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Abstract

We describe an approach to automate certain high-level implementation decisions in a per-
vasive application, allowing them to be postponed until run time. Our system enables a
model in which an application programmer can specify the behavior of an adaptive ap-
plication as a set of open-ended decision points. We formalize decision points as Goals,
each of which may be satisfied by a set of scripts called Techniques. The set of Techniques
vying to satisfy any Goal is additive and may be extended at runtime without needing to
modify or remove any existing Techniques. Our system provides a framework in which
Techniques may compete and interoperate at runtime in order to maintain an adaptive ap-
plication. Technique development may be distributed and incremental, providing a path
for the decentralized evolution of applications. Benchmarks show that our system imposes
reasonable overhead during application startup and adaptation.
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Chapter 1

Introduction

Ubiquitous and pervasive computing environments are characterized by a richness and

heterogeneity of resources far greater than traditional computing environments. In addi-

tion to the variety of devices, there is a high turn-over rate as existing devices leave the

environment, either due to failure or voluntary withdrawal when new, potentially better,

devices enter the environment. Applications executing in ubiquitous environments are ex-

pected to discover relevant resources, evaluate resources, and monitor utilized resources

for failure.

Therefore, the ability to somehow adapt to new situations is a key requirement of ap-

plications in these environments. In particular, such adaptive systems share two main

requirements:

1. They must be able to make implementation decisions at runtime, rather than at

design-time or compile-time.

2. They must be able to consider new information at runtime and potentially revise

previously made implementation decisions.

In traditional applications, these requirements manifest themselves as a monitor loop

that discovers changes in the computing environment (such as new components or changes

in the status of already known components) and a set of application-specific decision func-

tions that choose what combinations of components are appropriate. While the applica-

tion programmer may use design patterns, recursive decomposition, or other design tech-

niques to encode decision logic, the problem remains that whatever code ships with the

application enumerates all known ways of adapting the program.
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1.1 Examples of Adaptive Systems

Much systems-level work in the pervasive and ubiquitous computing field strives to re-

place application-level decision logic with application-level dependency declarations. In

these systems, application programmers declare “what” they need and a runtime system

determines “how” to satisfy each requirement. For example, INS [1] and other systems like

it [8, 20, 21] provide intentional sockets whose descriptions are resolved by the network

layer. Intentional sockets provide extensible decision logic because new services can be

added that match existing intentional names.

Above the network layer, component systems like PCOM [2] or RUNES [5] allow pro-

grammers to declare dependencies as COM- and CORBA-like interfaces while runtime sys-

tems discover and match appropriate components to the required interfaces. In PCOM,

components can depend on other components—allowing a form of hierarchical decom-

position of application functionality—and provide component-specific code that aids in

resource selection.

1.2 Additional Requirements

The approaches to adaptivity represented by these example systems share the characteris-

tic that the range of possible choices—e.g., of candidate devices and ways in which they

are used—is embedded in code at either the application or system level. Extension of ap-

plication behavior requires modifying existing code, which in turn demands privileged

access to the code to be modified. The constraint of adaptive behavior to that anticipated

by a centrally-maintained codebase limits the evolution of adaptivity, and hence ultimately

limits adaptivity itself.

This deficiency led us to realize an additional, subtle, requirement for pervasive appli-

cations:

3. Decision-making logic must be open-ended. Adding a new device or implementa-

tion choice to the environment should not require modification of already-existing

code in the system.

In the rest of this thesis, we explore a model for open-ended decision logic as a means of

programming adaptive applications.
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1.3 Open-ended Decision Making

Our work focuses on providing application programmers with a way of managing imple-

mentation decisions and component writers with an extensible way of expressing particu-

lar implementation plans in a way that allows extensible, but domain-specific, evaluation

of alternatives.

Our system relies on two main concepts. First, Goals explicitly identify certain critical

implementation decision points as well as describe the problem to be solved by the se-

lected implementation choice. Second, Technique scripts describe ways of satisfying Goals.

Techniques serve two purposes: (1) they provide indirection between the known Goals in-

terface and wide variety of hardware and software interfaces we would like to use and (2)

they implement domain-specific evaluation code that lets our system compare alternative

Techniques.

Our approach offers three salient features:

1. Hierarchical Decomposition with Extensible Constrained Evaluation Techniques

may declare multiple prerequisite sub-Goals but provide code that constrains how

the Planner chooses to satisfy the sub-Goals.

2. An Additive Universe of Code Modules New Techniques can be added to the sys-

tem without needing to change existing code, aiding the introduction of new device

classes and new implementation strategies.

3. Separation of Decision Logic from Components Techniques are separate from the

components they describe, allowing both to evolve independently.

In addition to these points, our architecture includes two details aimed at lowering

user-perceived latency: we allow incremental evaluation of decision logic, which permits

our system to make decisions on early estimates of component performance, and we cache

decision-making, which lets our system react to typical component failures and re-plan in

less than 250 ms.
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Chapter 2

Programming Model

Goals are bound to Techniques at runtime by the Planner. Application programmers use

the Planner to manage adaptive state, while component programmers write Techniques

interpreted by the Planner.

2.1 Goals and Goal Properties

A Goal is an abstraction of a parameterized decision point that describes what functional-

ity is needed without specifying how to implement that functionality. The Goal’s param-

eters serve to restrict the semantics of the Goal, e.g., reducing a generic “play any movie”

Goal to the playing of a particular movie specified by the name parameter. An applica-

tion asserts a Goal (with bound parameters) when the application needs to have a certain

condition maintained by the Planner.

Concretely, a Goal refers to a specification file that describes the formal parameters of

the Goal as well as what Properties any Technique that satisfies the Goal must provide.

A Property is a simple key-value pair that describes a quality of the implementation the

Technique provides for the Goal. The Planner uses Properties to compare Techniques com-

peting to satisfy the same Goal.

We adopt standard procedural syntax for the parameterization and assertion of Goals;

thus, a Goal may be viewed as a disembodied generic procedure whose parameters, Prop-

erties, and behavior are described by its specification. The assertion of a Goal may similarly

be viewed as an invocation of the disembodied procedure, leaving to the Planner the task

of locating an appropriate body of code (Technique) to be executed to satisfy the Goal.

19



1 to PlayMovie(name, language): via RTPStreams:
2
3 ##### Exploratory Stages #####
4 subgoals:
5 source = RTPAVSource(goal.name, goal.language)
6 sink = RTPAVSink()
7
8 eval:
9 # check for compatibility

10 if (subgoals.source.stream format not in
11 subgoals.sink.supported stream formats):
12 planner. fail ()
13 eval:
14 # set properties this combination will provide
15 props.resolution = min(subgoals.source.resolution,
16 subgoals.sink.resolution)
17 props.screen size = subgoals.sink.screen size
18 props.stream format = subgoals.source.stream format
19 props. bitrate = subgoals.source.bitrate
20
21 ##### Commit Stages #####
22 exec:
23 subgoals.sink.resource.enqueue(uri=subgoals.source.uri)
24
25 update source from old source:
26 subgoals.sink.resource.stop(subgoals.old source.uri)
27 subgoals.sink.resource.enqueue(subgoals.source.uri)
28
29 shutdown:
30 subgoals.sink.resource.quit ()

Listing 2.1: A Technique that satisfies the PlayMovie Goal by linking an RTP source stream
to an RTP output device.

2.2 Techniques

A Technique is a small script mixing declarative and arbitrary imperative code broken up

into a series of stages. Techniques are not appropriate for directly implementing applica-

tion functionality; instead, they are used to wrap existing code modules and resources so

that the Planner can use and compare these resources. Listing 2.1 shows one Technique

that satisfies the PlayMovie Goal by connecting an RTP source to an RTP output device.

A Technique’s stages may include:

1. Sub-Goal Declarations Sub-Goals are sub-decision-points that must be satisfied for

the Technique to succeed. They are declared in subgoals stages and provide a simple

way of hierarchically decomposing application functionality.

2. Evaluation Code eval stages compute the value of the resources or strategies that

the Technique represents and export its computations as Properties. eval stages may

contain arbitrary code but, since they might be re-run as the environment changes,

20



1 plan = planner.plan(”PlayMovie”, name=”SimpsonsMovie”)
2 # ”plan” is the object containing the Goal Tree for the
3 # top−level Goal explored in this thread.
4 while plan.is running ():
5
6 # explore() blocks until a viable Plan is found
7 new snapshot = plan.explore()
8
9 # if the new plan is better or if the current plan has

10 # failed , commit to the new plan.
11 if is better (new snapshot):
12 if plan.is running ():
13 # update something already running
14 plan.update()
15 else:
16 # Start a new implementation
17 plan.commit()
18
19 # Continue to the next iteration of the while loop to
20 # see if anything has changed.

Listing 2.2: Application code from a movie player that uses the Planner.

they must be idempotent.

3. Commit Code Commit stages configure and instantiate, update, and shutdown ap-

plication components.

The stages are run (and potentially re-run) according to a schedule determined by the

Planner, subject to the constraint that a stage cannot run before all of its predecessors have

run at least once. When the last evaluation stage completes, the Planner considers the

Technique ready for commitment. Techniques may have many subgoals and eval stages,

allowing the Technique programmer to incrementally estimate and refine Property values.

2.3 Goal Lifecycles and the Planner

Applications invoke the Planner and are responsible for deciding when the Planner may

make changes to the application’s runtime configuration. Listing 2.2 shows typical appli-

cation code while Figure 2.1 illustrates how the Planner expands the PlayMovie Goal.

In Listing 2.2, an application first asks the Planner to assert a Goal; in return the applica-

tion gets a handle to the planning process associated with that Goal. Next, the application

asks the Planner to explore() the possible ways of satisfying the Goal. Once a suitable way

to satisfy the Goal is found, the application calls commit() to execute the chosen Techniques.

Finally, the application monitors, and potentially updates, the running set of Techniques.
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Figure 2.1: A partially explored Goal Tree for the PlayMovie Goal. Yellow boxes are Goals
and show the Goal parameters. Red circles are Techniques and are displayed with their
exported Properties. Thick lines represent the chosen Plan for the PlayMovie Goal.

2.3.1 Goal Exploration

Goal exploration consists of building a Goal Tree and evaluating Techniques. The Planner

builds the Goal Tree by finding Techniques that satisfy the asserted Goals and recursively

matching the sub-Goals of each Technique it finds. Figure 2.1 illustrates the Goal Tree for

a top-level PlayMovie Goal.

The Goal Tree represents all known strategies for implementing the top-level Goal. A

“path” from the root Goal node to leaf Techniques represents a particular strategy that

implements the Goal. The Goal Tree is an and-or tree: a Goal can be satisfied by any child

Technique, but a Technique requires satisfaction of all of its sub-Goals. The Planner runs

Technique eval stages to extract Properties from each Technique. These properties allow

the Planner to heuristically choose a “best” Technique, called the chosen Technique, for

each Goal. In Figure 2.1, the bold-faced path shows the chain of chosen Techniques that

best implement the top-level PlayMovie Goal. We call this best path the Plan for the Goal.

Although the Planner is required to make heuristic choices among the Techniques com-

peting to satisfy each Goal in the tree, it does so by a simple, application-generic process

that maps Property values reported by each Technique to a single scalar value; the chosen

Technique is simply the Technique that maximizes this value. (Section 3.1 elaborates on
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this process.) The actual heuristics and application-specific policies are dictated by Goal

specifications and Technique code, allowing the evolution of these relatively transient as-

pects of the system without changes to the Planner or the system architecture surrounding

it.

2.3.2 Goal Commitment

If a Plan is found, the application may ask the Planner to commit the Plan. Commitment

of the Plan proceeds by running the exec stages of chosen Techniques in a bottom-up fash-

ion. This way, the exec stages of higher-level Techniques can rely on already-configured

components supplied by lower-level Techniques. Techniques whose exec stages have been

run are said to be committed. After commitment, the application may continue to call ex-

plore() to cause the Planner to explore, expand, and update its Goal Tree without affecting

the committed Plan.

2.3.3 Goal Monitoring and Shutdown

Once generated, the Goal Tree serves as a cache of available implementation strategies:

startup, failover, upgrade, or shutdown of components in the system simply becomes the

activation or deactivation of branches of the Goal Tree. The Planner updates the Goal

Tree cache for as long as the top-level Goal is active, permitting rapid re-evaluation of

alternative implementations of a Goal throughout the lifetime of the top-level Goal.

The application may also modify the arguments to the Goal to better reflect its changing

needs. If a new set of Techniques better satisfies the Goal than the current Plan or if a

Technique in the current Plan fails, the Planner notifies the application, which may ask the

Planner to upgrade the currently committed Plan. The application has complete control

over the upgrade process so that upgrades do not happen at sensitive times.

When the application decides to quit, it tells the Planner to shutdown the Goal: the

shutdown stages of committed Techniques are called, and the Goal Tree is garbage collected.
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Chapter 3

Architecture

Our system enables (1) an additive universe of Techniques, (2) appropriate selection of

Techniques with inter-dependent sub-Goals, (3) runtime adaptivity, and (4) separation of

decision logic from components without restricting the open-ended nature of Goals.

3.1 Additivity

We deliberately avoid constraints on the set of Techniques applicable to each Goal in order

to support a conceptual model of that set as a strictly “additive” universe. Each Tech-

nique describes a way of achieving some Goal—a way which may become unused (either

because its sub-Goals fail or because competing Techniques promise better results) but is

never “wrong”. An advantage of this additive universe is that we can extend the behavior

of our system without changing any existing code, but by simply making new Techniques

available.

In order to create our additive universe, our decision-making algorithm must be generic,

i.e., it cannot explicitly enumerate and choose Techniques. Instead, our system computes

a score called Satisfaction for each Technique based on the Technique’s self-reported Prop-

erties. Thus, Properties can be viewed as the multi-dimensional cost using the Technique

and the Satisfaction calculation as a dimension-reducing function to produce a scalar score

to allow easy, open-ended competition [16] among alternative Techniques addressing each

Goal. The Planner need only choose the Technique with the highest Satisfaction score at

each Goal decision point.

We require Goals to be immutable, as the semantics of a Goal are built into Technique

25



1 (( teq.screen size / MAXIMUM SCREEN SIZE) and
2 (teq. location == goal.location ))

Listing 3.1: A default Goal Satisfaction formula for the FindVideoSink Goal. teq is the Tech-
nique under evaluation and goal provides access to the Goal parameters.

code and changes to the Goal specification will render Techniques obsolete. Consequently,

evolution of a Goal’s specification requires that a new specification with a new Goal name

be created. The new specification may note it as a replacement for the old Goal, that the

latter is now deprecated, or even that the new version is strictly narrower than the old (in

the sense that any Technique satisfying the new Goal is guaranteed to satisfy its predeces-

sor). Existing Techniques citing the old Goal will continue to use the (possibly deprecated)

version until updated, although some updates could be automated in certain cases.

3.1.1 Sources of Satisfaction

Our projection of all Properties of a Technique onto a single scalar has been the most con-

troversial of our architectural decisions. At a very high level, the role of Satisfaction in

our system is analogous to that of money in an economy: it dramatically simplifies deci-

sions by reducing dimensionality of the parameter space. It can be argued that if a discrete

choice is to be made between N competing alternatives, at some point the decision process

must reduce all of the inputs on the N choices down to a scalar—indeed, to a small integer

reflecting the choice.

The controversy, of course, revolves around the point at which the dimensionality re-

duction occurs. In our system, the only module containing code specific to a Technique

is the Technique itself, making it the responsibility of each Technique to evaluate its own

Properties. In order to provide some consistency in the evaluation of disparate Techniques

addressing the same Goal, each Goal specification provides a default formula for comput-

ing Satisfaction for a Technique from Properties it reports; thus the semantics of a Goal

imply, among other things, the way in which various cost and performance parameters of

proposed Techniques effect the actual selection of an approach to be used.

Listing 3.1 illustrates a simple default policy for the FindVideoSink Goal, optimizing for

a nearby large screen. The Satisfaction formula may reflect information from a variety of

sources:
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• Goal parameters passed from superior nodes (whose subgoals are being addressed

by this Goal instance). These can specify parameters of the Satisfaction, e.g. the

relative weights of cost versus performance characteristics, as well as limit the ranges

of valid Properties.

• Properties returned by child Techniques, each of which reflects the way in which the

Techniques will satisfy the Goal.

• External inputs. For example, local policy may dictate a different Satisfaction scheme

than the default Goal policy—e.g., users may prefer higher resolution video at a

lower frame rate while the Goal specification may prefer the reverse. Thus, Satis-

faction values may reflect parameters stored in a local database of user preference

information, allowing user customizations to influence choices.

The Satisfaction mechanism allows Planner decisions to reflect arbitrary application-

specific parameters (sucn as speed, throughput, memory size, energy use, and many oth-

ers) while keeping the Planner itself application-generic. It is the responsibility of each

Technique to generate a Property values used to compute its scalar Satisfaction, and the

Planner simply tries to optimize the Satisfaction value for its top-level nodes.

3.1.2 Code as an evaluation mechanism

Each Technique constitutes a description of an approach to satisfying a Goal, and com-

prises code addressing two orthogonal issues: (a) the estimation of how satisfactory its

solution is likely to be, and (b) the actual implementation of the approach it promises. Our

use of arbitrary code for the latter function is uncontroversial, given our desire to accom-

modate arbitrary mechanism in our solutions. The decision to allow arbitrary Technique

code in evaluation, in contrast, invites controversy.

The cost of allowing arbitrary code for evaluation is that, in the general case, the code

can only be run; it cannot be analyzed, and the most interesting questions that might be

asked (e.g. whether one Technique will be uniformly more satisfactory than another un-

der some prescribed circumstance) are formally undecidable. The expression of each Tech-

nique’s evaluation code in some more constrained form—e.g., a simple logic—might allow

such analysis.
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Our choice was motivated largely by the broad range of evaluation mechanisms to be

explored, and the fact that code is the simplest expedient for accessing them. We have

experimented with language constraints that offer interesting algorithmic advantages in

the planning process. For example, a where Technique stage that allows SQL-like restriction

of sub-Goal parameters is one such experiment.

3.1.3 Truth in (Property) Advertising

In our current implementations, there is no mechanism for enforcement of the behavior

promised by a Technique. A selected Technique may fail to deliver its promised level

of Satisfaction; in the extreme, it may intentionally misrepresent the function it performs

(much as conventional library procedures might). We assume Techniques, like library pro-

cedures, to be trusted code.

Even if we rule out malicious Techniques, however, reported Properties (and the de-

rived Satisfaction) are merely estimates of expected performance. Different Techniques

addressing a Goal may differ in the accuracy of their predictions, potentially biasing the

planner toward those Techniques that consistently overestimate their Properties. A buggy

Technique that consistently promises highly-satisfactory Properties and fails to deliver us-

able service can cause a fatal failure in our current system, despite mechanism for failure

detection and re-evaluation of the Goal Tree. Each subsequent evaluation will select the

same buggy Technique, detect its failure, re-evaluate the Goal Tree, and repeat.

There are a variety of plausible ways to improve on this situation. The actual satis-

faction delivered by a Technique can be measured, since it is algorithmically determined

from measurable parameters. Thus, the disparity between the satisfaction delivered and

that promised by a Technique can be measured, enabling mechanisms for biasing future

decisions against Techniques that tend to predict satisfaction optimistically. Even a crude

learning mechanism of this kind could break the persistent failure loop cited above, as re-

peated failures of a buggy Technique would eventually bias the Planner to replace it with

some (presumably better) alternative.
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Figure 3.1: A Goal Tree incorporating a new Personal Media Player device. The media
player has internal storage and a screen, so it can implement the PlayMovie Goal directly,
or be used as a source or sink.

3.1.4 System Evolution

Techniques provide the foundation for long-term system evolution. Typically, we find that

Techniques fall into two broad categories. The first kind, which we call driver Techniques,

provide Technique-oriented wrappers to particular resources. Driver Techniques request

notifications from discovery services to monitor the existence and health of external de-

vices and services. In turn, these notifications are turned into Properties accessible by

higher-level Techniques. In many aspects, driver Techniques are the analog of intentional

device descriptions in other pervasive systems [1, 8, 20, 21]. The sample via RTPStreams

Technique of Listing 2.1 represents the other kind of Technique, an algorithmic Technique.

These Techniques are not associated with any particular resource, but rather embody a

recipe for composing resources.

The Planner makes no distinction between driver and algorithmic Techniques. As such,

what may be done by a single module can be replaced by a group of modules and vice

versa simply by switching between Techniques.

For example, consider how a new device, such as a wifi-enabled Personal Media Player,

may be used for the PlayMovie Goal. One Technique may provide an RTPAVSource inter-

face to the device, using its network connection to stream video files stored on the player.

Another Technique may provide an RTPAVSink interface, allowing the Planner to take ad-
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vantage of the player’s screen and headphones. Finally, a third Technique may directly

implement the PlayMovie Goal using both of the Personal Media Player’s built-in input

and output capabilities. Figure 3.1 illustrates. The Planner may use all of the Techniques

as opportunities to increase the number of alternatives available to choose from, allowing

an existing Planner to evolve as the devices surrounding it evolve without modifying the

Planner’s core.

3.2 Technique sub-Goal Search and Selection

The planning process of building and evaluating Goal Trees discussed in Section 2.3 is

essentially a search through a hierarchical Technique space for “paths” through the Goal

Tree that best satisfy the top-level Goal. The Planner, by default, uses a heuristic search

algorithm where each Goal is independently bound to the Technique with the highest Sat-

isfaction value, until forced by a subsequent failure, or other event, to expand the search.

If two or more sub-Goals are incompatible, eval stages in Techniques call fail() to signal to

the Planner that the current set of sub-Goals is unacceptable. For example, the RTPStreams

Technique of Listing 2.1 calls fail() on line 12 if the source and sink do not support mutually

acceptable stream formats. fail() terminates exploration of the corresponding subtree.

Often this declaration of failure is too radical. In the present example, there may be

source-sink pairs with compatible formats which will be neglected simply because the

pair reflecting the highest Satisfactions happened to be incompatible. Thus, the approach

represented in Listing 2.1 suffers from a combination of deficiencies: (1) that the heuristic

choice of sub-Goals does not reflect critical dependencies between sub-Goals; and (2) that

a single bad combination of sub-Goal choices will occlude the exploration of lower-rated

but potentially viable solutions using this Technique. The following paragraphs describe

mechanism for guiding the search breadth.

3.2.1 Search-narrowing Goal parameters

Instead of checking for mis-matched parameters after the fact, one simple alternative in-

volves making decisions high in the Goal Tree and passing search-narrowing parameters

down the tree for each subgoal. Listing 3.2 sketches a revised search for a source and sink,

each specifying H.264 as the media format (restricting solutions to devices that accept or
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1 to PlayMovie(name, language): via RTPStreams2:
2
3 subgoals:
4 source = RTPAVSource(goal.name, goal.language,
5 stream format=”H.264”)
6 sink = RTPAVSink(stream format=”H.264”)

Listing 3.2: Goal parameters passed down the Goal Tree limit sub-Goals to H.264-
compatible streams only.

via RTPStreams:
stream_format→"H.264"
resolution→1920,1080
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Figure 3.2: The RTPStreams Technique sets the stream format parameter to H.264, causing
both MPEG-2 Techniques to fail.

emit this media type). Such Techniques lead to a Goal Tree of the form of Figure 3.2. If

multiple formats are to be explored, this approach requires that an alternative node be

established for each plausible format combination, each requiring a separate Technique.

3.2.2 Dependent Subgoal Binding

We may improve sub-Goal search performance by ordering sub-Goal searches. For ex-

ample, we might (1) search for a source emitting an arbitrary format, and then (2) search

for a sink whose format is compatible with that of the source we’ve found. To that end,

we allow multiple subgoals stages within a single Technique. The attributes of sub-Goal

bindings from earlier stages may be used to direct searches in subsequent ones. Listing

3.3 illustrates the use of this mechanism to constrain the search of our example. Figure 3.3

shows the resulting Goal Tree.
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1 to PlayMovie(name, language): via RTPStreams3:
2
3 subgoals:
4 source = RTPAVSource(goal.name, goal.language)
5 subgoals:
6 sink = RTPAVSink(
7 stream format=subgoals.source.stream format
8 )

Listing 3.3: The second subgoals stage can use Properties from the first to guide the Plan-
ner’s Technique search.

via RTPStreams:
stream_format→"H.264"
resolution→1920,1080

RTPAVSource:
name←"Simpsons Movie"
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Figure 3.3: The RTPStreamsTechnique passes the stream format Property of its source sub-
Goal as a parameter to its sink sub-Goal, causing the Laptop Technique to fail and forcing
selection of the HDTV.
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PlayMovie:
name←"Simpsons Movie"

via RTPStreams#1:
stream_format→"H.264"
resolution→1920,1080

via RTPStreams#4:
stream_format→"MPEG-2"
resolution→1024,768
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Figure 3.4: Goal Tree with cloned Techniques. The RTPStreams Technique is cloned for
each combination of source and sink. The two pairs with matching stream formats succeed
while the other two fail.

3.2.3 Tree Search and Exploration

Alternatively, the Planner may alter the search for an acceptable set of Goal-Technique

bindings from the default single-pass heuristic to exhaustive exploration of all possible

choices. Full search involves testing each combination of sub-Goal bindings. The most

straightforward approach to full search is to test each combination of sub-Goal bindings

sequentially and remembering what combination led to the highest Satisfaction. Unfor-

tunately, sequential search is inefficient in the face of Property changes—e.g., if network

conditions change, the Properties (and thus, Satisfactions) of only some nodes may change,

yet the Planner must loop through all node combinations again.

Instead of testing each combination sequentially, the Planner uses a Goal Tree manipu-

lation called Node Cloning to search all sub-Goal combinations while maintaining a record

of the Satisfactions of each combination. In order to Node Clone, the Planner makes a copy

of a Technique node and binds its sub-Goals to particular Techniques rather than to an

open-ended Goal node. The newly cloned Techniques function like standard Techniques,

and as such can be re-evaluated as conditions change.

For example, Figure 3.4 illustrates Node Cloning with the original RTPStreams Tech-

nique from Listing 2.1. The RTPStreams Technique is cloned four times, once for each
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1 def monitor entity loop ( tf , # Technique Factory
2 type): # extra arg passed by sub−Goal
3
4 finder = find entities of type (type)
5 known resources = {}
6 # now update as things change
7 while True:
8 event = finder .get event()
9 if (event.type == ’new device’):

10 vteq = tf .new teq()
11 known resources[event.resource] = vteq
12 vteq.resource = resource
13 vteq. resolution = resource.resolution
14 vteq.liveness = ’ alive ’
15 vteq. notify ()
16 elif (event.type == ’dead device’)
17 vteq = known resources[event.resource]
18 vteq.liveness = ’dead’
19 vteq. fail ()
20 else:
21 pass
22
23 to FindRTPSink(stream format): via VLCHost:
24
25 subgoals:
26 vlc host = TechniqueFactory(code=monitor entity loop,
27 type=’VLCHost’)
28
29 eval:
30 if subgoals.vlc host.liveness != ’ alive ’ :
31 planner. fail ( ”%s not alive” % subgoals.vlc host)
32 ...

Listing 3.4: The monitor entity loop function creates Techniques for each resource it finds.

combination of its sub-Goal bindings. Two choices have matched stream format parame-

ters that allow their clones to succeed; the other two clones fail. Node Cloning interacts

well with our Technique re-evaluation system: e.g., if the via MythTV Technique changes its

properties, we must only revisit the two clones that depend on it.

Of course, the Planner’s overuse of Node Cloning may lead to a worst-case exponen-

tial explosion in the number of choices, so complete combinatorial search is only feasible

for small Goal Trees. For large Goal Trees, the Planner only clones small, heuristically cho-

sen sub-Trees, increasing the number of choices available without affecting running time

adversely.

3.3 Technique Factories and External Events

While Techniques may call arbitrary code in their eval stages, these calls are “one-shot”—

their changes are not tracked by our roll-back system. However, for certain kinds of
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while running:
   event = get_event()
   if event == 'new'
      ...
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Figure 3.5: The VLCHost Technique uses the TechniqueFactory to call discovery system code.
The Planner clones the VLCHost Technique for each Technique the TechniqueFactory’s code
creates. The laptop represented by CODE#2 has disappeared, causing the created Tech-
nique to fail.

code, such as resource discovery and monitoring, outside changes should propagate to

the Planner and cause re-evaluation of Techniques. To handle these cases, we provide a

special sub-Goal called TechniqueFactory, that allows external code to create and control

Techniques directly. For example, Listing 3.4 shows how our VLCHost Technique uses the

monitor entity loop function to create Techniques for resources found with a long-running

discovery system.

The external code has complete control over the Techniques it creates with its factory.

The code may set and re-set its virtual Technique’s Properties as well as fail Techniques that

are no longer applicable. In contrast to “one-shot” function calls, changes to the code-based

Technique Properties are tracked like normal sub-Goal Properties, invoking the Planner’s

Technique restart mechanism.

If the code associated with the TechniqueFactory sub-Goal creates more than one Tech-

nique, rather than choosing the best Technique, the Planner clones the TechniqueFactory

sub-Goal to expose all of its Techniques to higher-level Techniques. Figure 3.5 illustrates

how the Goal Tree changes.
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3.4 Efficient Runtime Adaptivity

Techniques are sequential scripts, yet they need to respond to changes in Properties of

sub-Goals forced by the environment (as outlined in the previous section) and changes

in Goal parameters forced by the top-level application. For example, a video Technique

must respond to requests for new titles as well as bitrate changes of its sub-Goals. A naı̈ve

approach to this problem is to simply re-run the Technique from its first stage; however,

this has performance implications for Techniques with a large number of stages or stages

that must access the network.

Instead, the Planner keeps track of what Goal parameters and sub-Goal Properties each

stage of each Technique uses and rolls-back the Technique only as far as it needs to account

for changes in these tracked variables. In order to implement roll-back, the Planner saves

the pre-execution state of each stage in the Technique. When a tracked variable changes,

the Planner finds the first stage that depends on the variable and resets the state of the

Technique to whatever pre-execution state was associated with that stage. Thus reset,

the Planner re-runs the stage and any subsequent stages. For example, in Listing 2.1, a

change to the sink’s resolution property will only re-run the Technique starting at line 13.

We find this roll-back strategy saves computation and network traffic and contributes to

the Planner’s ability to quickly switch among different Plans in the Goal Tree.
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Chapter 4

Applications

In order to test the general applicability of Goals and Techniques, we built several applica-

tions. Some rely entirely on the Planner to make all decisions, while other use the Planner

only for parts of the application that need to be adaptive.

4.1 JustPlay Audio and Video

The JustPlay Audio [10] and Video application is an adaptive media player designed to

reduce the amount of configuration users must do in order to use their various A/V-

capable devices. Users control the system through a simple “voice shell” application that

uses speech recognition to translate voice commands into top-level Goals, such as PlayMu-

sic(artist=“Beatles”) or PlayMovie(name=“Simpsons Movie”). These Goals are then passed to the

Planner, which continually monitors for changes in the environment and user commands

that alter the top-level Goal. The JustPlay system started as audio-only, but as we built

a video infrastructure, we were able to extend JustPlay to handle video by adding new

Techniques that made the Planner aware of the new video playing capabilities.

The Techniques used as examples in this paper come from the JustPlay application

because JustPlay includes many of the technical challenges we sought to solve. For exam-

ple, our video selection Technique uses sequential sub-Goal binding to more clearly define

what combinations of A/V streams are acceptable for the system. We also make use of the

TechniqueFactory sub-Goal to connect the Planner to discovery sub-systems. In a testament

to the additivity of our system, the JustPlay application has worked with two distinct dis-

covery systems—one with a custom in-house protocol and one based on DNS-SD—with

37



slightly different APIs and semantics. Changing between the systems just required creat-

ing new low-level “driver” Techniques (like Listing 3.4). Moreover, Techniques for both

systems could co-exist in the same Planner process, making it easy to gradually introduce

the new discovery system.

4.2 User Proxies

We have also used the Planner to maintain user-level applications in the face of changing

hardware, similar to the aims of Gaia [18, 19] and Aura [6]. In particular, we tested this

with a text chat application and a teleconference application. For this application, a trusted

machine runs a network-exported Planner that maintains user Goals, each satisfied by

custom Techniques that implement the user’s desired system behaviors. Users modify the

system by adding new Techniques that better suit their desires.

In a typical example, a mobile-based chat client was used in “follow-me” mode during

a conversation that continued as one peripatetic participant wandered from one room to

the next. Tracking that user’s physical location, the system uses Goal-oriented planning in

a best-effort attempt to satisfy its top-level Chat Goal using the most appropriate resources

available in each room, for example switching the incoming video stream from the tiny

display of the user’s handheld to a communal wall-mounted plasma display wherever

feasible. One Technique that implements the Chat Goal registers with a service discovery

system to find all hosts owned by the user. As the Planner discovers client devices (stan-

dard desktops as well as PDAs), it invokes a ChatManager(host=. . .) Goal. A Technique satis-

fying ChatManager invokes sub-Goals TextInput(host=. . .) and GUI(host=. . .) to obtain device-

specific input and output mechanisms.

For example, if the user is using his desktop, he might see a full GUI with audio-

conferencing support. However, if the user turns on his PDA and leaves his office, the

system will reconnect his chats by invoking the ChatManager(host=”pda”) Goal and allow

him to continue his chats using a PDA-optimized interface.
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4.3 Hardware Design

Outside of pervasive computing applications, we have used the Planner and goal-oriented

programming in a circuit design system called Fide [4]. Hardware designers must make

many trade-offs in the course of building a circuit. For example, one particular design may

be fast, but use too many gates, while another may meet functional requirements, but only

on a particular kind of hardware substrate. Fide enables a hardware designer to efficiently

explore trade-offs in the circuit design process.

Fide uses Goals to represent functional requirements, from low-level requirements like

a single-bit reigster to higher-level abstractions like a 32-bit adder. Techniques provide

competing implementations—such as a simple ripple-carry adder, a faster carry-select

adder, or even a “native” adder built-in to a particular FPGA. Fide requires each Tech-

nique to export two Properties: the estimated size of the circuit that Technique represents

and an estimate of the cycle time of the circuit. The default Satisfaction formula considers

both the size and speed Properties equally though the designer can override the particular

weighting of size and speed in a particular run.

In contrast to Planner-based pervasive applications where the Planner is infrastructure

hidden from view of the user, Fide exposes the Planner and its Plan Trees to the hardware

designer so that he can directly adjust Goal parameters to tweak the circuit and explicitly

explore trade-offs. Doing so allows the designer to better understand the design that Fide

proposes as well as gain an intuition for different implementation strategies.

The final output of Fide is a hardware description in a language like Verilog or JSim.

The quality of the circuits produced by Fide is comparable to hand-optimized circuits [4].

4.4 MusicPlanner

Yang’s MusicPlanner [25] uses the Planner as the central component of a music recommen-

dation and exploration system. The MusicPlanner enables a user to find songs similar to

songs that he already enjoys and then play those songs from an extensible set of music

repositories.

The MusicPlanner uses two top-level Goals: the Recommend Goal, to find recommended

songs given a seed song, and the Play Goal, to play a specific song. The Recommend Goal is

satisfied by a set of Techniques the each encompasses a particular way of recommending
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songs. Yang implements strategies that use (1) computed similarity scores or (2) overlap

in user-generated “tags” to find songs comparable to the original seed song. The Play Goal

works similarly to the PlayMusic Goal of JustPlay.

The MusicPlanner uses a sophisticated Satisfaction metric that takes into account user

preferences as well as an abstract music similarity score to choose the best Recommend

Technique. A small user study shows that users prefer the playlists generated by the Mu-

sicPlanner when it used the Planner to choose the best Recommend Technique for each song

in the playlist compared to the playlists the MusicPlanner generates when it used only one

recommendation algorithm.

4.5 Web Search

Williamson uses the Planner as a platform for multi-faceted and extensible web search [24].

Williamson’s system defines a few top-level Goals for searching different kinds of materi-

als on the web. Techniques satisfy those Goals using particular web services like YouTube,

Google, and Yahoo.

A notable aspect of Williamson’s system is that it allows users to upload their own

Goals and Techniques that the Planner can immediately use. There are two consequences

that flow from this feature. First, the search system must be security hardened. Since,

as discussed in Section 3.1.3, the Planner treats all Goals and Techniques as trusted code,

if the Planner is to run arbitrary user-uploaded code, the Planner must be sandboxed to

prevent malicious users from harming the search system. Williamson elaborates on the

threat model the Planner faces, though he does not fully sandbox the Planner.

Second, users must be able to debug their Techniques. Like Fide, Williamson’s search

system exposes the Planner’s Goal Tree to the user so that he may inspect the Techniques

he uploaded and amend them as necessary.

4.6 Other Applications

The Planner also powers a few other small applications. Our crisis management appli-

cation simulates several crises affecting a small city. The crisis management application

benefits from the open-ended nature of the Planner because it allows new strategies to be
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added to the system as crises unfold. We also implemented a Recipe application that uses

the Planner to choose among recipes depending on (1) what ingredients are available and

on (2) the user’s food preferences. Each recipe is written as a Technique, with sub-Goals for

each utensil, appliance, and ingredient that the recipe requires. A GUI allows users to alter

the Planner’s choices by explicitly rejecting certain ingredients (which cause Techniques

depending on those ingredient sub-Goals to fail) or by altering the Satisfaction formula to

favor certain Properties (like caloric content, flavor, or cooking time).
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Chapter 5

Implementation

The Planner is written in pure Python and has been tested on GNU/Linux, Apple os x, and

Microsoft Windows (under cygwin). The Planner can run as both a stand-alone command-

line tool as well as be linked into traditional applications. Applications that import the

Planner have access to an extended API that lets the application more finely control the

execution of the Planner, as well as integrate the Planner’s evaluation loop with its own

mainloop or threads.

5.1 The Planner Scheduler

Internally, the Planner module is similar in design to single-threaded, “mainloop” appli-

cations. In mainloop architectures, the application is built around a single event loop (typ-

ically invoking the select() system call) that surveys the work that needs to be done and

schedules some unit of work for execution. In each iteration of its event loop, the Planner

chooses a single node from the Goal Tree and runs a single evaluation stage of that node.

The scheduling policy the Planner modules uses is pluggable. We implemented three

schedulers to explore how much node scheduling matters to the planning process. Our

first scheduler, the QueueScheduler maintains a ready queue of nodes that need to be re-

evaluated and adds nodes that become ready to the end of the queue. A second scheduler,

the TreeScheduler applies the heuristic that if a node’s children need to be updated, changes

in their solution will affect the parent node, so the children should be updated before the

parent. The TreeScheduler does not maintain a ready queue, but rather, on every iteration,

performs a topological sort of the Goal Tree and returns the node lowest in the tree that
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needs updating. Unfortunately, topological sort is linear in tree size, so we also test a

compromise scheduler, the PrecedentQueueScheduler, that maintains a ready queue, but

adds new nodes to the queue before their parents. The PrecedentQueueScheduler, like the

TreeScheduler also tries to avoid scheduling a node redundantly, but operates in time linear

to the queue size rather than the entire tree size.

5.2 Technique Roll-back

As discussed in Section 3.4, a complication of our planning process is that a Technique

may be “reverted” to a previously run evaluation stage if changes in sub-Goal Properties

obsolete the calculations the stage performed. For a particular Technique, given a set of

changes in subgoal Properties, the Planner must determine (1) what stage of the Technique

to re-run and (2) what values must be restored to the Technique’s state to completely revert

it.

5.2.1 Stage Tracing

In order to determine what stages must be re-run when the environment changes, the

Planner must know what variables each Technique phase uses and the values that each

Technique stage read when it last executed. Rather than burdening the Technique writer

with this bookkeeping, we use low-level Python mechanism to trace variable references

within Technique code.

Technique execution tracing is implemented by a two-fold strategy. First, we require

that all variables, such as Goal Parameters or Technique Properties, that may force re-

evaluation of Techniques be stored as attributes of instances of a class called Solution. Sec-

ond, in the Solution class, we override the standard Python mechanisms for retrieving,

mutating, and removing attributes with code the keeps a log of how the attributes are

accessed.

Every time a Technique stage successfully runs to completion, the Planner checks the

log of every Solution object to which the Technique has access, and records what attributes

were accessed and what attribute values were read. When a Solution attribute changes,

the Planner need only look up what Techniques read that attribute, and re-run the each

Technique starting at the earliest stage that depends on the attribute.
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Our execution tracing strategy narrowly reflects the actual dynamic execution path

through Technique code: it does not capture all the variables that a Technique stage may

access on every execution. For example, if a Technique stage has an if/else conditional whose

consequent and alternative access different variables, our code will only record the vari-

ables read by the branch taken. However, this narrowness is not a problem in practice.

The Planner traces every variable the stage reads, and thus, records the variables that lead

to the choice of one conditional branch over another. If some attribute change would re-

quire the Technique to execute a different conditional branch, then the Planner must have

recorded the variables used to make the branch decision. Therefore, the change will cause

the stage containing the branch decision to be re-run, forcing the Technique to re-execute

using the new branch of the conditional.

5.2.2 State Restoration

In order to revert Technique state when we roll-back a Technique, the Planner requires that

all Techniques store their state as Properties. Before an evaluation stage is run, the Planner

takes a snapshot of the Technique’s Properties as the “before” snapshot for the stage. When

a stage needs to be re-run, the Property snapshots for all subsequent stages are erased and

the Technique’s Properties are set to the “before” snapshot of the stage to be run.

Normally, Technique Properties are publicly exported and made readable to the Goals

and Techniques higher in the tree, e.g., the resolution and stream format Properties of the

Techniques used as examples in this text. A Technique may not want to store its internal

state as a public Property. Therefore, following Python convention [23], Techniques create

private Properties by prefixing their Property name with an underscore. Private Properties

are still restored properly by the Planner on roll-back, but are not readable outside of the

Technique that created them.

5.2.3 Solutions and the TechniqueFactory sub-Goal

As outlined in Section 3.3, Techniques can access any library code available to the Planner

process. Normal access to library code bypasses the Planner’s tracing mechanisms and

will not cause Technique roll-back. When rollback is needed, the Technique must use the

TechniqueFactory sub-Goal.
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Our implementation of the TechniqueFactory sub-Goal spawns a thread that runs the

TechniqueFactory’s code argument. Each time the code creates a new virtual Technique

using the new teq() method, the Planner creates a new Solution object to store the Properties

of the virtual Technique. The Solution objects of the virtual Techniques are traced like the

Solution objects of normal Techniques, allowing external code changes to cause roll-back.
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Chapter 6

Performance Evaluation

We perform both micro-benchmarks to show the overheads inherent to our approach, as

well as macro-benchmarks on the JustPlay application to show how our system performs

in typical situations. All tests were run on a desktop Pentium 4/3.2GHz with 1 GiB of RAM

running GNU/Linux 2.6.22 and Python 2.5.1.

6.1 Micro-benchmarks: Latency Evaluation

The Planner does not interpose itself in the data streams between individual components,

so it does not slow down an application once it is running. However, the Planner necessar-

ily takes part in application start-up and adaptivity since the Planner drives the decision

making of these phases; the rest of this section details the user-visible latency that the

Planner adds to the application.

6.1.1 Experimental Setup

We generated a set of stub Techniques that induce large Goal Trees. Each Goal in our test

setup is satisfied by two Techniques; each Technique—save the Techniques at the bottom

layer—declares two subgoals. We vary the depth D of the trees from 1 “Goal-Technique”

layer to 5. The Techniques contain no evaluation or commit code, so the measured execu-

tion time of the Planner is solely due to Planner overhead.

Our start-up latency benchmark measures how long it takes the Planner to build, eval-

uate, and execute trees of various sizes. After the Planner has converged on a particu-

lar Goal Tree and idled, we introduce a variety of Property changes to the leaf nodes to
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Figure 6.1: The latency to fully build and explore the Goal Tree as a function of the total
number of nodes.

simulate failures. Our swap latency benchmark measures how long the Planner takes to

converge to a new plan after the failures are introduced.

We run each benchmark 10 times and report the mean statistic of the 10 runs.

6.1.2 Results

Figure 6.1 summarizes our latency tests. For queue-based schedulers, startup latency

scales linearly with the number of nodes in the Goal Tree. On normal size trees (≈50

nodes), the Planner adds 1 s of startup latency. In real-world applications, we find that the

Planner’s startup latency is dwarfed by service discovery latencies (see section 6.2).

We find that performance of the Planner is tied to the order in which the Planner runs

the evaluation stages of Techniques, and thus, the scheduler that the Planner users. As

Figure 6.1 shows, the Planner’s start-up latency can be reduced with a smart scheduler

that reduces the amount of work the Planner must do. On small trees, the QueueScheduler

has the worst performance by a factor of two. This is primarily because the QueueSched-

uler takes approximately twice as many iterations to converge to a stable solution than the

other schedulers (see Figure 6.2). The result makes sense because each node gets sched-

uled every single time a child node updates itself, leading to repeated work. The Preceden-

tQueueScheduler and TreeScheduler require approximately the same number of iterations to

explore the tree because they both avoid repeating work at higher levels in the tree until

lower levels have stabilized. Unfortunately, the TreeScheduler’s performance does not scale
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Figure 6.2: The number of scheduler iterations fully build and explore the Goal Tree as a
function of the total number of nodes.

with the size of the tree because it must perform a linear-time topological sort of the tree

on each iteration.

Overall, the PrecedentQueueScheduler has a 14% speed advantage over the best times

of the other schedules because its time complexity is linear in ready queue size and the

ready queue of nodes is usually much smaller than the entire tree. All of our schedulers

completely explore each Goal Tree. Future schedulers may completely avoid working on

certain Goal Tree branches, such as those with low Satisfaction scores—further reducing

work and increasing performance.

Figure 6.3 shows how long the Planner takes to react to changes in its environment and

swap in new Techniques. The swap test does not measure average application downtime,

but rather how long the Planner takes to determine what changes need to be made and

then instantiate those changes. Using either of the queue-based schedulers, we found

that even a large, 255-node tree could be updated in less than 250 ms. The TreeScheduler

performs poorly for larger trees, again, due to the topological sort on each iteration.

6.2 Macro-benchmarks: JustPlay

For our macro-benchmarks, we invoked the PlayVideo Goal using the Techniques from the

JustPlay application described in Section 4.1. In the environment, we placed a single RTSP

video server as well as two RTSP video sinks, leading to a Goal Tree with 18 nodes. For
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Phase Runtime [s]

Explore 0.154
Commit 0.464
Startup Sub-Total 0.617

Re-explore 0.038
Update 0.631
Hotswap Sub-Total 0.669

Table 6.1: Mean runtimes for four phases of the JustPlay application.

service discovery and RPC, we used an in-house system called NPOP [15].

6.2.1 Experimental Setup

We measure the execution times for four stages of the JustPlay application. First, “Ex-

plore” measure how long the Planner takes to construct and explore the Goal Tree for the

PlayVideo Goal. Next, once a viable Plan is found, “Commit” time measures how long it

takes the Planner to execute the commit stages of the JustPlay Techniques and actually start

playing video. After the video plays, we introduce a new, superior Video RTSP video sink.

The “Re-explore” time measures how long the Planner takes to react to the new video sink

and choose a new Plan. The Re-explore time does not include the discovery latency of the

service discovery system; we measure the time from when the discovery process delivers

a message to the Planner process to when the Planner process chooses a new Plan. Finally,

the “Update” time measures how long the Planner takes to hotswap the old sink for the

new sink.

We run each benchmark 10 times and report the mean statistic of the 10 runs.

6.2.2 Results

Table 6.1 summarizes our results. The results are about a factor of 5 slower than would be

predicted from our micro-benchmarks, most notably because the JustPlay benchmark in-

cludes non-empty evaluation stages and commit stages. The latency is still under a second,

well within the normal startup time for a typical desktop application.

The slowdown in the evaluation and execution stages of our Techniques stems from

the cost of RPC calls used to connect the video source to the video sink and start streaming,

as shown by the high “Commit” and “Update” times. Note that the total hotswap runtime
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is higher than the cost of building a new Goal Tree from scratch. This is because the Plan-

ner must shut down the old video sink, transfer state to the new video sink, and finally

initialize the new video sink. All three actions require many RPC calls over the network.

The “Re-explore” is very fast. This is because the Technique roll-back system only runs

stages that need to be run, avoiding many RPCs.
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Chapter 7

Related Work

Many systems provide abstractions that ease the burden of programming adaptive ap-

plications. At the network level are systems like MIT’s Intentional Naming System [1],

Service-oriented Network Sockets [20], and Lightweight Adaptive Network Sockets [21].

These systems allow applications to opportunistically connect to the best resources in a

given environment and leave adaptation to the application.

Other frameworks provide high-level abstractions. CMU’s Aura system [6] uses tasks to

capture user-level intent. Aura uses tasks to map user intent to available resources without

requiring user interaction and to optimize resource allocation according to user-specified

QoS parameters. Similarly, UIUC’s Gaia [19] provides event and context services for man-

aging applications in “ActiveSpaces”. We concentrate on the lower level of composing

applications once context and intent have been discovered. Olympus [18] extends Gaia

with a programming model for writing code portable between ActiveSpaces. Our system

and Olympus solve slightly different problems. Olympus maps abstract descriptions to

ActiveSpace entities using hierarchically defined ontologies in order to avoid the tedium

of linking entities manually (as is required by Gaia). Goals, on the other hand, are a generic

programming construct aimed at allowing open-ended decision making about any com-

ponent, algorithm, or resource a pervasive application may need.

Semi-automatic service composition systems such as NinjaPaths [3] or SWORD [17]

complement our approach. Such systems can be used to generate Techniques and aid

in rapid development of Technique-based applications.

Declarative and implicative programming approaches, especially rule-based systems
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[12] and event-condition-action (ECA) systems, provide programming constructs at levels

of abstraction similar to our system. For example, InterPlay [11] uses a derivative of the

Jess rule system [22] to provide a pseudo-English user interface to a consumer electronics

environment. The scope of InterPlay is different than our work—it does not target adaptive

applications, but rather concentrates on ease of use. Our work may benefit from the UI

innovations of InterPlay.

SOCAM [7] and Chisel [9] are ECA frameworks for managing events in context-aware

applications. ECA systems are designed to react to changes in the environment or context

while our system aims to evaluate available choices in the environment to fulfill abstract

requirements. ECA systems may provide an alternative user interface to invoking Goals,

e.g. “when I arrive at home, invoke PlayMusic(genre=Jazz)”.
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Chapter 8

Conclusion

Emerging computing environments require new abstractions that permit increased levels

of runtime adaptivity while still maintaining extensibility. Goals and Techniques meet both

requirements by providing a structured way of decomposing adaptive applications. Goals

represent open-ended choice points that can be compared by an application-generic Plan-

ner. Techniques provide specially prepared code modules that embody domain-specific

knowledge. Our system allows hierarchical decomposition of applications through sub-

Goals declared by Techniques, but unlike competing systems, provides programmers with

a framework for declaring dependencies between sub-Goals. Our system is additive: new

Techniques can be added without requiring changes in existing Techniques. In order to

evaluate our system, we implemented four widely-varying applications using Goals and

Techniques. In performance testing, we found that our system adds only a small amount

of latency to application start-up and fail-over.
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