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Abstract

We consider the Assouad dimensions of orthogonal projections of planar sets
onto lines. Our investigation covers both general and self-similar sets.

For general sets, the main result is the following: if a set in the plane has Assouad
dimension s ∈ [0, 2], then the projections have Assouad dimension at least min{1, s}
almost surely. Compared to the famous analogue for Hausdorff dimension – namely
Marstrand’s Projection Theorem – a striking difference is that the words ‘at least’
cannot be dispensed with: in fact, for many planar self-similar sets of dimension
s < 1, we prove that the Assouad dimension of projections can attain both values s
and 1 for a set of directions of positive measure.

For self-similar sets, our investigation splits naturally into two cases: when the
group of rotations is discrete, and when it is dense. In the ‘discrete rotations’ case we
prove the following dichotomy for any given projection: either the Hausdorff measure
is positive in the Hausdorff dimension, in which case the Hausdorff and Assouad
dimensions coincide; or the Hausdorff measure is zero in the Hausdorff dimension,
in which case the Assouad dimension is equal to 1. In the ‘dense rotations’ case we
prove that every projection has Assouad dimension equal to one, assuming that the
planar set is not a singleton.

As another application of our results, we show that there is no Falconer’s
Theorem for Assouad dimension. More precisely, the Assouad dimension of a
self-similar (or self-affine) set is not in general almost surely constant when one
randomises the translation vectors.

Mathematics Subject Classification 2010: 28A80, 28A78.
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1 Introduction

One of the most fundamental dimension theoretic questions in geometric measure theory
is: how does dimension behave under orthogonal projection? This line of research began
with the seminal paper of Marstrand from 1954 [Ma], influenced by some earlier work of
Besicovitch. One version of Marstrand’s Projection Theorem states that if F ⊆ R2 is an
analytic set with Hausdorff dimension dimH F = s ∈ [0, 2], then the Hausdorff dimension
of the orthogonal projection of F in almost every direction is min{1, s}, which is as big
as it can be. Here ‘almost every’ refers to Lebesgue measure on the interval [0, π),
with projections parameterised in the obvious way. For the purposes of this paper,
the important thing about this projection theorem is that, no matter what analytic set
F ⊆ R2 one considers, the Hausdorff dimension of the projection πF is almost surely
constant, i.e., takes the same value for almost every π.

Other important notions of dimension include the upper and lower packing dimension
and upper and lower box-counting dimension, see [F3, Mat2]. The behaviour of these
dimensions under projection is rather more subtle than for the Hausdorff dimension,
but is nevertheless well-studied. For example, for a compact planar set with (upper)
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packing dimension s, it is possible for the packing dimensions of all the projections to
be strictly less than min{1, s}. This was first demonstrated by Maarit Järvenpää [J]
and general almost sure upper and lower bounds were given by Falconer and Howroyd
[FH1]. Moreover, these bounds are sharp. However, in the mid-1990s it became clear
that each of these dimensions is at least almost surely constant under projection, in the
same sense that the Hausdorff dimension is. The precise value of the constant is more
complicated than simply min{1, s}, but can be stated in terms of dimension profiles, see
[FH2, Ho].

There are also natural higher dimensional analogues of these projection results. In
particular, the higher dimensional analogue of Marstrand’s theorem, where one considers
projections of analytic sets F ⊆ Rd to k-planes, was proved by Mattila in 1975 [Mat1]. In
this setting the almost sure value of the Hausdorff dimension is given by min{k, dimH F}
and ‘almost sure’ refers to the natural invariant measure on the Grassmannian manifold
Gd,k, which consists of all k dimensional subspaces of Rd.

For more information on the rich and fascinating topic of projections of fractal sets
and measures, see the recent survey papers [FFJ, Mat3] and the references therein.

The Assouad dimension is another notion of dimension, which has been very useful
as a tool in several disparate areas of mathematics. In recent years it has been gaining
more attention in the setting of fractal geometry and geometric measure theory. As such,
it is natural to consider the fundamental geometric properties of the Assouad dimension,
such as its behaviour under orthogonal projections. We recall the definition here, but
refer the reader to [R, Fr, L] for more details. In particular, the Assouad dimension of a
totally bounded set is always at least as big as the upper box-counting dimension (which
is itself always at least as big as each of the Hausdorff, lower box-counting and upper
and lower packing dimensions). For any non-empty subset E ⊆ Rd and r > 0, let Nr(E)
be the smallest number of open sets with diameter less than or equal to r required to
cover E. The Assouad dimension of a non-empty set F ⊆ Rd is then given by

dimA F = inf

{
s > 0 : (∃C > 0) (∀R > 0) (∀ r ∈ (0, R)) (∀x ∈ F )

Nr

(
B(x,R) ∩ F

)
6 C

(
R

r

)s }

where B(x,R) denotes the open Euclidean ball centred at x with radius R. It is well-
known that the Assouad dimension is always an upper bound for the Hausdorff dimen-
sion.

In this paper we prove that, unlike the Hausdorff, packing and box dimensions dis-
cussed above, the Assouad dimension of orthogonal projections of a compact set F ⊂ R2

need not be almost surely constant as a function of the projection angle. However, in
analogy with the result for Hausdorff dimension, the essential infimum of the said func-
tion is at least min{dimA F, 1}; even if F is not compact, or even not analytic. These
results are discussed in Section 2.1.

We establish the non-constancy result via a detailed study of the Assouad dimensions
of projections of planar self-similar sets. The Hausdorff dimension of projections of self-
similar sets has attracted a lot of attention in recent years, see Section 1.1, and thus it



Page 3 J. M. Fraser & T. Orponen

is natural to consider the analogous questions for Assouad dimension. Our results for
self-similar sets are discussed in detail in Section 2.2, and the applications concerning
non-constancy and Falconer’s Theorem (mentioned in the abstract) will be presented in
Sections 2.3 and 2.4 respectively. On route to proving our main result for self-similar
sets, we obtain new information about the Assouad dimension of graph-directed self-
similar sets in the line with overlaps, Theorem 4.2, which is the natural extension of
[FHOR, Theorem 1.3] to the graph-directed setting and is of independent interest.

Many questions remain unanswered by the results in this paper, and we pose some
of them in Sections 2.1 through 2.5. In particular, very little is known for self-affine sets,
and in higher dimensions.

1.1 A short introduction to self-similar sets

Self-similar sets are arguably the most fundamental class of fractal set and have been
studied extensively, see [Hu, F3]. Let {Si}i∈I be a finite collection of contracting sim-
ilarities mapping [0, 1]d into itself. By similarity, we mean that for each i ∈ I, there
exists a similarity ratio ci ∈ (0, 1) such that for all x, y ∈ Rd we have

|Si(x)− Si(y)| = ci|x− y|

which means that the contractions Si scale uniformly by ci in every direction. As such
we may decompose each Si uniquely as

Si(x) = ciOi(x) + ti (x ∈ Rd)

where Oi ∈ O(d) is a d × d orthogonal matrix and ti ∈ Rd is a translation. Here and
later O(d) denotes the orthogonal group consisting of all d× d orthogonal matrices and
SO(d) denotes the special orthogonal group, i.e., the subgroup of O(d) consisting of
orientation preserving matrices. A fundamental result of Hutchinson [Hu] states that
there is a unique attractor of the iterated function system (IFS) {Si}i∈I , that is, a unique
non-empty compact set F ⊆ [0, 1]d satisfying

F =
⋃
i∈I

Si(F ).

The set F is called self-similar and often has a rich fractal structure. A self-similar
set satisfies the open set condition (OSC) (for a given IFS defining it) if there exists a
non-empty open set U ⊆ [0, 1]d such that⋃

i∈I
Si(U) ⊆ U

with the sets Si(U) pairwise disjoint. If F satisfies the OSC, then its Hausdorff and
Assouad dimensions are given by min{s, d} where s is the similarity dimension given by
solving the equation ∑

i∈I
csi = 1,
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often referred to as the Hutchinson-Moran formula. If the OSC is not satisfied, then
the dimensions are more difficult to get hold of and indeed the Assouad and Hausdorff
dimensions may be distinct [Fr, FHOR]. One still expects the Hausdorff dimension to be
given by min{s, d}, unless there is a good reason for it not to be, such as exact overlaps
in the construction, see [PSo, Question 2.6]. Recent major advances were made in this
area by Hochman [H1, H2]. There has also been intense interest in the dimension theory
of the projections of self-similar sets in recent years, see the survey [S]. In particular, we
wish to mention the following theorem:

Theorem 1.1. Let F ⊆ [0, 1]d be a self-similar set containing at least two points, suppose
that the group generated by {Oi}i∈I is dense in O(d) or SO(d) and fix k ∈ N less than
d. Then

dimH πF = min{k,dimH F}

for all π ∈ Gd,k. Here Gd,k refers to the family of all orthogonal projections onto k-
dimensional subspaces of Rd. Also being ‘dense’ in O(d) or SO(d) refers to the topology
of pointwise convergence.

The particular interest of this result is that ‘dense rotations’ guarantees that there
are no exceptional directions; a much stronger statement than Marstrand’s Theorem
which says that the exceptional directions form a null set. This result is essentially
due to Hochman and Shmerkin’s breakthrough work [HS], although they stated the
result assuming some separation conditions. These conditions were explicitly removed
by Farkas [Fa] and Falconer-Jin [FJ]. The result in the planar case was obtained earlier
by Peres and Shmerkin [PS].

2 Results

2.1 Projections of general sets

We parameterise orthogonal projections onto lines in R2 by θ ∈ [0, π) in the natural way,
by letting πθ be the projection onto the line lθ passing through the origin and forming
an angle θ with the positive x-axis. With this notation, our main result for general sets
is the following:

Theorem 2.1. Assume that F ⊂ R2. Then, for almost all θ ∈ [0, π),

dimA πθF > min{dimA F, 1}.

Theorem 2.1 will be proved in Section 3. The lower bound is obviously sharp, and
in Section 2.3 we demonstrate by example that the inequality cannot be replaced by an
equality: the function θ 7→ dimA πθF need not be almost surely constant, and it can
attain both the values dimA F and 1 for a set of θ’s with positive measure. We do not
know if other values are possible here, or if there can be three distinct values:

Question 2.2. Given a set F ⊂ R2, how many distinct values can the Assouad dimen-
sion of πθF assume for a set of θ’s with positive measure? If there are only two such
values, are they always dimA F and 1?
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2.2 Projections of self-similar sets

In this section we state our main results for self-similar sets, which are rather complete
in the context of Assouad dimension. In the 2-dimensional setting the groups O(2) and
SO(2) are particularly simple: O(2) consists of counterclockwise rotations by angles
α ∈ [0, 2π) and the corresponding reflections with orientation reversed and SO(2) just
consists of the rotations. As such, the group generated by {Oi}i∈I will be dense if and
only if one of the Oi rotates by an irrational multiple of π and otherwise it will be discrete
(in fact finite).

Here is the main result for self-similar sets:

Theorem 2.3. Let F ⊆ R2 be self-similar set containing at least two points, and first
suppose that the group generated by {Oi}i∈I is discrete. Then, for a given θ ∈ [0, π), we
have:

1. If HdimH πθF (πθF ) > 0, then dimA πθF = dimH πθF

2. If HdimH πθF (πθF ) = 0, then dimA πθF = 1.

Secondly, suppose that the group generated by {Oi}i∈I is dense in O(2) or SO(2). Then

dimA πθF = 1

for all θ ∈ [0, π).

The discrete rotations case of Theorem 2.3 will be proved in Section 4 and the dense
rotations case will be proved in Section 5.

We emphasise that we assume no separation conditions for F , in particular the OSC
may fail and the Hausdorff dimension of F may be strictly smaller than the similarity
dimension. By Marstrand’s Theorem, we have that, for almost all θ ∈ [0, π), dimH πθF =
min{1,dimH F}, but Farkas [Fa, Theorem 1.2] showed that in the discrete rotations
case there is always at least one direction θ ∈ [0, π) where the dimension drops, i.e.
dimH πθF < min{1,dimH F}, provided the Hausdorff dimension of F is given by the
similarity dimension and this value is less than or equal to 1. In the dense rotations case
Eroğlu [E] and Farkas [Fa, Theorem 1.5] proved that Hs(πθF ) = 0 for all θ ∈ [0, π). So,
the dichotomy seen in the ‘discrete rotations’ part persists for dense rotations, but case
1. never occurs.

In the dense rotations case, the Assouad dimension of πθF is constant and indepen-
dent of the dimension of F . Neither of these phenomena are generally manifest in the
discrete case, but one can always find at least one direction θ for which the Assouad
dimension of πθF attains the maximal value of 1, independent of the dimensions of F ,
provided F is not contained in a line.

Theorem 2.4. Let F ⊆ [0, 1]2 be a self-similar set, which is not contained in a line.
Then there exists θ ∈ [0, π) such that

dimA πθF = 1.

We will prove Theorem 2.4 in Section 6.
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2.3 There is no direct counterpart to Marstrand’s Projection Theorem
for Assouad dimension

Our key application of Theorem 2.3 is that, unlike the Hausdorff, upper and lower
box, and packing dimensions, the Assouad dimensions of orthogonal projections of a
(compact) set are not almost surely constant in general. Thus, we do not have a direct
counterpart to Marstrand’s Projection Theorem for Assouad dimension.

Theorem 2.5. For any s satisfying log5 3 < s < 1, there exists a compact set F ⊆ R2

with Hausdorff and Assouad dimension equal to s for which there are two non-empty
disjoint intervals I, J ⊆ [0, π) such that

dimA πθF = s, for all θ ∈ I
dimA πθF = 1, for almost all θ ∈ J.

In particular, θ 7→ dimA πθF is not an almost surely constant function.

The restriction to s > log5 3 ≈ 0.6826 in Theorem 2.5 may well be an artefact of our
method, but at present we are unaware how to construct lower-dimensional examples:

Question 2.6. Given any s ∈ [0, 1), in particular s 6 log5 3, can one construct a
compact planar set with Hausdorff dimension s, for which the Assouad dimension of the
projections is not almost surely constant?

Also, we do not know if the words ‘almost all θ ∈ J ’ could be strengthened to ‘all
θ ∈ J ’ with a different construction:

Question 2.7. Can one construct a compact planar set for which the Assouad dimension
of the projection takes different values on two sets with non-empty interior?

Note that Theorem 2.5 demonstrates the apparently strange property that Assouad
dimension can increase under projection (a Lipschitz map), which cannot happen for
the dimensions discussed in Section 1. This peculiarity of the Assouad dimension was
observed previously in [Fr, Section 3.1].

The rest of this section will be dedicated to constructing an example with the prop-
erties required by Theorem 2.5. The set F = Fc will actually be very simple: it will
be a self-similar modification of the Sierpiński triangle, where the contraction ratios are
equal to c ∈ (1/5, 1/3), see Figure 1. Fix c ∈ (1/5, 1/3) and let Fc be the self-similar
attractor of the IFS on [0, 1]2 given by {x 7→ cx, x 7→ cx+(0, 1−c), x 7→ cx+(1−c, 0)}.
Observe that Fc satisfies the open set condition (OSC) and so dimH Fc = dimA Fc =
− log 3/ log c =: s ∈ (log5 3, 1). It follows from Theorem 2.3 that

1. dimA πθFc = dimH πθFc if and only if HdimH πθFc(dimH πθFc) > 0

2. dimA πθFc = 1 if and only if HdimH πθFc(dimH πθFc) = 0.

In light of this dichotomy, and the fact that dimH πθFc = s < 1 almost surely by
Marstrand’s Theorem, in order to complete the proof of Theorem 2.5 it is sufficient to
show that there is a non-empty open interval of θ’s for which Hs(πθFc) > 0, and a non-
empty open interval of θ’s within which Hs(πθFc) = 0 almost surely. The first of these
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tasks is straightforward, because one can easily find an open interval of θ’s for which πθFc
is a self-similar set satisfying the open set condition and it then follows from standard
results that dimH πθFc = s and Hs(πθFc) > 0, see [F3, Chapter 9]. The existence of such
an interval relies on the assumption c < 1/3 since (after rescaling) the problem reduces
to positioning three pairwise disjoint intervals of length c inside the unit interval.

The second task is more delicate, but fortunately has already been solved by Peres,
Simon and Solomyak [PSS]. They defined the set of intersection parameters IP = {θ :
πθ is not injective on Fc} and proved that IP contains a non-empty interval provided
c ∈ (1/5, 1/3) and, moreover, for almost every θ ∈ IP we have Hs(πθFc) = 0. This can
be found in [PSS, Theorem 1.2(i) and Example 2.8]. We could also have used the 4-corner
Cantor set with contraction parameter in the interval (1/6, 1/4), which was discussed in
[PSS], but chose the Sierpiński triangle because it yielded the least restrictive conditions
on the dimension of F = Fc.

Figure 1: The set Fc (with c = 1/4) and two typical projections. There is a small interval
of projections I for which the 3 pieces of Fc project into pairwise disjoint intervals,
meaning that projections in these directions satisfy the open set condition. There is also
an interval J within which the projection map is not injective.

2.4 There is no direct counterpart to Falconer’s Theorem for Assouad
dimension

In 1988 Falconer proved a seminal result in the dimension theory of self-affine sets, see
[F1]. Self-affine sets are closely related to self-similar sets, but the contractions in the
defining IFS can be affine, i.e. ciOi can be replaced with any contracting invertible
d × d matrix. This means that the scaled copies of the attractor can scale by different
amounts in different directions, as well as being skewed or sheared, which makes them
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much more difficult to study. Even if the OSC is satisfied, the dimensions may be
hard to compute and the Assouad, box and Hausdorff dimensions may all be distinct.
Despite this, Falconer proved that the Hausdorff and box dimensions are generically
equal to the affinity dimension; the self-affine analogue of the similarity dimension.
Here ‘generically’ means almost surely upon randomising the defining set of translations.
The affinity dimension depends only on the linear parts of the defining maps (as with
the similarity dimension) and Falconer proved that for Lebesgue almost all choices of
translation vectors {ti}i∈I , the box and Hausdorff dimensions of the corresponding self-
affine set are equal to the affinity dimension, provided the spectral norms of the matrices
were all strictly less than 1/2. In fact, Falconer’s original proof required 1/3 here, but
Solomyak relaxed this assumption to 1/2 and pointed out that this was optimal [So]. Also
the affinity dimension is always an upper bound for the Hausdorff and box dimensions,
but this is not true for the Assouad dimension [M, Fr]. Specialising to the case of
self-similar subsets of the line (which is a very restrictive class of self-affine sets), the
assumption on norms is not required. In particular, we have the following result due to
Simon and Solomyak [SS]:

Theorem 2.8. Fix a set {ci}i∈I with each ci ∈ (−1, 1)\{0} and let s be the corresponding
similarity (affinity) dimension given by∑

i∈I
|ci|s = 1

For a given set of translations t = {ti}i∈I with ti ∈ R, let Ft denote the self-similar
attractor of the IFS {x 7→ cix+ ti}i∈I . Then for Lebesgue almost all t ∈ R|I|, one has

dimH Ft = dimB Ft = min{1, s}.

It is natural to ask if such a theorem exists for the Assouad dimension, for example,
is the Assouad dimension of a self-affine or self-similar set almost surely constant upon
randomising the translations in the above manner. We point out that the answer to
this question is no, once again due to the example of Peres, Simon and Solomyak [PSS]
discussed in Section 2.3.

Theorem 2.9. Fix c ∈ (1/5, 1/3) and let s = − log 3/ log c < 1. For a given set
of translations t = (t1, t2, t3) ∈ R3 let Ft denote the self-similar attractor of the IFS
{x 7→ cx + ti}3i=1. Then there exists two non-empty disjoint open sets U, V ⊆ R3 such
that

dimA Ft = s, for all t ∈ U
dimA Ft = 1, for almost all t ∈ V .

In particular, t 7→ dimA Ft is not an almost surely constant function.

Similar to Section 2.3, the open set U is easy to find: choose t′ ∈ R3 such that the
OSC is satisfied (which can be done since c < 1/3). Then observe that the OSC is still
satisfied for all t in some open neighbourhood of t′ in R3.
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Again, the second set V is more subtle, but dealt with by Simon and Solomyak [SS]
after re-parameterisation. Observe that for all t ∈ R3, the associated self-similar set is
equal to the self-similar set associated to (0, λ, 1) for some λ ∈ [0, 1], after appropriate
translating and re-scaling. More precisely, consider the open subset of R3 given by

X = {t = (t1, t2, t3) ∈ R3 : 0 < t1 < t2 < t3 < 1}

and the map Ξ : X → (0, 1) defined by

Ξ(t1, t2, t3) =
t2 − t1
t3 − t1

∈ (0, 1)

which is easily seen to be a continuous surjection satisfying

L3 ◦ Ξ−1 � L1, (2.1)

where L3 is 3-dimensional Lebesgue measure restricted to X and L1 is 1-dimensional
Lebesgue measure restricted to (0, 1). The attractor Ft is affinely equivalent to the
attractor corresponding to (0,Ξ(t), 1). Here, the affine rescaling is translation by −t1
followed by rescaling by (t3+c)−1. Moreover, the sets Fλ for λ ∈ (0, 1) are just a smooth
bijective reparamerisation of the sets πθF for θ ∈ (0, π/2) where F is the modification
of the Sierpiński triangle from the previous section. It follows by the example of Peres,
Simon and Solomyak [SS] that there exists a non-empty open interval J ⊆ (0, 1) such
that for almost all λ ∈ J , Hs(Fλ) = 0. It follows that the set V = Ξ−1(J) ⊂ R3 is
open and, by (2.1), for Lebesgue almost all t ∈ V we have Hs(Ft) = 0. Moreover,
Theorem 2.8 implies that for Lebesgue almost all t ∈ V we have dimH Ft = s and so by
[FHOR, Theorems 1.3] and [FF, Corollary 3.2], for Lebesgue almost all t ∈ V , we have
dimA Ft = 1. This final implication also follows from our Theorem 4.2, stated in Section
4.1.

2.5 Higher dimensions and self-affine sets?

The higher dimensional variants of our results remain mostly open. In the dense rotations
case, it is quite simple to show that the Assouad dimension is constant, regardless of the
ambient dimension:

Theorem 2.10. Let F ⊆ [0, 1]d be self-similar, suppose that the group generated by
{Oi}i∈I is dense in O(d) or SO(d) and fix k ∈ N less than d. Then dimA πF takes the
same value for all π ∈ Gd,k. Recall that Gd,k is the family of all orthogonal projections
onto k-dimensional subspaces of Rd.

We will prove Theorem 2.10 in Section 7. Viewing the proof of the planar case in
Section 5, it seems likely that this constant is always as large as possible:

Question 2.11. Let F ⊆ [0, 1]d be a self-similar set containing at least two points,
suppose that the group generated by {Oi}i∈I is dense in O(d) or SO(d) and fix k ∈ N
less than d. Then is it true that dimA πF = k for all π ∈ Gd,k?

The ‘non-dense case’ is more complicated in higher dimensions, as ‘non-dense’ no
longer implies ‘discrete’.
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Question 2.12. Let F ⊆ [0, 1]d be self-similar and fix k ∈ N less than d. Then is it true
that dimA πF is almost surely equal to either k or dimH πF?

In the ‘discrete’ case, in all ambient dimensions, the projections are still graph-
directed self-similar sets, but in higher dimensions the Assouad dimension of such sets is
more complicated and can take values other than k or dimH πF for particular directions,
see [FHOR, Section 4.1].

The examples in Section 2.4 show that there is no ‘Falconer’s Theorem for Assouad
dimension’. In light of [FHOR, Theorem 1.3] we know that for self-similar sets in the
line with random translations, the situation is still relatively simple. In particular, there
are at most two values which dimA Ft can take for a set of t with positive measure: the
similarity dimension, or 1. The situation in higher dimensions and for self-affine sets is
still unclear however.

Question 2.13. For 2 6 d ∈ N and a finite set of non-singular contracting d × d
matrices {Ai}i∈I , how many values can the Assouad dimension of the attractor of the
IFS {Ai + ti}i∈I take, for a set of translates t = {ti}i∈I ∈ Rd|I| with positive measure?

3 Proof of Theorem 2.1: projections of general sets

If A,B > 0, we will use the notation A .p B to signify that there exists a constant
C > 1 depending only on p such that A 6 CB. If the constant C is absolute, we write
A . B. The two-sided inequality A .p B .p A is abbreviated to A ∼p B. An example
of this notation is given by x4 + x2 ∼ x4 for x ∈ R.

Let ε > 0 and A > 1 be parameters to be specified later (the choice of ε will
eventually be determined by a counter assumption, claiming that Theorem 2.1 fails, and
A will depend on this ε; for the time being, A and ε are just some constants). We use
the following notion of (δ, s)-sets:

Definition 3.1. Let 0 6 s 6 d. A finite set P ⊂ B(0, 1) ⊂ Rd is called a (δ, s)-set with
parameters A and ε, if the points in P are δ-separated (that is, |p − q| > δ for distinct
p, q ∈ P ), and

|P ∩B(x, r)| 6 Aδ−ε
(r
δ

)s
, x ∈ Rd, r > δ. (3.1)

Here, and throughout Section 3, the notation | · | stands for cardinality.

The following estimate with ε = 0 is Proposition 4.10 in [O]. Since the proof is
verbatim the same in the case ε > 0, we do not repeat the details here.

Proposition 3.2. Let P ⊂ R2 be a (δ, 1)-set with m ∈ N points, let 0 < τ < 1, and let
E ⊂ [0, π) be a δ-separated collection of vectors such that

Nδ(πθ(P )) 6 δτm, θ ∈ E.

Then |E| . Aδτ−1−ε log(1/δ).

The proposition below shows that if 0 6 s 6 t 6 d, then “large” (δ, t)-sets always
contain “large” (δ, s)-sets. The argument below is practically repeated from [FO, Propo-
sition A.1], but we include it for the reader’s convenience:
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Proposition 3.3. Let δ > 0 and 0 6 s 6 t 6 d. Assume that P0 ⊂ B(0, 1) ⊂ Rd is a
δ-separated set with |P0| > cδ−t and satisfying |P0 ∩ B(x, r)| 6 C(r/δ)t for all x ∈ Rd
and r > δ, where 0 < c < C <∞ are constants. Then, there exists a subset P ⊂ P0 with
cardinality |P | &d (c/C)δ−s satisfying |P ∩B(x, r)| .d (r/δ)s for all x ∈ Rd and r > δ.

Proof. Without loss of generality, assume that δ = 2−k for some k ∈ N and P0 ⊂ [0, 1]d.
Denote by Dk the dyadic cubes in Rd of side-length 2−k. For a particular cube Q we
will write d(Q) for its diameter and `(Q) for the common side-length. First, find all the
dyadic cubes in Dk which intersect P0, and choose a single point of P0 inside each of
them. The finite set so obtained is denoted by P1. Next, modify P1 as follows. Consider
the cubes in Dk−1. If one of these, say Qk−1, satisfies

|P1 ∩Qk−1| >
(
d(Qk−1)

δ

)s
,

remove points from P1 ∩Qk−1, until the reduced set P ′1 satisfies

1

2

(
d(Qk−1)

δ

)s
6 |P ′1 ∩Qk−1| 6

(
d(Qk−1)

δ

)s
.

Repeat this for all cubes in Dk−1 to obtain P2. Then, repeat the procedure at all dyadic
scales up from δ, one scale at a time: whenever Pj has been defined, and there is a cube
Qk−j ∈ Dk−j such that

|Pj ∩Qk−j | >
(
d(Qk−j)

δ

)s
,

remove points from Pj ∩Qk−j−1, until the reduced set P ′j satisfies

1

2

(
d(Qk−j)

δ

)s
6 |P ′j ∩Qk−j | 6

(
d(Qk−j)

δ

)s
. (3.2)

Stop the process when the remaining set of points, denoted by P , is entirely contained
in some dyadic cube Q0 ⊂ [0, 1]d. Now, we claim that for every point x ∈ P1 there exists
a unique maximal dyadic cube Qx ⊂ Q0 such that `(Qx) > δ and

|P ∩Qx| >
1

2

(
d(Qx)

δ

)s
. (3.3)

We only need to show that there exists at least one cube Qx 3 x satisfying (3.3); the
rest follows automatically from the dyadic structure. If x ∈ P , we have (3.3) for the
dyadic cube Qx ∈ Dk containing x. On the other hand, if x ∈ P1 \ P , the point x was
deleted from P1 at some stage. Then, it makes sense to define Qx as the dyadic cube
containing x, where the ‘last deletion of points’ occurred. If this happened while defining
Pj+1, say, we have (3.2) with Qk−j = Qx. But since this was the last cube containing x,
where any deletion of points occurred, we see that that P ′j ∩Qx = P ∩Qx. This gives
(3.3).
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Now, observe that the cubes {Qx : x ∈ P1},

• cover P0, because they cover every cube in Dk containing a point in P0,

• are disjoint, hence partition the set P .

These facts and (3.3) yield the lower bound

|P | =
∑
|P ∩Qx| & δ−s

∑
d(Qx)s > δ−s

∑
d(Qx)t

&d
δt−s

C

∑
|P0 ∩Qx|

=
δt−s

C
|P0|

>
cδ−s

C
.

It remains to prove that |P ∩ B(x, r)| . (r/δ)s for all balls B(x, r) with r > δ. For
dyadic cubes Q ∈ Dl with l 6 k it follows immediately from the construction of P , in
particular the right hand side of (3.2), that

|P ∩Q| 6
(
d(Q)

δ

)s
.

The statement for balls follows by observing that any intersection P ∩ B(x, r) can be
covered by ∼d 1 intersections P ∩Q, where Q is a dyadic cube with d(Q) ∼ r.

For later use, we record a corollary, stated in the terminology of (δ, s)-sets:

Corollary 3.4. Let a > 0 and s > 1. Assume that P ⊂ B(0, 1) is a (δ, s)-set with
parameters A and ε, and cardinality |P | > aδε−s. Then, there exists a (δ, 1)-set P ′ ⊂ P
with parameters A′ ∼ 1 and ε′ = 0, and with |P ′| & (a/A)δ2ε−1.

Proof. Apply the previous proposition with C = Aδ−ε and c = aδε.

The corollary obviously fails for s 6 1, but in this case the substitute will be the trivial
observation that every (δ, s)-set is automatically a (δ, 1)-set (with the same parameters
A and ε). We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Write dimA F =: s ∈ [0, 2], and let ε > 0 be the constant from
Definition 3.1 (to be specified shortly, after we have formulated a counter assumption).
By the definition of Assouad dimension, two things hold:

(i) We may find two sequences (ri)i∈N and (Ri)i∈N of positive reals such that 0 < ri <
Ri < 1, and ri/Ri → 0, and Nri(B(xi, Ri) ∩ F ) > (Ri/ri)

s−ε for some xi ∈ R2.

(ii) For any 0 < r 6 R < 1 and x ∈ R2, we have Nr(B(x,R) ∩ F ) 6 A(R/r)s+ε for
some constant A = Aε,F > 1. We now declare that we use this constant A in
Definition 3.1.
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Fix 0 < ri < Ri < 1 as in (i), write δi := ri/Ri, and let P ′i ⊂ B(xi, Ri) ∩ F be
an ri-separated set with |P ′i | > δ−s+εi . Then, if Txi,Ri is the simplest possible affine
mapping taking B(xi, Ri) to B(0, 1), we find that Pi := Txi,Ri(P

′
i ) is a δi-separated set

with cardinality > δ−s+εi . Furthermore, Pi is a (δi, s)-set with parameters A and ε: if
r > δi, then rRi > ri, and so (ii) gives

|Pi ∩B(y, r)| = |P ′i ∩ T−1xi,Ri
(B(y, r))| 6 A

(
rRi
ri

)s+ε
= A

(
r

δi

)s+ε
6 Aδ−εi

(
r

δi

)s
.

If s > 1, we use Corollary 3.4 to find a (δi, 1)-set P̃i ⊂ Pi such that |P̃i| & δ2ε−1i /A. If
s 6 1, we just repeat the observation that Pi is a (δi, 1)-set. These alternatives will lead
to the generic lower bounds dimA πθF > s or dimA πθF > 1, respectively: their proofs
are so similar that we only record explicitly the case s 6 1.

To reach a contradiction, we assume that Theorem 2.1 fails for the particular set
F we are considering: thus, we assume that there is a constant τ > 0, and a positive
measure set of directions E0 ⊂ [0, π) such that dimA πθF < s− τ for all θ ∈ E0. Then,
we finally fix ε := τ/10. In particular, we have δτ−2ε log(1/δ) .τ δ

τ/2 for 0 < δ < 1. For
each direction θ ∈ E0, one should be able to find infinitely many values of i ∈ N such
that

Nri(B(x,Ri) ∩ πθF ) <

(
Ri
ri

)s−τ
for all x ∈ R; otherwise clearly dimA πθF > s− τ .

With the (easier) Borel-Cantelli lemma in mind, we define the sets Ei0, i ∈ N, by

Ei0 :=

{
θ ∈ E0 : Nri(B(t, Ri) ∩ πθF ) <

(
Ri
ri

)s−τ
for all t ∈ R

}
.

According to the preceding discussion, every point of E0 should lie in Ei0 for infinitely
many values of i ∈ N. So, by the Borel-Cantelli lemma, we wish to show that∑

i∈N
H1(Ei0) <∞. (3.4)

This forces H1(E0) = 0 and brings the desired contradiction.
To estimate the measure of Ei0, it suffices to estimate the maximum number of δi-

separated points in Ei0, where δi = ri/Ri: if this number is Ni, we have H1(Ei0) . δiNi.
Since Pi is a (δi, 1)-set with parametersA and ε, and cardinality |Pi| > δ−s+ε, Proposition

3.2 and the choice of ε imply that there are . Aδτ−1−2εi log(1/δi) .τ Aδ
τ/2−1
i angles

θ ∈ [0, π), which are δi-separated and such that Nδi(πθ(Pi)) 6 δτ−si .
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We now argue that if θ satisfies the converse inequality, then θ /∈ Ei0. Indeed, if
Nδi(πθ(Pi)) > δτ−si , then, for a certain t ∈ R (depending on the mapping Txi,Ri) we have

Nri(B(t, Ri) ∩ πθF ) > Nri(B(t, Ri) ∩ πθ(T−1xi,Ri
(Pi))) > δτ−si =

(
Ri
ri

)τ−s
,

and so θ /∈ Ei0. These observations show that Ni .τ Aδ
τ/2−1
i , and hence H1(Ei0) .τ

Aδ
τ/2
i . If δi → 0 fast enough (as we may assume), this proves (3.4) and the theorem.

4 Proof of Theorem 2.3: the discrete rotations case

The discrete rotations case of Theorem 2.3 will be proved by extending the work of
[FHOR] on self-similar sets in the line to graph-directed self-similar sets in the line, and
then recalling that projections of planar self-similar sets with discrete rotations onto
lines are precisely graph-directed self-similar sets, see Section 4.2.

4.1 Graph-directed self-similar sets in the line

Graph-directed self-similar sets are an important and natural generalisation of self-
similar sets. First considered by Mauldin and Williams [MW], roughly speaking one
has a family of sets rather than a single set (as in the self-similar case) and each member
of the family is made up of scaled copies of other sets in the family. More precisely, let
Γ = (V, E) be a finite connected directed graph, where V is a finite vertex set and E is
a finite set of edges, each of which starts and ends at a vertex. Note that there may
be multiple edges connecting a particular pair of vertices. To each e ∈ E , associate a
contracting similarity map Se : R→ R with contraction ratio ce. We assume for conve-
nience that Se([0, 1]) ⊆ [0, 1]. For u, v ∈ V, let Eu,v ⊆ E be the set of edges from u to v.
Then there exists a unique |V|-tuple of compact nonempty sets {Fv}v∈V , each contained
in [0, 1], satisfying

Fv =
⋃
u∈V

⋃
e∈Eu,v

Se(Fu).

The family {Fv}v∈V is the family of graph-directed self-similar sets. Since the directed
graph Γ is connected, it follows that the sets Fv have a common Hausdorff dimension.
Here we only consider graph-directed self-similar sets in the line, but one can consider
more general models in the same way where, for example, one works with more general
maps or in higher dimensions.

Zerner [Z], following Lau-Ngai [LN], defined the weak separation property (WSP) for
self-similar sets. This is weaker than the open set condition (OSC) but in many cases
plays a similar role in that if the WSP is satisfied, then the overlaps in the construction
are controllable and the attractor shares many properties with attractors in the OSC
case. Das and Edgar [DE] generalised the WSP to the graph-directed setting and we
will use their condition here. For u, v ∈ V, let

Fu,v = {S−1e ◦ Sf : e, f ∈ E∗u,v}
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where E∗u,v denotes the set of all finite directed paths in the graph going from u to v and
we write Se for the similarity defined by traversing e and composing the similarity maps
corresponding to each edge in the appropriate order. Also ce will denote the similarity
ratio of Se.

Definition 4.1 (GDWSP). The graph Γ and associated mappings satisfy the graph-
directed weak separation property (GDWSP) if for any (or equivalently all) v ∈ V, the
identity is an isolated point of Fv,v in the topology of pointwise convergence.

We do not explicitly define the WSP here but note that it is precisely the GDWSP
in the 1-vertex case, i.e., in the case where graph-directed self-similar sets reduce to
self-similar sets. Das and Edgar gave many equivalent formulations of the GDWSP [DE]
which parallel Zerner’s list of equivalent definitions of the WSP in the self-similar (or
1-vertex) case [Z, Theorem 1]. Das and Edgar then went on to show that many of the
properties of self-similar sets satisfying the WSP generalise to graph-directed self-similar
sets satisfying the GDWSP. Our main result for graph-directed self-similar sets is the
following.

Theorem 4.2. Let {Fv}v∈V be a family of graph-directed self-similar sets in [0, 1] with
common Hausdorff dimension s < 1. Then

1. If the GDWSP is satisfied, then for all v ∈ V we have Hs(Fv) > 0 and dimA Fv =
dimH Fv = s < 1.

2. If the GDWSP is not satisfied, then for all v ∈ V we have Hs(Fv) = 0 and
dimA Fv = 1.

This result can be seen as a generalisation of [FHOR, Theorem 1.3] and [FF, Corollary
3.2] to the graph-directed setting. In particular, it gives a precise dichotomy for the
Assouad dimension of graph-directed self-similar sets on the real line and proves that if
the Hausdorff dimension is strictly less than 1, then the GDWSP is equivalent to, for
example, positivity of the Hausdorff measure in the Hausdorff dimension. The ‘Hausdorff
measure in the Hausdorff dimension’ of a set E is HdimH E(E). This shows that the
GDWSP can be viewed as a property of the sets Fv, rather than the defining graph.

The proof of this theorem is divided into two parts, proving 1. (concerning weak
separation) and 2. (concerning lack of weak separation) respectively.

4.1.1 Proof of 1.: systems with weak separation

This result is proved by combining previous work of Das and Edgar on the GDWSP [DE]
with Falconer’s implicit theorems [F2] and recent work of Farkas and Fraser on Ahlfors
regularity and Hausdorff measure [FF].

Let s be the common Hausdorff dimension of the graph-directed family {Fv}v∈V and
fix v ∈ V. Since the GDWSP is satisfied, it follows from [DE, (4b)] that there exists a
uniform constant K > 0 such that for all sets U ⊆ Fv and u ∈ V,

#
{
Se : e ∈ E∗u,v, cmin|U | < ce 6 |U |, Se(Fu) ∩ U 6= ∅

}
< K.
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It then follows from [F2, Theorem 2] that

Hs(Fv) > csminK
−1|V|−1 > 0.

We note that this observation was made explicitly in the self-similar case by Zerner [Z,
Corollary on p. 3535].

Now that we have established positivity of the Hausdorff measure, the equality of
the Hausdorff and Assouad dimensions is an immediate consequence of [FF, Corollary
3.1], which proved that for a graph-directed self-similar set E, the Hausdorff measure
of E is positive in the Hausdorff dimension if and only if E is Ahlfors regular (that is,
HdimH E(B(x, r) ∩E) ∼ rdimH E for all x ∈ E and 0 < r 6 diam(E)). We note that [FF,
Corollary 3.1] is stated for irreducible subshifts of finite type rather than graph-directed
sets, but these two notions are equivalent: see the discussion following [FF, Corollary
3.1] and [FF, Proposition 2.5–2.6]. Alternatively, see [LM, Propositions 2.2.6 and 2.3.9].
It is also well-known and straightforward to prove that Ahlfors regular sets have equal
Hausdorff and Assouad dimensions.

4.1.2 Proof of 2.: systems without weak separation

This part follows the proof of [FHOR, Theorem 3.1]. Indeed, one just has to check that
the proof there extends to the graph-directed setting. For completeness we include the
argument, but in a slightly streamlined form.

Since the GDWSP is not satisfied, the identity, I, is not an isolated point of Fv,v
in the topology of pointwise convergence, which is equivalent to the uniform operator
topology in this setting since all the maps in Fv,v are similarities. This means we may
find a sequence (ek, fk) ∈ E∗v,v × E∗v,v such that

0 < ‖S−1ek
◦ Sfk − I‖ → 0

as k →∞, where ‖ · ‖ denotes the operator norm. Moreover, we may assume that for all
k the maps Sek and Sfk have no reflectional components: if this was not the case, then
there must be an edge g ∈ Ev,v which also contains a reflection and then, whenever Sek
and Sfk both contain reflections, one may replace them by Sgek and Sgfk in the sequence.
Both of these maps have no reflectional component and

S−1gek
◦ Sgfk = S−1ek

◦ Sfk

and so the convergence is unaffected.
Let φk = S−1ek

◦ Sfk − I, which is either a similarity or a non-zero constant function.
We may choose a point a ∈ Fv, an edge e′ ∈ E∗v,v, and a small radius r > 0 such that
Se′(a) = a and for all k, we have φk(B(a, r)) ⊂ (0,∞). This can be achieved by choosing
two such fixed points a, a′ and r < |a − a′|/2 and then observing that for all k either
φk(B(a, r)) or φk(B(a′, r)) does not include zero and so lies to the left or right of zero.
Then by choosing a subsequence (and flipping the axes if necessary) we can achieve this
using a or a′ for all k. Moreover, by an affine change of coordinates we may assume
without loss of generality that a = 0. Finally we may assume that Se′ does not contain
a reflection, since if it did we could replace it by S2

e′ . Denote the map Se′ by T and let
c = ce′ ∈ (0, 1).
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For k ∈ N, let
δk = inf{φk(x) : x ∈ B(0, r/2)} > 0

observing that δk → 0 as k →∞. Choose M ∈ N large enough to ensure that

TM (Fv) ⊆ B(0, r/2)

which we may do since T is a contraction and fixes 0. Observe that for any m ∈ N

(T−m ◦ S−1ek
◦ Sfk ◦ T

m − I)(x) = c−mφk(T
m(x))

and so for m >M and any x ∈ Fv we have

c−mδk 6 (T−m ◦ S−1ek
◦ Sfk ◦ T

m − I)(x) 6 3c−mδk, (4.1)

observing that φk(T
m(x)) 6 3δk since φk is a similarity and inf{φk(x) : x ∈ B(0, r)} > 0

by assumption. Note that the definition of δk used r/2 here instead of r. Let ε > 0 and
choose kj ,mj ∈ N and maps gj , hj by induction on j as follows. Begin by choosing k1
large enough that

δk1 < εcM

and then choose m1 >M such that

c−m1δk1 < ε 6 c−m1−1δk1 .

Also define
g1 = T−m1 ◦ S−1ek1

and h1 = Sfk1 ◦ T
m1 .

For j > 2, similar to above choose kj ,mj such that

cj−1c
−mjδkj < ε 6 cj−1c

−mj−1δkj , (4.2)

where cj−1 is the similarity ratio of gj−1, and define

gj = gj−1 ◦ T−mj ◦ S−1ekj
and hj = Sfkj ◦ T

mj ◦ hj−1.

It follows that for all j and all x ∈ Fv

(gj ◦ hj − gj−1 ◦ hj−1)(x) = gj−1 ◦ T−mj (S−1ekj
◦ Sfkj ◦ T

mj ◦ hj−1(x))

−gj−1 ◦ T−mj (Tmj ◦ hj−1(x))

= cj−1c
−mjφkj (T

mj ◦ hj−1(x))

which, by (4.2), implies that

cε 6 cj−1c
−mjδkj 6 (gj ◦ hj − gj−1 ◦ hj−1)(x) 6 3cj−1c

−mjδkj 6 3ε. (4.3)

We will now prove by induction that for all n ∈ N we have

{g−1n (0)} ∪ {g−1n ◦ gj ◦ hj(0) : j = 1, . . . , n} ⊆ Fv. (4.4)
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For n = 1, this is evident. Given the claim for n − 1, choose f ∈ E∗v,v such that Sf =

Sekn ◦ T
mn and so, in particular, gn ◦ Sf ◦ g−1n−1 is the identity. Observe that

Fv ⊇ g−1n ◦ gn ◦ Sf(Fv)
⊇ {g−1n ◦ gn ◦ Sf ◦ g−1n−1(0)} ∪ {g−1n ◦ gn ◦ Sf ◦ g−1n−1 ◦ gj ◦ hj(0) : j = 1, . . . , n− 1}

(by inductive hypothesis)

= {g−1n (0)} ∪ {g−1n ◦ gj ◦ hj(0) : j = 1, . . . , n− 1}.

Finally, the missing point, g−1n ◦ gn ◦ hn(0) = hn(0) is clearly in Fv which completes the
inductive argument. For ε = 1/n, consider the ball centered at x = g−1n (0) ∈ Fv with
radius R = 3c−1n , which is small for large n. By (4.3) and (4.4) we have

B(x,R) ∩ Fv ⊇ {g−1n ◦ gj ◦ hj(0) : j = 1, . . . , n}

and the n points on the right hand side are all separated by at least c−1n c/n. Setting
r = c−1n c/(2n), this means that

Nr

(
B(x,R) ∩ Fv) > n = (c/6)

(
R

r

)1

and this yields dimA Fv = 1 as required.
All that remains to complete the proof is to show that the Hausdorff measure of Fv

is zero in the Hausdorff dimension, but this follows again by [FF, Corollary 3.1] since
if the Hausdorff measure was positive, then Fv would be Ahlfors regular and thus have
Assouad dimension equal to s < 1.

4.2 Application to projections of planar self-similar sets

The discrete rotations case in Theorem 2.3 follows immediately from Theorem 4.2. The
reason for this is that projections πθF are graph-directed self-similar subsets of [0, 1]
(following appropriate rescaling and translating). For example, if the group generated
by {Oi}i∈I is a discrete subgroup of SO(2), then it is isomorphic to the finite cyclic
group of order n for some n ∈ N. It follows that, for a given θ ∈ [0, π), the family

{πθ+2πk/n(mod π)F}n−1k=0

is a family of graph-directed self-similar sets with associated graph and IFS inherited
from the IFS {Si}i∈I in the natural way. If the group contains orientation reversing
maps, then the situation is not much more complicated. For the details, the reader is
referred to [Fa, Theorem 1.1], which also handles the higher dimensional setting.

5 Proof of Theorem 2.3: the dense rotations case

In this section, it is be convenient to treat πθ as a mapping R2 → R rather than R2 →
span(cos θ, sin θ). In other words,

πθ(x) := x · (cos θ, sin θ)
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for θ ∈ [0, π) and x ∈ R2.
We begin by reducing the proof of the dense rotations case of Theorem 2.3 to studying

a very simple class of IFS. We will write I∗ =
⋃
k∈N Ik for the set of finite words over I

and for i = (i1, i2, . . . , ik) ∈ I∗, we write Si = Si1 ◦ Si2 ◦ · · · ◦ Sik and ci = ci1ci2 · · · cik
for the contraction ratio of Si.

Lemma 5.1. Let F ⊆ [0, 1]2 be a self-similar set such that the group generated by {Oi}i∈I
is dense in O(2) or SO(2). Then F contains a self-similar set E which is the attractor
of an IFS consisting of two maps {S1, S2}, both of which have the same contraction ratio
c ∈ (0, 1), the same orthogonal component O ∈ SO(2) corresponding to anti-clockwise
rotation by an irrational multiple of π, and such that S1(E) ∩ S2(E) = ∅.

Proof. This lemma is almost trivial since we are not concerned with losing any dimension.
Since we are in the dense rotations case, we may choose finite words i1, i2 ∈ I∗ such that
the orthogonal parts Oi1 , Oi2 ∈ SO(2) are orientation preserving and correspond to anti-
clockwise rotations by angles 2πα, 2πβ ∈ [0, 2π) respectively, where α, β ∈ [0, 1) and at
least one of which is irrational. Moreover, since F is assumed not to be a single point
we can guarantee that Si1(F ) ∩ Si2(F ) = ∅. Assume without loss of generality that α is
irrational and let 1 6 m,n ∈ N be such that mα + nβ is irrational. This can be done
irrespective of β since, for example, if α+ β is irrational then m = n = 1 will do and if
α+ β is rational, then m = 2, n = 1 suffices. Finally, the maps

Smi1 ◦ S
n
i2 and Sni2 ◦ S

m
i1

satisfy the requirements of the lemma, both rotating by 2π(mα + nβ) (mod 2π) and
contracting by c = cmi1 c

n
i2
∈ (0, 1).

In light of this lemma, and the fact that Assouad dimension is monotone, it suffices
to prove the dense rotations case of Theorem 2.3 for F generated by similitudes of the
form given in the lemma. As usual, we assume F ⊆ [0, 1]2. We wish to reserve “c” for a
small constant and “ti” for a real number, so for the mappings Sj we write

Sj(x) = ρOαx+ wj , j ∈ {1, 2},

where Oα ∈ SO(2) is rotation by a fixed α /∈ πQ, ρ ∈ (0, 1), and wj ∈ R2. We will
assume without loss of generality that w1 = 0, so that S1(0) = 0, and 0 ∈ F . We will
use the following special case of a lemma of Eroğlu, see [E, Lemma 2.6]:

Lemma 5.2. Given N ∈ N and ε > 0, there exist N distinct finite words i1, . . . , iN ∈
{1, 2}k of (common) length k ∈ N such that the following assertions hold:

(a) All the rotational components of the similitudes Si1 , . . . , SiN are within ε of each
other.

(b) There exists θ ∈ [0, π) such that for each pair 1 6 i 6 j 6 N , there exists a point
x = xi,j ∈ F with |πθ(Sii(x))− πθ(Sij (x))| 6 ερk.

Two rotational components are said to be at distance ε from each other, if the
corresponding angles defining the rotations are. The previous lemma self-improves to
the following corollary, where the “user” may specify the direction θ, the rotational
components of the mappings Sij , and the point x:
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Corollary 5.3. Given N ∈ N, ε > 0 and θ ∈ [0, π), there exists some k ∈ N and distinct
finite words i1, . . . , iN ∈ {1, 2}k such that the following assertions hold:

(i) All the rotational components of the similitudes Si1 , . . . , SiN are within ε of the
identity.

(ii) For each pair 1 6 i 6 j 6 N , we have |πθ(Sii(0))− πθ(Sij (0))| 6 ερk.

Proof. Apply Eroğlu’s lemma with parameters N ′ ∈ N and δ > 0 (to be specified later)
to find k0 ∈ N and i1, . . . , iN ∈ {1, 2}k0 satisfying (a) and (b) of Lemma 5.2 for some
direction θ0 ∈ [0, π). Thus, the rotational components of the mappings Sij are within δ
of each other, and for each pair 1 6 i 6 j 6 N ′, there exists a point x = xi,j ∈ F such
that |πθ0(Sii(x))− πθ0(Sij (x))| 6 δρk0 .

We first wish to replace θ0 by θ, which is very easy: by the irrationality of α/π, a
suitable choice of jL := (1, . . . , 1) ∈ {1, 2}L, with L .α 1/δ, ensures that

|πθ(SjLii(x))− πθ(SjLij (x))| 6 2δρk0+L.

Since all the rotational components of Sij were δ-close to each other, the same clearly
holds for SjLij .

Next, we wish to replace SjLij by something with rotational component close to
the identity, and x by 0. To this end, observe that all the projections πθ(SjLij (F )),

1 6 j 6 N , are contained in a single interval of length 5ρk0+L, since each individual
such projection is contained in an interval of length 2ρk0+L, and these intervals are at
distance 6 2δρk0+L 6 ρk0+L from each other. Now, for a certain M ∈ N (to be specified
shortly) and jM := (1, . . . , 1) ∈ {1, 2}M , consider the points

tj := πθ(SjLij (SjM (0))) ∈ πθ(SjLij (F )), 1 6 j 6 N ′.

There are N ′ such points, all contained in a single interval of length 5ρk0+L. Thus, if N ′

is large enough, depending only on δ, we can find, by the pigeonhole principle, a subset
of cardinality N that is contained in a single interval of length δρk0+L. Without loss of
generality, assume that this subset is {t1, . . . , tN}. Now, if M is chosen suitably, with
M .α 1/ε, the rotational components of the similitudes SjLijjM are within ε of identity.
Moreover,

|πθ(SjLijjM (0))− πθ(SjLij+1jM (0))| 6 δρk0+L 6 ερk0+L+M

for all 1 6 j < N , if δ was chosen to be smaller than ερM to begin with. This completes
the proof of the corollary.

We also need the following simple and well-known geometric fact:

Lemma 5.4. For x ∈ R2, and any angles θ1, θ2 ∈ [0, π), we have

|πθ1(x)− πθ2(x)| 6 |x||θ1 − θ2|.

Moreover, if |πθj (x)| 6 |x|/100 for j ∈ {1, 2}, then also

|πθ1(x)− πθ2(x)| > |x||θ1 − θ2|/100.
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Proof. Assume without loss of generality that x = (0, y). Then

|πθ1(x)− πθ2(x)| = |y sin θ1 − y sin θ2| = |y|| sin θ1 − sin θ2| 6 |x||θ1 − θ2|

by the mean-value theorem. If |y|| sin θj | = |πθj (x)| 6 |x|/100 = |y|/100, then θ1, θ2 are
rather close to zero, and the inequality can be reversed up to a multiplicative constant;
1/100 is certainly on the safe side.

We define a continuous strictly increasing auxiliary function ψ : [1,∞) → [0, 1) by
ψ(x) := c1 arctan(x) + c2, where c1, c2 are chosen so that ψ(1) = 0, 0 < ψ(x) < 1 for all
x ∈ (1,∞), and ψ(x)↗ 1 as x→∞.

The main chore on route to our theorem is to establish the following lemma by
induction:

Lemma 5.5. Given any r ∈ (0, ρ] and M ∈ N we can find a direction θ = θ(r,M) ∈
[0, π) with the following property. There exists τ < r such that the projection πθF
contains a subset {t1, . . . , tM} with the property that

τ(2− ψ(M)) 6 tj+1 − tj 6 τ(2 + ψ(M)), 1 6 j < M.

Proof. The case M = 2 is clear, so assume that the lemma has been proven for some
M > 2, and all r > 0. Fix r > 0, and choose θ0 ∈ [0, π) such that the projection πθ0(F )
contains TM := {t1, . . . , tM} with τ(2−ψ(M)) 6 tj+1− tj 6 τ(2+ψ(M)) for some τ < r
and all 1 6 j < M . Find M points x1, . . . , xM ∈ F such that πθ0(xj) = tj . Thus,

τ(2− ψ(M)) 6 πθ0(xj+1)− πθ0(xj) 6 τ(2 + ψ(M)) (5.1)

for all 1 6 j < M . Without loss of generality, we may assume that 0 ∈ F , so also
Si(0) ∈ F for all finite words i ∈ {1, 2}∗.

Next, apply Corollary 5.3 with θ = θ0, N > C/τ and ε = cτ , where C > 1 and
c > 0 are large and small constants, respectively, depending on M and to be specified
later. We obtain finite words i1, . . . , iN of equal length k ∈ N such that the rotational
components of Sij are within ε of the identity, and

|πθ0(Sij (0))− πθ0(Sij+1
(0))| < ερk (5.2)

for 1 6 j < N . It follows that the mutual distance between two of the sets Sij (F ) is at

least Nρk/10, and, relabeling the sets if necessary, we assume that

|Si1(F )− Si2(F )| > Nρk/10. (5.3)

Let θ ∈ [0, π) be an angle close to θ0, to be specified later, and consider the (M + 1)-
element set

TM+1 := {πθ(Si2(0))} ∪ {πθ(Si1(xj)) : 1 6 j 6M},

see Figure 2.
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Figure 2: Finding M + 1 correctly spaced points in the projection πθF .

Clearly TM+1 ⊂ πθ(F ), so it suffices to verify that, for a suitable choice of θ, the
elements in TM+1 can be ordered so that any consecutive points have distance between

ρkτ(2− ψ(M + 1)) and ρkτ(2 + ψ(M + 1)).

To this end, we first consider the points πθ(Si1(xj)), for 1 6 j 6M . Write Si1(x) =
ρkOx+ wi1 , where O = Okα is within ε = cτ of the identity by assumption. Then, write
e0 := (cos θ0, sin θ0) and e1 = (cos θ1, sin θ1) := Oe0, so that |θ1 − θ0| 6 cτ . With this
notation,

πθ1(Si1(xj+1))− πθ1(Si1(xj)) = ρk
(
O(xj+1) · e1 −O(xj) · e1

)
= ρk

(
xj+1 · e0 − xj · e0

)
= ρk

(
πθ0(xj+1)− πθ0(xj)

)
∈ [ρkτ(2− ψ(M)), ρkτ(2 + ψ(M))]. (5.4)

by (5.1), for all 1 6 j < M . In fact, the same holds if we replace θ1 by any angle θ ∈ [0, π)
satisfying |θ − θ0| 6 cτ : just observe that |Si1(xj) − Si1(xj+1)| 6 diam(Si1(F )) 6 2ρk,
and then infer from Lemma 5.4 that

|πθ1(Si1(xj)− Si1(xj+1))− πθ(Si1(xj)− Si1(xj+1))| . ρk|θ1 − θ| 6 cτρk.

If c > 0 is small enough, depending on the difference ψ(M + 1)− ψ(M), combined with
(5.4) this proves that

ρkτ(2− ψ(M + 1)) 6 πθ(Si1(xj+1))− πθ(Si1(xj)) 6 ρkτ(2 + ψ(M + 1)) (5.5)
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for 1 6 j 6M , as long as |θ − θ0| 6 cτ .
Now we have shown that TM+1 contains at least M elements, which lie in the same

order as the points tj , and such that the distance between consecutive points is within
the correct range. To increase this number to M + 1, we need to choose θ so that
that πθ(Si2(0)) can act as the (M + 1)th element. There is not much choice: either
πθ(Si2(0)) should lie at distance 2τρk left from πθ(Si1(x1)), or at distance 2τρk right
from πθ(Si1(xM )). We make the first choice, which means the question becomes: can we
guarantee that |θ − θ0| 6 cτ (in order to maintain (5.5))?

To answer this affirmatively, observe that (5.2) implies |πθ0(Si2(0))−πθ0(Si1(x1))| 6
5ρk, and furthermore

|Si2(0)− Si1(x1)| > Nρk/10

by the choice of i1, i2, and (5.3). Now, let θ ∈ [0, π) be an angle such that

πθ(Si1(x1))− πθ(Si2(0)) = 2τρk.

By Lemma 5.4 and the triangle inequality,

Nρk|θ − θ0| . |πθ0(Si2(0)− Si1(x1))− πθ(Si2(0)− Si1(x1))| 6 (2τ + 5)ρk.

Recalling that N > C/τ for a large constant C, we can force |θ − θ0| 6 cτ , as required.
Thus, the set TM+1 has the desired properties, and the inductive proof of Lemma 5.5 is
complete.

The next simple observation says that Lemma 5.5 self-improves: the existence of one
θ implies a similar statement for every θ.

Corollary 5.6. Fix θ ∈ [0, π), r ∈ (0, ρ] and M ∈ N. Then, for some τ < r, the
projection πθ(F ) contains a set {t1, . . . , tM} such that τ/2 6 |tj − tj+1| 6 4τ for all
1 6 j 6M .

Proof. According to Lemma 5.5, for a suitable angle θ0 ∈ [0, π), the projection πθ0(F )
contains a subset {t01, . . . , t0M} such that τ 6 |t0j − t0j+1| 6 3τ for 1 6 j 6 M . Write

jL = (1, . . . , 1) ∈ {1, 2}L. Then, for a certain θL ∈ [0, π) depending on the rotation
parameter α and L ∈ N, it follows that the projection πθL(SjL(F )) contains M points
{tL1 , . . . , tLM} such that ρLτ 6 |tLj −tLj+1| 6 3ρLτ . The sequence (θL)L∈N is asymptotically

dense in [0, π), so |θL− θ| 6 τ/100 for some L ∈ N. Then, writing tLj = πθL(SjL(xj)) for
some xj ∈ F , it follows from Lemma 5.4 that

|πθ(SjL(xj)− SjL(xj+1))− πθL(SjL(xj)− SjL(xj+1))| 6 diam(SjL(F ))|θ − θL| 6 ρLτ/50

for 1 6 j < M . This proves the result for the points tj := πθ(SjL(xj)).

The dense rotations case of Theorem 2.3 now follows immediately. Fix θ ∈ [0, π) and
observe that, by Corollary 5.6, we can find arbitrarily large M ∈ N such that

Nτ/4

(
B(x, 4Mτ) ∩ πθ(F )

)
> M =

1

16

(
4Mτ

τ/4

)1

for some τ > 0 and x ∈ πθF . This yields dimA πθF = 1, as required.
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6 Proof of Theorem 2.4

This theorem is proved using a simple subsystem trick and adapting an example of Bandt
and Graf [BG, Section 2 (5)]. First observe that the dense rotations case is taken care
of by Theorem 2.3 and so we only need to deal with the discrete rotations case.

Lemma 6.1. Let F ⊆ [0, 1]2 be a self-similar set which is not contained in a line and
suppose that the group generated by {Oi}i∈I is discrete. Then F contains a self-similar
set E which is the attractor of an IFS consisting of three similarities, all of which have the
same contraction ratio, no rotational or reflectional component (i.e., trivial orthogonal
part) and such that the three fixed points are not collinear.

Proof. Again, this lemma is almost trivial since we are not concerned with losing any
dimension. Since F is not contained in a line, we may choose finite words i1, i2, i3 ∈ I∗
such that the fixed points of Si1 , Si2 , Si3 are not collinear. Each of these maps has an
orthogonal component with finite order and so taking k to be the lowest common multiple
of these orders, the maps Ski1 , S

k
i2
, Ski3 all have trivial orthogonal component. Since the

fixed points of these three maps are not collinear, we may choose m sufficiently large
to guarantee that there are no triples (x, y, z) ∈ Smki1

(F )× Smki2
(F )× Smki3

(F ) such that
x, y, z are collinear. Since similarity ratios are multiplicative, the IFS consisting of the
three maps

Smki1 ◦ S
mk
i2 ◦ S

mk
i3

Smki2 ◦ S
mk
i1 ◦ S

mk
i3

Smki3 ◦ S
mk
i1 ◦ S

mk
i2

all have the same contraction ratios, trivial orthogonal components, and their fixed
points are not collinear. This completes the proof.

Since Assouad dimension is monotone, we only need to prove the result for self-
similar sets of the same form as E from the above lemma. Let c ∈ (0, 1) be the common
similarity ratio and observe that for any t > 0 we can choose θ ∈ [0, π) such that πθE
is an affinely scaled copy of the attractor Et of the IFS consisting of the maps S1, S2, S3
acting on the line defined by

S1(x) = cx, S2(x) = cx+ 1, S3(x) = cx+ t.

Thus to complete the proof we need to prove that for some t > 0, this IFS fails the
WSP. This is a simple adaptation of the example considered by Bandt and Graf in [BG,
Section 2 (5)], but we include the details for completeness. Choose

t =
∞∑
k=0

c2
k

and observe that the maps S−1i ◦Sj where i, j ∈ {1, 2, 3}n are precisely maps of the form

x→ x+

n∑
k=1

c−kak
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for any sequence ak over {0,±t,±1,±(1 − t)}. Let n = 2m for some large m ∈ N and
choose the sequence {ak}nk=1 by applying the rule:

ak =


−1 if k = 2m − 2l for some l = 0, . . . ,m− 1
t if k = n
0 otherwise

This means that for any m we can find maps of the form S−1i ◦ Sj equal to

x→ x+ c−2
m
t−

m−1∑
l=0

c2
l−2m = x+

∞∑
l=m

c2
l−2m .

Since

0 <
∞∑
l=m

c2
l−2m → 0

asm→∞, the IFS fails the WSP. We may then apply [FHOR, Theorem 1.3], or Theorem
4.2, to deduce that dimAEt = 1 and thus there is some θ for which dimA πθE = 1.

7 Proof of Theorem 2.10

One of the most effective ways to bound the Assouad dimension of a set from below is
to construct weak tangents. This approach was introduced by Mackay and Tyson [MT],
but the minor adaptation we state and use here was proved in [FHOR, Proposition 3.7].
First we need a suitable notion of convergence for compact sets, which is given by the
Hausdorff metric. Let K(Rd) denote the set of all compact subsets of Rd, which is a
complete metric space when equipped with the Hausdorff metric dH defined by

dH(A,B) = max{ρH(A,B), ρH(B,A)}

where ρH is defined by
ρH(A,B) = sup

a∈A
inf
b∈B
|a− b|,

i.e., the infimal δ > 0 such that A is contained in the δ-neighbourhood of B.

Proposition 7.1. [FHOR, Proposition 3.7]. Let F, F̂ ∈ K(Rd) and suppose there exists
a sequence of similarity maps Tk : Rd → Rd such that ρH(F̂ , Tk(F )) → 0 as k → ∞.
Then dimA F > dimA F̂ .

The set F̂ in Proposition 7.1 is called a weak pseudo-tangent to F . Note that the
insertion of the word ‘pseudo’ in this definition refers to the fact we use ρH instead of
the Hausdorff metric used by Mackay and Tyson. The advantage of this approach is
that one only needs a subset of Tk(F ) to get close to F̂ . This is useful when dealing with
overlaps, as we will need to do here.

Lemma 7.2. Fix k, d ∈ N with 0 < k < d. Then for all π1, π2 ∈ Gd,k, the set π2F is a
weak pseudo-tangent to π1F .
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Proof. Fix π1, π2 ∈ Gd,k and let ε > 0. Also, let dG denote the natural metric on Gd,k
induced by an appropriate operator norm. Observe that the map from (Gd,k, dG) to
(K(Rk), dH) defined by π 7→ πF is continuous and so we may choose δ > 0 such that for
π ∈ Gd,k

dG(π2, π) 6 δ ⇒ dH(π2F, πF ) 6 ε. (7.1)

Since the group generated by {Oi}i∈I is dense in SO(d) or O(d), we may choose a finite
word i ∈ I∗ such that Oi ∈ SO(d) and

dG(π2, π1Oi) 6 δ. (7.2)

Here we consider the right action of SO(d) on Gd,k defined by (πO)(x) = π(O(x)).
Consider the set Si(F ) ⊂ F and the projection π1Si(F ) ⊂ π1F . Let yi ∈ F denote the
unique fixed point of Si and let T : π1F → R be defined by

T (x) = c−1i x+ π1(yi)(1− c−1i )

which blows up by the reciprocal of the contraction ratio of Si around the point π1(yi).
The similarity T was defined in this way to ensure that

T
(
π1Si(F )

)
= (π1Oi)F

which, by (7.2) and (7.1), yields

dH
(
π2F, T (π1Si(F ))

)
6 ε.

This in turn implies that
ρH
(
π2F, T (π1F )

)
6 ε

which means that by taking a sequence of ε’s tending to zero and choosing T in this
way, we obtain a sequence of similarity maps Tk, such that

ρH
(
π2F, Tk(π1F )

)
→ 0

as k → ∞. This proves that π2F is a weak pseudo-tangent to π1F and completes the
proof.

The fact that the Assouad dimension of πF takes the same value for all π ∈ Gd,k
now follows immediately from the Lemma 7.2 and Proposition 7.1.
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[E] K. I. Erǒglu. On planar self-similar sets with a dense set of rotations, Ann. Acad.
Sci. Fenn. Math., 32, (2007), 409–424.

[F1] K. J. Falconer. The Hausdorff dimension of self-affine fractals, Math. Proc. Camb.
Phil. Soc., 103, (1988), 339–350.

[F2] K. J. Falconer. Dimensions and measures of quasi self-similar sets, Proc. Amer.
Math. Soc., 106, (1989), 543–554.

[F3] K.J. Falconer. Fractal Geometry: Mathematical Foundations and Applications,
John Wiley & Sons, Hoboken, NJ, 3rd. ed., 2014.

[FFJ] K. J. Falconer, J. M. Fraser and X. Jin. Sixty Years of Fractal Projections, Frac-
tal geometry and stochastics V, (Eds. C. Bandt, K. J. Falconer and M. Zähle),
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