
A robust reputation-based location-privacy recommender
system using opportunistic networks

Yuchen Zhao
University of St Andrews

yz39@st-andrews.ac.uk

Juan Ye
University of St Andrews

jy31@st-andrews.ac.uk

Tristan Henderson
University of St Andrews

tnhh@st-andrews.ac.uk

ABSTRACT
Location-sharing services have grown in use commensurately with
the increasing popularity of smart phones. As location data can
be sensitive, it is important to preserve people’s privacy while us-
ing such services, and so location-privacy recommender systems
have been proposed to help people configure their privacy settings.
These recommenders collect and store people’s data in a centralised
system, but these themselves can introduce new privacy threats and
concerns.

In this paper, we propose a decentralised location-privacy rec-
ommender system based on opportunistic networks. We evaluate
our system using real-world location-privacy traces, and introduce
a reputation scheme based on encounter frequencies to mitigate
the potential effects of shilling attacks by malicious users. Experi-
mental results show that, after receiving adequate data, our decen-
tralised recommender system’s performance is close to the perfor-
mance of traditional centralised recommender systems (3% differ-
ence in accuracy and 1% difference in leaks). Meanwhile, our rep-
utation scheme significantly mitigates the effect of malicious users’
input (from 55% to 8% success) and makes it increasingly expen-
sive to conduct such attacks.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—Privacy

General Terms
Security

Keywords
location-based services, privacy, recommender systems, opportunis-
tic networks, security, shilling attack

1. INTRODUCTION
Mobile devices such as smart phones have become more and

more widely used in our daily lives. These devices are often em-
bedded with Global Positioning System (GPS) sensors that allow

.

people to use their location information for personalised online ser-
vices. For instance, people can share locations with their friends on
social media platforms such as Facebook1 or record their lives on
Foursquare.2 Mobile applications such as Glympse3 allow people
to share their real-time locations with others to help them schedule
meetings. On the one hand, such location-sharing services (LSSs)
provide us conveniences, keep us in touch with our friends, and
bring fun to our social lives. On the other hand, the increasing
amount of location exposure created by these services introduces
risks for people’s privacy.

Existing user studies have shown that location is the most sensi-
tive and valued personal information among people’s mobile data [34].
Some locations visited, such as clinics and religious sites, may
be sensitive and people may not wish to share these [4]. In ad-
dition, over-exposed location-sharing may lead to the risks of be-
ing stalked [15], which leads to concerns about location privacy in
LSSs [36]. At the same time, incentives from businesses such as
“badges” or simple monetary payments have been shown to influ-
ence users into over-sharing [18, 37], as do less transparent mech-
anisms such as exploiting targeted advertising [12]. The creation
of appropriate location-sharing policies is therefore necessary to
protect people’s location privacy. But location-privacy preferences
are dynamic based on context [2, 11] (e.g., time, location category,
recipient), which means that fine-grained location-sharing policies
may be needed for people to control the disclosure of their loca-
tions. Moreover, people find it difficult to manually configure these
location-privacy policies [32], and so mechanisms are needed to
make location-privacy tools more usable.

To relieve people from the burden of location-privacy configura-
tion, many researchers have proposed the use of machine-learning
techniques to recommend location-privacy preferences from indi-
vidual users’ data [6] or crowdsourced data [35, 40, 41]. These are
all based, however, on the structure of a centralised recommender
system to which people contribute their personal data. User stud-
ies have shown that people have privacy concerns about providing
their data to such a centralised location-privacy recommender sys-
tem [42]. These concerns have negative effects on their satisfac-
tion about their choices, their perceived recommendation quality,
and their acceptance of the recommendations. To deploy location-
privacy recommender systems, they must be acceptable by people.
It is therefore necessary to alleviate such concerns.

One possible solution is to let people exchange data with each
other by themselves (i.e., without a central server) and generate rec-
ommendations on their devices locally. Unlike traditional recom-
mender systems such as music or movie recommenders, location-

1http://www.facebook.com/
2http://foursquare.com/
3http://www.glympse.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/73346560?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.facebook.com/
http://foursquare.com/
http://www.glympse.com/

privacy recommenders are used in mobile computing scenarios that
comprise many mobile devices. These devices tend to be portable
and embedded with short-range communication interfaces such as
802.11 or Bluetooth, which means that they can physically meet
and exchange data with each other, thus creating an opportunistic
network [29]. In this paper, we propose a decentralised location-
privacy recommender system using opportunistic networks. This
decentralised structure allows devices to exchange data with each
other through short-range communication interfaces and generate
recommendations locally. We compare the performance of this op-
portunistic recommender system with a traditional centralised rec-
ommender system and show that, without a central server, it is still
possible to keep recommendation accuracy close to that of its cen-
tralised counterpart. Decentralised systems introduce new threats,
however, such as malicious nodes who may wish to bias the recom-
mendations. To alleviate the effects of such attacks, we explore the
use of a reputation scheme based on node encounter frequencies.

The contributions of this paper are:

1. The design of a decentralised location-privacy recommender
without centralised servers collecting users’ data;

2. Analysis of the effectiveness of attacks that maliciously change
recommended location-privacy settings;

3. A reputation scheme based on people’s encounter frequen-
cies in opportunistic networks that can significantly alleviate
the effect of sampling attacks.

This paper is organised as follows. In Section 2, we discuss
the state-of-the-art in location privacy recommenders and attacks
against recommenders. In Section 3, we present our proposed rec-
ommender and reputation system. Section 4 outlines the design of
our experiments and metrics used, and Section 5 discusses the re-
sults. We discuss potential applications and limitations of our work
in Section 6 and conclude in Section 7.

2. RELATED WORK

2.1 Location-privacy recommenders
People’s location-privacy preferences are complicated. On the

one hand, people may need fine-grained settings to capture their
dynamic location-privacy preferences [3, 20]. On the other hand,
manually configuring fine-grained settings is burdensome [23]. Ex-
isting research has shown that people’s location-privacy preferences
can benefit from recommendations and suggestions [1, 22, 26]. To
help people with location-privacy configuration, researchers have
proposed to use machine-learning techniques to recommend users’
location privacy preferences, thereby setting location privacy poli-
cies automatically. These proposed methods can be categorised
into recommenders that use individual’s data and those that use
crowdsourced data.

Sadeh et al. [32] use machine-learning classifiers based on ran-
dom forests to recommend users’ location-privacy preferences. Rec-
ommendations are based on individual users’ data and results show
that recommendation accuracy is higher than that of user-defined
rules. Similarly, Bigwood et al. [6] compare the performance of dif-
ferent machine-learning classifiers when recommending location-
privacy preferences and their experimental results show that a clas-
sifier based on rotation forest can achieve a accuracy of 86%, which
is also better than users’ predefined settings.

Instead of just individual users’ data, crowdsourced data have
also been used to recommend location-privacy preferences. Toch

proposes a Super-Ego crowdsourcing framework [35] that recom-
mends location-privacy preferences from place-based crowdsourc-
ing and semantic-based crowdsourcing. Experimental results show
that a combination of crowdsourcing and personal bias has the best
accuracy. Researchers have also applied collaborative filtering (CF)
to location-privacy recommenders. Xie et al. [40] propose a pri-
vacy recommender that combines both user-based CF and item-
based CF, and show that recommendation accuracy outperforms
other baseline schemes. Zhao et al. [41] also propose a location-
privacy recommender based on user-based CF. Their experimen-
tal results show that the recommender has better performance than
schemes based on individual user’s data when the training data are
insufficient.

While these proposed systems all appear to provide accurate rec-
ommendations, they are all based on centralised structures. To al-
leviate the negative effects of people’s privacy concerns about pro-
viding their data to a centralised recommender [42], in contrast to
the existing works, we investigate the feasibility of deploying a
location-privacy recommender in a decentralised fashion. In ad-
dition, compared with other proposed decentralised recommender
systems [13, 24, 33], we demonstrate the vulnerability of decen-
tralised recommender to sampling attacks, as explained in the next
subsection, and propose a reputation scheme that mitigates the ef-
fectiveness of such attacks.

2.2 Attacks against recommenders
In both centralised and decentralised CF-based recommenders [31],

recommendations are based on users’ input. Since everyone can
contribute their ratings, a recommender is vulnerable to those mali-
cious users who try to bias the recommendations. These malicious
users, i.e., attackers, can create a number of fake profiles and use
these to inject modified data into the recommender. Such attacks
are known as shilling attacks [21].

Depending on the attackers’ knowledge about the recommender
systems that they are trying to attack, shilling attacks can be cat-
egorised as low-knowledge or high-knowledge [16]. Many low-
knowledge attack detection methods have been proposed for cen-
tralised recommenders [5, 9, 10, 38]. High-knowledge attacks are
not as widely studied, and one particular type of high-knowledge
attack, the sampling attack [8], has rarely attracted attention be-
cause attackers are considered incapable of accessing samples of
real users’ data to conduct the attack. In a decentralised recom-
mender, however, people forward data for each other, which means
that attackers can easily use the real users’ data that they receive
to generate fake profiles. These profiles are difficult to be detected
through traditional analysis based on similarity and statistical fea-
tures [9, 10, 38] because they are very similar to real profiles. Com-
bining trust measures in the recommender has been shown to alle-
viate the effect of shilling attacks [27]. The proposed trust model
is independent of user similarities, which means it can detect sam-
pling attack profiles even if they are highly similar with real users’
profiles. The trust model, however, is posterior, which means it
needs a period of time to accumulate the trust from the recommen-
dation results, and during this period the attackers can still launch
successful attacks.

Compared with existing work in shilling-attack detection, we in-
vestigate the effect of the sampling attack and propose a reputa-
tion scheme to filter out shill profiles. Unlike the trust model, our
scheme does not need to accumulate reputations from recommen-
dation results. Reputation systems have been widely used in op-
portunistic networks to detect users’ misbehaviour such as being
selfish [7] or tampering with stored data [30]. Quercia et al. [30]
propose a decentralised reputation system using public-key encryp-

tion and a gossip protocol to prevent users from modifying their lo-
cal ratings. The assumption of their work is that each attacker only
has one unique profile. In this paper, we consider attackers with the
stronger capability to create multiple fake profiles.

3. APPROACH
We now describe the design of our decentralised location-privacy

recommender. We then demonstrate how one type of shilling at-
tack, the sampling attack, can be applied against a decentralised
recommender system. Finally we introduce our reputation scheme,
based on node encounter frequencies, to alleviate the effect of the
sampling attack.

3.1 Decentralised location-privacy preference
recommenders

Our decentralised location-privacy recommender system is based
on two assumptions. Firstly, in LSSs, people move around with
their mobile devices and encounter each other. This means that
our recommender system can use an opportunistic network com-
posed of mobile devices where people exchange location-privacy
preferences when they encounter each other, without the existence
of a centralised server. Secondly, we observe that location-privacy
recommendations are only requested when people arrive at a place
and decide to publish a location check-in. Therefore, there may
be enough time for one’s device to receive adequate data on the
way from one place to another place before a recommendation is
requested. Figure 1 demonstrates how the recommender works.

Alice

Alice

Alice
Bob

Carol

10 a.m. 11 a.m. 3 p.m.

p A
lic
e

p Al
ic
e,
p Bo
b

p Ca
ro
l

p B
ob

Recommendation created
based on p

Bob
and p

Carol

Figure 1: At 10 a.m., Alice’s device and Bob’s device encounter
(move within communication range) each other and they ex-
change their stored location-privacy preferences. Then at 11
a.m., Alice’s device encounters and exchanges data with Carol’s
device. When Alice arrives at her destination at 3 p.m. and
wants to share her location, the system uses the data that she
received from Bob and Carol to generate a location-privacy rec-
ommendation on her device locally.

3.1.1 Preliminaries
We use U = {u1,u2, ...,uNU } to represent all the users that use

the decentralised recommender system and NU for the number of
users. Each user has a profile p, which is represented by p =
(id,R, ts), where id is the profile identity, R is the user’s location-
privacy preference, and ts is the timestamp of the last update for
this profile.

We assume that the LSS in question has a set of time slots T and
a set of location categories L. The set of possible contexts can then
be represented by C = T×L= {c1,c2, ...,cNC} and NC =NT NL. A

location-privacy preference is represented as Ri =(ri,1,ri,2, ...,ri,NC),
where ri, j is the binary privacy setting (share or not) of a user ui in
a context c j. In this paper, we only take location categories and
time slots into account when constructing contexts because of the
limitation of the data we used in our experiment. When more kinds
of data (e.g. recipients) are available, the contexts can be extended
by adding the new data as additional dimensions.

For a profile p, the initial value of ts is the time when p is gen-
erated. Each time a user updates their location-privacy preference
in p; i.e., making a decision about whether to check-in in a certain
context, ts is updated to the current time. Table 1 summarises the
terms that we use to describe our system.

For users
u a user
NU the number of users
U a user set, U = {u1,u2, ...,uNU }
T a time slot set, T = {t1, t2, ..., tNT }
L a location category set, L = {l1, l2, ..., lNL}
C a context set,

C = T ×L = {(t1, l1),(t1, l2), ...,(tNT , lNL)}
= {c1,c2, ...,cNC}

NC the number of contexts, NC = |C|= NT NL

R a location-privacy preference, Ri = (ri,1,ri,2, ...,ri,NC),
ri, j is ui’s location-privacy setting (share or not) in c j

p a profile of a user, p = (id,R, ts),
id is the profile identity,
R is the user’s location-privacy preferences,
and ts is the profile’s last update time

Preceived a set of received profiles
For attackers

Ctarget a target context set
int the intent of attack (push or nuke)
s a shill record, s = (ida f f ected , idshill , ts),

ida f f ected is the id of the affected profile,
idshill is the id of the shill profile made from
the affected profile,
and ts is the last update time of the affected profile

S a shill record set, S = {s1,s2, ...}
Pshill a shill profile set

Table 1: Terms and symbols used in our system

3.1.2 Exchanging location-privacy preferences
Each user ui keeps a set of received profiles, Preceived

i , from other
encountered users. When two users ui and u j encounter each other,
we consider two schemes of data exchange as follows:

• Decentralised Individual Exchange (D-Ind): ui and u j only
exchange their own profiles pi and p j.

• Decentralised Set Exchange (D-Set): ui and u j will not only
exchange their own profiles, but also all of the other profiles
that they have received.

In D-Ind, after receiving p j, ui checks if p j is already in Preceived
i .

If not, or if the received p j is newer than the previously existing p j
(this can be done by comparing the timestamp of the received p j
and the timestamp of the existing p j), then ui adds, or updates, p j

in Preceived
i . In D-Set, this check is done on every profile in the

received set.

3.1.3 Local recommendations
Once a user arrives at their destination during a certain time

slot and wants to publish a location check-in, we use the location-
privacy preferences in all of the user’s received profiles to recom-
mend a location-privacy setting locally. The algorithm of our rec-
ommender is user-based CF [31], based on the assumption that peo-
ple who have similar location-privacy preferences can use their data
to help each other.

First, we calculate the similarities between ui’s location-privacy
preferences Ri and all location-privacy preferences in Preceived

i . We
use 5 to represent a “share” setting and use 1 to represent a “not
share” setting, following the convention from previous work [41].4

Ri and all the Rs in Preceived
i can thus be represented as vectors that

only contain 1 and 5. Then we can calculate the cosine similarity
between two vectors as the similarity of two users’ location-privacy
preferences.

Next, we use the preferences with the highest similarities with
Ri to recommend a location-privacy setting in the current category
of location l and in the current time slot t. Since we can obtain
the current context c j from l and t, we denote the location-privacy
recommendation for user ui in context c j as:

r̂i, j = r̄i +
∑uk∈N j(i) wi,k(rk, j− r̄k)

∑uk∈N j(i) |wi,k|

where N j(i) is the set of users in Preceived
i whose preferences

contain a setting in context c j. wi,k is the cosine similarity between
the preferences Ri and Rk.

To decide whether to recommend sharing, we compare the rec-
ommendation result r̂i, j with the median value θ (3 in this case)
of the “share” setting and the “not share” setting. Then the final
decision made by the recommender for ui in the current context c j
is:

decisioni, j =

{
not share if r̂i, j ≤ θ

share if r̂i, j > θ

3.2 Sampling attack
We now introduce a potential attack, i.e., the sampling attack,

against our decentralised recommender system. Compared with
centralised recommender systems, decentralised recommender sys-
tems are more vulnerable to the sampling attack because all nodes
receive and store others’ data. This enables attackers to use their
received preferences from real users as samples to generate shill
profiles. Hence, these shill profiles are highly similar to real pro-
files, which makes them difficult to be detected based on preference
similarity. Figure 2 shows an example of how a sampling attacker
node generates shill profiles in our recommender system. We first
discuss the incentives and abilities of sampling attackers in LSSs.
Then we formally describe the process of a sampling attack against
our recommender system.

3.2.1 Incentives and ability
Since location-privacy recommenders automatically configure peo-

ple’s location-privacy settings, malicious users may conduct sam-
pling attacks to influence the recommendations, thereby influenc-
ing people location check-in behaviours. For example, a business
owner may want everyone who visits their shops to share the loca-
tions, in order to make these shops more popular on social media.
4Since preferences are normalised when calculating recommenda-
tions and the final decision is made by comparing the recommenda-
tion result with the median value of these two different values, the
selection of these two values does not influence the final decision.

u
1

a u
3

p
1

u
2

p
2 p

1
�p

1
shill

p
2
�p

2
shill

{p
1
shill, p

2
shill}

Figure 2: A sampling attacker a receives two profiles p1 and
p2 from two real users u1 and u2 respectively. The attacker a
then uses p1 and p2 as samples to generate two shill profiles
pshill

1 and pshill
2 . When a meets u3, it sends the two shill profiles

{pshill
1 , pshill

2 } rather than the two real profiles {p1, p2} to u3.

Similarly, they would want everyone who visit their rivals’ places
to not share the locations, in order to decrease their popularity.

We consider that sampling attackers have the following capabil-
ities:

• Attackers can take part in the decentralised recommender
systems. They can receive data from others, store the data
received on their devices, and inspect the stored data.

• Attackers can generate multiple profile ids and use these ids
to generate multiple shill profiles based on the received real
profiles.

3.2.2 Preliminaries
We assume that a sampling attacker has a set of target contexts

and intent for these contexts; for example, an attacker can have a
push intent for one of their target locations to encourage people to
publish check-ins at this location.

3.2.3 Attack Process
In both D-Ind and D-Set, an attacker first decides the set of target

contexts Ctarget and their intent int. The attacker then takes part in
the service to encounter other users. When the attacker encounters
a user, the attacker exchanges data with the user and generate shill
profiles based on the data receives from the user. Algorithms 1
and 2 give formal descriptions of the attack process in D-Ind. The
attack process in D-Set is to repeat the algorithm 1 and 2 for all the
profiles in the received list.

When the attacker sends shill profiles to the user, if there have
not been any shilling profiles generated yet, the attacker sends an
empty profile. Otherwise, in D-Ind, the attacker randomly selects
one shill profile in Pshill to send. In D-Set, the attacker sends the
whole Pshill to the user.

3.3 Encounter-frequency-based reputation
Since the shill profiles are generated from real profiles and the

only difference between them is the ratings for the target contexts,
detection based on similarity is difficult. In addition, since it is
not costly for attackers to generate shill profiles, they can easily
pass similarity-detection thresholds by generating more shill pro-
files with gradually changing similarities. Therefore, we need a
solution that uses information beyond the features inside shill pro-
files.

Algorithm 1: CheckShill. Checking whether to make a new
shill profile or to update an existing shill profile.

Data: p is the received profile.
S is a set of victim records.
Result: Pshill is the set of shill profiles.
begin

if ∃s ∈ S,s.ida f f ected = p.id then
if p.ts > s.ts then

Pshill ←MakeShill(p, false);
s.ts← p.ts;

else
Pshill ←MakeShill(p, true);

Algorithm 2: MakeShill. Making a new shill profile or updat-
ing an existing shill profile based on Ctarget and int.

Data: p is a real user’s profile that the attacker uses as a
sample to generate shill profiles.

isNew represents whether to make new shill profiles or to
update existing shill profiles.
int represents the intent of the attacker on the target context
Ctarget .
Result: Pshill is the set of shill profiles.
begin

if isNew then
Apply a new idshill ;
Add (p.id, idshill , p.ts) into S;
Rshill ← p.R;
foreach c in Ctarget do

if c is not rated in Rshill then
Change its rating in Rshill based on int;

pshill ← (idshill ,Rshill , p.ts);
Pshill .add(pshill);

else
Find the old shill profile pold of p in Pshill ;
Update the pold .R and pold .ts based on p.R, Ctarget ,

int, and p.ts;

An important feature of nodes in opportunistic networks is that
they physically encounter each other. The encounter frequency is
decided by the number of nodes and their mobility patterns. To in-
crease encounter frequencies, attackers need to inject more nodes
carried by multiple people that have different trajectories, which
is more difficult than faking profile features. We thus propose a
reputation scheme based on the encounter frequency of nodes. For
example, in Figure 3 (a), both u1 and u2 are real users and they
encounter (move into communication range) three times. Because
u2 only keeps one profile p2 on its device and it identifies itself as
p2 every time with u1, then from u1’s perspective, profile p2 has
a reputation of 3. But for an attacker a, as shown in Figure 3 (b),
and it keeps three shill profiles that are pshill

1 , pshill
2 , and pshill

3 on its
device, for each of these encounters, it can only claim to be one of
these three shill profiles. As a consequence, from u1’s perspective,
the reputations of the attacker a’s shill profiles would be lower than
the reputations of real users’ profiles, since attackers have to di-
vide the opportunities to increase reputations for the different shill
profiles they have.

u
1

u
2

u
2

u
2

Profile ID Reputation

p
2

1+1+1 = 3

Profile ID Reputation

pshill
1

1

pshill
2

1

pshill
3

1

u
1
's reputation table u

1
's reputation table

I'm
p 2

I' m
p

2

I'm
p

2

1st time 2nd time 3rd time

(a) Both u
1

and u
2

are real users.

u
1

a a a

I'm
p

sh
ill 1

I'm
p

s
h

ill
2

I'm
p shill

3

1st time 2nd time 3rd time

(b) u
1

is a real user, but a is an attacker.

Figure 3: Encounter frequency based reputation scheme. In
(a), real users u1 and u2 encounter three times. Each time, u2
identifies its profile p2 with u1 and the reputation of p2 is 3.
In (b), a is an attacker and has to divide the same amount of
reputation to its different shill profiles.

Therefore, from a user ui’s perspective, the profile p j’s reputa-
tion, repi, j , is the frequency by which ui encounters p j. Before
making recommendations, ui uses the average reputation repi of
all the received profiles as the reputation threshold. The profiles
that are used in making recommendations are

Pcandidate
i = {p j|p j ∈ Preceived

i ,repi, j ≥ repi}

In our reputation scheme, as long as an attacker has multiple
shill profiles, the encounter-frequency-based reputation has to be
divided among these shill profiles. Thus each of the shill profiles is
likely to have lower reputation than real profiles do. The attacker
may choose to only produce one shill profile to make it have the
same amount of reputation as a real profile. In this case, our reputa-
tion scheme cannot discriminate this single shill profile. However,
a single shill profile’s influence on biasing the recommendation re-
sults is low. If the attacker wants to increase the attack effective-
ness, he or she has to deploy multiple devices that hold single shill
profiles, which is an increase of attack expense.

4. EVALUATION
To evaluate the effectiveness of our decentralised opportunis-

tic location-privacy recommender, we employ network simulations
driven by real-world traces.

4.1 Simulation setup
We use the Opportunistic Network Environment (ONE) simula-

tor [19] to evaluate our decentralised recommender in an oppor-
tunistic network scenario. Each simulation round has 24 hours,
with time divided into five time slots, i.e., morning, noon, after-
noon, evening, and night (Table 3). To make our simulations real-
istic, we use the st_andrews/locshare dataset from the CRAWDAD
data archive [28], which contains the location-privacy preferences
of 40 participants collected in the town of St Andrews. We simulate
40 nodes based on these users, each with different location-privacy
preferences taken from the dataset. To evaluate the success of the
sampling attack, we add one attacker node that uses all of its re-
ceived profiles to generate shill profiles. All of the nodes’ mobility
patterns are restricted to a map of the road layout of the town of
St Andrews. When a node moves, it first chooses its destination

from the map, with the probability of choosing a point of interest
(POI) as destinations is 0.8. We created five POIs that represent the
locations of university buildings and night clubs in the town. Once
the destination is decided, the node traverses the shortest path to
this destination. After arriving, the node waits for a period of time
(between 0 and 120 seconds) and then chooses its next destina-
tion. Each simulation is repeated for 100 rounds, with the initial
positions and mobility patterns of nodes generated with different
random seeds. Table 2 shows the details of our simulation setup.

Parameters Values
simulation time 86400 seconds (24 hours) /

round
time update interval 2 seconds
transmit range 10 metres
number of nodes 41 (40 real users, 1 attacker)
walking speed 0.0 m/s to 1.5 m/s
number of points of interests 5
probability of visiting POIs 80%
world size 4500 metres * 3400 metres
movement map streets of St Andrews
movement model shortest-path map-based

movement
wait time 0 seconds to 120 seconds
router direct delivery
number of rounds 100

Table 2: Simulation setup

Note that we do not take into account the influence of data trans-
mit speed and storage size of nodes, as we hold them constant to
compare between the various recommenders. Due to the design of
our recommender, the main payload of profiles are sets of prefer-
ences, which are represented as binary vectors. Thus we believe
that the transmission expense and storage expense of these prefer-
ences are uninfluential. Once two nodes move into communication
range, all data exchange between them is done in one simulation
update interval (2 seconds).

4.2 Recommendation performance
To test our recommender, we allocate each node in the simulation

one of the 40 location-privacy preferences from the st_andrews/locshare
dataset. This dataset includes six location categories:

L= {Food & Drink,Leisure,Retail,Residential,Academic,Library},

while the times in the dataset are converted into five time slots:

T = {Morning,Noon,A f ternoon,Evening,Night}.

Each instance in the dataset is in the format as (id, t, l,decision)
that means one location sharing decision (share or not) of a partici-
pant in time slot t and location category l. This decision is only for
time when that instance was collected. During the data collection,
one participant might repeat visiting same location in the same time
slot, which means for the same (id, t, l) in the dataset, there are dif-
ferent decisions. Therefore, for each participant, we use their most
frequent decision in (t, l) as the location-privacy preference r in
this context.

We test the performance of our recommender on the fly. The
simulation time starts at 0700 in the morning. Once a node arrives
at a destination, it decides whether publish a check-in or not. The
probability of publishing a check-in in different time slots are cal-
culated from the percentage of instances of each time slot in the
entire st_andrews/locshare dataset, as shown in Table 3.

time slot probability
Morning (0700 – 1159) 18%
Noon (1200 – 1359) 13%
Afternoon (1400 – 1659) 23%
Evening (1700 – 2059) 28%
Night (2100 – 0659) 17%

Table 3: Probability of check-in in different time slots

If the node decides to check-in, we first convert the current sim-
ulation time in the corresponding time slot. Then if there are any
settings in the node’s allocated preference in the current time slot,
we randomly choose one of them and compare it with the recom-
mended setting by our recommender. The probable outcomes of
these comparisons are shown as Figure 4. This setting will not be
chosen again in the same round of simulation. After the compari-
son, the node’s profile is updated by adding the tested setting into
the preference of the profile and the profile’s timestamp is updated
to the current time. The node uses this updated new profile for gen-
erating recommendations and exchanging with other nodes in the
future. To implement our recommender, we use the Lenskit recom-
mender toolkit [14] as our user-based CF engine with a maximum
neighbourhood size of 8, as tested to have the best recommendation
performance using the same dataset and algorithm in our previous
work [41].

True
Positive

(TP)
share

share

False
Negative

(FN)

not share

False
Positive

(FP)
not share

True
Negative

(TN)

A
ct

ua
l

Se
tt

in
g

Recommended Setting

Figure 4: Confusion matrix of actual setting and recommended
setting.

The accuracy of the recommender is calculated as:

accuracy =
T P+T N

T P+T N +FP+FN

and the privacy leak, that is, the overexposure caused by the rec-
ommender, is calculated as:

leak =
FP

T P+T N +FP+FN

4.3 Sampling attack
To simulate the sampling attack, we consider that the attacker

node has the ability to generate unlimited ids for shill profiles. For
each real user profile that the attacker receives, it generates one
corresponding shill profile. Thus the attack size in our experiment
is 100%. Compared with the commonly used attack size (15%) [8,
25, 39], the attacker in our simulation is stronger.

For each round of simulation, the attacker node randomly chooses
one target location category and one attack intent (push or nuke),

i.e., the Ctarget is the target location category combined with all the
time slots. For each real user node, two parallel recommenders are
stored for analysing the attack effectiveness. One of them is influ-
enced by the attacker’s input, but the other one is not. Once the real
user node requests a recommendation, we compare the output of
both recommenders and use ChangedRec(Ctarget , int) to represent
the set of changed recommendations due to the attacker’s input.

The target recommendations that the attacker aims to change is
the set of recommendations requested in Ctarget and, without the
influence of the attacker’s input, the recommendation are differ-
ent from int. For example, if the recommendation in a target con-
text is “not share” without the existence of the attacker, then it is
a target recommendation that a “push” attacker aims to change.
Similarly, all of the “share” recommendations in the target con-
texts are the target recommendations of a “nuke” attacker. We use
TargetRec(Ctarget , int) to represent the set of target recommenda-
tions. Therefore, for one simulation round, given an attacker with
Ctarget and int, the attack success ratio is:

Suc(Ctarget , int)=
|TargetRec(Ctarget , int)∩ChangedRec(Ctarget , int)|

|TargetRec(Ctarget , int)|

4.4 Encounter-frequency-based reputation
To evaluate the effectiveness of our reputation scheme, we com-

pare the attack success ratio of the attack with and without the rep-
utation system. We refer to this reputation scheme as D-Set-Rep
in our analysis. We also compare our reputation scheme with an
existing trust model for recommender systems [27], adapting the
item-level trust model from their work as location-level trust.5 We
refer to this scheme as D-Set-Trust. We then have profile p’s trust
when using it to recommend location-privacy preferences in loca-
tion category l as:

TrustL(p, l) =
|{(rk, lk) ∈CorrectSet(p) : lk = l}|
|{(rk, lk) ∈ RecSet(p) : lk = l}|

RecSet(p) represents the set of all the recommendations that
p has been involved in and CorrectSet(p) represents the set of
correct recommendations that p has been involved in. Therefore
TrustL(p, l) is the percentage of correct location-privacy prefer-
ence recommendations that p has made in location category l. Note
that this trust value, like our reputation value, is calculated by each
user locally and so different users will have different trust values
for other users.

When user ui generates recommendations in location l, for each
profile pk, we combine their similarity wi,k and pk’s location-level
trust TrustL(pk, l) into a trust-based weighting:

w(ui, pk, l) =
2×wi,k×TrustL(pk, l)

wi,k +TrustL(pk, l)

and use this weighting to replace wi,k in the recommendation pro-
cess.

Since a profile does not have a trust value unless it contributes to
recommendations, it needs a initial trust value for bootstrap. If ui
uses pk to generate a recommendation in location category l for the

5We adopt location-level trust rather than O’Donovan and Smyth’s
profile-level trust because shill profiles in sampling attack are
highly similar with real profiles, which means even if they make
incorrect recommendations in the target location category, their
trust values can still recover by making correct recommendations
in other location categories. The location-level trust model can
ensure that shill profiles’ trusts in the target location category are
lower than real profiles since their recommendations in the target
location category are always incorrect.

first time, we set the initial trust value TrustL(pk, l)0 to be wi,k, i.e.,
when generating this recommendation, the trust-based weighting
of pk is its cosine similarity.

In each round of the simulation, for each node, once it decides
to check-in and there is a setting to be evaluated, we compare the
setting with the recommendations of all the different schemes and
record the comparison results. We can then use a paired t-test to
compare the differences between the performance of these different
schemes.

5. RESULTS
Our experiments aim to discover: (i) the difference in perfor-

mance of centralised and decentralised location-privacy recommenders;
(ii) the effect of sampling attack on our recommenders; and (iii) the
effect of our reputation scheme in mitigating the sampling attack.

5.1 Decentralised recommender accuracy
We first evaluate the performance of the decentralised recom-

menders D-Ind and D-Set, comparing their accuracy and leak with
a centralised oracle recommender C-Rec that has access to all of
the data in the simulation. Since the C-Rec has more data than the
decentralised recommender systems during the simulations, it acts
as a benchmark for the ideal performance that D-Ind and D-Set can
achieve.

Figures 5 and 6 show that D-Ind and D-Set have similar per-
formance, with their accuracy being 9% and 11% lower than that
of C-Rec. In terms of leak, the increases are 4% and 3% for D-
Ind and D-Set respectively. These results are within our expecta-
tions, since our decentralised recommenders need more time than
the centralised one to have adequate data to produce accurate rec-
ommendations. Of the decentralised recommenders, D-Set has bet-
ter performance than D-Ind. To investigate why, we adapt the mes-
sage coverage metric from other work [17] to measure the profile
coverage of both schemes. Given one profile, its coverage can be
measured by the number of nodes that have received this profile
divided by the number of nodes that should receive this profile. As
there are 40 nodes in our simulation, each time a node generates
a new profile, there are 39 nodes that could receive it. For each
round of simulation, we measure the average coverage of all the
profiles. Figure 7 shows that the coverage in D-Set is much higher
than in D-Ind. The nodes in D-Set not only send their own pro-
files to encountered nodes, but also forward their received profiles,
and so once a new profile is generated, it can cover more nodes in
D-Set than in D-Ind. As a consequence, the recommendation per-
formance in D-Set is better. This suggests that D-Set is a better
choice than D-Ind to use when implementing decentralised recom-
menders. In the rest of this section, we use only D-Set as represen-
tative of our decentralised recommender for comparing with other
schemes.

The overall performance only indicates the difference between
the recommenders at the end of a simulation. But performance
may change over time. We group the recommendation results of
each simulation round into 90-minute buckets6 and analyse the
accuracy and leak of different recommenders in each time interval.
Figures 8 and 9 show that the performance difference between the
decentralised recommenders and the centralised recommender is
greatest at the beginning of the simulation, when the recommenders
are going through cold start. As time goes on, the performance of
the decentralised recommender systems approaches the centralised

6We experimented with buckets smaller than 90 minutes, but found
that some time intervals in the dataset lacked sufficient sample
points for analysis.

0

25

50

75

100

C−Rec D−Ind D−Set
Recommender scheme

a
c
c
u
ra

c
y
 (

%
)

Figure 5: Overall accuracy of different recommenders in 100
rounds of simulations. The centralised recommender (C-Rec)
has the highest average recommendation accuracy (68%) com-
pared with the decentralised recommenders’ accuracy (both
p < 0.01). For the decentralised recommenders, the average
accuracy of D-Ind is 57%, 2% lower than the accuracy of D-Set,
59% (p < 0.01).

0

10

20

30

40

50

C−Rec D−Ind D−Set
Recommender scheme

le
a
k
 (

%
)

Figure 6: Overall leak of different recommenders in 100 rounds
of simulations. As in accuracy, the centralised recommender
(C-Rec) has the best performance, with an average leak of 16%
(both p< 0.01). The difference between D-Ind (20%) and D-Set
(19%) is not statistically significant (p > 0.01).

recommender’s performance; after 4.5 hours of simulation time,
the average accuracy difference and the average leak difference
between D-Set and C-Rec are 3% and 1% respectively. When LSSs
are used in the real world, people are unlikely to publish all of
their check-ins within one day, which means that there would be
more time for our decentralised recommender to collect adequate
data before making recommendations. Hence we believe the de-
centralised recommender’s performance would be closer to that of
C-Rec in real-world applications.

5.2 Attack Effectiveness
To study the effect of the sampling attack in our recommender

system, we first examine the attack without any mitigation, i.e.,
without a reputation scheme.

0

25

50

75

100

D−Ind D−Set
Recommender scheme

P
ro

fi
le

 c
o
ve

ra
g
e
 (

%
)

Figure 7: Overall profile coverage of decentralised recom-
menders in 100 rounds. Due to the data forwarding, the aver-
age coverage (78%) of D-Set is higher than the average coverage
(49%) of D-Ind (p < 0.01).

0

25

50

75

100

3 6 9 12 15 18 21 24
Time in simulation (hours). Sample interval: 1.5 hours

a
c
c
u
ra

c
y
 (

%
)

recommender
C−Rec
D−Set

Figure 8: accuracy of C-Rec and D-Set over time. The differ-
ence between the two schemes’ accuracy becomes small as the
simulation time goes on. After 4.5 hours of simulation time, the
accuracy of the two schemes are close.

As shown in Figure 10, across the 100 rounds of simulation, the
average attack success ratio is 57%. This result is from those tar-
get recommendations whose contexts are in Ctarget and the original
recommendation results are different from int; by simply generat-
ing 40 shill profiles (one for each real profile), one attacker node
can change more than half of the recommended location-privacy
settings which requested by real users in the target contexts.

5.3 Mitigation Effectiveness
To evaluate the effectiveness of the reputation scheme, we exam-

ine attack success with reputation (D-Set-Rep) and location-level
trust (D-Set-Trust). their mitigation effectiveness. Figure 10 shows
that with the reputation system, the attack success ratio in D-Set-
Rep drops from 57% to 8%. Moreover, the difference between the
attack success ratios of D-Set and D-Set-Trust is minimal, at only
2%. This is due to the posterior feature of the trust model, which
means that there have to be enough recommendations made before
trust values can accumulate. Until this occurs, attackers’ trust val-

0

10

20

30

40

50

3 6 9 12 15 18 21 24
Time in simulation (hours). Sample interval: 1.5 hours

le
a
k
 (

%
)

recommender
C−Rec
D−Set

Figure 9: leak of C-Rec and D-Set with the change of simulation
time. After 4.5 hours of simulation time, the leak of the two
schemes are close.

ues are no lower than those of real users, and sampling attacks can
still be successfully conducted.

0

25

50

75

100

D−Set D−Set−Trust D−Set−Rep
Recommender scheme

S
u
c
c
e
s
s
 r

a
ti
o
 (

%
)

Figure 10: The percentage of successful attacks using different
recommenders. The average attack success ratios of D-Set is
57%. The location-level trust’s effect on alleviating the sam-
pling attack is minimal. The attack success ratio of D-Set-Trust
(55%) is 2% lower compared with D-Set (p < 0.01). With the
reputation scheme D-Set-Rep, the average attack success ratio
drops to 8% (p < 0.01).

Our results suggest that, in opportunistic networks, the encounter
frequency of profiles can be used as a proxy for reputations, and
can effectively alleviate the effect of shilling attacks against decen-
tralised recommenders. As in the trust recommenders, the design
of our reputation scheme is independent of the content of profiles,
which means that it is difficult for attackers to bypass the reputa-
tion filter by elaborating the shill profiles. In addition, unlike the
posterior trust metrics, our reputation scheme does not need recom-
mendation results to update the reputation values, which makes it
quicker to function.

Besides the mitigation effect, we are also interested whether our
reputation scheme would decrease the accuracy and leak of the rec-
ommender, since the reputation scheme may filter out real users’

profiles that have low encounter frequencies and influence the rec-
ommendation performance. Figures 11 and 12 show overall per-
formance for D-Set-Rep. The reputation scheme’s influence on
accuracy and leak is 2% and 1% respectively, which is minimal
compared with the overall performance.

0

25

50

75

100

D−Set D−Set−Rep
Recommender scheme

a
c
c
u
ra

c
y
 (

%
)

Figure 11: Overall accuracy of D-Set and D-Set-Rep in 100
rounds of simulation. The average accuracy of D-Set-Rep, 57%,
is 2% lower than the average accuracy of D-Set, 59% (p< 0.01).

0

10

20

30

40

50

D−Set D−Set−Rep
Recommender scheme

le
a
k
 (

%
)

Figure 12: Overall leak of D-Set and D-Set-Rep in 100 rounds of
simulation. The average leak of D-Set-Rep, 20%, is 1% higher
than the average leak of D-Set, 19% (p < 0.01),

5.4 Multiple attacker nodes
Our experimental results indicate that our reputation scheme can

significantly mitigate the effect of sampling attack by one attacker
node generating multiple shill profiles. The reason is that each shill
profile on the attacker node has fewer opportunities than real users
to gain encounter-frequency-based reputation. One way to increase
the opportunities for gaining reputation is to increase the number
of attack nodes. We examine how many nodes the attacker needs to
deploy in D-Set-Rep to achieve the same attack success that it can
easily achieve by generating shill profiles in D-Set.

We set up the attacker to deploy multiple nodes in D-Set-Rep.
In each round of simulation, all nodes controlled by the attacker
have the same Ctarget and int. Whenever these nodes generate shill

profiles, shill profiles generated from the same real profile have the
same profile id. Therefore the reputation of a shill profile to a real
user can be increased by encountering different attacker nodes.

Figure 13 shows that the attack success ratio goes up as we in-
crease the number of nodes controlled by the attacker. Due to the
mitigation from our reputation scheme, the attacker needs to deploy
at least 30 nodes to achieve the same attack success ratio achieved
in D-Set. Compared with simply generating shill profiles, deploy-
ing multiple nodes is more expensive. If the attacker wants the shill
profiles’ reputations to increase on more real users’ sides, the shill
profiles need to earn reputation more frequently. Therefore these
attacker nodes need to be carried by different people, and these
people must have diverse mobility patterns to meet more real users.

success ratio in D−Set (57%)

0

25

50

75

100

5 10 15 20 25 30 35 40
Number of attacker nodes

S
u
c
c
e
s
s
 r

a
ti
o
 (

%
)

recommender
D−Set−Rep

Figure 13: The change of success ratio when the attacker de-
ploys multiple devices in D-Set-Rep. The dashed line is the suc-
cess ratio achieved by deploying only one device in D-Set, i.e.,
without the reputation scheme. Our reputation scheme signifi-
cantly increases the expense (the deployment of at least 30 de-
vices) for an attacker to achieve the same attack success ratio.

6. DISCUSSION
Our results suggest that decentralised recommender systems based

on opportunistic networks can be an alternative to centralised rec-
ommenders for recommend location-privacy settings. The decen-
tralised recommender’s performance is comparable with the cen-
tralised recommender’s, once it has received adequate data. More
importantly, it does not need the support of a central server. In our
previous user study [42], we have found significant privacy con-
cerns from users about providing their data to a central server and
such concerns have negative effects on users’ perceived recommen-
dation quality, satisfaction, and acceptance of recommendations.
Decentralisation enables us to remove the source of such concerns.
However, there are limitations in such decentralised structures.

Our results show that nodes in decentralised recommenders need
enough time to encounter and receive data from others. In our ex-
periments, all of the nodes keep moving and encountering each
other and they may only publish location check-ins once they ar-
rive at destinations. These two assumptions are reasonable in LSSs
where there is enough time for a node to receive adequate data be-
tween two recommendations being made. However, in some other
recommendation scenarios, people may require recommendations
earlier and more frequently than in LSSs. For example, music rec-
ommenders may need to provide the “Top-N” songs recommen-
dations as soon as someone joins the service. In this case, de-

centralised recommenders may not be suitable to make accurate
recommendations because new users have not encountered enough
users to receive data.

Our results also show that using node encounter frequencies for
reputation can significantly prevent our recommender system from
being abused by shilling attacks. Although we only test the sam-
pling attack in our experiments, our reputation scheme is indepen-
dent of how the shill profiles are elaborated. This makes our repu-
tation scheme also suitable for preventing other types of shilling at-
tacks. In future work, we plan to compare our reputation scheme’s
mitigation effectiveness on different types of shilling attacks in de-
centralised recommender systems. In addition, compared with ob-
fuscating shill profiles to bypass similarity-based detection, it is
more complex for attackers to change reputations in our scheme,
since their encounter frequencies are influenced by multiple fea-
tures such as speed and trajectories. We also plan to investigate
how more sophisticated attackers can change these features to in-
crease their reputations.

Although we have evaluated the influence of our reputation scheme
on recommender performance, we only consider linear increases in
nodes’ reputations. In some applications, old nodes’ reputations
may need to be reset periodically or increase in different ways to
new nodes, as otherwise new nodes will never have chances to take
part in making recommendations. We leave this for future work.

7. CONCLUSIONS
Location-privacy recommenders have been proposed to help peo-

ple with their location-privacy settings. However, people have pri-
vacy concerns about their centralised structure and so may be less
likely to accept the recommendations. In this paper, we propose a
decentralised location-privacy recommender based on opportunis-
tic networks that allows people to exchange data with each other
through short-range communications and generate recommenda-
tions locally. Our experimental results show that the performance
of such decentralised recommenders is close to that of centralised
recommenders once adequate data have been received. In addi-
tion, our experiments show the effect of the sampling attack on our
decentralised recommenders, and we propose a reputation scheme
based on node encounter frequencies that can significantly decrease
the sampling attack success ratio compared with a location-level
trust model.

8. REFERENCES
[1] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid,

A. Acquisti, J. Gluck, L. F. Cranor, and Y. Agarwal. Your
location has been shared 5,398 times!: A field study on
mobile app privacy nudging. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI),
pages 787–796, Seoul, Korea, Apr. 2015.
https://doi.org/10.1145/2702123.2702210.

[2] D. Anthony, T. Henderson, and D. Kotz. Privacy in
Location-Aware Computing Environments. IEEE Pervasive
Computing, 6(4):64–72, Oct. 2007.
https://doi.org/10.1109/MPRV.2007.83.

[3] M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor.
Capturing location-privacy preferences: quantifying
accuracy and user-burden tradeoffs. Personal and Ubiquitous
Computing, 15(7):679–694, Oct. 2011.
https://doi.org/10.1007/s00779-010-0346-0.

[4] A. Beresford and F. Stajano. Location privacy in pervasive
computing. IEEE Pervasive Computing, 2(1):46–55, Jan.
2003. https://doi.org/10.1109/mprv.2003.1186725.

https://doi.org/10.1145/2702123.2702210
https://doi.org/10.1109/MPRV.2007.83
https://doi.org/10.1007/s00779-010-0346-0
https://doi.org/10.1109/mprv.2003.1186725

[5] R. Bhaumik, C. Williams, B. Mobasher, and R. Burke.
Securing collaborative filtering against malicious attacks
through anomaly detection. In Proceedings of the 4th
Workshop on Intelligent Techniques for Web Personalization
(ITWP), Boston, MA, USA, July 2006. Online at http:
//www.aaai.org/Library/Workshops/2006/ws06-10-006.php.

[6] G. Bigwood, F. Ben Abdesslem, and T. Henderson.
Predicting location-sharing privacy preferences in social
network applications. In Proceedings of the 1st Workshop on
Recent Advances in Behavior Prediction and Pro-active
Pervasive Computing (AwareCast), Newcastle, UK, June
2012. Online at http://www.ibr.cs.tu-
bs.de/dus/Awarecast/awarecast2012_submission_1.pdf.

[7] G. Bigwood and T. Henderson. IRONMAN: Using social
networks to add incentives and reputation to opportunistic
networks. In Proceedings of the IEEE 3rd International
Conference on Social Computing (SocialCom), pages 65–72,
Boston, MA, USA, Oct. 2011.
https://doi.org/10.1109/passat/socialcom.2011.60.

[8] R. Burke, B. Mobasher, and R. Bhaumik. Limited knowledge
shilling attacks in collaborative filtering systems. In
Proceedings of 3rd Workshop on Intelligent Techniques for
Web Personalization (ITWP), pages 17–24, Edinburgh, UK,
Aug. 2005.

[9] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik.
Classification features for attack detection in collaborative
recommender systems. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 542–547, Philadelphia, PA,
USA, Aug. 2006. https://doi.org/10.1145/1150402.1150465.

[10] P.-A. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling
attacks in online recommender systems. In Proceedings of
the 7th Annual ACM International Workshop on Web
Information and Data Management (WIDM), pages 67–74,
Bremen, Germany, Nov. 2005.
https://doi.org/10.1145/1097047.1097061.

[11] S. Consolvo, I. E. Smith, T. Matthews, A. Lamarca, J. Tabert,
and P. Powledge. Location disclosure to social relations:
why, when, & what people want to share. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI), pages 81–90, Portland, OR, USA, Apr. 2005.
https://doi.org/10.1145/1054972.1054985.

[12] S. Coutts. Anti-choice groups use smartphone surveillance to
target ‘abortion-minded women’ during clinic visits. Rewire,
25 May 2016. Online at https://perma.cc/XD2J-LGJJ.

[13] L. Del Prete and L. Capra. diffeRS: A Mobile Recommender
Service. In Proceedings of 11th International Conference on
Mobile Data Management (MDM), pages 21–26, Kansas
City, MO, USA, May 2010.
https://doi.org/10.1109/MDM.2010.22.

[14] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl.
Rethinking the recommender research ecosystem. In
Proceedings of the 5th ACM Conference on Recommender
Systems (RecSys), pages 133–140, Chicago, IL, USA, Oct.
2011. https://doi.org/10.1145/2043932.2043958.

[15] R. Gross and A. Acquisti. Information revelation and privacy
in online social networks. In Proceedings of the 2005 ACM
Workshop on Privacy in the Electronic Society (WPES),
pages 71–80, Alexandria, VA, USA, Nov. 2005.
https://doi.org/10.1145/1102199.1102214.

[16] I. Gunes, C. Kaleli, A. Bilge, and H. Polat. Shilling attacks
against recommender systems: a comprehensive survey.

Artificial Intelligence Review, 42(4):767–799, Dec. 2014.
https://doi.org/10.1007/s10462-012-9364-9.

[17] W. He, Y. Huang, K. Nahrstedt, and B. Wu. Message
propagation in ad-hoc-based proximity mobile social
networks. In 2010 8th IEEE International Conference on
Pervasive Computing and Communications Workshops
(PERCOM Workshops), pages 141–146, Mannheim,
Germany, Mar. 2010.
https://doi.org/10.1109/PERCOMW.2010.5470617.

[18] L. Hutton, T. Henderson, and A. Kapadia. “Here I am, now
pay me!”: Privacy concerns in incentivised location-sharing
systems. In Proceedings of the 2014 ACM Conference on
Security and Privacy in Wireless & Mobile Networks
(WiSec), pages 81–86, Oxford, UK, July 2014.
https://doi.org/10.1145/2627393.2627416.

[19] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE simulator
for DTN protocol evaluation. In Proceedings of the 2nd
International Conference on Simulation Tools and
Techniques (Simutools), Rome, Italy, Mar. 2009.
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674.

[20] B. P. Knijnenburg, A. Kobsa, and H. Jin. Preference-based
location sharing: are more privacy options really better? In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), pages 2667–2676, Paris, France,
Apr. 2013. https://doi.org/10.1145/2470654.2481369.

[21] S. K. Lam and J. Riedl. Shilling recommender systems for
fun and profit. In Proceedings of the 13th International
Conference on World Wide Web (WWW), pages 393–402,
New York, NY, USA, may 2004.
https://doi.org/10.1145/988672.988726.

[22] J. Lin, B. Liu, N. Sadeh, and J. I. Hong. Modeling users’
mobile app privacy preferences: Restoring usability in a sea
of permission settings. In Proceedings of the Symposium On
Usable Privacy and Security (SOUPS), pages 199–212,
Menlo Park, CA, USA, July 2014. USENIX Association.
Online at https://www.usenix.org/conference/soups2014/
proceedings/presentation/lin.

[23] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove.
Analyzing Facebook privacy settings: user expectations vs.
reality. In Proceedings of the 2011 ACM SIGCOMM Internet
Measurement Conference (IMC), pages 61–70, Berlin,
Germany, Nov. 2011.
https://doi.org/10.1145/2068816.2068823.

[24] B. N. Miller, J. A. Konstan, and J. Riedl. PocketLens:
Toward a Personal Recommender System. ACM
Transactions on Information Systems, 22(3):437–476, 2004.
https://doi.org/10.1145/1010614.1010618.

[25] B. Mobasher, R. Burke, R. Bhaumik, and J. Sandvig. Attacks
and Remedies in Collaborative Recommendation. IEEE
Intelligent Systems, 22(3):56–63, May 2007.
https://doi.org/10.1109/MIS.2007.45.

[26] J. Mugan, T. Sharma, and N. Sadeh. Understandable
Learning of Privacy Preferences Through Default Personas
and Suggestions. Technical Report CMU-ISR-11-112,
Institute for Software Research, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA,
Aug. 2011. Online at http://reports-
archive.adm.cs.cmu.edu/anon/isr2011/abstracts/11-112.html.

[27] J. O’Donovan and B. Smyth. Trust in recommender systems.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI), pages 167–174, San Diego,
CA, USA, Jan. 2005.

http://www.aaai.org/Library/Workshops/2006/ws06-10-006.php
http://www.aaai.org/Library/Workshops/2006/ws06-10-006.php
http://www.ibr.cs.tu-bs.de/dus/Awarecast/awarecast2012_submission_1.pdf
http://www.ibr.cs.tu-bs.de/dus/Awarecast/awarecast2012_submission_1.pdf
https://doi.org/10.1109/passat/socialcom.2011.60
https://doi.org/10.1145/1150402.1150465
https://doi.org/10.1145/1097047.1097061
https://doi.org/10.1145/1054972.1054985
https://perma.cc/XD2J-LGJJ
https://doi.org/10.1109/MDM.2010.22
https://doi.org/10.1145/2043932.2043958
https://doi.org/10.1145/1102199.1102214
https://doi.org/10.1007/s10462-012-9364-9
https://doi.org/10.1109/PERCOMW.2010.5470617
https://doi.org/10.1145/2627393.2627416
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674
https://doi.org/10.1145/2470654.2481369
https://doi.org/10.1145/988672.988726
https://www.usenix.org/conference/soups2014/proceedings/presentation/lin
https://www.usenix.org/conference/soups2014/proceedings/presentation/lin
https://doi.org/10.1145/2068816.2068823
https://doi.org/10.1145/1010614.1010618
https://doi.org/10.1109/MIS.2007.45
http://reports-archive.adm.cs.cmu.edu/anon/isr2011/abstracts/11-112.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2011/abstracts/11-112.html

https://doi.org/10.1145/1040830.1040870.
[28] I. Parris and F. Ben Abdesslem. CRAWDAD data set

st_andrews/locshare (v. 2011-10-12). Downloaded from
http://crawdad.org/st_andrews/locshare/, Oct. 2011.
https://doi.org/10.15783/C7WW2F.

[29] L. Pelusi, A. Passarella, and M. Conti. Opportunistic
networking: data forwarding in disconnected mobile ad hoc
networks. IEEE Communications Magazine,
44(11):134–141, Nov. 2006.
https://doi.org/10.1109/mcom.2006.248176.

[30] D. Quercia, S. Hailes, and L. Capra. MobiRate: making
mobile raters stick to their word. In Proceedings of the 10th
International Conference on Ubiquitous Computing
(UbiComp), pages 212–221, Seoul, Korea, Sept. 2008.
https://doi.org/10.1145/1409635.1409664.

[31] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: an open architecture for collaborative
filtering of netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work
(CSCW), pages 175–186, Chapel Hill, NC, USA, Oct. 1994.
https://doi.org/10.1145/192844.192905.

[32] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker,
and J. Rao. Understanding and capturing people’s privacy
policies in a mobile social networking application. Personal
and Ubiquitous Computing, 13(6):401–412, Aug. 2009.
https://doi.org/10.1007/s00779-008-0214-3.

[33] R. Schifanella, A. Panisson, C. Gena, and G. Ruffo.
MobHinter: Epidemic collaborative filtering and
self-organization in mobile ad-hoc networks. In Proceedings
of the 2008 ACM Conference on Recommender Systems
(RecSys), pages 27–34, Lausanne, Switzerland, Oct. 2008.
https://doi.org/10.1145/1454008.1454014.

[34] J. Staiano, N. Oliver, B. Lepri, R. de Oliveira, M. Caraviello,
and N. Sebe. MoneyWalks: A human-centric study on the
economics of personal mobile data. In Proceedings of the
2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp), pages 583–594, Seattle,
WA, USA, Sept. 2014.
https://doi.org/10.1145/2632048.2632074.

[35] E. Toch. Crowdsourcing privacy preferences in

context-aware applications. Personal and Ubiquitous
Computing, 18(1):129–141, Jan. 2014.
https://doi.org/10.1007/s00779-012-0632-0.

[36] J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh.
Location-sharing technologies: Privacy risks and controls. In
Proceedings of the Research Conference on Communication,
Information and Internet Policy (TPRC), Aug. 2009. Online
at http://ssrn.com/abstract=1997782.

[37] G. Wang, S. Y. Schoenebeck, H. Zheng, and B. Y. Zhao.
“Will check-in for badges”: Understanding bias and
misbehavior on location-based social networks. In
Proceedings of the 10th International AAAI Conference on
Web and Social Media (ICWSM), pages 417–426, Cologne,
Germany, May 2016.

[38] C. Williams, B. Mobasher, R. Burke, J. Sandvig, and
R. Bhaumik. Detection of obfuscated attacks in collaborative
recommender systems. In Proceedings of the ECAI 2006
Workshop on Recommender Systems, pages 19 – 23, Riva del
Garda, Italy, Aug. 2006.

[39] C. A. Williams, B. Mobasher, and R. Burke. Defending
recommender systems: detection of profile injection attacks.
Service Oriented Computing and Applications,
1(3):157–170, Nov. 2007.
https://doi.org/10.1007/s11761-007-0013-0.

[40] J. Xie, B. P. Knijnenburg, and H. Jin. Location sharing
privacy preference: analysis and personalized
recommendation. In Proceedings of the 19th International
Conference on Intelligent User Interfaces (IUI), pages
189–198, Haifa, Israel, Feb. 2014.
https://doi.org/10.1145/2557500.2557504.

[41] Y. Zhao, J. Ye, and T. Henderson. Privacy-aware Location
Privacy Preference Recommendations. In Proceedings of the
11th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services
(Mobiquitous), pages 120–129, London, UK, Dec. 2014.
https://doi.org/10.4108/icst.mobiquitous.2014.258017.

[42] Y. Zhao, J. Ye, and T. Henderson. The Effect of Privacy
Concerns on Privacy Recommenders. In Proceedings of the
21st International Conference on Intelligent User Interfaces
(IUI), pages 218–227, Sonoma, CA, USA, Mar. 2016.
https://doi.org/10.1145/2856767.2856771.

https://doi.org/10.1145/1040830.1040870
https://doi.org/10.15783/C7WW2F
https://doi.org/10.1109/mcom.2006.248176
https://doi.org/10.1145/1409635.1409664
https://doi.org/10.1145/192844.192905
https://doi.org/10.1007/s00779-008-0214-3
https://doi.org/10.1145/1454008.1454014
https://doi.org/10.1145/2632048.2632074
https://doi.org/10.1007/s00779-012-0632-0
http://ssrn.com/abstract=1997782
https://doi.org/10.1007/s11761-007-0013-0
https://doi.org/10.1145/2557500.2557504
https://doi.org/10.4108/icst.mobiquitous.2014.258017
https://doi.org/10.1145/2856767.2856771

	Introduction
	Related Work
	Location-privacy recommenders
	Attacks against recommenders

	Approach
	Decentralised location-privacy preference recommenders
	Preliminaries
	Exchanging location-privacy preferences
	Local recommendations

	Sampling attack
	Incentives and ability
	Preliminaries
	Attack Process

	Encounter-frequency-based reputation

	Evaluation
	Simulation setup
	Recommendation performance
	Sampling attack
	Encounter-frequency-based reputation

	Results
	Decentralised recommender accuracy
	Attack Effectiveness
	Mitigation Effectiveness
	Multiple attacker nodes

	Discussion
	Conclusions
	References

