and v6 are

malicious, all flows to v7 are controlled by malicious nodes, i.e. flows through v7 are

completely compromised. Therefore, even if v1, v2, v3, and v4 can detect that v5 and v6

are misbehaving, there is nothing that v7 or v1, v2, v3, v4 can do to protect the flow through

v7. The only solution in this case would be to physically remove v5 and v6 from the network

or to construct a new path to v7.

The intuition is that as long as the min-cut to any node is not dominated by adversaries,

then the remaining well-behaving nodes can check its neighborhood and enforce that the

120 CHAPTER 5. ALGEBRAIC WATCHDOG

information flow is delivered correctly to the destination. For example, assume that only v6

is malicious and v5 is well-behaving in Figure 5-1. Since v3 and v4 monitor v6, despite v6

being malicious, v6 is forced to send valid data. Then, v7 receives two valid flows, which it

is now responsible of forwarding. If v7 is well-behaving, we do not have any problem. If v7

is malicious, it may wish to inject errors to the flow. In this case, v7 is only liable to v5; but

it is liable to at least one well-behaving node v5. Thus, it is not completely free to inject

any error it chooses; it has to ensure that v5 cannot detect its misbehavior, which may be

difficult to accomplish.

In this chapter, we show that this is indeed the case. We first start by studying a two-

hop network, which would be equivalent to focusing on the operations performed by nodes

in S0 to check v5. Then, we discuss how we can propagate this two-hop policing strategy

to general network topologies.

5.2 Background

5.2.1 Secure Network Coding

Network coding allows algebraic mixing of information in the intermediate nodes. This

mixing has been shown to have numerous performance benefits. It is known that network

coding maximizes throughput for multicast [3] and increases robustness against failures [67]

and erasures [77]. However, a major concern for network coded systems is their vulnerability

to Byzantine adversaries. A single corrupted packet generated by a Byzantine adversary

can contaminate all the information to a destination, and propagate to other destinations

quickly. For example, in random linear network coding [77], one corrupted packet in a

generation (a fixed set of packets) can prevent a receiver from decoding any data from that

generation even if all the other packets received are valid.

There has been significant work to address this problem. One approach is to correct the

errors injected by the Byzantine adversaries using end-to-end network error correction [94].

Reference [94] bounds the maximum achievable rate in an adversarial setting, and general-

izes the Hamming, Gilbert-Varshamov, and Singleton bounds. Jaggi et al. [45] propose a

distributed, rate-optimal, network coding scheme for multicast network that is resilient in

5.2. BACKGROUND 121

the presence of Byzantine adversaries for sufficiently large field and packet size. Reference

[66][87] generalizes [45] to provide correction guarantees against adversarial errors for any

given field and packet size.

Another approach of Byzantine detection in coded networks is to use generation-based

detection schemes. Ho et al. [40] introduce an information-theoretic approach for detecting

Byzantine adversaries, which only assumes that the adversary did not see all linear combi-

nations received by the receivers. Their detection probability varies with the length of the

hash, field size, and the amount of information unknown to the adversary. A polynomial

hash is added to each packet in the generation. Once the destination node receives enough

packets to decode a generation, it can probabilistically detect errors. The intuition behind

this scheme is that if a packet is valid, then its data and hash are consistent with its coding

vector, and a linear combination of valid packets is also valid.

Finally, packet-based detection schemes allow for finer granularity of Byzantine detec-

tion. There are several signature schemes that allow detection on per-packet basis. For

instance, [17] proposes a signature scheme for network coding based on Weil pairing on

elliptic curves. Elliptic curves are hard to analyze and are known to be computationally

expensive [65]. The experimental results in [95] show that this scheme is indeed costly

and time-consuming. Reference [68] uses homomorphic hash functions to verify packets in

P2P systems, and [36] extends this approach to secure network coded P2P systems against

Byzantine attacks. However, [36] requires a secure channel to transmit the hashes to all

receivers before data is delivered. In this chapter, we assume that no such secure channel

is available.

Reference [95] proposes a homomorphic signature scheme with RSA encryption and

decryption to allow authentication and verification of data. Unfortunately, the scheme is

incorrect1. This homomorphic property does not hold due to an error in the second to last

equation in (12) of [95]; that is:

(a mod p)× (b mod p) mod r 6= (ab mod p) mod r. (5.1)

1This fact has been communicated to the authors of [95] by Anthony E. Kim, Raluca Ada Popa, and
Muriel Médard, and acknowledged by the authors.

122 CHAPTER 5. ALGEBRAIC WATCHDOG

In [96], Fang et al. propose a signature scheme for network coding, which makes use

of the linearity property of the packets in a coded system. This scheme does not require

intermediate nodes to decode coded packets to check the validity of a packet; therefore, it

is efficient in terms of computational cost as well as delay. Taking advantage of the fact

that in linear network coding, any valid packet transmitted should belong to the subspace

spanned by the original set of vectors, Fang et al. design a signature that can be used to

easily check the membership of a received vector in the given subspace, while making it

hard to generate a fake signature that is not in the subspace but passes the check.

Kim et al. [58] compare the cost and benefit associated with the various detection

schemes described above. The cost and benefit of a scheme is measured in terms of trans-

mitted bits by allowing nodes to employ the detection schemes to drop polluted data. In

[58], it is shown that, with enough attackers present in the network, Byzantine detection

schemes may improve the overall throughput of the system by choosing to forward only

reliable or valid information. When the probability of attack is high, a packet-based de-

tection scheme is most bandwidth efficient; however, when the probability of attack is low,

the overhead involved with signing each packet becomes costly, and the generation-based

scheme may be preferred.

5.2.2 Secure Routing Protocol: Watchdog and Pathrater

The problem of securing networks in the presence of Byzantine adversaries has been studied

extensively [83][14][69][82]. The watchdog and pathrater [79] are two extensions to the

Dynamic Source Routing [47] protocol that attempt to detect and mitigate the effects of

routing misbehavior. The watchdog detects misbehavior based on promiscuous monitoring

of the downstream node’s transmissions to confirm if the relay correctly forwards the packets

it receives. If a node fails to forward a packet within a certain period of time, the watchdog

increments a failure rating for that node. A node is deemed to be misbehaving when this

failure rating exceeds a certain threshold. The pathrater then uses the gathered information

to determine the best possible routes by avoiding misbehaving nodes. This mechanism,

which does not punish these nodes (it actually relieves them from forwarding operations),

provides an increase in the throughput of networks with misbehaving nodes [79].

5.3. PROBLEM STATEMENT 123

5.2.3 Hypothesis Testing

Hypothesis testing is a method of deciding which of the two hypotheses, denoted H0 and

H1, is true given an observation denoted as U . In this chapter, H0 is the hypothesis that v is

well-behaving, H1 is that v is malicious, and U is the information gathered from overhearing.

The observation U is distributed differently depending whether H0 or H1 is true, and these

distributions are denoted as PU |H0
and PU |H1

, respectively.

An algorithm is used to choose between the hypotheses given the observation U . There

are two types of error associated with the decision process, as shown below.

• Type 1 error, False detection: Accepting H1 when H0 is true (i.e. considering a

well-behaving v to be malicious), and the probability of this event is denoted γ.

• Type 2 error, Misdetection: AcceptingH0 whenH1 is true (i.e. considering a malicious

v to be well-behaving), and the probability of this event is denoted β.

The Neyman-Pearson theorem gives the optimal decision rule: Given the maximal tolerable

β, we can minimize γ by accepting H0 if and only if log
PU|H0
PU|H1

≥ t for some threshold t depen-

dent on γ. For more thorough survey on hypothesis testing in the context of authentication,

see [80].

5.3 Problem Statement

We shall use elements from a field (in italic font, e.g. x), and their bit-representation

(in bold font, e.g. x). We use underscore bold font (e.g. x) for vectors. For arithmetic

operations in the field, we shall use the conventional notation (+,−, ·). For bit-operation,

we shall use ⊕ for addition, and ⊗ for multiplication.

We use polynomial hash functions defined as follows [18].

Definition 5.3.1 (Polynomial hash functions) For a finite field F and d ≥ 1, the class

of polynomial hash functions on F is defined as Hd(F) = {ha|a = 〈a0, ..., ad〉 ∈ Fd+1}, where
ha(x) =

∑d
i=0 aix

i for x ∈ F.

We model a wireless network with a hypergraph G = (V,E1, E2), where V is the set of

the nodes in the network, E1 is the set of hyperedges representing the connectivity (wireless

124 CHAPTER 5. ALGEBRAIC WATCHDOG

ai hIi hxi xi yi zi

Protected with error

correcting codes
xi = Σ αj xj

yi = Σ αj yj zi = Σ αj zj

Figure 5-2: Packet structure for Algebraic Watchdog. The figure presents the structure of
a valid packet sent by well-behaving vi.

links), and E2 is the set of hyperedges representing the interference. We assume that there

are a set of sources and a set of destinations, which are well-behaved. We use the hypergraph

to capture the broadcast nature of the wireless medium. If (v1, v2) ∈ E1 and (v1, v3) ∈ E2

where v1, v2, v3 ∈ V , then there is an intended transmission from v1 to v2, and v3 can

overhear this transmission (possibly incorrectly).

A node vi ∈ V transmits coded information xi by transmitting a packet pi, where

pi = [ai,hIi ,hxi
,xi] is a {0, 1}-vector. A valid packet pi is defined as below:

• ai corresponds to the coding coefficients αj , j ∈ Ii, where Ii ⊆ V is the set of nodes

adjacent to vi in E1,

• hIi corresponds to the hash h(xj), vj ∈ Ii where h(·) is a δ-bit polynomial hash

function,

• hxi
corresponds to the polynomial hash h(xi),

• xi is the n-bit representation of xi =
∑

j∈I αjxj ∈ F2n .

Figure 5-2 illustrates the structure of a valid packet. For simplicity, we assume the

payload to be a single symbol. However, the protocol and the analysis extends to packets

with multiple symbols. For example, in Figure 5-2, the payload consists of multiple symbols.

In order to apply the Algebraic Watchdog protocol to the entire payload, we can call on

the same protocol on xi, yi, ..., and zi separately. Therefore, the computational complexity

grows linearly with the payload. Furthermore, as we shall discuss in Section 5.5, separate

calls to Algebraic Watchdog can use the same precomputed tables and data structures;

therefore, the protocol can scale efficiently with the payload length.

5.3. PROBLEM STATEMENT 125

The payload xi may be coded with a (n, ki)-code Ci with minimum distance di. Code

Ci is an error-correcting code of rate Ri = ki
n = 1 − di

n , and is tailored for the forward

communication. For instance, v1 uses code C1 chosen appropriately for the channel (v1, vj) ∈
E1, to transmit x1.

As we shall show in Section 5.8, the Algebraic Watchdog does not need the hash function

to work (i.e. δ can be 0). It can be observed that the larger the hash function, the better

the performance of Algebraic Watchdog. We assume that the hash function h(·) is known

to all nodes, including the adversary.

We assume that ai, hIi and hxi
are part of the header information, and are sufficiently

coded such that the previous hop nodes can correctly receive them even under noisy channel

conditions. For example, in Figure 5-3a, nodes v1 to vm should be able to decode the header

from vm+1. In practice, a node just needs to obtain am+1, hIm+1
and hxm+1

from any nodes;

however, for simplicity, we assume that a node overhears them correctly from its next hop

node. Protecting the header sufficiently to allow the parent nodes to receive it correctly

will induce some overhead, but the assumption remains a reasonable one to make. First,

the header is smaller than the message itself. Second, even in the routing case, the header

and the state information need to be coded sufficiently. Third, the hashes hIi and hxi

are contained within one hop. A node that receives pi = [ai,hIi ,hxi
,xi] does not need to

repeat hIi , only hxi
. Therefore, the overhead associated with the hashes is proportional to

the in-degree of a node, and does not accumulate with the routing path length.

There are certain transition probabilities associated with the interference channels known

to the nodes, which applies to all packets (payload and header) except for the header be-

tween two consecutive hop nodes as previously mentioned. They are modeled as binary

channels, BSC(pij) for (vi, vj) ∈ E2. Therefore, pij ∈ [0, 1] represents the bit-error rate

of the overhearing channel. If pij = 0, then vj can hear vi’s transmission noiselessly; if

pij =
1
2 , then vj cannot overhear anything from vi. Our formulation does not require that

each node overhear all its neighbors; however, the more a node can overhear, the better the

performance of the protocol.

Assume that vi transmits pi = [ai,hIi ,hxi
, x̂i], where x̂i = xi ⊕ e, e ∈ {0, 1}n. If

vi is misbehaving, then e 6= 0. Our goal is to detect with high probability when e 6= 0.

126 CHAPTER 5. ALGEBRAIC WATCHDOG

Even if |e| is small (i.e. the hamming distance between x̂i and xi is small), the algebraic

interpretation of x̂i and xi may differ significantly. For example, consider n = 4, x̂i = [0000],

and xi = [1000]. Then, e = [1000] and |e| = 1. However, the algebraic interpretations of

x̂i and xi are 0 and 8, respectively. Thus, even a single bit flip can alter the message

significantly.

5.3.1 Threat Model

We assume powerful adversaries, who can eavesdrop their neighbor’s transmissions, have

the power to inject or corrupt packets, and are computationally unbounded. Therefore,

the adversary will find x̂i that will allow its misbehavior to be undetected, if there is any

such x̂i. However, the adversary does not know the specific realization of the random errors

introduced by the channels. We denote the rate at which an adversary injects error (i.e.

performs bit flips to the payload) to be padv . The adversaries’ objective is to corrupt the

information flow without being detected by other nodes.

Our goal is to detect probabilistically a malicious behavior that is beyond the channel

noise, represented by BSC(pik). The Algebraic Watchdog does not completely eliminate

errors introduced by the adversaries; its objective is to limit the adversarial errors to be

at most that of the channel. Channel errors (or adversaries errors below the channel noise

level) can be corrected using appropriate error correction schemes, which will be necessary

even without Byzantine adversaries in the network.

The notion that adversarial errors should sometimes be treated as channel noise has

been introduced previously in [58]. Under heavy attack (where the adversary can corrupt

significant portion of the data traffic), attacks should be treated with special attention; while

under light attack, the attacks can be treated as noise and corrected using error-correction

schemes. The results in this chapter partially reiterate this idea.

5.4 Two-hop network: An Example

Consider a network or a small neighborhood as in Figure 5-3a. Nodes vi, i ∈ [1,m], want

to send xi to vm+2 via vm+1. A single node vi, i ∈ [1,m], cannot monitor vm+1 even if vi

5.4. TWO-HOP NETWORK: AN EXAMPLE 127

v1

v2

vm-1

vm

p1

p2

pm-1

pm

vm+1 vm+2
pm+1

edges in E2

edges in E1

(a) General m

v1

v2

p1

p2

v3 v4
p3

edges in E2

edges in E1

(b) m = 2

Figure 5-3: A small neighborhood of a wireless network with v1. The dotted arrows represent
the overhearing channels, and the solid arrows represent the transmissions.

overhears xm+1, since without any information about xj for j ∈ [1,m], xm+1 is completely

random to vi. In contrast, if vi knows xj for all j ∈ [1,m + 1], then vi can verify that

vm+1 is behaving with certainty; however, this requires at least m − 1 additional reliable

transmissions to vi.

In Figure 5-3a, we use the solid lines to represent the intended channels E1, and dotted

lines for the interference channels E2. Each node checks whether its neighbors are trans-

mitting values that are consistent with the gathered information. If a node detects that

its neighbor is misbehaving, then it can alert other nodes in the network and isolate the

misbehaving node.

In the next subsections, we use an example with m = 2, as shown Figure 5-3b. We

introduce the graphical model which explains how a node vi checks its neighbor’s behavior.

Then, we use an algebraic approach to analyze and compute γ and β for this example

network with m = 2. We assume for simplicity that nodes do not code the payload – i.e.

128 CHAPTER 5. ALGEBRAIC WATCHDOG

error-correcting code has rate Ri = 1.

A malicious v3 would not inject errors in hx3
only, as the destination v4 can easily

verify if hx3
is equal to h(x3). Therefore, a malicious v3 is forced to transmit a packet such

that hx3
= h(x3). In addition, v3 would not inject errors in hxj

, j ∈ I3, as each vj can

verify the hash of its message. However, a malicious v3 can inject errors in a3, forcing v4

to receive incorrect coefficients α̃j’s instead of αj ’s. Notice that any error introduced in a3

can be translated to errors in x3 by assuming that α̃j’s are the correct coding coefficients.

Therefore, we are concerned only with the case in which v3 introduces errors in x3 (and in

hx3
such that hx3

= h(x3)).

5.4.1 Graphical Model Approach

We present a graphical approach to model the problem for m = 2 systematically, and to

explain how a node may check its neighbors. This approach may be advantageous as it

lends easily to already existing graphical model algorithms as well as some approximation

algorithms.

We shall consider the problem from v1’s perspective. We denote x̃i to be what v1

overhears vi transmitting. Note that x̃i may have bit errors introduced by the interference

channel BSC(pi1). As shown in Figure 5-4, the graphical model has four layers:

• Layer 1 contains 2n+h vertices, each representing a bit-representation of [x̃2,h(x2)];

• Layer 2 contains 2n vertices, each representing a bit-representation of x2;

• Layer 3 contains 2n vertices corresponding to x3; and

• Layer 4 contains 2n+h vertices corresponding to [x̃3,h(x3)].

Node v1 overhears the transmissions from v2 to v3 and from v3 to v4; therefore, it

receives [x̃2,h(x2)] and [x̃3,h(x3)], corresponding to the starting point in Layer 1 and the

destination point in Layer 4 respectively. We add edges to the graphical model in a manner

such that the sum of the product of the weights of all possible paths between the starting and

the destination points is equal to the probability that v3 is consistent with the information

gathered by v1. Edges exist between adjacent layers as follows.

5.4. TWO-HOP NETWORK: AN EXAMPLE 129

Layer 1

[x�2,h(x2)]

Layer 2

x2

Start

node

Layer 4

[x�3,h(x3)]

Layer 3

x3

End

node

Figure 5-4: A graphical model of the inference process from v1’s perspective for the two-hop
example network.

• Layer 1 to Layer 2: An edge exists between a vertex [v,u] in Layer 1 and a vertex w

in Layer 2 if and only if h(w) = u. The edge weight is normalized such that the total

weight of edges leaving [v,u] is 1, and the weight is proportional to:

P(v| Channel statistics and w is the original message),

which is the probability that the inference channel outputs message v given an input

message w.

• Layer 2 to Layer 3: The edges represent a permutation. A vertex v in Layer 2 is

adjacent to a vertex w in Layer 3 if and only if w = c + α2v, where c = α1x1 is

a constant, v and w are the bit-representation of v and w, respectively. The edge

weights are all 1.

• Layer 3 to Layer 4: An edge exists between a vertex v in Layer 3 and a vertex [w,u]

in Layer 4 if and only if h(v) = u. The edge weight is normalized such that the total

weight leaving v is 1, and is proportional to:

P(w| Channel statistics and v is the original message).

This graphical model illustrates sequentially and visually the inference process v1 exe-

130 CHAPTER 5. ALGEBRAIC WATCHDOG

cutes. Furthermore, by using approximation algorithms and pruning algorithms, we may

be able to simplify the computation as well as the structure of the graph. In addition, the

graphical approach may be extend to larger networks, as we shall discuss in Section 5.5.

5.4.2 Algebraic Approach

We explain the inference process described above using the graphical model introduced

in Section 5.4.1. Consider v1. By assumption, v1 correctly receives a3, hI3 , and hx3

from v3, which contain α1, α2, h(x2), and h(x3). In addition, v1 receives x̃2 = x2 + e′ and

x̃3 = x3 + e′′, where e′ and e′′ are outcomes of the interference channels. Given x̃j for

j = {2, 3} and the transition probabilities, v1 computes rj→1 such that the sum of the

probability that the interference channel from vj and v1 outputs x̃j given x ∈ B(x̃j, rj→1) is

greater or equal to 1− ǫ where ǫ is a constant, and B(x, r) is a n-dimensional ball of radius

r centered at x. Now, v1 computes X̃j = {x | h(x) = h(xj)} ∩ B(x̃j, rj→1) for j = {2, 3}.
Then, v1 computes α1x1 + α2x̂ for all x̂ ∈ X̃2. Then, v1 intersects X̃3 and the computed

α1x1 + α2x̂’s. If the intersection is empty, then v1 claims that R is misbehaving.

The set {x | h(x) = h(x2)} represents the Layer 2 vertices reachable from the starting

point [x̃2,h(x2)] in Layer 1, and X̃2 is a subset of the reachable Layer 2 vertices such that

the total edge weight (corresponding to the transition probability) from the starting point

is greater than 1−ǫ. Then, computing α1x1+α2x̂ represents the permutation from Layers 2

to 3. Finally, the intersection with X̃3 results in a set of Layer 3 vertices such that they are

adjacent to the destination point [x̃3,h(x3)] in Layer 4 and their total transition probability

to [x̃3,h(x3)] is greater than 1− ǫ.

Lemma 5.4.1 For n sufficiently large, the probability of false detection, γ ≤ ǫ for any

arbitrary small constant ǫ.

Proof: Assume that v3 is not malicious. Then, for n sufficiently large, v1 can choose

r2→1 and r3→1 such that the probability that the bit representation of x3 = α1x1 + α2x2 is

in X̃3 and the probability that x2 ∈ X̃2 are greater than 1 − ǫ. Therefore, X̃3 ∩ {α1x1 +

α2x̂ | ∀x̂ ∈ X̃2} 6= ∅ with probability arbitrary close to 1. Thus, a well-behaving v3 passes

v1’s check with probability at least 1− ǫ. This shows that γ ≤ ǫ.

5.4. TWO-HOP NETWORK: AN EXAMPLE 131

Lemma 5.4.2 The probability that a malicious v3 is undetected from v1’s perspective is

given by

min

{

1,

∑r1→2
k=0

(

n
k

)

2(δ+n)
·
∑r2→1

k=0

(

n
k

)

2(δ+n)
·
∑r3→1

k=0

(

n
k

)

2δ

}

. (5.2)

Proof: Assume that v3 is malicious and injects errors into x3. Consider an element

z ∈ X̃3, where z = α1x1 + α2x2 + e = α1x1 + α2(x2 + e2) for some e and e2. Note that,

since we are using a field of size 2n, multiplying an element from the field by a randomly

chosen constant has the effect of randomizing the product. Here, we consider two cases:

• Case 1: If x2 + e2 /∈ X̃2, then v3 fails v1’s check.

• Case 2: If x2+e2 ∈ X̃2, then v3 passes v1’s check, but v3 is unlikely to pass v2’s check.

Note that α1x1+α2(x2+e2) = α1(x1+e1)+α2x2 for some e1. For uniformly random

α1 and α2, e1 is also uniformly random. Therefore, v3 will pass if the random vector

x1 + e1 belongs to X̃1 = {x | h(x) = h(x1)} ∩B(x̃1, r1→2). Therefore,

P(A malicious v3 passes v2’s check) = P(x1 + e1 ∈ X̃1) (5.3)

=
V ol(X̃1)

2n
, (5.4)

where V ol(·) is the number of {0, 1}-vectors in the given set. Since V ol(B(x, r)) =
∑r

k=0

(n
k

)

≤ 2n and the probability that h(x) equals a given value is 1
2δ
, V ol(X̃1) is

given as follows:

V ol(X̃1) =
V ol(B(x̃1, r1→2))

2δ
=

∑r1→2
k=0

(n
k

)

2δ
. (5.5)

Hence, putting the observations from the above two cases, the probability that a z ∈ X̃3

passes the checks from v1’s perspective is

P(z passes check) = 0 ·P(x2 + e2 /∈ X̃2) +

∑r1→2
k=0

(n
k

)

2(δ+n)
·P(x2 + e2 ∈ X̃2). (5.6)

Similarly,

P(x2 + e2 ∈ X̃2) =

∑r2→1
k=0

(n
k

)

2(δ+n)
, (5.7)

132 CHAPTER 5. ALGEBRAIC WATCHDOG

and

V ol(X̃3) =

∑r3→1
k=0

(n
k

)

2δ
. (5.8)

Then, the probability that v3 is undetected from v1’s perspective is the probability that at

least one z ∈ X̃3 passes the check, which is equal to

P(A malicious v3 is undetected from v1’s perspective) (5.9)

= min{1,P(z passes check) · V ol(X̃3)} (5.10)

= min

{

1,

∑r1→2
k=0

(n
k

)

2(δ+n)
·
∑r2→1

k=0

(n
k

)

2(δ+n)
·
∑r3→1

k=0

(n
k

)

2δ

}

. (5.11)

Note that P(z passes check) ·V ol(X̃3) is the expected number of z ∈ X̃3 that passes the

check; thus, given a high enough P(z passes check), would exceed 1. Therefore, we take the

minimum of 1 and P(z passes check) · V ol(X̃3)} to get a valid probability. This proves the

statement.

Lemma 5.4.3 The probability that a malicious v3 is undetected from v2’s perspective is

given by

min

{

1,

∑r1→2
k=0

(

n
k

)

2(δ+n)
·
∑r2→1

k=0

(

n
k

)

2(δ+n)
·
∑r3→2

k=0

(

n
k

)

2δ

}

. (5.12)

where v2 overhears x̃3 from v3, and the probability that the interference channel from v3 to

v2 outputs x̃3 given x ∈ B(x̃3, r3→2) is greater than 1− ǫ.

Proof: This statement can be proven by an analysis similar to in the proof for Lemma

5.4.2.

Theorem 5.4.4 The probability of misdetection, β, is

β = min

{

1,

∑r1→2
k=0

(

n
k

)

2(δ+n)
·
∑r2→1

k=0

(

n
k

)

2(δ+n)
· 1
2δ

r
∑

k=0

(

n

k

)}

, (5.13)

where r = min{r3→1, r3→2}.

Proof: The probability of misdetection is the minimum of the probability that v1 and

v2 do not detect a malicious v3. Therefore, by Lemma 5.4.2 and 5.4.3, the statement is

true.

5.5. ALGEBRAIC WATCHDOG FOR TWO-HOP NETWORK 133

Theorem 5.4.4 shows that the probability of misdetection β decreases with the hash size

δ, as δ restricts the space of consistent codewords. Since ri→j represents the uncertainty

introduced by the interference channels, β increases with it. Interestingly, β decreases with

n, since
∑r

k=0

(n
k

)

< 2n for r < n. This is because network coding randomizes the messages

over a field whose size increases exponentially with n. This makes it difficult for an adversary

to introduce errors without introducing inconsistencies.

We can apply Theorem 5.4.4 even when v1 and v2 cannot overhear each other. Then,

r1→2 = r2→1 = n, giving

β = min

{

1,

∑r
k=0

(n
k

)

8δ

}

(5.14)

where r = min{r3→1, r3→2}. Here, β highly depends on δ, as v1 and v2 are only using their

own messages and the overheard hashes from v3.

The algebraic approach results in an analysis with exact formulae for γ and β. These

formulae are conditional probabilities; as a result, they hold regardless of a priori knowledge

of whether v3 is malicious or not. However, performing algebraic analysis is not very

extensible with growing m, the number of nodes in the network. Therefore, as we extend

the Algebraic Watchdog to a more general network topology, we shall focus on the graphical

model.

5.5 Algebraic Watchdog for Two-hop Network

We extend the Algebraic Watchdog to a more general two-hop network as in Figure 5-

3a. We develop upon the trellis introduced in Section 5.4, and formally present a graphical

representation of the inference process performed by a node performing Algebraic Watchdog

on its downstream neighbor.

There are three steps in performing the Algebraic Watchdog. First, we infer the original

messages from the overheard data, which is captured by the transition matrix in Section

5.5.1. The second step consists of forming an opinion regarding what the next-hop node

vm+1 should be sending, which is inferred using a trellis structure in Section 5.5.2 and a

Viterbi-like algorithm in Section 5.5.3. Finally, we combine the inferred information with

what we overhear from vm+1 to make a decision on vm+1’s behavior as discussed in Section

134 CHAPTER 5. ALGEBRAIC WATCHDOG

5.5.4. Figures 5-5, 5-6, and 5-7 illustrate these three steps.

5.5.1 Transition Matrix

We define a transition matrix Ti to be a 2n(1−H(
di
n
))+δ × 2n(1−H(

di
n
)) matrix, where H(·) is

the entropy function.

Ti(x̃i, y) =











pi(x̃i,y)
N if h(y) = h(xi),

0 otherwise,

(5.15)

where

pi(x̃i, y) = p
∆(x̃i,y)
i1 (1− pi1)

n−∆(x̃i,y), (5.16)

N =
∑

{y|h(y)=h(xi)}
pi(x̃i, y), (5.17)

∆(x,y) gives the Hamming distance between codewords x and y. (5.18)

In other words, v1 computes X̃i = {x|h(x) = h(xi)} to be the list of candidates of xi.

For any overheard pair [x̃i,h(xi)], there are multiple candidates of xi (i.e. |X̃i|) although

the probabilities associated with each candidates are different. This is because there are

uncertainties associated with the overhearing channel, represented by BSC(pi1).

For each x ∈ X̃i, pi(x̃i, x) gives the probability of x being the original codeword sent by

node vi given that v1 overheard x̃i under BSC(pi1). Since we are only considering x ∈ X̃i,

we normalize the probabilities using N to get the transition probability Ti(x̃i, x). Note

Ti(x̃i, y) = 0 if h(y) 6= h(xi).

The structure of Ti heavily depends on the collisions of the hash function h(·) in use.

The structure of Ti is independent of i, and therefore, a single transition matrix T can be

precomputed for all i ∈ [1,m] given the hash function h(·). A graphical representation of

T is shown in Figure 5-5. For simplicity of notation, we represent T as a matrix; however,

the transition probabilities can be computed efficiently using hash collision lists as well.

5.5. ALGEBRAIC WATCHDOG FOR TWO-HOP NETWORK 135

Overheard

information

[x�i, h(xi)]

Inferred

information

xi

Start node

(Overheard)

Figure 5-5: An example of the transition matrix T (x̃i, y). A graphical representation of
the inference process at a node which overhears node vi’s transmission. The overheard
information is [x̃i, h(xi)], from which the node infers what xi may be.

Layer 1

α1x1

Start

state

Layer 2

α1x1 +α2x2

Layer 3

α1x1 +α2x2 +α3x3

Layer m-1

Σ1≤i≤m-1 αixi

Layer m

Σ1≤i≤m αixi

Inferred linear

combinations

Σ1≤i≤m αixi

Figure 5-6: An example of the trellis for Algebraic Watchdog. In the trellis, the transition
probability from Layer i− 1 to Layer i is given by Ti(x̃i, xi), which is shown in Figure 5-5.

136 CHAPTER 5. ALGEBRAIC WATCHDOG

5.5.2 Watchdog Trellis

Node v1 uses the information gathered to generate a trellis, which is used to infer the valid

linear combination that vm+1 should transmit to vm+2. As shown in Figure 5-6, the trellis

has m layers: each layer may contain up to 2n states, each representing the inferred linear

combination so far. For example, Layer i consist of all possible values of
∑i

j=1 αjxj.

The matrices Ti, i ∈ [2,m], defines the connectivity of the trellis. Let s1 and s2 be states

in Layer i − 1 and Layer i, respectively. Then, an edge (s1, s2) exists between s1 and s2 if

and only if

∃ x such that s1 + αix = s2, Ti(x̃i, x) 6= 0. (5.19)

We denote we(·, ·) to be the edge weight, where we(s1, s2) = Ti(x̃i, x) if edge (s1, s2) exists,

and zero otherwise.

5.5.3 Viterbi-like Algorithm

We denote w(s, i) to be the weight of state s in Layer i. Node v1 selects a start state in

Layer 1 corresponding to α1x1, as in Figure 5-6. The weight of Layer 1 is w(s, 1) = 1 if

s = α1x1, zero otherwise. For the subsequent layers, multiple paths can lead to a given

state, and the algorithm keeps the aggregate probability of reaching that state. To be more

precise,

w(s, i) =
∑

∀s′∈Layer i−1

w(s′, i− 1) · we(s
′, s). (5.20)

By definition, w(s, i) is equal to the total probability of s =
∑i

j=1 αjxj given the over-

heard information. Therefore, w(s,m) gives the probability that s is the valid linear com-

bination that vm+1 should transmit to vm+2. It is important to note that w(s,m) is de-

pendent on the channel statistics, as well as the overheard information. For some states s,

w(s,m) = 0, which indicates that state s can not be a valid linear combination; only those

states s with w(s,m) > 0 are the inferred candidate linear combinations.

The algorithm introduced above is a dynamic program, and is similar to the Viterbi

algorithm. Therefore, tools developed for dynamic programming or Viterbi algorithm can

be used to compute the probabilities efficiently.

5.5. ALGEBRAIC WATCHDOG FOR TWO-HOP NETWORK 137

Overheard

information

[x�m+1, h(xm+1)]

Inferred

information

xm+1

End node

(Overheard)

s1
s2

s3

Inferred linear

combinations

Σ1≤i≤m αixi

Figure 5-7: An example of the inverse transition matrix T−1(y, x̃m+1). A graphical repre-
sentation of the inference process at a node which overhears relay vm+1’s transmission. The
overheard information is [x̃m+1, h(xm+1)], to which the node compares what it has inferred.

5.5.4 Decision Making

Node v1 computes the probability that the overheard x̃m+1 and h(xm+1) are consistent with

the inferred w(·,m) to make a decision regarding vm+1’s behavior. To do so, v1 constructs an

inverse transition matrix T−1, which is a 2n(1−
dm+1

n
)×2n(1−

dm+1
n

)+δ matrix whose elements

are defined as follows:

T−1(y,x̃m+1) =











pm+1(x̃m+1,y)
M , if h(y) = h(xm+1)

0, otherwise

, (5.21)

whereM =
∑

{y|h(y)=h(xm+1)}
pm+1(x̃m+1, y). (5.22)

Unlike T introduced in Section 5.5.1, T−1(x, x̃m+1) gives the probability of overhearing

[x̃m+1, h(xm+1)] given that x ∈ {y|h(y) = h(xm+1)} is the original codeword sent by vm+1

and the channel statistics. The inverse transition matrix T−1 is identical to the transition

matrix T except for the normalizing factorM. A graphical representation of T−1 is shown

in Figure 5-7.

In Figure 5-7, s1 and s3 are the inferred candidate linear combinations, i.e. w(s1,m) 6= 0

138 CHAPTER 5. ALGEBRAIC WATCHDOG

and w(s3,m) 6= 0; the end node indicates what v1 has overheard from vm+1. Observe that

although s1 is one of the inferred linear combinations, s1 is not connected to the end node.

This is because h(s1) 6= h(xm+1). On the other hand, h(s2) = h(xm+1). As a result, s2 is

connected to the end node although w(s2,m) = 0. We define an inferred linear combination

s as matched if w(s,m) > 0 and h(s) = h(xm+1).

Node v1 uses T−1 to compute the total probability p∗ of hearing [x̃m+1, h(xm+1)] given

the inferred linear combinations by computing the following equation:

p∗ =
∑

∀s
w(s,m) · T−1(s, x̃m+1). (5.23)

Probability p∗ is the probability of overhearing x̃m+1 given the channel statistics; therefore,

measures the likelihood that vm+1 is consistent with the information gathered by v1. Node

v1 can use p∗ to make a decision on vm+1’s behavior. For example, v1 can use a threshold

decision rule to decide whether vm+1 is misbehaving or not. Node v1 claims that vm+1 is

malicious if p∗ ≤ t where t is a threshold value determined by the given channel statistics

BSC(pi1) for i ∈ [2,m+ 1]; otherwise, v1 claims vm+1 is well-behaving.

Depending on the decision policy used, we can use the hypothesis testing framework

to analyze the probability of false positive and false negative. Section 5.4 provides such

analysis for the simple two-hop network with a simple decision policy: if the set of matched

inferred linear combinations is not empty, we declare the node well-behaving. However, the

main purpose of this chapter is to propose a method in which we can compute p∗, which

can be used to establish trust within a network. It would be worthwhile to look into specific

decision policies and their performance, including the false positive and the false negative

probabilities, as in Section 5.4.2.

5.6 Analysis for Two-hop Network

We provide an analysis for the performance of Algebraic Watchdog for two-hop network.

Theorem 5.6.1 Consider a two-hop network as shown in Figure 5-3a. Consider vj , j ∈
[1,m] where pij ≤ 1

2 , and pijn ≥ 1. Then, the expected number of matched codewords is

5.6. ANALYSIS FOR TWO-HOP NETWORK 139

less than or equal to

2
n
[

∑

i6=j,i∈[1,m+1]

(

H(pij)−H(
di
n
)
)

−1
]

−mδ
. (5.24)

This bound becomes tighter as n increases.

Proof: Without loss of generality, we consider v1. The proof uses concepts and

techniques developed for list-decoding [26]. We first consider the overhearing of vk’s trans-

mission, k ∈ [2,m]. Node v1 overhears x̃k from vk. The noise introduced by the overhearing

channel is characterized by BSC(pk1); therefore, E[∆(xk, x̃k)] = npk1.

Now, we consider the number of codewords that are within B(x̃k, npk1), the Hamming

ball of radius npk1 centered at x̃k. The size of B(x̃k, npk1) is bounded by

|B(x̃k, npk1)| ≤ 2n(H(pk1)−H(
dk
n
)). (5.25)

Node v1 overhears the hash h(xk); thus, the number of codewords that v1 considers is

reduced to
|B(x̃k, npk1)|

2δ
= 2n(H(pk1)−H(

dk
n
))−δ. (5.26)

Using this information, v1 computes the set of inferred linear combinations, i.e. s where

w(s,m) > 0. Note that v1 knows precisely the values of x1. Therefore, the number of

inferred linear combinations is upper bounded by

∏

k∈[2,m]

2
n
(

H(pk1)−H(
dk
n
)
)

−δ
= 2

n
[

∑

k∈[2,m]

(

H(pk1)−H(
dk
n
)
)]

−(m−1)δ
. (5.27)

Due to the finite field operations, these inferred linear combinations are randomly dis-

tributed over the space {0, 1}n.
Now, we consider the overheard information, x̃m+1 from the downstream node vm+1.

By similar analysis as above, we can derive that there are at most

2n(H(pm+1,1)−H(
dm+1

n
))−δ (5.28)

codewords in the hamming ball B(x̃m+1, npm+1,1) with hash value h(xm+1). Thus, the

probability that a randomly chosen codeword in the space of {0, 1}n is in B(x̃m+1, npm+1,1)∩

140 CHAPTER 5. ALGEBRAIC WATCHDOG

{x|h(x) = h(xm+1)} is at most

2n(H(pm+1,1)−H(
dm+1

n
))−δ−n. (5.29)

Then, the expected number of matched codewords is bounded by the product of Equations

(5.27) and (5.29).

If we assume that the hash is of length δ = εn, then the statement in Theorem 5.6.1 is

equal to

2
n
[

∑

i6=j,i∈[1,m+1] H(pij)−
(

∑

i6=j,i∈[1,m+1] H(
di
n
)+1+mε

)]

. (5.30)

This highlights the trade-off between the quality of overhearing channel and the redundancy

(introduced by the error-correcting code Ci’s and the hash h). If there is enough redundancy,

then Ci and h together form an error-correcting code for the overhearing channels; therefore,

allows exact decoding to a single matched codeword.

The analysis also shows how adversarial errors can be interpreted. Assume that vm+1

wants to inject errors at rate padv. Then, node v1, although has an overhearing BSC(pm+1,1),

effectively experiences an error rate of padv + pm+1,1 − padv · pm+1,1. This does not change

the set of the inferred linear combinations but it affects x̃m+1. Therefore, overall, adver-

sarial errors affect the set of matched codewords and the distribution of p∗. As we shall

see in Section 5.8, the difference in distribution of p∗ between a well-behaving relay and

adversarial relay can be used to detect malicious

5.7 Protocol for Algebraic Watchdog

We use the two-hop Algebraic Watchdog (Section 5.5) in a hop-by-hop manner to ensure a

globally secure network. We extend the two-hop Algebraic Watchdog from Section 5.5 to a

protocol that can be applied to general network topologies. For example, consider Figure

5-1. Nodes v1, v2, and v3 monitor v5 using the two-hop Algebraic Watchdog; v3 and v4 can

do the same for v6; v5 and v6 can watch over v7, and so on.

In Algorithm 1, we present a distributed algorithm for nodes to secure the their local

neighborhood. Each node v transmits and receives data as scheduled; however, node v

5.7. PROTOCOL FOR ALGEBRAIC WATCHDOG 141

foreach node v do
According to the schedule, transmit and receive data;
if v decides to check its neighborhood then

Listen to neighbors’ transmissions;
foreach downstream neighbor v′ do

Perform Two-hop Algebraic Watchdog on v′;
end

end

end
Algorithm 1: Distributed protocol for Algebraic Watchdog at v.

randomly chooses to check its neighborhood, at which point node v listens to neighbors

transmissions to perform the two-hop Algebraic Watchdog from Section 5.5.

The two-hop Algebraic Watchdog can be applied to specific subsets of the network as

needed. The protocol does not depend on every nodes executing the two-hop Algebraic

Watchdog. If some nodes are assumed to never misbehave, then the upstream nodes of

these nodes do not need to monitor them. However, whenever the need arises (i.e. a new

node joins the neighborhood, network is unstable, etc.), a node can employ the two-hop

Algebraic Watchdog.

Corollary 5.7.1 Consider vm+1 as in Figure 5-3a. Assume that the downstream node vm+2

is well-behaving, and thus, forces hxm+1
to be consistent with xm+1, i.e. hxm+1

= h(xm+1).

Let pi be the packet received by vm+1 from parent node vi ∈ P (vm+1). Then, if there

exists at least one well-behaving parent vj ∈ P (vm+1), vm+1 cannot inject errors beyond the

overhearing channel noise (pm+1,j) without being detected.

Section 5.6 noted that presence of adversarial error (at a rate above the channel noise)

can be detected by a change in distribution of p∗. Corollary 5.7.1 does not make any

assumptions on whether packets pi’s are valid or not. Instead, the claim states that vm+1

transmits a valid packet given the packets pi it has received.

Corollary 5.7.2 Node v can inject errors beyond the channel noise only if either of the

two conditions are satisfied:

1. All its parent nodes P (v) = {u|(u, v) ∈ E1} are colluding Byzantine nodes;

142 CHAPTER 5. ALGEBRAIC WATCHDOG

2. All its downstream nodes, i.e. receivers of the transmission pi, are colluding Byzantine

nodes.

Remark: In Case 1), v is not responsible to any well-behaving nodes. Node v can

transmit any packet without the risk of being detected by any well-behaving parent node.

However, then, the min-cut to v is dominated by adversaries, and the information flow

through v is completely compromised, regardless of whether v is malicious or not.

In Case 2), v can generate any hash value since its downstream nodes are colluding

adversaries. Therefore, it is not liable to transmit a consistent hash, which is necessary for

v’s parent nodes to monitor v. However, note that v is not responsible in delivering any data

to a well-behaving node. Even if v were well-behaving, it cannot reach any well-behaving

node without going through a malicious node in the next hop. Thus, the information flow

through v is again completely compromised.

Corollary 5.7.2 states that we cannot ensure the validity of the information that is

generated or forwarded by node v if either of the two conditions are met. However, this

does not imply that the entire network is compromised. For example, any flow that does

not go through v can still be protected, even if this flow is coded with packets from the

contaminated flow. At the destination, the contaminated flow may result in unusable data;

the remaining flows can be decoded correctly.

Therefore, Corollary 5.7.2 shows that the Algebraic Watchdog can aid in ensuring correct

delivery of data when the following assumption holds: for every intermediate node v in the

path between source to destination, v has at least one well-behaving parent and at least

one well-behaving child, i.e. there exists at least a path of well-behaving nodes. This is not

a trivial result as we are not only considering a single-path network, but also multi-hop,

multi-path network.

5.8 Simulations

We present MATLAB simulation results that show the difference in distribution of p∗ be-

tween the well-behaving and adversarial relay. We consider a setup in Figure 5-3a. We

set all pi1, i ∈ [2,m] to be equal, and we denote this probability as ps = pi1 for all i. We

5.8. SIMULATIONS 143

denote padv to be the probability at which the adversary injects error; thus, the effective

error that v1 observes from an adversarial relay is combined effect of pm+1,1 and padv . The

hash function h(x) = ax+ b mod 2δ is randomly chosen over a, b ∈ F2δ .

We set n = 10 (field size of 210). A typical packet can have a few hundreds to tens

of thousand bits. Thus, a network coded packet with n = 10 could have a few thousand

symbols over which to perform Algebraic Watchdog. It may be desirable to randomize

which symbols or when to perform Algebraic Watchdog on. This choice depends not only

on the security requirement, but also on the computational and energy budget of the node.

For each set of parameters, we randomly generate symbols from F210 and run Algebraic

Watchdog. For each symbol, under a non-adversarial setting, we assume that only channel

randomly injects bit errors to the symbol; under adversarial setting, both the channel and

the adversary randomly inject bit errors to the symbol. For each set of parameters, we run

the Algebraic Watchdog 1000 times. Recall that the Algebraic Watchdog operates on per-

symbol basis (Figure 5-2); therefore, operating the Algebraic Watchdog a thousand times

is equivalent to operating over a 1000 symbols, which could be within a single packet or

across multiple packets. Therefore, this is equivalent to running the Algebraic Watchdog

on a moderately-sized packet (10,000 bits) or over several smaller packets, which are coded

in F210 .

For simplicity, nodes in the simulation do not use error-correcting codes; thus, di = 0

for all i. This limits the power of the Algebraic Watchdog; thus, the results shown can be

further improved by using error correcting codes Ci.

We denote p∗adv and p∗relay as the value of p∗ when the relay is adversarial and is well-

behaving, respectively. We denote varadv and varrelay to be the variance of p∗adv and p∗relay.

We shall show results that show the difference in distribution of p∗adv and p∗relay from v1’s

perspective. This illustrates that only one good parent node (i.e. v1), is sufficient to

notice the difference in distribution of p∗adv and p∗relay. Therefore, confirming our analysis in

Section 5.7. With more parent nodes performing the check independently, we can improve

the probability of detection.

Our simulation results coincide with our analysis and intuition. Figure 5-8 shows that

adversarial above the channel noise can be detected. First of all, for all values of padv > 0,

144 CHAPTER 5. ALGEBRAIC WATCHDOG

0 0.05 0.1 0.15 0.2
0.005

0.01

0.015

0.02

0.025

0.03

p
adv

p*

p*
relay

p*
adv

Figure 5-8: Simulation results showing that adversarial noise above the channel noise can
be detected. The average value p∗relay and p∗adv over 1000 random iterations. The error
bars represent the variance, varrelay and varadv . We set m = 3, n = 10, δ = 2, and
ps = pm+1,1 = 10%. We vary padv , the adversary’s error injection rate.

p∗adv < p∗relay; thus, showing that adversarial errors can be detected. Furthermore, the

larger the adversarial error injection rate, the bigger the difference in the distributions of

p∗adv and p∗relay. When adversarial error rate is small, then the effective error v1 sees in the

packet can easily be construed as that of the channel noise. As a result, the values and the

distributions of p∗relay and p∗adv are similar. Note that in such scenarios where padv is small,

these adversarial errors can be corrected by the downstream node if appropriate channel

error correcting code is used.

As the adversarial error rate increases, there is a divergence between the two distribu-

tions of p∗adv and p∗relay. The difference in the distributions of p∗relay and p∗adv is not only

in the average value. The variance varrelay is relatively constant throughout (varrelay is

approximately 0.0018 throughout). On the other hand, varadv generally decreases with

increase in padv. For small padv, the variance varadv is approximately 0.0018; while for

large padv, the variance varadv is approximately 0.0008. This trend intuitively shows that,

with increase in padv, not only do we detect that the adversarial relay more often (since the

average value of p∗adv decreases), but we are more confident of the decision.

Figure 5-9 shows the affect of the size of the hash. With increase in redundancy (by using

5.8. SIMULATIONS 145

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

p
adv

p*

p*
relay

 with δ=3

p*
relay

 with δ=2

p*
adv

 with δ=3

p*
adv

 with δ=2

(a) For δ = {2, 3}

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

p
adv

p*

p*
relay

 with δ=1

p*
relay

 with δ=0

p*
adv

 with δ=1

p*
adv

 with δ=0

(b) For δ = {0, 1}

Figure 5-9: Simulation results showing the effect of the hash length δ. The average value
of p∗relay and p∗adv over 1000 random iterations. We vary the hash length, δ, and adversarial
error rate, padv. The error bars represent the variance, varrelay and varadv . We set m = 3,
n = 10, and ps = pm+1,1 = 10%.

146 CHAPTER 5. ALGEBRAIC WATCHDOG

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

p
s
=p

m+1,1

p*

p*
relay

p*
adv

(a) Linear scale

0 0.05 0.1 0.15 0.2
10

−3

10
−2

10
−1

10
0

p
s
=p

m+1,1

p*

p*
relay

p*
adv

(b) Log scale

Figure 5-10: Simulation results showing the effect of the overhearing channel, ps. The
average value of p∗relay and p∗adv over 1000 random iterations. We vary the value of ps =
pm+1,1, the quality of overhearing channels. The error bars represent the variance, varrelay
and varadv . We set m = 3, n = 10, and padv = 10%.

5.8. SIMULATIONS 147

1 2 3 4 5 6
0

0.05

0.1

0.15

m

p*

p*
relay

p*
adv

(a) Linear scale

1 2 3 4 5 6

10
−2

10
−1

m

p*

p*
relay

p*
adv

(b) Log scale

Figure 5-11: Simulation results showing the effect of the number of neighbors, m. The
average value of p∗relay and p∗adv over 1000 random iterations. We vary the value of m, the
number of nodes using vm+1 as a relay. The error bars represent the variance, varrelay and
varadv . We set m = 3, n = 10, and ps = pm+1,1 = padv = 10%.

148 CHAPTER 5. ALGEBRAIC WATCHDOG

hash functions of length δ), v1 can detect malicious behavior better. This is true regardless

of whether the relay is well-behaving or not. Node v1’s ability to judge its downstream node

increases with δ. Therefore, p∗adv for δ is generally higher than that of δ′ where δ > δ′. This

holds for p∗relay as well. However, for any fixed δ, node v1 can see a distinction between

p∗relay and p∗adv as shown in Figure 5-9. A similar trend to that of Figure 5-8 can be seen

for the distributions of p∗adv and p∗relay for each value of δ. The interesting result is that

even for δ = 0, i.e. we include no redundancy or hash, node v1 is able to distinguish an

adversarial relay from a well-behaving relay.

Results in Figure 5-10 confirms our intuition that the better v1’s ability to collect in-

formation from vi’s, where i 6= 1, the better its detection ability. If node v1 is able to infer

better or overhear xi with little or no errors, the better its inference on what the relay node

should be transmitting. As overhearing channel progressively worsens (ps increases), v1’s

ability to detect malicious behavior deteriorates; unable to distinguish between a malicious

and a well-behaving relay.

Finally, we note the effect of m, the number of nodes in the network, in Figure 5-

11. Node v1’s ability to check vm+1 is reduced with m. When m increases, the number

of messages v1 has to infer increases, which increases the uncertainty within the system.

However, it is important to note that as m increases, there are more nodes vi’s, i ∈ [1,m]

that can independently perform checks on vm+1. This affect is not captured by the results

shown in Figure 5-11.

5.9 Conclusions

We proposed the Algebraic Watchdog, in which nodes can verify their neighbors probabilis-

tically and police them locally by the means of overheard messages in a coded network.

Using the Algebraic Watchdog scheme, nodes can compute a probability of consistency, p∗,

which can be used to detect malicious behavior. Once a node has been identified as mali-

cious, this node can be punished, eliminated, or excluded from the network using reputation

based schemes such as [42][79].

We first presented a graphical model and an analysis of the Algebraic Watchdog for

5.9. CONCLUSIONS 149

two-hop networks. We then extended the Algebraic Watchdog to multi-hop, multi-source

networks. We provided a trellis-like graphical model for the detection inference, and an

algorithm that may be used to compute the probability that a downstream node is consistent

with the overheard information. We analytically showed how the size of the hash function,

minimum distance of the error-correcting code, and the quality of the overhearing channel

can affect the probability of detection. Finally, we presented simulation results that support

our analysis and intuition.

150 CHAPTER 5. ALGEBRAIC WATCHDOG

Chapter 6

Conclusions

N
etworks and communications, in particular wireless networks, have great potential

to improve access to services and information. For this reason, networks have been

adopted and deployed rapidly, and users have come to expect and rely on the networks to

not only transfer but also store their information. However, it has been shown that our

current routing networks are not suited to meet the requirements of all types of networks,

in particular wireless networks.

Our current wireless networks are not well equipped to meet the growth in demands as

they are mainly based on the assumptions of wired networks with unicast traffic. Wireless

networks have several challenging properties, which are not as prominent in wired networks.

As a result, applying techniques that we have developed and implemented for wired networks

directly to wireless networks can be inefficient.

As our current wireless networks struggle to meet the demands of high bandwidth ap-

plications, we have to rethink and rebuild our current networks. We believe that recogniz-

ing that wireless networks are fundamentally different from wired networks, and building

systems and networks appropriate for the wireless medium is key to solving many of the

problems we face today. This dissertation strives towards this goal, and proposes network

coding as a versatile and powerful tool that can aid us in achieving this goal.

In this dissertation, we demonstrated how network coding can be applied to provide ro-

bust wireless networks. We focused on harnessing the broadcast nature of wireless medium,

and designing algorithms and protocols that can overcome the challenges of operating in

151

152 CHAPTER 6. CONCLUSIONS

wireless networks, such as interference, erasures, and attacks. The first step in designing

such robust systems comes from understanding the effects the broadcast and stochastic

nature of wireless network have on our current network designs. Using these insights, we

provided designs of network coded systems that show significant performance improvements

over the existing systems.

The main body of the dissertation, contained in Chapters 3, 4, and 5, presented designs

of network coding that address interference, erasures, and attacks, respectively, in wireless

networks.

• Algebraic NC was introduced for capacity achieving codes in multi-user wireless net-

works with interference. We used the algebraic network coding framework to model

and understand the effect of interference in multi-user wireless networks. Our alge-

braic framework allowed us to reduce the problem of capacity in interference dom-

inated wireless networks to that of determining the rank of a single matrix. This

understanding enabled us to show that a distributed, randomized network code can

achieve capacity in multicast connections as well as some non-multicast connections.

• TCP/NC was introduced for efficient and reliable transport of data over faulty and

lossy networks. We studied the inability of TCP to overcome or compensate for the

stochastic nature of wireless networks. With this understanding, we combined network

coding’s erasure correction capability with TCP’s congestion control mechanism. We

showed that network coding can provide significant throughput gains in lossy network

scenarios where TCP suffered before, while keeping intact TCP’s congestion control

mechanism.

• Algebraic Watchdog was introduced for secure self-checking network in wireless net-

works with adversarial attackers. By taking advantage of the broadcast nature of

wireless medium, nodes monitor their neighbors locally in a distributed manner. By

monitoring their neighborhood independently, the nodes together provide a globally

secure network. Network coding allows for a more efficient operation of the wireless

network, and the algebraic transformation performed by network coding was harnessed

to provide secure communication.

6.1. FUTURE WORK 153

In each of these chapters, we presented analytical understanding of the problem posed

and offered an algorithm that may serve the proposed problem. This dissertation made an

effort to design simple and practical algorithms, so that the analysis is tractable and the

algorithms are easily deployable. Furthermore, we supported our algorithms and analysis

with simulation results that demonstrate the performance improvements presented by our

algorithms.

This dissertation made a case for network coding as a new paradigm to operate wireless

networks. Network coding promises a more efficient network with higher throughput and

reliability, and we have demonstrated that network coding indeed lives up to this promise.

This dissertation has shown that network coding, if used properly, can achieve significant

gains in efficiency, performance, and robustness.

6.1 Future Work

There are several avenues of future work for the problems considered in this dissertation.

We discuss possible extensions for each chapter sequentially.

The use of network coding in ADT networks has brought a simpler algebraic charac-

terization of the ADT networks. However, the purpose of ADT network is to approximate

wireless multi-user Gaussian networks. Therefore, it is important to understand how the

results in ADT network can translate to results in wireless multi-user Gaussian networks.

Reference [6][7] showed that, for a few simple networks, the capacity of an ADT network

is a constant bit away from the capacity of the wireless multi-user Gaussian network. An

equivalent result for the random linear network coding would be of interest.

TCP/NC, the subject of Chapter 4, has great practical potential. There are various

modifications that can be considered: TCP/NC with multiple sources, multiple paths, and

re-encoding at intermediate nodes. In addition, further understanding of TCP/NC’s impact

and applicability are needed. For instance, this dissertation focused on understanding the

throughput performance gain of using network coding with TCP. TCP/NC may bring forth

more than just throughput gains, such as energy efficiency, decrease in delay, and reduction

in infrastructure needed to operate the network.

154 CHAPTER 6. CONCLUSIONS

In designing Algebraic Watchdog, our ultimate goal is to design a network in which

the participants check their neighborhood locally to enable a secure global network. This

dissertation is a step towards realizing this goal. Possible future work on Algebraic Watch-

dog includes developing inference methods and approximation algorithms to make local

decisions efficiently and to aggregate local trust information to a global trust state. These

problems are particularly interesting, especially in a network where malicious nodes may

inject incorrect or false local trust information.

This dissertation aimed to provide some guidance in designing network coded systems

and make network coding more practical. We chose a few selected area of applications,

in particular protocols and algorithms for robust wireless networks. Of course, there are

many more applications that may benefit from network coding. Finding such applications

and designing appropriate network coded systems are problems we as a community have to

address and answer.

6.2 Final Remarks

Routing solutions are undeniably powerful. It is how our current networks operate, and it

has proven to be scalable and efficient. However, we should not be satisfied with what is

currently available and deployed. Routing solutions have brought us fast, affordable, and

ubiquitous network access. Now, it is time to build upon the success of routing networks

and create better networks.

Network coding promises a fundamentally new way to operate networks. In an essence,

network coding questions the fundamental assumptions in our network designs. Currently

deployed networks are built using architecture rooted in wired unicast networks, which

ultimately limits performance. Network coding brings into light these aspects of our current

architecture, and beckons us to rethink networking overall. Perhaps, this is what makes

network coding so powerful.

This dissertation advocates that network coding, if used appropriately, can overcome

the limitations of routing networks and provide higher throughput and reliability. By rec-

ognizing that our networks are no longer just wired, network coding allows us to harness

6.2. FINAL REMARKS 155

the broadcast nature of wireless networks. By understanding that we need more than just

unicast connections, network coding allows more efficient delivery of data to all users in-

volved. By learning the algebraic nature of data, network coding becomes a powerful tool

for designing more efficient and robust networks.

156 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Network simulator (ns-2). http://www.isi.edu/nsnam/ns/.

[2] S. Acedański, S. Deb, M. Médard, and R. Koetter. How good is random linear coding

based distributed network storage? In Proceedings of IEEE International Symposium

on Network Coding (NetCod), Riva del Garda, Italy, April 2005.

[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEE

Transactions on Information Theory, 46(4):1204–1216, July 2000.

[4] E. Altman, T. Jiménez, and R. Núñez Queija. Analysis of two competing TCP/IP

connections. Performance Evaluation, 49(1-4):43–55, September 2002.

[5] A. Amaudruz and C. Fragouli. Combinatorial algorithms for wireless information flow.

In Proceedings of the Annual ACM -SIAM Symposium on Discrete Algorithms (SODA),

pages 555–564, January 2009.

[6] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse. A deterministic approach to wireless

relay networks. In Proceedings of Allerton Conference on Communication, Control, and

Computing, September 2007.

[7] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse. Wireless network information flow.

In Proceedings of Allerton Conference on Communication, Control, and Computing,

September 2007.

[8] A. S. Avestimehr and T. Ho. Approximate capacity of the symmetric half-duplex

Gaussian butterfly network. In Proceedings of IEEE Information Theory Workshop

(ITW), pages 311–315, June 2009.

157

158 BIBLIOGRAPHY

[9] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A comparison of

mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans-

actions on Networking, 5(6):756–769, December 1997.

[10] J. Barros, R. A. Costa, D. Munaretto, and J. Widmer. Effective delay control for online

network coding. In Proceedings of IEEE Conference on Computer Communications

(INFOCOM), pages 208–216, April 2009.

[11] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan. Minimal network coding

for multicast. In Proceedings of IEEE International Symposium on Information Theory

(ISIT), pages 1730–1734, September 2005.

[12] G. Bresler, A. Parekh, and D. Tse. The approximate capacity of the many-to-one and

one-to-many Gaussian interference channels. Submitted to Transactions on Information

Theory, September 2008.

[13] R. Cáceres and L. Iftode. Improving the performance of reliable transport protocols in

mobile computing environments. IEEE Journal on Selected Areas in Communications,

13(5):850–857, June 1995.

[14] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of Sympo-

sium on Operating Systems Design and Implementation (OSDI), pages 173–186, Febru-

ary 1999.

[15] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for randomness

in wireless opportunistic routing. In Proceedings of ACM SIGCOMM, pages 169–180,

August 2007.

[16] A. Chaintreau, F. Baccelli, and C. Diot. Impact of TCP-like congestion control on the

throughput of multicast groups. IEEE/ACM Transactions on Networking, 10(4):500–

512, August 2002.

[17] D. Charles, K. Jain, and K. Lauter. Signatures for network coding. In Proceedings of

IEEE Conference on Information Sciences and Systems, pages 857–863, March 2006.

BIBLIOGRAPHY 159

[18] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are

reliable. In Automata, Languages and Programming, volume 623 of Lecture Notes in

Computer Science, pages 235–246. Springer Berlin / Heidelberg, 1992.

[19] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran. Network coding

for distributed storage systems. In Proceedings of IEEE Conference on Computer

Communications (INFOCOM), pages 2000–2008, May 2007.

[20] J. Douceur. The sybil attack. In Peer-to-Peer Systems, volume 2429 of Lecture Notes

in Computer Science, pages 251–260. Springer Berlin, 2002.

[21] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network

information flow. IEEE Transaction on Information Theory, 51(8):2745–2759, August

2005.

[22] R. Dougherty, C. Freiling, and K. Zeger. Networks, matroids, and non-shannon in-

formation inequalities. IEEE Transactions on Information Theory, 53(6):1949–1969,

June 2007.

[23] J. Ebrahimi and C. Fragouli. Multicasting algorithms for deterministic networks. In

Proceedings of IEEE Information Theory Workshop (ITW), pages 1–5, January 2010.

[24] J. Ebrahimi and C. Fragouli. Vector network coding. Technical report, EPFL, February

2010.

[25] M. Effros, M. Médard, T. Ho, S. Ray, D. Karger, and R. Koetter. Linear network

codes: A unified framework for source channel, and network coding. In Proceedings of

the DIMACS workshop on network information theory (Invited paper), pages 197–216,

March 2003.

[26] P. Elias. List decoding for noisy channels. Technical report, Research Laboratory of

Electronics, Massachusetts Institute of Technology, 1957. Technical Report 335.

[27] P. Erdos and A. Renyi. On a classical problem of probability theory. Magyar Tud.

Akad. Mat Kutató Int. Közl, 6:215–220, 1961.

160 BIBLIOGRAPHY

[28] E. Erez, Y. Xu, and E. M. Yeh. Coding for the deterministic network model. In

Proceedings of Allerton Conference on Communication, Control and Computing, pages

1534–1541, September 2010.

[29] R. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity to within one

bit. IEEE Transactions on Information Theory, 54(12):5534–5562, December 2008.

[30] M. Feder, D. Ron, and A. Tavory. Bounds on linear codes for network multicast.

Electronic Colloquium on Computational Complexity (ECCC), 10(33), May 2003.

[31] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective

acknowledgement (SACK) option for TCP. RFC 2883, July 2000.

[32] C. Fragouli, E. Soljanin, and A. Shokrollahi. Network coding as a coloring problem. An-

nual Conference on Information Sciences and Systems (CISS), Princeton, NJ, March

2004.

[33] M. Garetto, R. L. Cigno, M. Meo, and M. A. Marsan. Modeling short-lived TCP

connections with open multiclass queuing networks. Computer Networks, 44(2):153–

176, February 2004.

[34] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive view of a live network cod-

ing P2P system. In Proceedings of ACM SIGCOMM/USENIX Internet Measurement

Conference, pages 177–188, Rio de Janeiro, Brazil, October 2006.

[35] C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution. In

Proceedings of IEEE Conference on Computer Communications (INFOCOM), pages

2235–2245, Miami, FL, March 2005.

[36] C. Gkantsidis and P. Rodriguez. Cooperative security for network coding file distribu-

tion. In Proceedings of IEEE Conference on Computer Communications (INFOCOM),

pages 1–13, April 2006.

[37] M. X. Goemans, S. Iwata, and R. Zenklusen. An algorithmic framework for wireless

information flow. In Proceedings of Allerton Conference on Communication, Control,

and Computing, pages 294–300, September 2009.

BIBLIOGRAPHY 161

[38] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant.

ACM SIGOPS Operating Systems Review, 42(5):64–74, July 2008.

[39] B. Haeupler, M. Kim, and M. Médard. Optimality of network coding in packet net-

works. In Proceedings of IEEE Information Theory Workshop (ITW) Paraty, pages

1–5, October 2011.

[40] T. Ho, B. Leong, R. Koetter, M. Médard, and M. Effros. Byzantine modification

detection in multicast networks using randomized network coding. In Proceedings of

IEEE International Symposium on Information Theory (ISIT), pages 144–148, June

2004.

[41] T. Ho, M. Médard, R. Koetter, M. Effros, J. Shi, and D. R. Karger. A random linear

coding approach to mutlicast. IEEE Transaction on Information Theory, 52(10):4413–

4430, Octoboer 2006.

[42] J.-P. Hubaux, L. Buttyán, and S. Capkun. The quest for security in mobile ad hoc

networks. In Proceedings of the ACM international Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc), pages 146–155, October 2001.

[43] S. Jaggi, Y. Cassuto, and M. Effros. Low complexity encoding for network codes. In

Proceedings of International Symposium on Information Theory (ISIT), pages 40–44,

July 2006.

[44] S. Jaggi, P. A. Chou, and K. Jain. Low complexity algebraic multicast network codes.

In Proceedings of IEEE International Symposium on Information Theory (ISIT), page

368, June 2003.

[45] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Médard. Resilient network

coding in the presence of Byzantine adversaries. In Proceedings of IEEE Conference

on Computer Communications (INFOCOM), pages 616 – 624, March 2007.

[46] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M.

Tolhulzen. Polynomial time algorithms for multicast network code construction. IEEE

Transactions on Information Theory, 51(6):1973–1982, June 2005.

162 BIBLIOGRAPHY

[47] D. B. Johnson. Routing in ad hoc networks of mobile hosts. In Proceedings of the IEEE

Workshop on Mobile Computing Systems and Applications, pages 158–163, December

1994.

[48] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: attacks and

countermeasures. In Proceedings of IEEE International Workshop on Sensor Network

Protocols and Applications, pages 113–127, May 2003.

[49] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference: Analog network

coding. In Proceedings of ACM SIGCOMM, pages 397–408, August 2007.

[50] S. Katti, D. Katabi, H. Balakrishnan, and M. Médard. Symbol-level network coding for

wireless mesh networks. In Proceedings of ACM SIGCOMM, pages 401–412, August

2008.

[51] S. Katti, I. Maric, A. Goldsmith, D. Katabi, and M. Médard. Joint relaying and

network coding in wireless networks. In Proceedings of IEEE International Symposium

on Information Theory (ISIT), pages 1101 –1105, June 2007.

[52] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. XORs in the

air: Practical wireless network coding. In Proceedings of ACM SIGCOMM, September

2006.

[53] T. Kelly. Scalable TCP: improving performance in highspeed wide area networks. ACM

SIGCOMM Computer Communication Review, 33(2):83–91, April 2003.

[54] M. Kim, E. Erez, E. M. Yeh, and M. Médard. Deterministic network model revisited:

An algebraic network coding approach. Submitted to IEEE Transactions on Informa-

tion Theory, March 2011.

[55] M. Kim, L. Lima, F. Zhao, J. Barros, M. Médard, R. Koetter, T. Kalker, and K. Han.

On counteracting Byzantine attacks in network coded peer-to-peer networks. IEEE

Journal on Selected Areas in Communications (JSAC) Mission Critical Networking,

28(5):692–702, June 2010.

BIBLIOGRAPHY 163

[56] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Médard. Network coding for multi-

resolution multicast. In Proceedings of IEEE Conference on Computer Communications

(INFOCOM), pages 1–9, March 2010.

[57] M. Kim and M. Médard. Algebraic network coding approach to deterministic wireless

relay networks. In Proceedings of the Annual Allerton Conference on Communication,

Control, and Computing, pages 1518–1525, September 2010.

[58] M. Kim, M. Médard, and J. Barros. Counteracting Byzantine adversaries with net-

work coding: An overhead analysis. In Proceedings of IEEE Conference on Military

Communications (MILCOM), pages 1–7, November 2008.

[59] M. Kim, M. Médard, and J. Barros. A multi-hop multi-source algebraic watchdog.

In Proceedings of IEEE Information Theory Workshop (ITW) Dublin (invited paper),

pages 1–5, August 2010.

[60] M. Kim, M. Médard, and J. Barros. Algebraic watchdog: Mitigating misbehavior in

wireless network coding. IEEE Journal on Selected Areas in Communications (JSAC)

Advances in Military Networking and Communications, 29(10):1–11, December 2011.

[61] M. Kim, M. Médard, and J. Barros. Modeling network coded TCP throughput: A

simple model and its validation. In Proceedings of International ICST/ACM Conference

on Performance Evaluation Methodologies and Tools (Valuetools), May 2011.

[62] M. Kim, M. Médard, J. Barros, and R. Koetter. An algebraic watchdog for wireless

network coding. In Proceedings of IEEE International Symposium on Information

Theory (ISIT), pages 1159–1163, June 2009.

[63] M. Kim, J. K. Sundararajan, and M. Médard. Network coding for speedup in switches.

In Proceedings of IEEE International Symposium on Information Theory (ISIT), 2007.

[64] M. Kim, J. K. Sundararajan, M. Médard, A. Eryilmaz, and R. Koetter. Network

coding in a multicast switch. IEEE Transactions on Information Theory, 57(1):436–

460, January 2011.

164 BIBLIOGRAPHY

[65] N. Koblitz, A. Menezes, and S. Vanstone. The state of elliptic curve cryptography.

Designs, Codes and Cryptography, 19(2-3):173–193, March 2000.

[66] R. Koetter and F. R. Kschischang. Coding for errors and erasures in random network

coding. IEEE Transactions on Information Theory, 54(8):3579–3591, August 2008.

[67] R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM

Transactions on Networking, 11(5):782–795, October 2003.

[68] M. Krohn, M. Freedman, and D. Mazières. On-the-fly verification of rateless erasure

codes for efficient content distribution. In Proceedings of IEEE Symposium on Security

and Privacy, pages 226–240, May 2004.

[69] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems, 4(3):382–401, July 1982.

[70] M. Langberg, A. Sprintson, and J. Bruck. The encoding complexity of network coding.

IEEE Transactions on Information Theory, 52(6):2386–2397, June 2006.

[71] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Transaction on

Information Theory, 49(2):371–381, February 2003.

[72] G. Liang, R. Agarwal, and N. Vaidya. When watchdog meets coding. In Proceedings

of IEEE Conference on Computer Communications (INFOCOM), pages 1–9, March

2010.

[73] Y. Lin, B. Li, and B. Liang. CodeOr: Opportunistic routing in wireless mesh networks

with segmented network coding. In Proceedings of IEEE International Conference on

Network Protocols, pages 13–22, October 2008.

[74] S. Liu, T. Başar, and R. Srikant. Exponential-RED: a stabilizing AQM scheme for low-

and high-speed TCP protocols. IEEE/ACM Transactions on Networking, 13(5):1068–

1081, October 2005.

[75] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control. Proceedings of

IEEE Control Systems Magazine, 22(1):28–43, February 2002.

BIBLIOGRAPHY 165

[76] S. H. Low, L. Peterson, and L. Wang. Understanding TCP Vegas: a duality model.

Journal of the ACM, 49(2):207–235, March 2002.

[77] D. Lun, M. Médard, R. Koetter, and M. Effros. On coding for reliable communication

over packet networks. Physical Communication, 1(1):3–20, March 2008.

[78] I. Maric, A. Goldsmith, and M. Médard. Analog network coding in the high-SNR

regime. In Proceedings of the IEEE Conference on Wireless Network Coding (WiNC),

pages 1–6, June 2010.

[79] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile

ad hoc networks. In Proceedings of the Annual International Conference on Mobile

Computing and Networking (MobiHoc), pages 255–265, August 2000.

[80] U. M. Maurer. Authentication theory and hypothesis testing. IEEE Transaction on

Information Theory, 46(4):1350–1356, July 2000.

[81] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple

model and its empirical validation. In Proceedings of the ACM SIGCOMM, pages

303–314, October 1998.

[82] P. Papadimitratos and Z. J. Haas. Secure routing for mobile ad hoc networks. In

Proceedings of the SCS Communication Networks and Disbributed Systems Modeling

and Simulation Conference, pages 193–204, January 2002.

[83] R. Perlman. Network layer protocols with Byzantine robustness. PhD thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, October 1988.

[84] A. Rasala-Lehman and E. Lehman. Complexity classification of network information

flow problems. Proceedings of the Annual ACM-SIAM Symposium on Discrete algo-

rithms, pages 142–150, January 2004.

[85] S. Ray, M. Médard, and J. Abounadi. Random coding in noise-free multiple access net-

works over finite fields. In Proceedings of IEEE Global Telecommunications Conference

(GLOBECOM), pages 1898–1902, December 2003.

166 BIBLIOGRAPHY

[86] S. M. Sadegh Tabatabaei-Yazdi and S. A. Savari. A combinatorial study of linear

deterministic relay networks. In Proceedings of IEEE Information Theory Workshop

(ITW) Cairo, pages 1–5, January 2010.

[87] D. Silva and F. Kschischang. Adversarial error correction for network coding: Mod-

els and metrics. In Proceedings of Annual Allerton Conference on Communications,

Control, and Computing, pages 1246–1253, Monticello, IL, September 2008.

[88] J. K. Sundararajan, S. Deb, and M. Médard. Extending the Birkhoff-von Neumann

switching strategy to multicast switches. In Proceedings of the International IFIP-TC6

Networking Conference, May 2005.

[89] J. K. Sundararajan, S. Jakubczak, M. Médard, M. Mitzenmacher, and J. Barros. Inter-

facing network coding with TCP: an implementation. Technical report, ArXiv, August

2009. http://arxiv.org/abs/0908.1564.

[90] J. K. Sundararajan, M. Médard, M. Kim, A. Eryilmaz, D. Shah, and R. Koetter.

Network coding in a multicast switch. In Proceedings of IEEE Conference on Computer

Communications (INFOCOM), pages 1145–1153, May 2007.

[91] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Barros. Network

coding meets TCP. In Proceedings of IEEE Conference on Computer Communications

(INFOCOM), pages 280–288, April 2009.

[92] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound TCP approach for high-

speed and long distance networks. In Proceedings of IEEE Conference on Computer

Communications (INFOCOM), pages 1–12, April 2006.

[93] Y. Tian, K. Xu, and N. Ansari. TCP in wireless environments: Problems and solutions.

IEEE Communications Magazine, 43(3):S27–S32, March 2005.

[94] R. W. Yeung and N. Cai. Network error correction. Communications in Information

and Systems, 6(1):19–54, 2006.

[95] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan. An efficient signature-based scheme for

securing network coding against pollution attacks. In Proceedings of IEEE Conference

BIBLIOGRAPHY 167

on Computer Communications (INFOCOM), pages 1409–1417, Pheonix, AZ, April

2008.

[96] F. Zhao, T. Kalker, M. Médard, and K. J. Han. Signatures for content distribution

with network coding. In Proceedings of IEEE International Symposium on Information

Theory (ISIT), pages 556–560, June 2007.

[97] L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network, 13(6):24 –30, Novem-

ber/December 1999.

