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ABSTRACT

We discuss a key engineering challenge in implement-
ing the Identifier- Locator Network Protocol (ILNP), as
described in IRTF Experimental RFCs 6740-6748: en-
abling legacy applications that use the C sockets API.
We have built the first two OS kernel implementations
of ILNPv6 (ILNP as a superset of IPv6), in both the
Linux OS kernel and the FreeBSD OS kernel. Our eval-
uation is in comparison with IPv6, in the context of a
topical and challenging scenario: host mobility imple-
mented as a purely end-to-end function. Our exper-
iments show that ILNPv6 has excellent potential for
deployment using existing IPv6 infrastructure, whilst
offering the new properties and functionality of ILNP.

Categories and Subject Descriptors

C.2.1 [Computer Communication Neworks]|: Net-
work Architecture and Design; C.2.2 [Computer Com-
munication Neworks|: Network Protocols

General Terms

Design, Performance

Keywords

ILNP; Identifier-Locator; Mobility; Internet architec-
ture; IPv6

1. INTRODUCTION

An historic perspective on the (mis)use of IP ad-
dresses is given in [1], which describes how IP address
values have been widely used for engineering conve-
nience, whilst it is widely acknowledged that such usage

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

AINTEC ’16, Nov 30-Dec 02, 2016, Bangkok, Thailand
© 2016 ACM. ISBN 978-1-4503-4552-1/16/11...$15.00
DOL http://dx.doi.org/10.1145/3012695.3012701

is undesirable, architecturally. The key issue is one of
semantic overload: IP addresses have been used to rep-
resent both the identity of an end-system, and also used
for routing, acting as a (topological) locator value. Ad-
ditionally, IP addresses are used in end-to-end protocol
state (e.g. in TCP and UDP protocol control blocks),
and are bound to physical interfaces.

Consequently, the end-to-end state for a TCP con-
nection end-point, for example, is bound to a single,
specific interface on a host. This makes some function-
ality, such as mobility and multihoming, cumbersome
to implement directly in IP, requiring additional state
information outside the end-host. For example, IP mo-
bility requires the use of additional proxies (e.g. the
Home Agent) [2], and multihoming requires the use of
multiple entries in the routing infrastructure [3]. In such
cases, the end-to-end semantics of the connection may
be compromised.

1.1 Identifiers and Locators

The use of Identifier / Locator (Id/Loc) approaches
in network architecture and protocol design result in a
wide range of solutions. The IRTF Routing Research
Group (RRG)! undertook a comprehensive, open re-
view of 15 proposals that could be classified as Id/Loc
mechanisms, with the goal of recommending a scalable
routing and addressing architecture for the Internet.
In its conclusion, reported as RFC6115, “Recommen-
dations for a Routing Architecture”, the RRG Chairs
recommended ILNP [4, Section 17].

Whilst ILNP presents a clean architecture, there are
some significant engineering challenges in implement-
ing ILNP across the existing infrastructure. ILNP does
not use IP addresses, and instead explicitly introduces
new data-types: Identifier and Locator values. Cur-
rent end-system stacks, some popular APIs, and many
applications make strong assumptions about the use of
IP addresses. Indeed, the C sockets API predates the
existence of the Domain Name System (DNS), and so
C programmers are exposed directly to IP address val-
ues, often using them explicitly, rather than using Fully-
Qualified Domain Names (FQDNSs) or application level
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names, as recommended in RFC 1958 [5, Section 4]2.

1.2 Contribution and outline

Based on the first two implementations of ILNPv6
in kernel space (Linux and FreeBSD), we discuss a key
engineering challenge in deploying ILNPv6: support-
ing legacy applications, i.e. running IPv6 applications
without modification over ILNPv6. Section 2 provides
an introduction to ILNP and highlights the importance
of this challenge. A solution for an unmodified IPv6 bi-
nary for iperf operating over ILNPv6 is given in Section
3, with a comparative performance evaluation against
Mobile IPv6, plus a critique, in Section 4. We then
present a wider discussion on applicability of ILNPv6
in Section 5, and conclude in Section 6 with a summary
and items for future work.

2. ILNP

The Identifier-Locator Network Protocol (ILNP) is
an Experimental protocol from the IRTF, described in
RFCs 6740-6748 [6-14]. ILNP proposes a new nam-
ing architecture compared to IP: instead of using IP
addresses, ILNP uses node Identifier (I) values to ex-
plicitly name hosts, and Locator (L) values to explicitly
name networks. I and L values are bound dynamically,
as required. L values are also dynamically bound to in-
terfaces, compared to the static binding of IP addresses
to interfaces.

From an engineering perspective, ILNPv6 [7,9,10] is
the version of ILNP that is implemented as a superset
of IPv6, and this is the focus of our work to date?.

2.1 Encoding I and L values in ILNPv6

ILNPvV6 uses a 64-bit node identifier (NID) value unique

to the node, which can be generated using the same
mechanisms as for an IPv6 interface identifier. How-
ever, the NID is not bound to a single interface as it is
in IPv6. A NID is used in end-to-end protocol state,
such as in TCP end-point tuples, in place of a full IPv6
address. To allow packets to be routed across the net-
work, ILNPv6 uses a 64-bit locator value (L64) that
is equivalent to an IPv6 routing prefix, and is learned
from IPv6 Router Advertisements (RAs) [7]. The NID
and L6/ together form an I-L Vector (I-LV), which is
inserted into IPv6 packets into the header fields that
would normally be used by IPv6 addresses, as shown in
Figure 1.

As the L6/ uses the same syntax and semantics as an
IPv6 routing prefix, an ILNPv6 packet will be routed
across an IPv6 network as if it was an IPv6 packet.
The L6 value does not form part of the end- system,

2C sockets is still widely used, if not directly by appli-
cations programmers, then by lower-level systems, e.g.
Java and Python run-time environments are written in
C.

31t is also possible to realise ILNPv4 [11-13], i.e. ILNP
implemented as a superset of IPv4.

/* IPv6 address - RFC4291 + RFC3587 */

| 64 bits | 64 bits |
| IPv6 Unicast Routing Prefix | Interface Identifier |
/* ILNPv6 I-LV - RFC6741 */

| 64 bits | 64 bits |
| Locator (L64) | Node Identifier (NID) |

Figure 1: IPv6 unicast address format (top) and the
use of I-LVs for the ILNPv6 unicast address format
(bottom). The L64 value has the same syntax and
semantics as an IPv6 routing prefix. The NID value
has the same syntax as an IPv6 Interface Identifier,
but has different end-to-end semantics.

upper-level protocol state. So, the L6/ value in an IL-
NPv6 packet is mutable, without impacting end-to-end
integrity. The NID value is only used by the end-system,
but as its syntax is the same as an IPv6 Interface Identi-
fier, the I-LLV can be used by local Neighbour Discovery
(ND) as for IPv6.

So, ILNPv6 can be deployed by implementation in
end-systems only, with updates required only to those
end-systems requiring to use ILNPv6, and should not
require code changes to switches or routers: ILNPv6
packets will be seen as IPv6 packets. We have imple-
mented a mechanism to distinguish ILNPv6 flows and
IPv6 flows for correct flow demultiplexing at the end-
system (with minimal impact to performance compared
to IPv6). This would also be required for supporting
IPsec with ILNPv6 [6, Section 7] [7, Section 9].

2.2 Transport protocols

The end-system state for transport protocols would
normally use full IPv6 addresses, so transport protocol
code was modified in order to allow ILNPv6 to be used
by upper layer protocols. In summary, the transport
layer code was modified to use NID values in place of
IPv6 addresses. However, this was completed without
impacting the use of the API: IP addresses are passed
to a C sockets interface from user code, as for IPv6
application code, and so ILNPv6 can support legacy
binaries without modification.

2.3 Legacy (IPv6) binaries over ILNPv6

Support of legacy applications is vital for incremen-
tal deployment and backwards compatibility. ILNPv6
is implemented as a super-set of IPv6, at the protocol
level, so there are already simple mechanisms defined in
for an ILNPv6 node communicating to a non-ILNPv6
node to “drop down” to IPv6 [7, Section 10.6].

However, our concern in this paper is the practical
issue of allowing existing code using C sockets to func-
tion over ILNPv6 without the need to re-engineer or
re-compile existing programs, assuming that the com-
municating end-systems are ILNPv6-enabled. This is
potentially a significant challenge, as C sockets requires
the IPv6 address value to be fetched by the user code be-



fore creating a socket structure. While ILNPv6 already
has DNS records defined [8]*, we focus specifically on
how to signal across the API to indicate the use of an
ILNPv6 session, instead of an IPv6 session.

To show the robustness of ILNPv6 operation, our
evaluation (Section 3) used a scenario with a mobile
host running a legacy application, the widely-used tool,

iperf.

3. LEGACY APPLICATIONS

We used an unmodified legacy application binary, iperf,
and compared operation between mobility implemented
with both Mobile IPv6 [2] and ILNPv6. This is a chal-
lenging scenario, because as well as demonstrating the
basic operation of a program running over C sockets,
it also tests that the operation of ILNPv6 mobility is
transparent, beneath the C sockets API, without im-
pacting the operation of the application.

The testbed used for the evaluation is shown in Figure
2: this was used previously [15], so we keep the details of
the testbed brief, but we present here new, unpublished
results using TCP.

The testbed consisted of identical rackmount machines,
which are labelled CN, R1, R2, R3 and MN in Fig-
ure 2. MN used a 802.11ac (ISM 5GHz) wireless LAN
(WLAN) link to the testbed, while all other connections
were 1Gbps Ethernet. The popular netem package was
used to emulate additional delay on the R1-R2 and R1-
R3 links, as part of the experiment. For Mobile IPv6,
R2 was also the Home Agent (HA) for MN, the HA
being a proxy/middlebox that is required for the oper-
ation of Mobile IPv6. In ILNPv6, mobility is a purely
end-to-end function, so no proxy/middlebox is required.
Note that only CN and MN ran ILNPv6 OS kernels —
all other hosts ran unmodified IPv6 OS kernels.

site N
/ network L, \

Emulated
WAN Delay

Router
MN ' Mobile Node \ site /
CN  Correspondent Node < network L

HA  Home Agent Sso '

.

Figure 2: Testbed setup for mobility. The CN con-
nected to R1 via 1Gbps ethernet. The MN initially
connected to R2(HA) using WLAN,the dashed /
blue circles depict the radio cell scenario emulated.
The green / dashed arrows identify movements of
the MN to site network L3, which generated a hand-
off. CN and MN were ILNPv6-capable Linux hosts.
R1, R2 and R3 were unmodified Linux hosts config-
ured as routers. We used Ubuntu 12.04 LTS, with
Linux kernel v3.9.0, and only CN and MN ran IL-
NPv6 modifications.

“TImplemented in BIND9, KnotDNS, and NSD.

3.1 Signalling via name resolution

The signalling for indicating the use of an ILNPv6
flow exploits the typical usage of the C sockets API.
The typical code pattern in a client system makes a
call to the POSIX getaddrinfo() function with a fully-
qualified domain name (FQDN), and then uses the in-
formation returned to open a socket. So, we modified
the getaddrinfo() implementation in libc (glibc) in order
to implicitly signal a name resolution resulting in val-
ues that indicate an ILNPv6-capable host as the remote
target, as described below.

The FQDN could be resolved by a DNS lookup or
by querying the /etc/hosts file. If the host is ILNPv6-
capable, new DNS records for NID and L64 values will
be returned, or the lookup in /etc/hosts will return an
I-LV from a /etc/hosts file that has extended syntax as
shown in Figure 3.

/etc/hosts file extended syntax for ILNPv6

#
#
# L64 64-bit Locator value (in IPv6 address format)

# lprec the Locator’s precedence value (currently not used)

# NID 64-bit Node Identifier value (in canonical EUI64 format)
# hostname a valid hostname value

#

# An entry -- an I-LV record -- has the structure:

#

# L64|lprec,NID hostname

2001:0db8:d400d:0000|10,02-1f-5b-ff-fe-ff-13-74
2001:0db8:cafe:0000]20,2a-37-37-ff-fe-1c-cf-fe

foo.glob.com
bar.blob.com

Figure 3: The extended syntax for I-LV information
in /etc/hosts for ILNPv6.

When an I-LV is resolved, the FQDN and the I-LV
is stored in a new ‘look-aside cache’ in the OS kernel.
When the socket is created, if the address information
passed in the struct sockaddr matches an entry in the
look-aside cache, then an ILNPv6 session is initiated,
rather than a IPv6 session. The look-aside cache entry
would be purged after (i) the DNS entry’s Time-To-Live
(TTL) value has expired; or (ii) after 1s if the I-LV was
read from /etc/hosts.

3.2 Experiment

In Figure 2, the movement of an ILNPv6-capable Mo-
bile Node (MN) was emulated across the boundary of
two different network sites, labelled Ly and Ls. The
MN used two IEEE 802.11ac WLAN links only.

The Mobile IPv6 (MIPv6) model for mobility uses
two IP addresses for a Mobile Node (MN). A MN’s
Home Address (HoA) acts as an identifier: it is re-
turned from a DNS lookup for incoming connections to
the MN regardless of where the MN is. When the MN
moves from its Home Network (HN) to a Foreign Net-
work (FN), a proxy at the HN, a Home Agent (HA),
is informed by the MN of its new address, a Care-of
Address (CoA), which it derives based on the network
prefix learned from the FN (from IPv6 RAs). The HA
then monitors packets at the HN that are using the



MN’s HoA as a destination address, and forwards those
packets to the CoA using a tunnel.

This end-to-end discontinuity through the HA can
cause sub-optimal routing; the HA can also be a perfor-
mance bottleneck, a single point of failure, and offers an
additional attack vector; and there is a tunnelling over-
head. So, MIPv6 allows the use of a Route Optimisa-
tion (RO) procedure: a handshake — a Binding Update
(BU) from the MN and a Binding Acknowledgement
(BAck) from the Correspondent Node (CN) — allowing
the CoA to be signalled during handoff. With RO, TCP
protocol state at the CN has to be reconfigured to use
the (new) CoA, so the BU also contains TCP sequence
number information. However, in our experiments, the
MIPv6 implementation uses the ‘Home Address Option’
header [2, Section 6.3], which carries the HoA of the MN
to the CN. The CoA in the IPv6 header is changed to
the HoA value before the packet is passed to the trans-
port layer, allowing a TCP session bound to the HoA
to remain valid.

ILNPv6 also supports two forms of handoff. With
hard handoff, a ‘break before make’ model is used: the
MN'’s connectivity to the ‘old’ cell, using the ‘old’ L64
value, is dropped, and a link in the ‘new’ cell is estab-
lished, with the ‘new’ L64 value. (As for IPv6, L64 val-
ues come from IPv6 RAs.) With soft handoff, ILNP’s
dynamic binding between NID and L64 values allows
a MN to use the ‘old’ and ‘new’ L6/ values simultane-
ously, in analogy to soft handoff in radio systems using
two radio channels. In both cases, a Locator Update
(LU) / Locator Update Acknowledgement (LUAck) al-
lows the MN to signal the new L6/ value to the CN.

On the testbed of Figure 2, to emulate a WAN link,
netem® was used to generate an extra 100ms of delay
between R1 and either R2 or R3 as required, otherwise
the link was considered a LAN link. The performance
of a 30s TCP flow between CN and MN was measured
using the legacy tool iperf v2.0.5. This measurement
was repeated 10 times (after tuning with some initial
trials), for each of MIPv6 without RO, MIPv6 with
RO, ILNPv6 hard handoff, ILNP6 soft handoff, with
WAN emulation and with no WAN emulation. A single
handoff was initiated at t=5s, and completed at t=20s.
The handoff was emulated with scripted commands to
ifconfig to bring WLAN interfaces up and down. The
ILNPv6-capable CN was connected using a 1Gbps eth-
ernet link.

4. RESULTS AND CRITIQUE

The key issue here is the continuity of the TCP flows,
as handoff events can cause gratuitous packet loss. So,
we present two metrics: the total number of lost pack-
ets across all the measurements is shown in Figure 4;
and the total number of retransmission events across
all measurements is shown in Figure 5.

Shttp://man7.org/linux/man-pages/man8 /tc-
netem.8.htm

The iperf binary used was identical for MIPv6 and
ILNPv6 experiments, and it was oblivious to the control-
plane operation (handoff mechanism) for both MIPv6
and ILNPv6. ILNPv6 with soft handoff had the lowest
packet loss (close to zero), and the lowest number of
retransmission events.

In terms of operation of the iperf binary, the unmodi-
fied IPv6 binary was able to operate over both IPv6 and
ILNPv6 without changes. The operation of the ILNPv6
mobility mechanism did not perturb the operation of
the iperf and was not visible above the C sockets level.

4.1 Flow performance

In terms of performance, both loss and retransmis-
sion information is needed to gain a better understand-
ing of flow dynamics during handoff. While packet loss
could occur during hand-off and trigger TCP retrans-
missions, as packets will traverse two different paths
during handoffs, retransmission could also be caused
by delayed packets triggering the TCP retransmission
timeout (RTO). Indeed, comparing Figure 4 and Fig-
ure 5, we can see clearly that although ILNPv6 with
soft handoff has close to zero loss, retransmissions still
occur due to the RTOs being triggered as packets are
delayed because of the path changes during handoff.
However, ILNPv6 with soft-handoff also resulted in the
lowest number of retransmissions, as well as the lowest
packet loss.

MIPv6 without RO mainly suffers from loss during
handoff, as only one path between MN and CN is in use,
but may also suffer from delayed packets due to routing
via the HA for all data packets. MIPv6 with RO has
some loss at handoff while the Binding Update process
synchronises the new CoA between the CN, MN and
HA. ILNPv6 with hard handoff has similar performance
to MIPv6 with RO, but shows a little improvement in
loss and retransmissions as, unlike MIPv6, no HA is in-
volved — the signalling is end to end. Finally, ILNPv6
with soft-handoff can use both transmission paths dur-
ing handoff, so gratuitous loss is eliminated (only the
“natural” loss of the actual path is measured, no addi-
tional loss due to the handoff process). For MIPv6 with
RO and ILNPv6 soft-handoff, there will be RTOs trig-
gered due to packet delays, as consequence of multipath
effects, and misordering of transmitted packets.

4.2 API usage for legacy applications

In this practical examination, two key assumptions
were made: (i) the user code always makes a getad-
drinfo() call before making a TCP connection, and does
not use a previously retrieved result, so that the look-
aside cache will have the correct entry: (ii) the user code
does not make direct use of the address bits from the
getaddirinfo() call (and does not use IP address values
in configuration state).

Arguably, the second assumption is a reasonable ex-
pectation, if we consider the recommendation of RFC1958
[5] to use FQDNSs or application-level names.



Packet loss of the TCP flow,
LAN to LAN handoff

The number of retransmission of the TCP flow,
LAN to LAN handoff

600 . . . . 7 600 . . . .
£
~ 500 1 £ 500 4
a =
5] =]
g 400 Z 400 A
& E
2 300 A £ 300 A
£ E
B 200 A % 2200 4
: 5
100 5 100
£
(U . - - — Z 0~ - - - -
MIPv6 MIPv6 ILNPv6 ILNPv6 MIPv6 MIPv6 ILNPv6 ILNPv6
without RO with RO hard soft without RO with RO hard soft
(a) LAN to LAN handoff. (a) LAN to LAN handoff.
Packet loss of the TCP flow, The number of retransmission of the TCP flow,
LAN to WAN handoff LAN to WAN handoff
600 . . . . Z 600 . . . .
£
—~ 500 A E 500 A
2 . £ B
o =]
400 A ‘Z 400 A
X E
2 300 A £ 300
B 200 A $ £ 200 4 .
: :
100 A 2100 |
£
0= T T T ; Z 0= T T T T
MIPv6 MIPv6 ILNPv6 ILNPv6 MIPv6 MIPv6 ILNPv6 ILNPv6
without RO with RO hard soft without RO with RO hard soft
(b) LAN to WAN handoff. (b) LAN to WAN handoff.
Packet loss of the TCP flow, The number of retransmission of the TCP flow,
WAN to LAN handoff WAN to LAN handoff
600 . . . . 7 600 . . . .
£
~ 500 4 £ 500 4
a =
o =]
g 400 Z 400 A
& . E . .
2 300 = Z 300 %
F 00 E 00
B 200 A = 2200 4 g
: :
100 5 100
|
0~ - - - ; 4 0~ - - - -
MIPv6 MIPv6 ILNPv6 ILNPv6 MIPv6 MIPv6 ILNPv6 ILNPv6
without RO with RO hard soft without RO with RO hard soft
(c) WAN to LAN handoff. (¢) WAN to LAN handoff.
Packet loss of the TCP flow, The number of retransmission of the TCP flow,
WAN to WAN handoff WAN to WAN handoff
600 . . . . = 600 . . . .
£
~ 500 A E 500 A
3 g
400 A ‘Z 400 A
& E
300 - Z 300 -
z W = 2 0 ==
3 200 A T £ 200 4 =
: :
100 A _gé 100 4
0+ ‘ ‘ ‘ ‘ Z 04 ‘ ‘ ‘ =

MIPv6 MIPv6 ILNPv6 ILNPv6
without RO with RO hard soft

(d) WAN to WAN handoff.

MIPv6 MIPv6 ILNPv6 ILNPv6
without RO with RO hard soft

(d) WAN to WAN handoff.

Figure 4: Lost packets during the handoff process.
ILNPv6 with soft handoff had the lowest packet loss
(close to zero).

Figure 5: Total retransmission events triggered dur-
ing handoff. ILNPv6 with soft handoff had the low-
est number of retransmission events.



The first assumption may not hold: applications may
cache DNS results. However, DNS resource record (RR)
time-to-live (TTL) values are typically not returned to
user code via the standard sockets API. So, we take the
position that a careful programmer should always make
a getaddrinfo() call as described, which is commonly
used for the code pattern described in Section 3.1. The
implied assumption here, also, is that the getaddrinfo()
implementation does honour DNS RR TTL values and
does not use other caching. This is not stated in the
POSIX.1-2008 specification®, so behaviour could vary
across implementations. Also, some Linux distributions
might use the Name Service Cache Daemon (nscd(8)),
which was disabled in our testbed.

However, for ILNPv6, the expectation is that for ‘well-
behaved’ applications [6, Section 2.1] [14, Section 10.5],
operation across ILNPv6 will work as if for IPv6, and
this can be seen to be true for our experimental config-
uration.

5. DISCUSSION

We present some discussion on: (i) the wider aims of
ILNP, with reference to the rationale of the IRTF Rout-
ing Research Group (RRG) work; (ii) briefly consider
other Id/Loc solutions that have been implemented;
and (ili) make some suggestions as to other practical
challenges and functionality that could be achieved with
ILNP.

5.1 Future Internet architecture

The recommendations of the RRG in RFC 6155 [4]
were based on a charter (initiated in 2007) to recom-
mend a new routing architecture for the Internet. The
many Id/Loc proposal submitted came from a long-
known (as early as 1977 [16, Section 3]) and recurrent
recognition in the Internet community that the over-
loading of the IP address usage was a cause for serious
concern [17-19]. So, a key aim of the proposals was
to address the concerns of scalability for routing and
addressing in the Internet architecture, and it was one
of the initial drivers for early design and development
in ILNP [20,21]. Other Id/Loc proposals are discussed
below, but a good discussion of all the proposals con-
sidered by the RRG is given in RFC 6115 [4].

5.2 Other Id/Loc approaches

The Host Identity Protocol (HIP) (HIPv2 [22]) re-
quires the use of strong encryption as it relies on a pub-
lic key system for generating host Identifier values that
are used by higher layer protocols (such as TCP). IP
addresses are still used, but only for routing, i.e. as
Locators. However, HIP requires a new API for appli-
cations [23], and hence does not work for legacy applica-
tions. It may be possible to enable legacy applications
via a HIP-Aware Agent [24], but that would introduce

Shttp://pubs.opengroup.org/onlinepubs /9699919799 /

another entity that would incur management and main-
tenance overhead, as well as being a point of failure and
potentially offering an attack vector.

The Level 8 Multihoming Shim Protocol for IPv6 (SHIMG6)

[25] is aimed specifically at multihoming and re-homing,
but other functions (such as mobility) are possible. SHIM6
requires implementation of an extra ‘shim’ layer be-
tween the network and the transport protocol to per-
form mapping between Identifier and Locator values.
SHIMG6 uses IP address values for both Identifiers and
Locators, so presents further IP address overloading.

The Locator Identifier Separation Protocol (LISP) [26]
uses ‘map-and-encap’, and is a network-based Id/Loc
solution. This has the advantage that legacy applica-
tions can be supported easily. It uses IP addresses for
both Endpoint Identifier (EID) and Routing Locator
(RLOC) values, further overloading the use of IP ad-
dresses. End-systems use only EID values. However,
the LISP approach increases both the per-packet pro-
tocol overhead and the complexity of deployed systems,
as additional entities are required for supporting the
map-and-encap mechanism.

One of the earliest Id/Loc architecture proposals for
the Internet was Nimrod [27,28]. This defined two new
datatypes: Endpoint Identifier (EID) values for hosts,
and Locators for routing. However, an implementation
was never completed to the satisfaction of the Nimrod
team.

5.3 Other challenges

You will note that during soft-handoff, the ILNPv6
node is multihomed, albeit temporarily. Indeed, host-
multhoming functionality is implemented in our FreeBSD
work, which we have described previously [29]. So, IL-
NPv6 could offer at the IP-level multipath capability for
upper-layer protocols in a general way, rather than the
protocol-specific solutions that exist in protocols such
as MP-TCP [30]. Of course, other mechanisms, e.g.
congestion control for MP-TCP, would still be required
to be implemented with ILNP. However, ILNP can offer
multihomed TP connectivity as first class functionality
so does not suffer the same issues, e.g. security issues,
that are currently of concern for MP-TCP [31].

Localised addressing, such as the use of network ad-
dress translation (NAT), is very popular for managing
site networks. One of the major arguments against the
use of localised addressing is that, in IP, end-to-end in-
tegrity of communication is lost, as IP address values,
which form part of the end-to-end state, are changed by
the network. However, ILNPv6 does not use addresses
for end-system state, only NID values. As demonstrated
in Section 3, even though L6/ values change, the NID
remains constant during a session, so end-to-end in-
tegrity of the session and flows is maintained. In ILNP,
localised addressing is a property of the architecture,
rather than retro-fitted engineering, as it is in IP. So,
localised addressing is easily possible in ILNP using a
Locator Re-writing Relay (LRR) function at the site



border router (SBR) [14, Section 2].

Mobility and multihoming form a duality in ILNP.
The soft handoff mechanism uses (temporary, dynamic)
mutihoming when the MN is in the overlap area between
cells. There are other possible benefits from ILNPv6
which can be enabled with the combination of mul-
tihoming, mobility, and localised addressing with the
LRR function at the SBR, including: mobility of whole
network sites [32]; wide-area virtual machine image mi-
gration [33]; secure fail-over for network resilience [34];
and various site security features [35] including location
privacy [6, Section 7]. These could be enabled without
loss of end-to-end integrity for flows.

6. CONCLUSION

We have designed and evaluated the first two kernel
implementations of ILNPv6, on Linux and FreeBSD.
The kernels of both OSs were modified by extending
the IPv6 code, implementing ILNPv6 as a superset of
IPv6.

Our evaluation of mobility in the Linux kernel shows
that for a class of well-behaved applications, especially
those that conform to the guidelines on use of names
in [5], ILNPv6 can support legacy applications directly,
without the need for re-engineering or recompiling pro-
grams. This can be achieved with the existing C sock-
ets interface. This requires changes to the getaddrinfo()
function in libe (or glibe) and the /etc/hosts file. How-
ever, it means that IPv6 binaries can operate directly
over an ILNPv6 stack.

6.1 Future work

Future work will be focussed on completing the level
of implementation in both the Linux and FreeBSD ker-
nels, which will include moving the ILNPv6 code into
the production kernels for both public OS sources. In
the meantime, a tar ball of the existing code will be
made available from the authors, on request.
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