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Abstract— Computer based analysis of Electronic Health
Records (EHRs) has the potential to provide major novel
insights of benefit both to specific individuals in the context
of personalized medicine, as well as on the level of population-
wide health care and policy. The present paper introduces a
novel algorithm that uses machine learning for the discovery
of longitudinal patterns in the diagnoses of diseases. Two key
technical novelties are introduced: one in the form of a novel
learning paradigm which enables greater learning specificity,
and another in the form of a risk driven identification of
confounding diagnoses. We present a series of experiments
which demonstrate the effectiveness of the proposed techniques,
and which reveal novel insights regarding the most promising
future research directions.

I. INTRODUCTION

The trend of increased efforts in health data collection
and its ready digitization is widely recognized as a major
change in the manner medical data is used [2], [4], [1].
In particular the collection of Electronic Health Records
(EHRs) has recently started attracting major translational
research efforts in the domains of data mining, knowledge
extraction, and machine learning [6], [22], [11]. Considering
that this research is still in its early stages it is undeniably
wise to refrain from overly ambitious predictions regarding
the type of knowledge which may be discovered in this
manner at the very least it is true that few domains of
application of the aforesaid techniques hold as much promise
for impact. It is sufficient to observe the potential benefits
that an increased understanding of complex interactions of
lifestyle diseases in the economically developed work could
deliver in terms of personalized medicine or health care
policy [13] on the one hand, and a wiser utilization of
resources [18], aid, and educational material [8], especially
in the economically deprived countries [17], to appreciate
the global and overarching potential.

II. PREVIOUS WORK

The contributions of the present work, the problems it
addresses, and limitations of previous work that it over-
comes are best understood in the context of a successful,
recently described algorithm for longitudinal diagnosis pat-
tern extraction from EHRs described by Arandjelović [5],
[7] and subsequently further developed by Vasiljeva and
Arandjelović [20]. Hence we summarize its main features;

the reader is referred to the original publication for an in-
depth description of the algorithm.

Consider a patient’s hospital diagnosis history H which
comprises a sequence of diagnoses di:

H = d1 → d2 → . . .→ dn, (1)

where each di is a discrete variable whose value is a specific
diagnostic code. A typical and widely used diagnosis coding
scheme is that provided by the International Statistical Clas-
sification of Diseases and Related Health Problems (ICD-
10) [21]. The algorithm proposed in [6] predicts the most
likely next diagnosis d∗n+1 for a patient by learning the
probabilities of transitions from H to all other possible
histories which can result from a single follow-up diagnosis
d:

d∗n+1 = argmax
d∈D

p(H → d|H), (2)

where D is the set diagnostic codes. To make the estimation
of the probability p(H → d|H) tractable and learnable from
limited data, a patient’s diagnostic history H is represented
using a fixed length binary vector v(H). This representation
bears resemblance to the bag of words representation fre-
quently used in text analysis [9] and which has since been
successfully adapted to various other application domains
such as computer vision [3]. Each element in v(H) encodes
the presence (value 1) or lack thereof (value 0) of a specific
salient diagnosis (i.e. the corresponding diagnostic code) in
H , save for the last element which captures jointly all non-
salient diagnoses. Saliency is determined by the frequency
of the corresponding diagnosis in the entire data corpus
(n.b. different saliency criteria can be readily used instead).
The probability p(H → d|H) in (2) is then estimated by
superimposing a Markovian model [19], [15] on the space
of history vectors which leads to H → d being interpreted
as a transition from the state represented by v(H) to the
state represented by v(H → d). As usual the probabilities
parameterizing the Markov model are learnt from a training
data corpus. A conceptual illustration of the method is shown
in Fig 1.

The key idea behind the described model is that it is
the presence of past complications which most strongly
predicts future ailments [16], [14], [12], [10], which allows
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Fig. 1. Conceptual illustration of the method proposed in [6] which
superimposes a Markovian model over a space of history vectors used to
represent the medical state of a patient.

for the space of states over which learning is performed to
be reduced dramatically; in particular, this is achieved by
employing a fixed length state representation and through
binarization of its elements.

III. RISK DRIVEN INFERENCE

Our second key technical novelty concerns a major chal-
lenge in the development of models underlain by data from
EHRs, which emerges from the pervasive problem known
as the semantic gap. In colloquial terms, the problem is
readily understood as arising from the lack of understanding
of, say, disease aetiology and physiology that an automatic
method has in the interpretation of data from EHRs. For
example, a human expert (such as a general practitioner or
a specialist) who does have such knowledge, may be readily
able to discount even the consideration of certain disease in-
teractions which may be difficult to infer using a purely data
driven approach that machine methods generally employ. To
overcome this challenge some means of interaction, that is,
information provision between an expert and a computer
algorithm is needed. Yet this interaction has to be intuitive,
and require little effort and computing expertize.

The original authors correctly point out and thereafter
empirically demonstrate that a major limitation in the use of
Markovian models lies in their ‘forgetfulness’. This feature
seemingly makes them inappropriate for the modelling under
the consideration here. They overcome this limitation by
incorporating memory into the state representation itself.
In particular they describe what they term a history vector
which is a representation of a patient’s diagnostic history
in the form of a binary vector which encodes the types of
diagnoses that the patient has been given in the past.

1) Identifying confounding factors: Consider two history
vectors, Hx and Hy , which differ in the presence of only
a single past diagnosis dd. In other words, all bits in Hx

and Hy are the same expect for exactly one. A specific
follow-up diagnosis df , causes the transition of Hx and
Hy to respectively H ′x and H ′y . We show how it can be
automatically inferred if the differential diagnosis between
hx and hy is one which affects the probability of df . We
achieve this using a Bayesian approach which readily lends

itself to asymmetrical risk driven inference, as described
next. If the probability of df is not affected by the presence
of dd (in the context of other historical diagnoses in Hx and
Hy , of course) then the transition data from the database of
EHRs can be merged and thus used to estimate the aforesaid
probability with higher precision so clearly this is a highly
desirable goal which can be used to reduce the amount of
confounding factors greatly and improve the accuracy of the
learnt models.

Consider what happens if Hx and Hy are indeed merged
in the context of the prediction of df . In such a case, the
number of the observed transitions from Hx to Hx → df
and from Hy to Hy → df are considered as equivalent. By
considering them jointly a new probability of df from either
Hx or Hy can be estimated. Call this probability z. The
total risk ρ of the aforesaid merge can then be computed as
a sum of risks associated with the actual probabilities of df
following Hx and Hy respectively:

ρ = ρx + ρy. (3)

This risk emerges as a consequence of the fact that the empir-
ical nature of EHRs inherently involves a degree of stochas-
ticity which means that there can never be absolute certainty
that dd is indeed entirely inconsequential in the context of
this prediction. Instead, employing Bayesian framework, it
is necessary to integrate over the latent probability of df
following Hx and Hy and weight this with the associated
relative risk. In this manner for ρx the risk can be written
as:

ρx = Cx

∫ 1

z

|x− z|p(x|nx)dx+ (4)

+ (1− Cx)

∫ z

0

|z − x|p(x|nx)dx. (5)

What this expression captures can be readily understood as
follows. The first term quantifies the risk of z underesti-
mating the true probability x of df following Hx (hence the
integration is for x > z). Similarly the second term quantifies
the risk of z overestimating the true probability x of df
following Hx (hence the integration is for x < z). The two
risks are in general weighted asymmetrically, as governed
by the constant Cx ∈ [0, 1] which should be set by a rele-
vant medical professional. The aforesaid asymmetry captures
what are in general different ‘costs’ of overestimating and
underestimating the probability of a particular diagnosis. For
example, the cost of underestimating the probability of a
terminal diagnosis is much greater than of overestimating it
by the same amount. In this case Cx should be large i.e.
closer to 1.

Continuing from (4), using Bayes theorem the term
p(x|nx) can be rewritten as follows:

p(x|nx) =
p(nx|x)p(x)

p(nx)
, (6)

where nx is the number of cases in which df was the
next diagnosis following Hx, of the total of Nx transitions
present in the EHRs database. Since the method has no
means of establishing an informative prior on the transition



probability x, an uninformative prior p(x) is used which
leads to p(x) = 1 since x ∈ [0, 1]. Moreover, p(nx|x)
is readily identifiable as a binomial distribution with the
parameter x and the number of draws Nx allowing p(x|nx)
to be expanded further as follows:

p(x|nx) =
p(nx|x)
p(nx)

=

(
Nx

nx

)
xnx(1− x)Nx−nx∫ 1

0
p(nx|w)dw

(7)

=

(
Nx

nx

)
xnx(1− x)Nx−nx∫ 1

0

(
Nx

nx

)
wnx(1− w)Nx−nxdw

(8)

=
xnx(1− x)Nx−nx

β(nx + 1, Nx − nx + 1)
(9)

where β(.) is the Euler beta function, and simple marginal-
ization over x is performed in the denominator. This expres-
sion can be substituted back into (4) and (5), and then (3),
and the integration performed numerically (which is both
simple and fast, given that it is a simple integration in 1D).
Merging is then performed if the weighted proportion of
incorrect predictions exceeds a certain threshold tm, set e.g.
by a physician.

a) Notes and remarks on practical application: It is
insightful to highlight several important practical aspects
of the proposed technique. Firstly, once implemented as
software it is intuitive to use – the tradeoff between over- and
under-diagnosis is a concept routinely dealt with by medical
professionals, and it is simply set using a single constant
which balances the two risks. The risk can is also readily
interpretable. For example, for a terminal diagnosis the
integrand in (4) can be interpreted as computing the number
of individuals who would be incorrectly expected to have
a terminal diagnosis – an undesirable mistake considering
the potential emotional stress, for start. Similarly, for a
terminal diagnosis the integrand in (5) estimates the number
of individuals who would experience a terminal episode but
which would not be predicted – arguably an even more
serious mistake in that it ipso facto involves the loss of life.
The acceptable tradeoff can be made by a clinical either on
the level of an individual patient, for a specific diagnosis,
or for an entire class of diagnoses (e.g. the same baseline
risk tradeoff could be set for an entire ICD chapter, such
as chapter IX which covers circulatory system diseases). In
summary, the proposed technique is simple and intuitive to
use, and it allows a high degree of flexibility in the choice
of specificity or generality in application.

IV. EVALUATION

In this section we summarize some of the experiments
we conducted to evaluate the proposed framework and de-
rive useful insights which illuminate possible avenues for
improvement and future work.

A. EHR data
In an effort to reduce the possibility of introducing vari-

ability due to confounding variables, we sought to standard-
ize our evaluation protocol as much as possible with that
adopted by previous work. Hence we conducted our experi-
ments the large collection of EHRs (over 40,000 individuals
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Fig. 2. Surface plot showing the number of pair-wise merges performed
(as the proportion of all possible transitions pairs which could possibly be
merged) as a function of the adjustable parameters of the proposed method,
namely the merging threshold tm and the relative risk weighting constant
Cx in (4) and (5).

and over 400,000 diagnostic events) described in [6]. For
completeness here we summarize the key features of this
data set.

The EHRs adopted for evaluation were collected by a
large private hospital. The distribution of patient age in the
database is 73 ± 15 years, the youngest and oldest patients
being 17 months and 102 years old respectively, with the
male to female ratio 56 : 44. Approximately 23% of the
patients in the database have a date of death associated with
their EHR, which means that they are deceased and thus have
a record of a terminal diagnosis. The entire EHR collection
spans a period of 10 years, with the average number of
diagnoses per patient of 10.1± 62.2.

B. Experiments, results, and discussion

Using the real-world collection of EHRs described in
the previous section, we conducted a series of experiments
to facilitate the understanding of the proposed merging
technique.

Firstly we examined how the number of transition merges
changes with the variation in the values of the two free
parameters, namely the merging threshold tm and the relative
risk weighting constant Cx in (4) and (5). We applied our
method to the entire EHRs data set though, as noted in
the previous section, in practice it is likely that different
parameters would be applied to different sub-trees of the
diagnosis coding hierarchy.

Our findings are summarized by the surface plot shown
in Fig 2. While it is inherently the case that increasing tm
cannot reduce the number of merges made, the characteristics
of the corresponding change are insightful to the clinician
in that they can be used to guide the choice of the risk
weighting constant. Notice, for example, that the number
of effected merges increases approximately linearly across
the entire range of tm for Cx smaller than approximately
0.5 whereas for Cx greater than 0.5 there is a much more
sudden increase.

Next we examined salient diagnoses df (see Sec III)
associated with the greatest number of merges. We noticed
that the diagnosis of stroke was one of the particularly
represented diagnosis amongst these, across different values
of tm and Cx, so we examined the corresponding merging
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Fig. 3. The number of effected merges associated with the diagnosis of
stroke (as df in Sec III) as the proportion of all possible transitions pairs
which could possibly be merged and associated with transitions effected by
the diagnosis of stroke.

behaviour in more detail. Interpreted intuitively, this means
that on average the diagnosis of stroke affects the least (from
the set of salient diagnoses included in the history vector)
the prognosis of other ailments. The family of curves for
different values of Cx, showing the variation of the number
of merges (as the proportion of all possible transitions
pairs which could possibly be merged and associated with
transitions effected by the diagnosis of stroke) as a function
of the merging threshold tm is shown in Fig 3. It is insightful
to observe that much like in Fig 2, an increase in Cx

results in more merges for the same value of tm. A careful
consideration of characteristics such as this one is crucial in
the practical deployment of the proposed method, and the
choice of granularity (in the context of the diagnosis coding
hierarchy) at which the method is applied and its parameters.

V. SUMMARY AND FUTURE WORK

In this paper we introduced a novel, clinically informed
method for improving a previously described algorithm that
uses machine learning on EHR collections for the discovery
of longitudinal patterns in the diagnosis of diseases. The key
technical novelty comes in the form of risk driven identi-
fication of confounding diagnoses which allows for better
utilization of available data and more reliable prediction.
Experiments on a large real-world data corpus of EHRs were
used to analyse the performance of the proposed technique.

As regards possible future work directions, a number of
possibilities were highlighted in the work which originally
introduced the history vector based approach [5]. Our work,
both previous [20] and that described in the present paper,
provides additional evidence that the aforementioned possi-
bilities are promising, while suggesting a number of poten-
tially more significant immediate alternatives. In particular
while we agree with the suggestion in the original paper
that the presence of a particular diagnosis is a predictive
factor not much weaker than the exact count of the same
diagnosis (the use of which would likely require prohibitively
large amounts of training data), we believe that history vector
binarization is an overly harsh step for the reduction of the
learning space. Following the spirit of the method introduced
in the present paper we intend to explore the possibility
of automatically detecting chronic types of diagnoses or

episodes of care (such as dialysis, for example), and then
using a binary representation for non-chronic and a more
graded representation for chronic conditions.
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