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We demonstrate the appearance of thermal order by disorder in Ising pyrochlores with staggered
antiferromagnetic order frustrated by an applied magnetic field. We use a mean-field cluster variational
method, a low-temperature expansion, and Monte Carlo simulations to characterize the order-by-disorder
transition. By direct evaluation of the density of states, we quantitatively show how a symmetry-broken
state is selected by thermal excitations. We discuss the relevance of our results to experiments in 2D and 3D
samples and evaluate how anomalous finite-size effects could be exploited to detect this phenomenon
experimentally in two-dimensional artificial systems, or in antiferromagnetic all-in–all-out pyrochlores like
Nd2Hf2O7 or Nd2Zr2O7, for the first time.
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Order by disorder (OBD) is the mechanism whereby a
system with a nontrivially degenerate ground state develops
long-range order by the effect of classical or quantum
fluctuations [1]. From a theoretical point of view, the OBD
mechanism is a relatively common occurrence in geomet-
rically frustrated spin models [2], such as the fully
frustrated domino model—where it was discussed for
the first time [1]—or the Ising antiferromagnet on the
three-dimensional fcc lattice [3]. Many other theoretical
realizations exist. However, definitive experimental evi-
dence for this mechanism has remained elusive. Strong
evidence for quantum OBD in the antiferromagnetic
(AFM) XY insulating rare-earth pyrochlore oxide Er2Ti2O7

has been reported [4–7], but a conclusive proof of thermal
OBD remains unseen in the laboratory so far. The difficulty
lies in establishing whether order is selected through the
OBD mechanism (a huge disproportion in the density of
low-energy excitations associated with particular ground
states) or is due to energetic contributions not taken into
account that actually lift the ground-state degeneracy.
In this work we study OBD in Ising spin systems

where the staggered order is inhibited by a magnetic
field. We analyze theoretically and numerically the three-
dimensional pyrochlore system and its two-dimensional
projection (the checkerboard lattice). We demonstrate the
existence of singular finite-size effects (FSE) and we show
how they can be exploited to detect OBD. Our results
suggest that thermal OBD could be finally observed
experimentally in natural staggered structures based on
the pyrochlores [8–10], as well as in artificially designed
two-dimensional magnetic [11] or colloidal systems [12].

More precisely, we first study an Ising pyrochlore with
h111i anisotropy and AFM nearest-neighbor interactions.
In the absence of magnetic field (B), the ground state is the
all-spins-in–all-spins-out Néel state [13]. A strong field
along the crystalline direction [110] can break this order,
turning it into a disordered state with three-spins-in–one-
spin-out and three-out–one-in elementary units. This type
of disordered system of magnetic charges (see below) had
been studied before in the context of spin ice [14–16], but
in the presence of rather artificial constraints. In contrast, as
we will show, the present case is obtained in a simple way,
with the additional reward of exhibiting an OBD transition
at moderate fields. We give numerical evidence for this
phenomenon and we prove it analytically with the cluster
variational method (CVM) [17] and a low-temperature
analysis [1] of the 2D approximate projection on the
checkerboard lattice that allow us to exhibit singular
FSE [18]. We explicitly show the relevance of the low-
energy excitations on the ordering mechanism by evaluat-
ing the density of states of the 3D system. Finally, we
discuss the possibility to discriminate true OBD exper-
imentally in three different scenarios.
The pyrochlore lattice consists of corner-sharing tetra-

hedra; see Fig. 1(a). The centers of tetrahedra pointing up
(colored) and down (uncolored) make two interpenetrating
fcc lattices (a diamond lattice). Classical Ising magnetic
moments μi ¼ μSi ¼ μSiŝi sit on the vertices of the
tetrahedra. The quantization directions ŝi are along the
h111i diagonals and, conventionally, Si ¼ �1 indicates a
magnetic moment pointing outwards or inwards of an up
tetrahedron. The Hamiltonian is
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H ¼ −Jnn
X
hiji

Si · Sj − μ
X
i

B · Si; ð1Þ

where Jnn is the exchange constant, and the first sum runs
over nearest neighbors. The ferromagnetic (FM) version of
this Hamiltonian corresponds to the nearest-neighbor spin-
ice model. Differently from other works, here we concen-
trate on the antiferromagnetic case. For B∥½110�, one can
understand the spin system as consisting of two types of
chains: while blue arrows (β spins) belong to the “β chains”
(running perpendicular to B) with ŝi ·B ¼ 0, yellow ones
(α spins) sit on the “α chains” (parallel to B), such that
ŝi · B ¼ αi

ffiffiffiffiffiffiffiffi
2=3

p
B and αi ¼ �1 [19]. Figure 1(b) displays

the conventional planar projection of the 3D lattice. Using
these definitions, one can rewrite the Hamiltonian in terms
of scalar quantities:

H ¼ J
X
hiji

SiSj −
ffiffiffi
2

p
μBffiffiffi
3

p
X
i∈α

αiSi; ð2Þ

where J < 0 contains a geometrical factor (including a sign
change) [20] and the second sum runs over the α chains only.

Within the magnetic charge picture [21], the centers of
up or down tetrahedra are considered neutral if two of their
spins point in and two out, have a positive or negative
single charge if three spins point in and one out, or vice
versa [pictured as small spheres in Figs. 1(a) and 1(b)], or a
positive or negative double charge if all spins point in or all
point out [pictured as big spheres in Fig. 1(a)]. In this
language, the ground state forB ¼ 0 consists of an array of
double charges of alternating sign with the zinc blende
structure, which spontaneously breaks the symmetry
between the two fcc sublattices [22]. Unlike the single
charges and the neutral state, a double charge has no
magnetic moment, making it unstable under a sufficiently
strong magnetic field applied along any direction. B∥½110�
is special in that it does so without favoring any fcc
sublattice [23], opening the door to a single-charge dis-
ordered ground state. In order to measure the amount of
charge order for a given spin configuration, we define the
single and double staggered charge densities, ρsS and ρdS,
respectively. They represent the modulus of the magnetic
charge density due to single or double monopoles in up
tetrahedra, normalized so that full order corresponds to a
value of 1. It is also useful to define ρS ¼ ρsS þ 2ρdS
representing the total staggered charge per sublattice site.
As implied by Eq. (2), B lowers the energy of single

charges and neutral tetrahedra with positive projection of
magnetic moment along it, leaving that of double charges
unchanged [seeFig. 1(c)].A fieldB such thatμB=jJj > 7.348
stabilizes a ground state which, while remaining globally
neutral, has a single charge on each tetrahedron. This field
orders theα chains ferromagnetically [Fig. 1(b)], isolating the
β chains in the same way that a [111] field decouples the
kagome planes in the spin-ice case [24]. Spins on β chains are
impervious to this field but not to the exchange interaction.
Eachβ chainwill thus independently andspontaneously order
antiferromagnetically [see Fig. 1(b)], implying a spontaneous
one-dimensional staggered charge order along each β chain.
The additional freedom associated with the symmetry break-
ing within each separate β chain means that no 3D staggered
charge order can arise at T ¼ 0, though the residual entropy
(proportional to the number of chains, not spins) is sub-
extensive. We tested this fact using Monte Carlo (MC)
simulations in a system of L3 cubic cells and periodic
boundary conditions with an applied field μB=jJj ¼ 12.1,
well in the disordered regime. By integrating the specific heat
over a wide temperature range ð0.1 < kBT=jJj < 70Þ, and
throughdirect calculation from the density of states computed
with the Wang-Landau (WL) algorithm [25], we obtained
the residual entropy Sres ∝ L2 for different system sizes
[Fig. 1(d)]. Details on the simulations are provided in the
Supplemental Material [26].
Here we are interested in the situation in which the

ground state consists of this disordered single-charge state
while the lowest energy excitations correspond to double
charges [see the shaded area in Fig. 1(c); the dashed line

FIG. 1. (a) Conventional unit cell of the pyrochlore lattice
(L ¼ 1) with 4 tetahedra pointing up (colored) and 4 pointing
down (uncolored). The arrows represent the spin direction at each
site. The color of the spheres marks the sign of the charges and
the size is proportional to their modulus. (b) Planar projected
configuration: a tetrahedron becomes a square with crossings, in a
checkerboard lattice. The field B∥½110� couples to two spins on
each tetrahedron (α chains, yellow arrows), and is orthogonal to
the other two (β chains, blue arrows). The configuration shown is
a zero-temperature ground state for large fields. (c) The energy of
a singly charged (S), doubly charged (D), and neutral tetrahedron
(N) as functions of the magnetic energy normalized by the
exchange energy scale; only the energies corresponding to the S
and N configurations favored by the field are shown. (d) Linear
size dependence of the residual entropy Sres.
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marks the field μB=jJj ¼ 7.562 used in the remainder of
this work]. The appearance of excitations implies an
obvious entropy increase. On the other hand, their structure
(all spins in or all out) imposes nearest-neighbor correla-
tions [22] that will favor charge order between adjoining
chains, and thus the phenomenon of OBD that we will
study.
The CVM places the tetrahedra on a tree with the same

coordination number as the 3D lattice, i.e., four [17,28,29]
(Husimi tree). Once this is done, recurrence relations for the
order parameters are derived and solved analytically in the
infinite-size limit. We tested the formation of charge order
in the zinc blende structure by measuring ρdS and ρ

s
S, plotted

as continuous lines in Fig. 2. Within the CVM both order
parameters are strictly zero at T ¼ 0. At an infinitesimal
temperature ρsS jumps to one and ρdS increases continuously
from zero. The two observables vanish at Tc as in a second-
order Ising-type phase transition with mean-field expo-
nents. The specific heat at low T has a standard Schottky
anomaly due to two-level system excitations. The second
peak indicates the transition to the disordered phase and it is
just a cusp since α ¼ 0 in mean field. The MC simulations
of the 3D model (symbols in Fig. 2) clearly support this
interpretation of the specific heat, with a low-temperature
Schottky anomaly at low T, and a broad peak with evident
FSE at Tc [Fig. 2(c)]. Its evolution with the number of
spins N, as well as that of ρsSðTcÞ and its fluctuations, are

consistent with a second-order transition within the 3D
Ising universality class (see Supplemental Material [26]).
In order to understand better the behavior of the order
parameter, we discuss the important low-T finite-size
effects below.
A careful low-T analysis is most easily implemented in

the projection to the checkerboard lattice. As in the 3D
case, the lowest energy levels are excited by flipping an α
spin against B. Furthermore, this α spin should link two β
chains with staggered AFM 1D order. Labeling the spins
sij in Fig. 1(b) according to the coordinate system ð0; x; yÞ,
such an excitation would be to turn the spin s22.
This creates two defects with an energy cost equal to
2ϵ ¼ 2μB–12J (ϵ=J ¼ 0.164 for the parameters of the
numerical simulations). For simplicity, we used open
boundary conditions in this representation.
With the exact enumeration of these excitations we

calculated ρsS and ρdS for finite N at low T. We expect the
FSE to depend on the number of spins N on the lattice,
independently of its dimension d. We see in Fig. 2 that the
behavior observed for d ¼ 2 qualitatively follows that of the
numerical simulations of the 3D system. The naive extrapo-
lation of ρsS in the low-T limit for N → ∞ suggests that ρsS
vanishes in the thermodynamic limit, in seeming contra-
diction to the CVM results (top of Fig. 2). To explain this, we
provide below a careful study of the interplay between the
limits N → ∞ and βϵ → ∞ in the checkerboard model.
Consider two neighboring β chains with M spins in the

direction y0 of the rotated coordinate system ð0; x0; y0Þ in
Fig. 1(b) [30]. In the low-T limit the β spins have perfect
antiferromagnetic order along the y0 direction. There are thus
two possibilities for the relative orientation of the spins on
neighboring β chains: they are either parallel [FM ordered,
e.g., the second and third β chains in Fig. 1(b)] or antiparallel
[AFM ordered, e.g., in the first and second β chain in
Fig. 1(b)]. In the latter case and for M large enough, there
are OðM=2Þ possible excitations of energy 2ϵ, obtained by
reversing an α spin between the two β chains, and the
partition function is ZAFM ≃ ð1þ e−2βϵÞM=2. In the former
case there are no possible low-energy excitations (neglecting
the presence of neutral tetrahedra) and ZFM ≃ 1. This can be
interpreted in terms of an effective AFM coupling between
the β spins only. Let us compare the partition functions for
the two possible orientations,

ZAFM

ZFM
¼ e−βðHAFM

eff −HFM
eff Þ; Heff ¼ Jeff

XM

j0¼1

sβ
1j0s

β
2j0 ; ð3Þ

where sβi0j0 label the β spins and i
0, j0 sweep the rotated lattice

in Fig. 1(b). The interaction on each β chain remains the
original J. Then HAFM

eff ¼ −JeffM, HFM
eff ¼ JeffM, and we

conclude that Jeff is given by

Jeff ¼ ð4βÞ−1e−2βϵ: ð4Þ

 0
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FIG. 2. The order parameters (a) ρsS and (b) ρdS and (c) the
specific heat as functions of temperature. The symbols show MC
data for the 3D system, and the dashed lines (with the same color
code) show the results of the low-T expansion for the 2D
projection, both with similar number of spins N. The solid (blue)
lines are the CVM outcome (N → ∞).
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Thus, after integrating out the α spins, we have an effective
low-T model on a tilted 2D square lattice, with AFM
anisotropic interactions equal to J in the y0 direction and
Jeff in the x0 direction.
We now go one step further and we reduce the low-T

effective model to a 1D one. As mentioned, the β chains are
perfectly ordered for kBT=jJj ≪ 1. We define a macro β
spin σ ¼ þ1 (−1) according to the direction of the first spin
on the chain being up (down). They sit on the sites of a 1D
lattice and interact with an effective AFM interactionMJeff .
The T → 0þ limit is then very tricky, since Jeff → 0 in a
singular way. At any finite M, MJeff → 0 for T → 0þ: the
effective 1D system decouples and disorders. However, if
we take M → ∞ first, the effective 1D system orders AFM
and, as it was already AFM ordered along the β chains, it is
fully AFM ordered with ρsS T→0þ

��!1. In conclusion, the low-T
expansion predicts a first-order OBD transition with a finite
jump of ρsS from 0 to 1, just as obtained with the CVM. One
has

0 ¼ lim
N→∞

lim
T→0þ

ρsS ≠ lim
T→0þ

lim
N→∞

ρsS ¼ 1: ð5Þ

MC results are not in contradiction with this: huge values of
N are needed to see a large ρsS as T lowers [Fig. 2(a)].
OBD is sometimes illustrated by a cartoon [2,31] in

which the ground-state manifold is represented by a curve
in phase space [see Fig. 3(c)]. The increment on the
accessible phase space when raising T slightly from 0 is
drawn as a surface (green) next to this curve. OBD occurs
when the excitations linked to certain ordered ground states
(cross) dominate the thermal average over all accessible

states. We can turn this description into a quantitative
argument by explicitly calculating the density of states
δðΔE; ρSÞ of the 3D system with the WL algorithm. We
move along the configuration space using two parameters:
the energy excess with respect to the ground state ΔE and
the total staggered charge density ρS. Figure 3 shows the
low-energy part of δ for L ¼ 3 and the same magnetic field
used in Fig. 2. The colors emphasize the value of δ,
normalized using that there is a single state with ρS ¼ 2
(a double monopole crystal). Each point in the graph
represents the real binning in energy and order parameter.
We can see a very flat surface near the degenerate ground-
state energy (ΔE ¼ 0) and two very noticeable symmetric
peaks; e.g., at ΔE=ðNjJjÞ ¼ 0.106 the maxima are at
ρpeakS ≈�1.2. Consistently, the MC canonical ensemble
average of the order parameter and the one computed with

jρSjWL ¼ 1

Z

XΔEmax
k

ΔEk

X
ρSl

jρSljδðΔEk; ρSlÞe−βΔEk ; ð6Þ

with ΔEmax
k =jJj ¼ 0.385, coincide over a rather wide range

of T; see Fig. 3(b). The remaining (pink) data points are

obtained as follows. We first read the density ρpeakS ðΔEÞ that
maximizes δ for each ΔE. Such an evaluation is quite
precise on the interval ΔE=ðNjJjÞ ∈ ½0.05; 0.2� and it
coincides, within numerical accuracy, with jρSjðhΔEiÞ
measured with the MC or WL methods (not shown). We
next transform the ΔE dependence into a T dependence
replacing ΔE by hΔEiðTÞ from the MC data. We therefore
obtain jρpeakS jðTÞ in Fig. 3(b). The good coincidence between
the data points obtained in this way and through Eq. (6)
marks the importance of low-energy thermal fluctuations
around the ordered states. Furthermore, the procedure
complements the low-T expansion in the sense that it
estimates jρSj beyond its maximum as a function of T.
We will now discuss how an experimental contrast to our

results may be possible with magnetic [8–11,32] or colloidal
[12] samples. In order to observe classical OBD experimen-
tally in these systems, the tendency towards a charge ordered
ground state favored by amisalignedB or long-range dipolar
interactions should be made as small as possible. A first
option are the AFM Ising pyrochlores [8–10]. They have the
advantage that the stabilization of the all-in–all-out state is
achieved through the exchange interaction; this allows us to
keep the dipolar interaction small. Field misalignment can
also be minimized by using a vector magnet [33]. The
observationof charge order at temperaturesmuchhigher than
that characterizing both the residual field and dipolar energy
scales would be a strong indication of OBD. Detecting the
AFM order disappear as a function of increasing field [see
Fig. 1(c)] would also be a conclusive smoking gun. Neutron
scattering could be a sensitive probe if only short- or
medium-range AFM order is set due to competing ordering
trends. A second route towards OBD is to take advantage of

FIG. 3. (a) Density of states δ as a function of excitation energy
ΔE and total staggered charge density ρS, for a system of size
L ¼ 3 and for μB=jJj ¼ 7.562. Each colored circle corresponds
to a single energy of the system. The two symmetric peaks are
centered at jρpeakS j ≈ 1.2. Inset (b) compares jρSj calculated from
the WL method and the MC simulation with the values directly
obtained from the maxima of δ. Inset (c), copied from Ref. [31],
represents the ground-state manifold (black curve) in parameter
space and the selection of an ordered state (cross) by thermal
excitations (green region).

PRL 117, 167203 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

167203-4



the recent advances in the design of frustrated magnets to
create a planar system similar to the one in Fig. 1(b), thus
minimizing problems of field misalignment. The idea is to
use artificial square-lattice spin-ice samples in their AFM
phase, with the vertex energy hierarchy ϵc < ϵe < ϵa;b,
where c indicates AFM, e represents three-in–one-out or
three-out–one-in, and a, b represent FMvertices [11,34] (see
the Supplemental Material for a detailed explanation [26]).
The third route concerns the use of colloidal systems in 2D
arrays of optical traps,where staggered charge order could be
attainable [12,35]. The precise control over the interactions
and accessibility of thermal excitations may offer another
fertile ground to recreate this experiment. As we have seen,
FSE have a very strong influence in ρsS; this fact may be
exploited to recognize incipient OBD using samples with
small size.
In summary, we have made an in-depth numerical and

theoretical study of OBD in two models closely linked to
ice systems. Our results may establish a route to the much-
sought-after experimental realization of classical order by
disorder.
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