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Abstract: A series of rhodium(III) half sandwich complexes of the type [Cp*Rh(PMe3)
(S–R–S)]; S–R–S = naphthalene-1,8-dithiolate, acenaphthene-5,6-dithiolate, 
[1,1’-biphenyl]-2,2’-dithiolate and [2,2’-binaphthalene]-1,1’-dithiolate are reported. 
In the case of [2,2’-binaphthalene]-1,1’-dithiolate, this represents an infrequent ex-
ample of a metal complex containing this ligand. All the complexes have been fully 
characterised using multinuclear NMR spectroscopy and single-crystal X-ray diffrac-
tion. The single-crystal X-ray structure of the starting material [Cp*Rh(PMe3)Br2] (1) is 
also reported for the first time.
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1. Introduction
The coordination of S,S′-bidentate ligands remains an important area of chemistry. Complexes bear-
ing this type of ligand have a number of industrial applications including vulcanisation (Bond & 
Martin, 1984; Burns & McAuliffe, 1979; Burns, McCullough, & McAuliffe, 1980; Eisenberg, 2007), lubri-
cant additives (Phillips et al., 1995) and catalysis (Bond & Martin, 1984; Burns & McAuliffe, 1979; 
Burns et al., 1980; Eisenberg, 2007). In addition, S,S′-donors can support unusual magnetic proper-
ties (Tuna et al., 2012; Zhou, Wang, Wang, & Gao, 2011) and are important in biological systems 
(Woollins, 1996). As part of our interest in the properties of sulfur donor systems, we have investi-
gated a series of dithiolate ligands bound to aromatic backbones of varying flexibility (Figure 1).

There has been little study on the coordination chemistry of these types of ligands compared to 
dithiolates such as benzene-1,2-dithiolate or ethane-1,2-dithiolate. One of the most notable excep-
tions to this was a series of publications by Teo and co-workers in the late 1970s and early 1980s 
(Teo, Bakirtzis, & Snyder-Robinson, 1983; Teo & Snyder-Robinson, 1978, 1979a, 1979b, 1981, 1984; 
Teo, Wudl, Hauser, & Kruger, 1977; Teo, Wudl, Marshall, & Kruger, 1977). They investigated the oxi-
dative addition of the structurally related compounds tetrathionaphthalene (TTN), tetrachloro-
tetrathionaphthalene (TCTTN) and tetrathiotetracene (TTT) (Figure 2) to a variety of low-valent metal 
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centres. With the work focusing on the extensive redox chemistry associated with these “non-inno-
cent” ligands and their potential use as organic solid-state conductors (Teo & Snyder-Robinson, 
1978, 1979a, 1979b, 1981, 1984; Teo, Wudl, Hauser, et al., 1977; Teo, Wudl, Marshall, 1977,  
Teo et al., 1983). Another interesting system bearing the related hexachlorodithionaphthalene 
(HCDTN) (Figure 2) resulted in an unusual trinuclear nickel complex [Ni3(PPh3)3(S2C10Cl6)3] with the 
HCDNT acting as a bridging ligand (Bosman & van der Linden, 1977).

Some of the most recent work involving derivatives of naphthalene-1,8-dithiolate (A) has been in 
designing [FeFe]-hydrogenase mimics for the production of hydrogen, by both electrochemical and 
photochemical processes (Figure 3) (Figliola, Male, Horswell, & Grainger, 2015; Figliola et al., 2014; 
Samuel, Co, Stern, & Wasielewski, 2010; Wright, Lim, & Tilley, 2009). Complexes involving 
[1,1’-biphenyl]-2,2’-dithiolate (C) bound to iron have also been investigated as electron transfer 
catalysts designed to mimic iron hydrogenases (Figure 3) (Albers et al., 2014; Ballmann, Dechert, 
Demeshko, & Meyer, 2009; Charreteur et al., 2010). The coordination chemistry of the structurally 
related ligand acenaphthene-5,6-dithiolate (B) has received very little investigation out with our 
own research. (Topf, Monkowius, and Knör (2012) used the acenaphthene backbone as a linker be-
tween a 1,2-diimine unit and a dithiolate binding site. The iron carbonyl complex formed using this 
ligand showed potential as a multielectron transfer photosensitiser for artificial photosynthesis and 
as a bio-inspired photoredox catalyst (Figure 3).

Beyond the electron transfer mimics, there are few examples of complexes incorporating ligand C. 
Two molybdenum complexes have been reported with one containing an Mo oxygen triple bond 
(Conry & Tipton, 2001; McNaughton, Tipton, Rubie, Conry, & Kirk, 2000). In addition, two methods to 
synthesise titanocene-2,2’-dithiolatobiphenyl have been published (Aucott et al., 2005; Stafford, 
Rauchfuss, Verma, & Wilson, 1996). The 2,2’-binaphthalene-based ligand, D, has been largely 

Figure 1. Dithiolate ligands 
studied in this work (charges 
omitted for clarity).

Figure 2. Structurally related 
aromatic sulfur donating 
ligands.

Figure 3. Iron-based catalysts 
based on A (left), B (centre) and 
C (right).



Page 4 of 14

Nejman et al., Cogent Chemistry (2016), 2: 1245900
http://dx.doi.org/10.1080/23312009.2016.1245900

overlooked with regards to its complexation chemistry compared to the 1,1’-binaphthalene derivative. 
The only work reported involving this ligand thus far has been its preparation by Armarego (1960), the 
single-crystal X-ray structure (Kempe, Sieler, Hintzsche, & Schroth, 1993), one titanium complex 
(Aucott et al., 2005) and a platinum complex (Aucott, Kilian, Robertson, Slawin, & Woollins, 2006).

We have recently published two papers investigating the use of ligands A–C in the formation of half 
sandwich rhodium and iridium complexes (Nejman, Morton-Fernandez, Black, et al., 2015; Nejman, 
Morton-Fernandez, Moulding, et al., 2015). This paper describes the synthesis of a further four half 
sandwich rhodium (III) dithiolato complexes bearing a neutral phosphine donor. In this contribution, 
a different phosphine donor has been used compared to the previous work (trimethylphosphine in-
stead of triethylphosphine) (Nejman, Morton-Fernandez, Black, et al., 2015). Additionally, a new li-
gand has been investigated [2,2’-binaphthalene]-1,1’-dithiolate (D). Two synthetic methods were 
employed due to the varying difficulty in preparing the ligand precursors. Both of these methods 
were different to the procedures used within our previous work (Nejman, Morton-Fernandez, Black, et 
al., 2015; Nejman, Morton-Fernandez, Moulding, et al., 2015). Furthermore, the single-crystal X-ray 
structure of the complex precursor, [Cp*Rh(PMe3)Br2] (1), is reported for the first time. All the com-
plexes have been fully characterised, principally by multinuclear NMR spectroscopy, mass spectrom-
etry and single-crystal X-ray diffraction.

2. Results and discussion

2.1. Synthetic methods
The dithiol pro-ligands [Naphth(SH)2] (H2a), [Acenap(SH)2] (H2b) and [Biphen(SH)2] (H2c) were pre-
pared from their respective disulphides, naphtho[1,8-cd]-1,2-dithiole (Ashe, Kampf, & Savla, 1994), 
5,6-dihydroacenaphtho[5,6-cd]-1,2-dithiole (Benson et al., 2013) and dibenzo[c,e]-1,2-dithiine 
(Cossu, Delogu, Fabbri, & Maglioli, 1991). The reduction of the disulphides was performed using 
NaBH4 followed by an acidic work up which afforded the three pro-ligands (Figure 6) (Yui, Aso, 
Otsubo, & Ogura, 1988). The disulphide precursor to D, [2,2’-BinapS2], was prepared according to the 
literature procedure by Armarego (1960). The reduction to the dithiol was not attempted as the 
amount of disulphide prepared was not sufficient. For this reason, the reduction to the reactive dithi-
olate was performed in situ using lithium triethylborohydride.

Figure 4. The section of the 1H 
NMR spectrum of 2c showing 
the four pseudo triplet of 
doublets with a splitting 
diagram showing how these 
signals are formed.
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Figure 5. Crystal structures 
of 1 (Top), 2a (Middle left), 
2b (Middle right), 2c (Bottom 
left) and 2d (Bottom right). 
Hydrogen atoms are omitted 
from all structures for clarity. 
Ellipsoids are plotted at the 
50% probability level.

Figure 6. Synthesis of the pro-
ligands H2a-c.
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The synthesis of [Cp*Rh(PMe3)(NaphthS2)] (2a), [Cp*Rh(PMe3)(AcenapS2)] (2b), [Cp*Rh(PMe3)
(BiphenS2)] (2c) and [Cp*Rh(PMe3)(2,2’-BinapS2)] (2d) is shown in Figure 7. The metathesis of the bro-
mide ligands with dithiolates A–D proceeds smoothly at room temperature. The presence of the 
phosphine group allowed the reaction progress to be monitored by 31P NMR spectroscopy. In the case 
of 2a–c, this meant the loss of the signal from 1, whilst for 2d, the product and 1 are soluble in THF 
so the conversion could be observed. Upon completion of the reaction for 2a–c filtration of the pre-
cipitate followed by washing with methanol was sufficient to afford pure compound. For 2d, purifica-
tion by column chromatography was required (silica/CH2Cl2). Excellent isolated yields of between 82 
and 91% were obtained after purification. Compared to the similar complexes incorporating triethyl-
phosphine, this represents an increase in the isolated yield of approximately 10% (Nejman, Morton-
Fernandez, Black, et al., 2015). The synthesis of 2a–d all proceeded via a reactive dithiolate 
intermediate, whereas the triethylphosphine derivatives were prepared by reacting H2a–c directly 
with the dichloro rhodium precursor. The dithiols represent a less reactive sulfur centre which could 
explain the higher yields obtained for the complexes reported here.

2.2. Data analysis
The 1H NMR spectra (CDCl3) for 2a and 2b show the expected signals, with splitting, from the aro-
matic backbones in the range of 7.88–6.91 ppm. In the case of 2c and 2d, we observe 8 and 10 sig-
nals, respectively, as the two joined aryl ring systems are inequivalent. This is due to the inability of 
the ligand backbones to rotate around the aryl–aryl bond. Four of the aromatic signals observed for 
2c appear as a pseudo triplet of doublets instead of the expected doublet of doublet of doublets. This 
is due to the 3JHH coupling constants observed between Hb and Ha as well as Hb and Hc (Figure 4) being 
almost identical. Two of these signals overlap closely (δH 7.19 and 7.18 ppm, Figure 4); however, both 
can be distinctly observed and the coupling constants easily extracted. These observations mirror 
those made for other similar rhodium complexes we have prepared incorporating ligands A–C 
(Nejman, Morton-Fernandez, Black, et al., 2015). For 2d, this signal is not observed as the equivalent 
positions from each of the two naphthalene ring systems overlap resulting in multiplets. The η5–Cp* 
methyl signals range from 1.58 to 1.42 ppm and are split into doublets by long range phosphorus 
coupling (4JHp = 3.0–3.2 Hz). The signals from the methyl groups attached to the phosphorus atom 
appear as a doublet of doublets for 2a–c, with 3JHP coupling (3JHp = 10.3–10.5 Hz) and long range 4JHRh 
coupling (4JHRh = 0.6–0.7 Hz). Only a doublet is observed for this signal in 2d with a similar 3JHP cou-
pling to that seen in complexes 2a–c.

The 31P{1H} NMR spectra (CDCl3) for 1 and 2a–d are shown in Table 1. Complexes 2a–d all display an 
upfield shift in the 31P{1H} NMR spectra compared to the starting material 1 (Δδ = 0.7–3.3 ppm). The 
coordination of the dithiolate ligand is also accompanied by a small increase in the 1JPRh coupling 
(Δ1JPRh = 11–15 Hz) in 2a–d when compared to 1. Both of these observations match those made in 
the 31P{1H} NMR spectra of the triethylphosphine derivatives of 2a–c (Nejman, Morton-Fernandez, 
Black, et al., 2015).

Figure 7. Reaction conditions 
for the preparation of 2a-d.
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As expected, the 13C{1H} NMR spectra (CDCl3) of 2a–d mirrors that of the 1H NMR spectra, with dis-
tinct signals for all carbons in the biphenyl and binaphthyl examples. Interestingly, only one of the 
quaternary carbons bound to the sulfur atoms is split into a doublet (3JCp = 6.5 Hz (2c) and 6.7 Hz 
(2d)) by the phosphorus atom in 2c and 2d. This provides further support of the difference between 
the two sides of the aryl–aryl bond. The mass spectra of 2a–d each showed a peak corresponding to 
[M–PMe3 + H]+ ions at m/z 429, 455, 455 and 555, respectively. Homogeneity of the complexes 2a–d 
was confirmed by means of accurate elemental analysis.

2.3. Single-crystal X-ray diffraction
Despite the previously reported synthesis and spectroscopic characterisation of precursor complex 
1 (Jones & Feher, 1984), its single-crystal X-ray data have not been published. Therefore, for com-
pleteness we include it here. The crystal structures of 1 and 2a–d are shown below in Figure 5 with 
selected structural parameters in Tables 2 and 3.

All of the complexes, 1 and 2a–d, adopt the piano stool geometry around the rhodium centre we have 
seen previously (Nejman, Morton-Fernandez, Black, et al., 2015; Nejman, Morton-Fernandez, Moulding, et 
al., 2015). The η5–Cp* ring in 1 is slightly tilted as the Rh–C bond lengths vary from 2.141(4) to 2.252(4) Å. 
The Rh–Br bond lengths (2.550(1) and 2.529(1) Å) and Rh–P bond length (2.284(2) Å) are similar to those 
previously reported within the Cambridge Structural Database for compounds of a similar type (Rh–Br; 
2.543 Å, Rh–P; 2.288 Å) (Bruno et al., 2002; Macrae et al., 2008; Thomas et al., 2010). The angles around 
the rhodium centre vary with the two P–Rh–Br angles being below the idealised 90°. This is accompanied 
by a widening of the Br–Rh–Br angle to 94.82(2)° as the two larger atoms try and sit further apart.

The Rh–S bond lengths of 2a and 2b were almost identical (2a; 2.331(1) and 2.332(1) Å, 2b; 
2.330(2) Å), whilst in 2c and 2d there was more variation and they were slightly longer (2c; 2.3691(8) 
and 2.3705(8) Å, 2d; 2.3677(7) and 2.3994(8) Å). These are comparable to other half sandwich com-
plexes with Rh–S bonds reported by ourselves and Jin and co-workers ranging from 2.340 to 2.386 Å 
(Nejman, Morton-Fernandez, Black, et al., 2015; Wang, Lin, Blacque, Berke, & Jin, 2008; Xiao & Jin, 
2008; Yao, Xu, Huo, & Jin, 2013). The Rh–P bond lengths show no appreciable change compared to 1 
with little variation across the series of 2a–d.

All of the non-Cp* angles around the rhodium centre are reduced to less than 90° for 2a and 2b. 
This is a consequence of the rigid ligand backbone preventing the sulfur atoms from adopting a more 
ideal geometry. The effect is most obvious for the naphthalene system as the peri positions are re-
stricted to a slightly shorter distance than those in the acenaphthene system. For both 2a and 2b, 

Table 1. 31P{1H} NMR data (CDCl3) for 1 and 2a-d. All δ values are in ppm and J values are in hertz

†Values obtained from a sample run on a Bruker Avance II 400 NMR spectrometer (162 Hz).

1† 2a 2b 2c 2d
δP 3.6 1.7 2.9 0.3 2.2
1JPRh 137 150 148 153 152

Table 2. Selected bond lengths [Å] and angles [°] for 1
1

Rh1–P1 2.284(2)

Rh1–Br1 2.529(1)

Rh1–Br2 2.550(1)

P1–Rh1–Br1 87.14(3)

P1–Rh1–Br2 86.91(3)

Br1–Rh1–Br2 94.82(2)
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the splay angles are large and positive (2a; 19.2(5)°, 2b; 21.0(3)°) as the rhodium centre forces the 
sulfur atoms apart. The S1–C1···C9–S9 torsion angle is larger in 2a than 2b, again as a consequence 
of the more limited movement of the sulfur atoms imposed by the backbone. The central C–C–C–C 
torsion angles are similar in both complexes showing limited buckling of the ring system. The out of 
plane displacement of the sulfur atoms is slightly greater in 2a than 2b.

In complexes 2c and 2d the non-Cp* angles show a broader range than in 2a and 2b ranging from 
88.79(3)–93.94(3)° to 84.11(3)–96.29(3)°, respectively. The ability of the backbone to twist around 
the aryl–aryl bond allows the sulfur atoms to adopt a more idealised geometry. The torsion angle 
between the two aryl rings is larger in 2d (79.0(4)°) than 2c (68.0(4)°) most likely due to the added 
steric bulk of having a binaphthyl instead of biphenyl-based system. In both 2c and 2d, the out of 
plane displacement of the sulfur atoms are similar.

3. Conclusions
We have prepared and fully characterised a series of new rhodium(III) η5–e have prepared and fully 
characterised a series of new rhodium(III) ηad 3)Br2] with a series of dithiolates attached to aromatic 
backbones. Similar features were seen in both the NMR spectra and single-crystal X-ray structures 
compared to previous rhodium complexes incorporating ligands A–C we have reported (Nejman, 
Morton-Fernandez, Black, et al., 2015; Nejman, Morton-Fernandez, Moulding, et al., 2015). The work 
herein clearly demonstrates the utility of these sulfur ligands in organometallic complexes, with 
complexes of this type having potential uses in the formation of multimetallic systems.

Table 3. Selected bond lengths [Å], angles [°] and displacements [Å] for 2a-d

aCalculated as [(S1–C1–C10)+(C1–C10–C9)+(C10–C9–S9)−360].

2a 2b 2c 2d
Rh1–P1 2.284(1) 2.272(2) 2.2773(9) 2.2851(8)

Rh1–S1 2.331(1) 2.330(2) 2.3691(8) 2.3677(7)

Rh1–S9 2.332(1) 2.330(2)

Rh1–S12 2.3705(8)

Rh1–S20 2.3994(8)

P1–Rh1–S1 89.85(5) 87.02(3) 88.79(3) 96.29(3)

P1–Rh1–S9 84.87(5) 87.37(4)

P1–Rh1–S12 91.27(3)

P1–Rh1–S20 84.11(3)

S1–Rh1–S9 85.41(5) 87.78(3)

S1–Rh1–S12 93.94(3)

S1–Rh1–S20 95.00(3)

Splay anglea 19.2(5) 21.0(3)

Torsion angles

S1–C1···C9–S9 8.9(3) 5.2(2)

C1–C10–C5–C6 177.5(6) 178.5(3)

C9–C10–C5–C4 178.1(6) 177.3(3)

C1–C6–C7–C12 68.0(4)

C1–C10–C11–C20 79.0(4)

Out of plane displacements

S1 0.213 0.117 0.184 0.189

S9 0.149 0.121

S12 0.003

S20 0.086
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4. Experimental

4.1. General
Unless otherwise stated all manipulations were performed under an oxygen-free nitrogen atmos-
phere using standard Schlenk techniques and glassware. Solvents were collected from an MBraun 
Solvent Purification System or dried and stored according to common procedures (Armarego & Chai, 
2009). [Cp*Rh(PMe3)Br2] was prepared following literature procedures (Ojima, Vu, & Bonafoux, 2002). 
The disulphide ligand precursors were made according to literature methods (Armarego, 1960; Ashe 
et al., 1994; Benson et al., 2013; Cossu et al., 1991). The pro-ligand H2a was prepared following the 
literature procedure (Yui et al., 1988), with H2c prepared following an identical procedure. H2b was 
prepared according to literature (Nejman, Morton-Fernandez, Black, et al., 2015). 1H, 13C{1H}, 31P and 
31P{1H} NMR spectra were obtained on either a Bruker Avance II 400 or Bruker Avance III 500 spec-
trometer. Full assignments of the 1H and 13C{1H} NMR spectra were made with the aid of H–H DQF 
COSY, H–C HSQC and H–C HMBC experiments. For 1H and 13C{1H} spectra δH and δC are reported relative 
to TMS, residual solvent peaks (CDCl3; δH 7.26, δC 77.2 ppm) were used for calibration. For 31P and 
31P{1H} spectra δP are reported relative to external 85% H3PO4. All measurements were performed at 
21°C with shifts reported in ppm. p-td has been used to denote a pseudo-triplet of doublet. IR spec-
tra were collected on a Perkin Elmer 2000 NIR/Raman Fourier transform spectrometer with a dipole 
pumped NdYAG near-IR excitation laser. Mass spectra were acquired by the EPSRC UK National Mass 
Spectrometry Facility at Swansea University. Elemental analysis was performed by Stephen Boyer at 
the London Metropolitan University.

4.2. Dithiolato complexes

4.2.1. [Cp*Rh(PMe3)(NaphthS2)] (2a)

A methanol (20 mL) solution of [Cp*Rh(PMe3)Br2] (120 mg, 0.25 mmol), [Naphth(SH)2] (60 mg, 
0.31 mmol) and NaOMe (17 mg, 0.31 mmol) was stirred at room temperature overnight. The red 
precipitate was filtered, washed with MeOH then dried under vacuum for 3 h. The product was ob-
tained as a red solid (110 mg, 0.21 mmol, 83%). Crystals suitable for X-ray work were obtained by 
slow evaporation from CH2Cl2. Anal. calcd. for C23H30PRhS2 (504.06 g mol−1): C, 54.76; H, 5.99. Found: 
C, 54.69; H, 5.96. 1H NMR (400 MHz, CDCl3): δ 7.88 (dd, 3JHH = 7.3, 4JHH = 1.3 Hz, 2 H, H2,8), 7.47 (dd, 
3JHH = 8.1, 4JHH = 1.1 Hz, 2 H, H4,6), 7.05 (dd, 3JHH = 8.1 & 7.3 Hz, 2 H, H3,7), 1.54 (dd, 2JHp = 10.3, 
3JHRh = 0.7 Hz, 9 H, PMe3), 1.49 (d, 4JHp = 3.0 Hz, 15 H, Cp*–Me). 13C{1H} NMR (100 MHz, CDCl3): δ 139.5 
(d, 3JCp = 5.4 Hz, Cq, C1,9), 136.3 (Cq, C5), 133.9 (Cq, C10), 128.1 (CH, C2,8), 124.9 (CH, C4,6), 123.8 (CH, 
C3,7), 99.7 (dd, 1JCRh = 4.5, 2JCp = 2.9 Hz, Cq, Cp*), 14.9 (d, 1JCp = 32.7 Hz, CH3, PMe3), 8.9 (CH3, Cp*). 31P 
NMR (162 MHz, CDCl3): δ 1.7 (br d, 1JPRh = 149 Hz). 31P{1H} NMR (162 MHz, CDCl3): δ 1.7 (d, 1JPRh = 150 Hz). 
HRMS (APCI+): m/z (%) Calcd. for C20H22RhS2: 429.0212, found 429.0209 (100) [M–PMe3 + H]. IR (KBr): 
νmax/cm−1 3040w (νAr-H), 2907 m (νC-H), 1536s, 1195 m, 952s, 810 m, 761 m.
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4.2.2. [Cp*Rh(PMe3)(AcenapS2)] (2b)

A methanol (20 mL) solution of [Cp*Rh(PMe3)Br2] (120 mg, 0.25 mmol), [Acenap(SH)2] (68 mg, 
0.31 mmol) and NaOMe (17 mg, 0.31 mmol) was stirred at room temperature overnight. The red 
precipitate was filtered, washed with MeOH then dried under vacuum for 3 h. The product was ob-
tained as a red solid (121 mg, 0.22 mmol, 91%). Crystals suitable for X-ray work were obtained by 
slow evaporation from CH2Cl2. Anal. calcd. for C25H32PRhS2 (530.07 g mol−1): C, 56.60; H, 6.08. Found: 
C, 56.49; H, 6.11. 1H NMR (400 MHz, CDCl3): δ 7.77 (d, 3JHH = 7.2 Hz, 2 H, H2,8), 6.91 (d, 3JHH = 7.2 Hz, 2 
H, H3,7), 3.17 (s, 4 H, H11,12), 1.54 (dd, 2JHp = 10.3, 3JHRh = 0.7 Hz, 9 H, PMe3), 1.50 (d, 4JHp = 3.0 Hz, 15 
H, Cp*–Me). 13C{1H} NMR (100 MHz, CDCl3): δ 141.7 (Cq, C4,6), 141.1 (Cq, C5), 134.8 (d, 2JCRh = 5.5 Hz, Cq, 
C1,9), 132.3 (Cq, C10), 128.6 (CH, C2,8), 117.9 (CH, C3,7), 99.5 (dd, 1JCRh = 4.9, 2JCp = 2.9 Hz, Cq, Cp*), 30.1 
(CH2, C11,12), 15.0 (d, 1JCp = 33.0 Hz, CH3, PMe3), 8.9 (CH3, Cp*). 31P NMR (162 MHz, CDCl3): δ 2.9 (br d, 
1JPRh = 148 Hz). 31P{1H} NMR (162 MHz, CDCl3): δ 2.9 (d, 1JPRh = 148 Hz). HRMS (APCI+): m/z (%) Calcd. 
for C22H24RhS2: 455.0369, found 455.0362 (80) [M–PMe3 + H], 216.0060 (95) [C12H8S2], 184.0339 (55) 
[C12H8S], 152.0618 (100) [C12H8]. IR (KBr): νmax/cm−1 3037w (νAr-H), 2907 m (νC–H), 1552 m, 1404 m, 
1027 m, 952s, 837 m, 734 m.

4.2.3. [Cp*Rh(PMe3)(BiphenS2)] (2c)

A methanol (20 mL) solution of [Cp*Rh(PMe3)Br2] (120 mg, 0.25 mmol), [Biphen(SH)2] (71 mg, 
0.33 mmol) and NaOMe (19 mg, 0.33 mmol) was stirred at room temperature overnight. The red 
precipitate was filtered, washed with MeOH then dried under vacuum for 3 h. The product was ob-
tained as a red solid (110 mg, 0.21 mmol, 83%). Crystals suitable for X-ray work were obtained by 
slow evaporation from CH2Cl2. Anal. calcd. for C25H32PRhS2 (530.07 g mol−1): C, 56.60; H, 6.08. Found: 
C, 56.49; H, 6.15. 1H NMR (400 MHz, CDCl3): δ 7.66 (dd, 3JHH = 7.6, 4JHH = 1.3 Hz, 1 H, H2), 7.64 (dd, 
3JHH = 7.7, 4JHH = 1.3, 1 H, H11), 7.19 (p-td, 3JHH = 7.5, 4JHH = 1.4 Hz, 1 H, H4), 7.18 (p-td, 3JHH = 7.6, 
4JHH = 1.4 Hz, 1 H, H9), 7.03 (p-td, 3JHH = 7.6, 4JHH = 1.6 Hz, 1 H, H3), 6.98 (p-td, 3JHH = 7.6, 4JHH = 1.6 Hz, 1 
H, H10), 6.94 (dd, 3JHH = 7.5, 4JHH = 1.5 Hz, 1 H, H5), 6.86 (dd, 3JHH = 7.5, 4JHH = 1.5 Hz, 1 H, H8), 1.58 (d, 
4JHp = 3.2 Hz, 15 H, Cp*–Me), 1.39 (dd, 2JHp = 10.5, 3JHRh = 0.6 Hz, 9 H, PMe3). 13C{1H} NMR (100 MHz, 
CDCl3): δ 151.0 (Cq, C6), 150.0 (Cq, C7), 143.0 (d, 3JCp = 6.5 Hz, Cq, C1), 140.2 (Cq, C12), 137.2 (CH, C2), 
135.2 (CH, C11), 130.9 (CH, C8), 130.6 (CH, C5), 126.2 (CH, C3,9), 125.7 (CH, C4), 125.5 (CH, C10), 99.3 
(dd, 1JCRh = 5.3, 2JCp = 3.2 Hz, Cq, Cp*), 15.9 (d, 1JCp = 31.6 Hz, CH3, PMe3), 8.8 (CH3, Cp*). 31P NMR 
(162 MHz, CDCl3): δ 0.3 (br d, 1JPRh = 153 Hz). 31P{1H} NMR (162 MHz, CDCl3): δ 0.3 (d, 1JPRh = 152 Hz). 
MS (APCI+): m/z (%) Calcd. for C22H24RhS2: 455.0369, found 455.0365 (100) [M–PMe3 + H]. IR (KBr): 
νmax/cm−1 3037w (νAr-H), 2905 m (νC-H), 1451 m, 1404 m, 1280w, 959s, 750s.
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4.2.4. [Cp*Rh(PMe3)(2,2’-BinapS2)] (2d)

To a THF (15 mL) solution of [2,2’-BinapS2] (117 mg, 0.37 mmol) was added lithium triethylborohy-
dride (0.80 mL, 0.80 mmol, 1 M soln in THF) at room temperature. The reaction was left to stir for 0.5 h 
during which time the solution turned from yellow to almost colourless. To this was added 
[Cp*Rh(PMe3)Br2] (148 mg, 0.31 mmol) and the solution turned instantly to a very dark red/purple 
colour. The reaction was left to stir at room temperature overnight. The solvent was removed under 
vacuum and the crude product purified by column chromatography (silica/CH2Cl2). The solvent was 
removed to afford the product as a dark purple solid (147 mg, 0.23 mmol, 82%). Crystals suitable for 
X-ray work were obtained by slow evaporation from CH2Cl2. Anal. calcd. for C33H36PRhS2 (630.11 g mol−1): 
C, 62.84; H, 5.75. Found: C, 62.73; H, 5.66. 1H NMR (500 MHz, CDCl3): δ 9.20 (d, 3JHH = 8.6 Hz, 1 H, H3), 
9.17 (d, 3JHH = 8.5 Hz, 1 H, H18), 7.80 (d, 3JHH = 8.3 Hz, 1 H, H6), 7.77 (d, 3JHH = 8.2 Hz, 1 H, H15), 7.65 (d, 
3JHH = 8.3 Hz, 1 H, H13), 7.64 (d, 3JHH = 8.2 Hz, 1 H, H8), 7.54–7.48 (m, 2 H, H4,17), 7.45–7.39 (m, 2 H, 
H5,16), 7.01 (d, 3JHH = 8.3 Hz, 1 H, H9), 6.86 (d, 3JHH = 8.3 Hz, 1 H, H12), 1.42 (d, 4JHp = 3.2 Hz, 15 H, Cp*–
Me3), 1.31 (d, 2JHp = 10.6 Hz, 9 H, PMe3). 13C{1H} NMR (125 MHz, CDCl3): δ 150.1 (Cq, C11), 148.1 (Cq, 
C10), 140.8 (d, 3JCp = 6.7 Hz, Cq, C1), 138.3 (Cq, C2), 138.0 (Cq, C19), 137.5 (Cq, C20), 132.9 (Cq, C14), 
132.1 (Cq, C7), 129.5 (CH, C12), 129.2 (CH, C3,9), 128.0 (CH, C15), 127.9 (CH, C18), 127.7 (CH, C6), 125.4 
(CH, C17), 125.0 (CH, C13), 124.8 (CH, C8,16), 124.7 (CH, C5), 124.3 (CH, C4), 99.7 (dd, 1JCRh = 5.5, 
2JCp = 3.5 Hz, Cq, Cp*), 15.7 (d, 1JCp = 31.5 Hz, CH3, PMe3), 9.2 (CH3, Cp*). 31P NMR (202 MHz, CDCl3): δ 2.2 
(br d, 1JPRh = 152 Hz). 31P{1H} NMR (202 MHz, CDCl3): δ 2.2 (d, 1JPRh = 152 Hz). HRMS (APCI+): m/z (%) 
Calcd. for C30H28RhS2: 555.0687, found 555.0729 (90) [M–PMe3 + H], 284.0738 (100) [C20H12S]. IR (KBr): 
νmax/cm−1 3044w (νAr-H), 2906 m (νC-H), 1493 m, 1281 m, 949s, 815s, 747s, 672 m, 546w.

Table 4. Crystallographic data for complexes 1, 2a and 2b
1 2a 2b

Empirical formula C13H24Br2PRh C23H30PRhS2 C25H32PRhS2

M 474 504 530

Crystal system Tetragonal Orthorhombic Monoclinic

Space group P43212 P212121 P21/n

a [Å] 11.994(9) 8.2099(19) 8.265(7)

b [Å] 11.994(9) 13.649(3) 8.706(7)

c [Å] 23.274(19) 19.602(4) 32.87(3)

α [°] 90.0 90.0 90.0

β [°] 90.0 90.0 95.663(7)

γ [°] 90.0 90.0 90.0

V [Å3] 3348(4) 2196.5(8) 2354(3)

Z 8 4 4

ρcalcd (g. cm−3) 1.881 1.525 1.497

μ [cm−1] 58.817 10.448 9.791

Measured refln. 30194 29827 22775

Unique refln. 3088 4016 5378

R [I>2σ(I)] 0.0186 0.0291 0.0378

wR 0.0344 0.0689 0.0981
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4.3. Crystal structure analysis
Tables 4 and 5 list the details of data collections and refinements. Data for 1, 2b, 2c and 2d were col-
lected using a Rigaku SCX-Mini (Mo–Kα, graphite monochromator) at −100°C; for 2b using a Rigaku 
Saturn724 at −148°C. Intensities were corrected for Lorentz polarisation, and adsorption. Structures 
were solved by direct methods and refined by full-matrix least-squares against F2 (SHELXL) (Sheldrick, 
2008). Hydrogen atoms were assigned riding isotropic displacements parameters and constrained to 
idealised geometries. Non-hydrogen atoms were refined anisotropically.

Table 5. Crystallographic data for complexes 2c and 2d
2c 2d

Empirical formula C25H32PRhS2 C33H36PRhS2

M 530 630

Crystal system Orthorhombic Monoclinic

Space group P212121 P21/c

a [Å] 9.5411(15) 10.4996(7)

b [Å] 15.202(3) 22.0450(15)

c [Å] 16.6474(19) 13.3815(9)

α [°] 90.0 90.0

β [°] 90.0 107.216(4)

γ [°] 90.0 90.0

V [Å3] 2414.6(7) 2958.6(4)

Z 4 4

ρcalcd (g. cm−3) 1.459 1.416

μ [cm−1] 9.545 7.918

Measured refln. 25505 25373

Unique refln. 5526 5437

R [I>2σ(I)] 0.0189 0.0277

wR 0.0454 0.0725
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