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ABSTRACT
The ever-increasing demand for reliable inference capable of han-
dling unpredictable challenges of practical application in the real
world, has made research on information fusion of major impor-
tance. There are few fields of application and research where this
is more evident than in the sphere of multimedia which by its very
nature inherently involves the use of multiple modalities, be it for
learning, prediction, or human-computer interaction, say. In the de-
velopment of the most common type, score-level fusion algorithms,
it is virtually without an exception desirable to have as a reference
starting point a simple and universally sound baseline benchmark
which newly developed approaches can be compared to. One of
the most pervasively used methods is that of weighted linear fu-
sion. It has cemented itself as the default off-the-shelf baseline
owing to its simplicity of implementation, interpretability, and sur-
prisingly competitive performance across a wide range of applica-
tion domains and information source types. In this paper I argue
that despite this track record, weighted linear fusion is not a good
baseline on the grounds that there is an equally simple and inter-
pretable alternative – namely quadratic mean-based fusion – which
is theoretically more principled and which is more successful in
practice. I argue the former from first principles and demonstrate
the latter using a series of experiments on a diverse set of fusion
problems: computer vision-based object recognition, arrhythmia
detection, and fatality prediction in motor vehicle accidents.
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1. INTRODUCTION
Score-level fusion of information is pervasive in algorithms ad-

dressing a wide variety of problems. From predictions of the price
of French vintage wine using the fusion of predictions based on
rainfall and temperature data [13] or more robust estimates of a per-
son’s gaze through the fusion of estimates obtained by considering
each of the eyes in isolation [10], to sophisticated biometric algo-
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rithms which fuse similarity measures based on visual and infrared
face appearance [11, 6] or gait characteristics [14], the fundamental
premise underlying information fusion is the same: the use of mul-
tiple information sources facilitates the making of better decisions,
be they in the form of classification, regression, or any of a number
of others.

Whatever the specific problem, the effectiveness of a specific in-
formation fusion methodology needs to be demonstrated. If possi-
ble this should be done by comparing its performance against the
current state-of-the-art. However this is often prohibitively diffi-
cult in practice. For example, in some cases the state-of-the-art
may not be readily available for evaluation – the original code may
not have been released and re-implementation may be overly time-
consuming, the algorithm may not have been described in sufficient
detail, the technology may be proprietary and costly to purchase,
etc. In other cases there may not be a clear state-of-the-art because
the particular problem at hand has not been addressed before. In
such circumstances it is useful to compare the novel methodology
with a simple yet sensible baseline.

Probably the simplest choices for the baseline would be the per-
formances achieved using individual information sources which are
being fused. However this is an excessively low bar for compari-
son. Instead what is widely done by authors across the research
spectrum is to use simple weighted fusion of individual scores as a
reference.

2. UNINFORMED INFORMATION FUSION
Let us start by formalizing the problem considered in this paper. I

adopt the broad paradigm of so-called data source identification and
matching. In particular, I assume that the available data comprises
a set of n sensed observations, X = {xi} = {x1, . . . ,xn}, which
correspond to different modalities sensing the same data source.
Furthermore, I assume that there are functions (i.e. algorithms)
φ1, . . . , φn which quantify how well a particular observation xi

matches a specific data source. Without loss of generality I assume
0 ≤ φi(xi) < ∞, where 0 indicates the best possible match, and
∞ the worst i.e. φi(xi) can be thought of a quasi-distance – ‘quasi-
’ to emphasise that it is not required that φi(xi) meets the strict
conditions required of a metric. Note that the aforestated setting
describes observations in the most general sense, e.g. these may be
feature vectors (such as rasterized appearance images or SIFT de-
scriptors in computer vision), sets of vectors, and so on, and they do
not need to be of the same type (for example, some may be vectors,
others sequences) or dimensionalities.

As noted in the previous section, we are looking for a simple way
of fusing different matching decisions φi(xi) in a manner which
provides a reasonable baseline in an uninformed setting, that is,
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without exploiting any particular properties of different functions
φi or observations xi. A common one pervasively used in the liter-
ature is weighted linear fusion which can be expressed as follows:

Φ(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) =

n∑
i=1

[wi × φi(xi)] ,

(1)

where:

∀i = 1, . . . , n. wi ≥ 0, and
n∑

i=1

wi = 1. (2)

Here Φ(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) is the fused match-
ing score which is derived by simply combining different φi(xi),
and (2) ensures that the condition 0 ≤ φi(xi) < ∞ is maintained
for Φ(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) as well, i.e. that it is
the case that 0 ≤ Φ(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) <∞.

The fusion approach described by (1) can also be rewritten more
simply as:

Φ(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) = (3)

Φ̂(x1, . . . ,xn;φ1, . . . , φn, w1, . . . , wn) = (4)
n∑

i=1

[
1

n
× φ̂i(xi, wi, n)

]
, (5)

where:

φ̂i(xi, wi, n) = n× wi × φi(xi). (6)

Here the original weighted linear fusion of the contributing terms
φi(xi) in (1) has been replaced by unweighted linear fusion of
terms φ̂i(xi, wi, n) which adjust the magnitudes of the fused scores
directly. This can be achieved simply by considering the statistics
of the distributions of different φi(xi) and the corresponding pre-
diction, and without any knowledge of what different features xi

represent or what form different φi have, i.e. while maintaining the
premise of uninformed fusion.

It can be readily seen that the described fusion approach fits the
conditions specified in the preceding section – namely, simplicity
(both methodological and that of implementation) and broad ap-
plicability. Although simple, uninformed fusion demonstrates re-
markably good performance across a wide span of different data
types and domains, ranging from dementia screening [17] to multi-
modal biometric identification [14, 5, 12].

Φo(x1, . . . ,xn;φ1, . . . , φn, ω1, . . . , ωn) = (7)√√√√ n∑
i=1

[ωi × φi(xi)2], (8)

where as before:

∀i = 1, . . . , n. ωi ≥ 0, and
n∑

i=1

ωi = 1. (9)

Φo(x1, . . . ,xn;φ1, . . . , φn, ω1, . . . , ωn) = (10)

Φ̂o(x1, . . . ,xn;φ1, . . . , φn, ω1, . . . , ωn) = (11)√√√√ n∑
i=1

[
1

n
× φ̃i(xi, ωi, n)2

]
, (12)

where, analogously to (6), the adjusted fusion scores can be ex-

pressed as:

φ̃i(xi, ωi, n) =
√
n× ωi × φi(xi). (13)

The formulation in (12) can be readily recognized as the quadratic
mean, in engineering also commonly referred to as the root mean
square (RMS), of the n terms φ̃i(xi, ωi, n).

Before proceeding with a formal analysis of the two fusion ap-
proaches, it is insightful to gain an intuitive understanding of the
difference between them. Note that simple linear fusion described
in (5) treats different scores as effectively interchangeable – a de-
crease in one score is exactly compensated by an increase in an-
other score by the same amount. This is sensible when the scores
correspond to the same measurement which is merely repeated.
The described fusion can then be seen as a way of reducing mea-
surement error, assuming that measurement is unbiased and that
errors are identically and independently distributed [9]. However
this is a rather trivial case of fusion and in practice one is more
commonly interested in fusion of different types of data modalities.
Indeed, in practice it is often the explicit aim to try to use informa-
tion sources which vary independently, and attempt to exploit best
their complementary natures [5]. In such instances different scores
are best treated as describing a source in orthogonal directions,

thereby giving rise to a feature vector
[
φ̃1(x1), . . . , φ̃n(xn)

]T
∈

Rn. The quadratic mean-based fusion of (12) can then be thought
of as emerging from a normalized distance measure between such
feature vectors in the corresponding ambient embedding space Rn.

Let us now consider the effects of the two fusion approaches
in more detail. Firstly, note that scoring measures φ̂i(xi, wi, n)

and φ̃i(xi, ωi, n) are inevitably imperfect – neither can be expected
to produce universally the perfect matching score of 0 when the
query correctly matches a source and ∞ when it does not. Even
the weaker requirement of universally smaller pseudo-distances for
correct matches is unrealistic. Indeed, it is precisely this practical
challenge that motivates multimodal fusion. Consequently, they
are appropriately modelled as resulting from draws from random
variables:

φ̂i(xi), φ̃i(xi) ∼ Xi. (14)

Let us examine the effects of the two fusion approaches in de-
tail. Specifically, for clarity consider the fusion of two sources, say
i and j, while observing that the derived results are readily appli-
cable to the fusion of an arbitrary number of sources through the
use of an inductive argument. Following (5) and (12), applying
linear and quadratic mean-based fusion results in scores described
respectively by random variables Ŷij and Ỹij , where:

φ̂i(xi) + φ̂j(xj)

2
∼ Xi +Xj

2
= Ŷij , (15)

and: √
φ̃i(xi)

2
+ φ̃j(xj)

2

2
∼
√
Xi

2 +Xj
2

2
= Ỹij . (16)

The former can be further expanded as:

E
[
Ŷij

2
]

= E

[(
Xi +Xj

2

)2
]

(17)

=
1

4

{
E
[
Xi

2]+ E
[
Xj

2]+ E [XiXj ]
}
, (18)



and the latter as:

E
[
Ỹ 2
ij

]
= E

[√
Xi

2 +Xj
2

2

2]
(19)

=
1

2

{
E
[
Xi

2]+ E
[
Xj

2]} (20)

=
1

4

{
2E
[
Xi

2]+ 2E
[
Xj

2]} . (21)

Writing:

µi ≡ E [Xi] , (22)

and

µj ≡ E [Xj ] , (23)

as well as:

σi ≡ E
[
(Xi − µi)

2] , (24)

and

σj ≡ E
[
(Xj − µj)

2] , (25)

and using the standard definition of Pearson’s correlation coeffi-
cient ρ:

ρ =
E[(Xi − µi)(Xj − µj)]

σi σj
, (26)

we can write:

E
[
Ŷij

2
]
− E

[
Ỹ 2
ij

]
= (27)

σi
2 + µi

2 + σj
2 + µj

2 − 2 (ρσiσj − µiµj) = (28)

σi
2 + σj

2 − 2ρσiσj + (µi + µj)
2 ≥ (29)

σi
2 + σj

2 − 2σiσj + (µi + µj)
2 = (30)

(σi + σj)
2 + (µi + µj)

2 ≥ 0. (31)

Therefore: E
[
Ŷij

2
]
≥ E

[
Ỹij

2
]
. In other words, following the

fusion of the same scores the proposed quadratic mean-based fu-
sion results in lower fused matching scores (quasi-distances de-
scribed by the random variable Ỹij) than those obtained by em-
ploying linear fusion (described by the random variable Ŷij).

At first sight, the significance of the finding in (31) is not clear,
given that it applies equally to the fusion of scores which result
from matching and non-matching sources – quadratic mean-based
fusion produces lower fusion scores in both cases. For the proposed
fusion strategy to be advantageous it has to exhibit a differential ef-
fect and reduce matching scores more than non-matching ones. To
see why there are indeed sound reasons to expect this to be the
case, consider the intermediate result in (29). From this expression
it can be readily seen that the reduction in the magnitude of the
fused score effected by the proposed quadratic mean-based fusion
in comparison with the linear baseline is dependent on Pearson’s
correlation ρ between random variables Xi and Xj which capture
the stochastic properties of the original non-fused scores. Specifi-
cally, the greater the correlation between them the greater the cor-
responding reduction in the fused score becomes. The reason why
this observation is key lies in the nature of the problem at hand:
though imperfect, by their very design sensible matching functions
which produce different φ̂i and φ̃i (i = 1 . . . n) should be expected
preferentially and systematically to produce lower scores for cor-
rectly matching sources and higher scores for incorrectly matching
sources. Therefore, while non-matching comparisons may result in

some of the fused scores erroneously to be low, on average such
errors should exhibit a lower degree of correlation than low scores
across different modalities do for correct matches. In the next sec-
tion I will demonstrate that this indeed is the case in practice.

3. EXPERIMENTS
Having laid out the theoretical argument against simple weighted

combination as the default baseline for uninformed fusion, in favour
of the quadratic mean, in this section the two are compared empir-
ically on three real, challenging data sets of vastly different types.
In particular, the popular computer vision problem of image-based
object recognition is used as a case study in Section 3.2, arrhyth-
mia prediction in Section 3.3, and finally fatality prediction in road
vehicle accidents in Section 3.4.

3.1 Performance evaluation
I compared the performance of the two fusion approaches dis-

cussed in Section 2 by computing fused quasi-similarities between
the ground truth data and the two information sources. Specifically,
the linearly fused quasi-similarity of φ̂(1)

1 (xi,1) and φ̂(1)
1 (xi,2) was

computed as:

1

2

(
φ̂
(1)
1 (xi,1) + φ̂

(1)
1 (xi,2)

)
, (32)

and similarly of of φ̂(2)
1 (xi,1) and φ̂(2)

1 (xi,2) was computed as:

1

2

(
φ̂
(2)
1 (xi,1) + φ̂

(2)
1 (xi,2)

)
. (33)

The proposed quadratic-mean-based fusions were computed as re-
spectively: √

1

2

[(
φ̂
(1)
1 (xi,1)

)2
+
(
φ̂
(1)
1 (xi,2)

)2]
. (34)

and: √
1

2

[(
φ̂
(2)
1 (xi,1)

)2
+
(
φ̂
(2)
1 (xi,2)

)2]
. (35)

To evaluate and compare the two methods I examined the corre-
sponding differential matching scores computed for the correct and
incorrect information sources, that is:

∂1 = φ̂
(1)
1 (xi,1)− φ̂(2)

1 (xi,1) = ‖xi,1‖ − ‖1− xi,1‖, (36)

for the linear fusion, and

∂2 = φ̂
(1)
2 (xi,2)− φ̂(2)

2 (xi,2) = ‖xi,2‖ − ‖1− xi,2‖. (37)

for the proposed quadratic mean-based fusion where, without loss
of generality, the correct prediction target for the first information
source is taken to be 0 and for the second 1. It can be readily seen
that a positive differential score corresponds to the correct source
attribution (and a more confident decision for greater magnitudes
thereof), a negative one to incorrect attribution (and a more mis-
taken confidence for greater magnitudes thereof), and a vanishing
score to uncertain attribution.

3.2 Object recognition
My first case-study involves computer-based object recognition.

This is an important problem in the spheres of computer vision and
pattern recognition which has potential for use in a wide spec-
trum of practical applications. Examples range from motorway
toll booths that automatically verify that the car type and its li-
cence plate match the registration database, to online querying and



searching for an object of interest that was captured using a mo-
bile phone camera. Object recognition has attracted much research
attention [1, 2, 7, 8] and this interest has particularly intensified
in recent years after significant advances towards practically viable
systems have been made [20, 7, 8].

Here I consider fusion of texture-based and shape-based object
descriptors. The former group has dominated research efforts to
date [20] and has been highly successful in the matching of tex-
tured objects. However, it fails when applied on untextured objects
(sometimes referred to as ‘smooth’) [7] Considering that their tex-
ture is not informative, characteristic discriminative information of
smooth objects must be extracted from shape instead. Following
the method described in [3] I extract and process the representa-
tions of the two modalities (texture and shape) independently. An
object’s texture is captured using a histogram computed over a vo-
cabulary of textural words, learnt by clustering local texture de-
scriptors extracted from the training data set. Similarly, a histogram
over a vocabulary of elementary shapes, learnt by clustering local
shape descriptors, is used to capture the object’s shape. I adopt the
standard SIFT descriptor as the basic building block of the texture
representation and an analogous descriptor of local shape for the
characterization of shape [4]. In both cases descriptors are matched
using the Euclidean distance.

3.2.1 Results, analysis, and discussion
As explained in Section 3.1, the performances of the two fusion

approaches was assessed by analysing the corresponding differen-
tial matching scores computed for the correct and incorrect infor-
mation sources as summarized by (36) and (37).

My findings are summarized in Figure 1 which shows a plot
of the cumulative density distribution of the relative improvement
achieved by the proposed method (as before please note that the
abscissa scale is logarithmic and that it is increasing in the leftward
direction). Firstly let us make the remarkable observation that in all
cases the proposed fusion strategy did at least as well as the sim-
ple weighted fusion. In approximately 66% of the cases the pro-
posed quadratic fusion exhibited superior performance, performing
on par in the remaining 34% of the cases. A further examination
of the plot reveals an even stronger case for the proposed method –
not only does it outperform simple weighted fusion in 66% of the
cases but it does so with a great margin. For example in 30% of
the cases the inter-class separation is increased 10-fold (i.e. by an
order of magnitude).

3.3 Arrhythmia prediction
My second real-world case-study concerns automatic arrhyth-

mia prediction from demographic data and physiological measure-
ments. This is a challenging task of enormous importance in the
provision of timely and informed health care provision to the pop-
ulation at risk of cardiac complications. This primarily includes in-
dividuals with preexisting cardiac problems or congenital factors,
which are further modulated by various environmental factors such
as high physical exertion [16] or the use of certain classes of drugs.

A normally functioning human heart maintains a remarkably well
controlled heartbeat rhythm. Arrhythmias are abnormalities of this
rhythm and are caused by physiological factors pertaining to elec-
trical impulse generation or propagation. Arrhythmia types can be
grouped under the umbrellas of three broad categories: tachycar-
dias (overly high heartbeat rate), bradycardias (overly low heartbeat
rate), and arrhythmias with an irregular heartbeat rate. While most
arrhythmias are transient in nature and do not pose a serious health
risk, some arrhythmias (particularly in high risk populations) can

have serious consequences such as stroke, cardiac arrest, or heart
failure and death [18].

Arrhythmias can be diagnosed using nonspecific means, e.g. us-
ing a stethoscope or a tactile detection of pulse, or specific meth-
ods and in particular the electrocardiogram (ECG). Moreover, the
rich information provided by the latter can be used to predict and
detect the onset of arrhythmias by analysing electric impulse pat-
terns [15]. In the present study I evaluate the proposed fusion
methodology in the context of this prediction.

I used the dataset collected by Guvenir et al. [15] which is freely
available1. The dataset comprises a rich set of demographic and an-
thropometric variables, such as each person’s age, sex, height, and
bodyweight, as well as a variety of features extracted from the per-
son’s ECG, including the heart rate and a series of characteristics
of the corresponding signal deflections (the duration of the QRS
interval, amplitudes of Q, R, and S waves etc); please refer to the
original publication for full detail [15]. The target variable for the
purpose of the present experiment can be considered to be binary
valued, taking on the value 0 when arrhythmia is not present and 1
when it is; please see Table 1.

I consider two baseline classifiers. The first of these takes height,
bodyweight, and the duration of the QRS interval as input variables
(i.e. independent variables). The second one makes the prediction
based on what are effectively integrals of Q, R, and S deflections
(i.e. referred to as QRSA in the dataset description; please see the
original reference for detail [15]), and the Q, R, S, and T deflec-
tions (i.e. referred to as QRSTA in the dataset description). Each
classifier is built upon a generalized linear model (GLM) [19]. Re-
call that in a GLM the mean E[Y ] of the target, outcome variable
Y is related to a linear predictor based on the independent variables
through a link function L:

E[Y ] ≡ µ = L−1(1 + αx). (38)

The variance Var[Y ] of Y is modelled as a function V of this mean:

Var[Y ] = V(µ) = V(L−1(1 + αx)). (39)

In my experiment the continuous output of a GLM is used to de-
tect the presence of arrhythmia using what is effectively the nearest
neighbour criterion: if the output is closer to 0 the prediction is
taken to be negative, and if it is closer to 1 positive. The dataset
contains 452 diagnosis cases of which 100 were used for training
the classifiers; the remaining 352 were used for testing.

3.3.1 Results, analysis, and discussion
As in the previous experiment, the performances of the two fu-

sion approaches was assessed by analysing the corresponding dif-
ferential matching scores computed for the correct and incorrect
information sources as summarized by (36) and (37).

My findings are summarized in Figure 2 which shows a plot
of the cumulative density distribution of the relative improvement
achieved by the proposed method (as before please note that the
abscissa scale is logarithmic and that it is increasing in the left-
ward direction). We can again start with the observation which can
be made by comparing the characteristics of the plot in Figure 2
with those of the plot in Figure 1 and observing that again the same
qualitative behaviour is exhibited on this data too. In all cases the
proposed fusion strategy did at least as well as the simple weighted
fusion, with approximately 65% of the cases resulting in superior
performance of the proposed quadratic fusion and the remaining
35% in on a par performance. As in the previous experiments when

1The dataset can be downloaded from http://archive.ics.uci.edu/ml/
datasets/Arrhythmia.



Relative improvement over average of fusion sources
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Figure 1: General object recognition: relative improvement in the correct information source identification of the proposed quadratic
mean-based fusion over linear fusion, as the corresponding cumulative distribution function.

Table 1: An illustration of the adopted arrhythmia dataset, originally collected and described in detail by Guvenir et al. [15]. It
comprises 279 input variables, of which only a small selection is shown here, and the corresponding target variable which for the
purpose of the present experiment can be considered to be binary valued, taking on the value 0 when arrhythmia is not diagnosed
and 1 when it is.

Age Gender Height Body weight QRS duration . . . Arrythmia

(years) (cm) (kg) (ms) . . . (yes/no)

75 Male 190 80 91 . . . Yes

56 Female 165 64 81 . . . Yes

. . . . . . . . . . . . . . . . . . . . .

55 Male 175 94 100 . . . No

. . . . . . . . . . . . . . . . . .

my method outperforms simple weighted fusion it does so with a
significant margin with an over doubled separation increase in ap-
proximately 16% of the cases. Moreover I found that while simple
weighted fusion failed to improve the prediction of the better per-
forming baseline classifier in 15% of the cases, the same was the
case with the proposed method in fewer than 7.8% of the cases.

3.4 Car accident fatality prediction
My third and final experiment herein concerns the inference of

risk factors for car accident fatalities. In particular in this exper-
iment I was interested in discovering what aspects of the context
of an accident predict best if a fatality will occur. For this pur-
pose I used the official statistics released by the government of the
USA through the Fatality Analysis Reporting System (FARS) for
the year 2011. These are freely publicly available2. The dataset
comprises a number of person specific variables, such as age, sex,
2The dataset can be downloaded from http://www-fars.nhtsa.dot.
gov/Main/index.aspx.

race, blood alcohol level, and drug use status, as well as a variety
of variables pertaining to the context of the accident, including the
type of the road and the state where the accident took place, and the
weather conditions at the time (please see http://www-fars.nhtsa.
dot.gov/Main/index.aspx for full description). The target variable
for the purpose of the present experiment can be considered to be
binary valued, taking on the value 1 when there has been a fatality
and 0 otherwise; please see Table 2.

As in the previous experiment I consider two baseline classifiers,
each built upon a generalized linear model. The first of these takes
the person’s age and blood alcohol level as input variables (i.e. in-
dependent variables). The second one makes the prediction based
on atmospheric conditions and the road type. Following the same
framework as described in the previous section, the continuous out-
put of a GLM is used to predict the occurrence of a fatality using
what is effectively the nearest neighbour criterion: if the output is
closer to 0 the prediction is taken to be negative, and if it is closer to
1 positive. The dataset contains 5000 accidents of which 1000 ran-



Relative improvement over average of fusion sources
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Figure 2: Arrhythmia prediction: relative improvement in the correct information source identification of the proposed quadratic
mean-based fusion over linear fusion, as the corresponding cumulative distribution function.

Table 2: An illustration of the adopted car accidents dataset released by the government of the USA through the Fatality Analysis
Reporting System (FARS) for the year 2011. It comprises 15 input variables, of which only a selection is shown here, and the
corresponding target variable which for the purpose of the present experiment can be considered to be binary valued, taking on the
value 1 when there has been a fatality and 0 when not.

Clear atmospheric Driver Alcohol Driver . . . Fatalities

conditions (yes/no) age blood level gender (yes/no)

Yes 27 0 Male . . . No

Yes 60 0 Female . . . Yes

. . . . . . . . . . . . . . . . . .

No 20 0.21 Male Yes

. . . . . . . . . . . . . . . . . .

domly selected cases were used for training the baseline classifiers
with the remainder employed for performance evaluation.

3.4.1 Results, analysis, and discussion
I followed the same evaluation methodology as in the preceding

experiments. In the same vein I display my findings in Figure 3
which shows a plot of the cumulative density distribution of the
relative improvement achieved by the proposed method (as before
please note that the abscissa scale is logarithmic and that it is in-
creasing in the leftward direction). Yet again, in agreement with
the results obtained in all experiments I conducted, we can observe
the same functional characteristics in the plot of Figure 3 and of
those in Figures 1 and 2. In further agreement with the previous
experiments is my finding that in all instances of car accidents used
for evaluation, the proposed fusion strategy did at least as well as
the simple weighted fusion in terms of its predictive ability. With
regard to this point, it is interesting to note that notwithstanding
the remarkable qualitative similarity of the CDFs corresponding
to different experiments, there are some quantitative differences.

For example, note that in the present experiment approximately
73% of the cases resulted in superior performance of the proposed
quadratic fusion and the remaining 27% in on a par performance.
The proportion of evaluation instances yielding superior perfor-
mance is thus higher than e.g. in the object recognition experiment
described in Section 3.2. However, the resulting benefit is smaller.
For example, while in the object recognition experiment about 30%
of the evaluation cases result in at least 10-fold class separation in-
crease, in the present experiment in no case is the benefit as large.
This is most likely a consequence of the inherent information con-
tent in the data itself, rather than of some algorithmic aspect of the
proposed method. In other words, the lesser advantage (though still
consistent and observed in an overwhelming number of cases) of
using the proposed method stems from greater redundancy across
the fused information sources.
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[6] O. Arandjelović, R. I. Hammoud, and R. Cipolla. Thermal
and reflectance based personal identification methodology in
challenging variable illuminations. Pattern Recognition,
43(5):1801–1813, 2010.
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