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Abstract

We describe a family φλ of dynamical systems on the unit interval

which preserve Bernoulli convolutions. We show that if there are pa-

rameter ranges for which these systems are piecewise convex, then

the corresponding Bernoulli convolution will be absolutely continuous

with bounded density. We study the systems φλ and give some nu-

merical evidence to suggest values of λ for which φλ may be piecewise

convex.

1 Introduction

In the study of self similar measures corresponding to non-overlapping iter-

ated function systems, there is a natural way of defining an expanding dy-

namical system which preserves the measure and which allows one to study

various properties of the measure such as dimension. The case of self similar

measures with overlaps is much more involved, and it is not clear how best

to study them using dynamical systems.

Bernoulli convolutions are a particularly well studied family of self-similar

measures. For each λ ∈ (0, 1) we define the corresponding Bernoulli convo-

lution νλ to be the distribution of the series

(λ−1 − 1)
∞∑
i=1

aiλ
i
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where the digits ai are picked independently from digit set {0, 1} with prob-

ability 1
2
. Equivalently, Bernoulli convolutions are the unique probability

measures satisfying the self similarity relation

νλ =
1

2
(νλ ◦ T0 + νλ ◦ T1),

where the maps Ti : R → R are defined by Ti(x) = x
λ
− (λ−1 − 1)i. For

λ ∈ (0, 1
2
), the self similar measures are generated by a non-overlapping

iterated function system consisting of the contractions T−10 and T−11 , and are

invariant under the interval maps φλ given by

φλ(x) =


λ−1x x ∈ [0, λ]

1 x ∈ (λ, 1− λ)

1− λ−1(x− (1− λ)) x ∈ (1− λ, 1)

.

0 1 0 1 0 1

Figure 1: The maps φλ for λ equal to 0.2, 0.4 and 0.5 respectively

The main aim of this article is to extend the definition of φλ to the overlapping

case, when λ ∈ (1
2
, 1), and to study νλ using these interval maps.

There are a number of long standing open questions about Bernoulli con-

volutions, chief among which is the question of for which parameters λ the

corresponding measure νλ is absolutely continuous. It is known that each

Bernoulli convolution is either purely singular or absolutely continuous, see

[9]. If λ is the inverse of a Pisot number then νλ is singular, see [5], and

in fact has Hausdorff dimension less than one, [10]. (A Pisot number is a

real algebraic integer, larger than 1 and such that all its conjugates have

absolute value smaller than 1.) In [7] Garsia gave a small, explicitly defined

class of algebraic integers for which νλ is known to be absolutely continuous,

and in Solomyak proved in [17] that νλ is absolutely continuous for almost

every λ ∈ (1
2
, 1), see also [12] and [13] which looks at the smoothness of the

Bernoulli convolution and the dimension of exceptions.
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More recently, Hochman [8] proved that the set of parameters for which

the Hausdorff dimension of νλ is less than one has Hausdorff dimension 0.

Shmerkin [16] built on this result to prove that the set of λ ∈ (1
2
, 1) admitting

singular Bernoulli convolutions has Hausdorff dimension 0. The question of

determining the parameters λ which admit absolutely continuous Bernoulli

convolutions remains open. For a good review of progress on Bernoulli con-

volutions up to the year 2000, see [14].

There are other interesting open questions regarding Bernoulli convolutions.

For example, is it the case that any singular Bernoulli convolution must have

Hausdorff dimension less than one? Do there exist intervals in the parameter

space for which every Bernoulli convolution is absolutely continuous (and

even has continuous density)? Does the density evolve continuously with λ?

Similar questions exist in the study of invariant measures associated to var-

ious one parameter families of interval maps, and in this area a good deal

of progress has been made [4, 6, 11]. With this in mind, we extend the

definition of the generalised tent maps φλ to the overlapping case. These

tent maps preserve the corresponding Bernoulli convolutions νλ. They are

described implicitly in terms of the distribution Fλ of νλ, and while we are

able to write down explicit formulae for the φλ only in some special cases,

we are able to prove some general properties.

In particular, we prove that if φλ is piecewise convex for all λ in some interval

(a, b) then the corresponding Bernoulli convolution is absolutely continuous

with bounded density. For each x ∈ [0, 1] the map x 7→ φλ(x) is continuous

in λ, and convexity is preserved by passing to limits in a continuous family

of functions. Thus, piecewise convexity of the functions φλ seems like an

appropriate vehicle for passing from almost everywhere absolute continuity

to everywhere absolute continuity for parameters in certain ranges. We can

show that φλ is piecewise convex for certain special cases, and remain opti-

mistic that one may be able to prove analytically that the map φλ is piecewise

convex in certain parameter ranges. For the moment however, our results

on piecewise convexity are restricted to some special values of λ, although

we are able to run numerical approximations for any λ. There have been

previous numerical investigations into Bernoulli convolutions, we mention in

particular the work of Benjamini and Solomyak [1] and of Calkin et al [2, 3].

In the next section we define the maps φλ in which we are interested and
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prove that they preserve Bernoulli convolutions. We prove some elementary

properties of the maps φλ and give the maps explicitly in some special cases.

In section 3 we prove various properties of νλ that would follow from φλ
being piecewise convex, and in section 4 we give some numerical evidence

on the piecewise convexity of φλ. Finally in section 5 we state some further

questions and conjectures.

2 Generalised Tent Maps

Let Fλ : [0, 1] → [0, 1] be the distribution of νλ, i.e. Fλ(x) := νλ[0, x]. Fλ
is strictly increasing because νλ is fully supported. We define a map φλ :

[0, 1]→ [0, 1] by

φλ(x) =

{
F−1λ (2Fλ(x)) x ∈ [0, 1

2
]

F−1λ (2Fλ(1− x)) x ∈ [1
2
, 1]

.

Since Fλ is strictly increasing on [0, 1], the map φλ is well defined. We will

see later that φλ preserves νλ.

y

x

y

x

y

x

Figure 2: Graphs of φλ for λ = 0.6, 0.7 and 0.8.

The map φλ will be the chief object of study for this article. Since Fλ can

be well approximated numerically, to known levels of accuracy, one can gain

good numerical approximations to the maps φλ. Three such approximations

are displayed for different values of λ in Figure 2.

We begin by observing some simple properties of φλ.

Lemma 2.1. The map φλ has the following properties for λ ∈ (1
2
, 1).
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1. φλ(0) = φλ(1) = 0.

2. φλ
(
1
2

)
= 1.

3. φλ is strictly increasing on
[
0, 1

2

]
and strictly decreasing on

[
1
2
, 1
]
.

4. φλ(x) = φλ (1− x).

5. φλ is continuous.

Proof. We have that Fλ(0) = 0, Fλ(
1
2
) = 1

2
and Fλ(1) = 1 because νλ is

supported on [0, 1] and symmetric about the point 1
2
. Then points 1 and 2

follow immediately.

Part 4 can be seen to be true by looking at the piecewise definition of φλ.

Because νλ[a, b] > 0 for each 0 ≤ a < b ≤ 1 we have that Fλ is strictly increas-

ing. Consequently φλ is strictly increasing on
[
0, 1

2

]
(and strictly decreasing

on [1
2
, 1]).

Finally, we observe that continuity of φλ follows from the fact that νλ is non-

atomic and that νλ[a, b] > 0 for each 0 ≤ a < b ≤ 1. Then both Fλ and F−1λ

are uniformly continuous, and so φλ is continuous in x.

We call maps satisfying the above properties generalised tent maps. Our first

theorem is the following

Theorem 2.1. Let λ ∈ (1
2
, 1). Then νλ is invariant under φλ.

Proof. It is enough to show that for each a ∈ [0, 1] we have that

νλ[a, 1] = νλ(φ
−1
λ [a, 1]).

To prove this, we note that

φ−1λ [a, 1] = [b, 1− b]
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where b ∈ [0, 1
2
] satisfies φλ(b) = a. But then

νλ[b, 1− b] = 2νλ[b,
1

2
]

= 2(Fλ(
1

2
)− Fλ(b))

= 1− 2Fλ(b)

= Fλ(1)− Fλ(φλ(b))
= Fλ(1)− Fλ(a)

= νλ[a, 1],

as required.

Thus, if νλ is absolutely continuous, then it is an absolutely continuous invari-

ant measure of φλ. We have not been able to prove the converse statement,

that φλ does not have an absolutely continuous invariant measure in the

case that νλ is singular, this would be a useful statement which would make

the relationship between the study of φλ and the measures νλ a little more

straightforward.

The following theorem shows that the maps φλ evolve continuously in λ.

Theorem 2.2. For each x ∈ [0, 1], λ0 ∈ (1
2
, 1) we have that φλ(x) → φλ0(x)

as λ→ λ0.

Proof. Fix λ0 ∈ (1
2
, 1). We rely on three facts for this proof.

Firstly we use that the function F−1λ is continuous in x: for all ε2 > 0 there

exists ε1 > 0 such that

|x− y| < 2ε1 =⇒ |F−1λ (x)− F−1λ (y)| < ε2. (1)

Secondly we use that for each x ∈ [0, 1] the function Fλ(x) is continuous in

λ: for all ε1 > 0 there exists δ1 > 0 such that

|λ− λ0| < δ1 =⇒ |Fλ(x)− Fλ0(x)| < ε1. (2)

Finally we use that for each x ∈ [0, 1] the function F−1λ (x) is continuous in

λ. For all ε3 > 0 there exists a δ2 > 0 such that

|λ− λ0| < δ2 =⇒ |F−1λ (x)− F−1λ0
(x)| < ε3. (3)
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We fix x and let δ = min{δ1, δ2} and |λ− λ0| < δ. Then

|φλ(x)− φλ0(x)| = |F−1λ (2Fλ(x))− F−1λ0
(2Fλ0(x))|

≤ sup
2Fλ(x)−2ε1≤y≤2Fλ(x)+2ε1

|F−1λ (2Fλ(x))− F−1λ0
(y)|

≤ |F−1λ (2Fλ(x))− F−1λ0
(2Fλ(x))|+ ε2

≤ ε3 + ε2,

Here the second line holds since 2Fλ0(x) ∈ (2Fλ(x) − 2ε, 2Fλ(x) + 2ε) by

equation 2. Then the third and fourth line follows from equations 1 and 3

respectively. Since ε2, ε3 were arbitrary, we are done.

In the case that one knows the distribution Fλ, one can write down the map

φλ explicitly. In particular, for the cases λ = 2−
1
n , which are quite well

understood, it is not difficult to write down φλ.

Example 2.1. In the case λ = 1√
2
, Fλ is given by

Fλ(x) =


(3
4

√
2 + 1)x2 x ∈

[
0, 1

1+
√
2

]
(1 + 1√

2
)x−

√
2
4

x ∈ [ 1
1+
√
2
,
√
2

1+
√
2
]

1− (1 + 3
4

√
2)(1− x)2 x ∈ [

√
2

1+
√
2
, 1]

.

Consequently φλ is given by

φλ(x) =


√

2x x ∈ [0, 1
2+
√
2
]

(1 +
√

2)x2 + 1
2+2
√
2

x ∈
[

1
2+
√
2
, 1
1+
√
2

]
1− 2

(
1/2−x
1+
√
2

)1/2
x ∈

[
1

1+
√
2
, 1
2

]
which is extended to the whole interval Iλ using the symmetry around 1

2
. We

have drawn the graphs of Fλ and φλ in Figure 3.

2.1 Further properties of φλ

While we cannot write down φλ explicitly, we can describe the behaviour near

x = 0 and the rate of the blowup at x = 1
2
. The following lemma describes

φλ near 0, and hence also the behaviour near 1.
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y = Fλ(x)
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y = φλ(x)

Figure 3: Graphs of Fλ and φλ for λ = 1/
√

2.

Lemma 2.2. We have that

φλ(x) = λ−1x

for x ∈ [0, 1− λ].

Proof. Self similarity of the measures νλ give that

Fλ(x) =
1

2

(
Fλ
(
λ−1x

)
+ Fλ

(
λ−1x− (λ−1 − 1)

))
(4)

Then

Fλ(φλ(x)) = 2Fλ(x) = Fλ(λ
−1x) + Fλ(λ

−1x− (λ−1 − 1)).

But because Fλ(x) = 0 for x ≤ 0, we have

Fλ(λ
−1x− (λ−1 − 1)) = 0

for x ≤ 1− λ. Then

Fλ(φλ(x)) = 2Fλ(x) = Fλ(λ
−1x),

for x ∈ [0, 1− λ], which completes the proof.

It remains to find φλ(x) for x ∈
[
1− λ, 1

2

]
, and then by symmetry to define

φλ on [1
2
, 1]. We can also describe the nature of φλ around x = 1

2
for typical

λ.
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Lemma 2.3. We have that

φ

(
1

2
− x
)
≈ 1− cx−

log λ
log 2

for small x, where c is a constant that depend continuously on λ.

Proof. We start by noting that, since φλ(x) evolves continuously in λ, it is

enough to describe the nature of the blowup for values of λ corresponding to

absolutely continuous νλ, as by passing to limits we get the result for all λ.

We consider the behaviour of Fλ(x) close to x = 1
2

and to x = 1. Assuming

that hλ(
1
2
) exists and is positive, we have that

Fλ

(
1

2
− ε
)
≈ Fλ

(
1

2

)
− hλε =

1

2
− hλε.

Thus we have that∣∣∣∣12 − Fλ(1

2
− 1

2
ε)

∣∣∣∣ ≈ 1

2

∣∣∣∣12 − Fλ(1

2
− ε)

∣∣∣∣ . (5)

Conversely, equation 4 gives that for small δ

Fλ(1− δ) =
1

2
(1 + Fλ(λ

−1(1− δ)− (λ−1 − 1)))

=
1

2
+

1

2
Fλ(1− λ−1δ)

giving

1− Fλ(1− δ) =
1

2
(1− Fλ(1− λ−1δ)). (6)

Now suppose that φλ
(
1
2
− ε
)

= 1 − δ for some fixed ε and δ. Then by

equations 5 and 6 we have that

φλ(
1

2
− 1

2
ε) ≈ 1− λδ.

Iterating, we have

φλ

(
1

2
−
(

1

2

)n
ε

)
≈ 1− λnδ,

and we see that we have a blow up of the form

φλ

(
1

2
− x
)
≈ 1− δ

ε− log λ/ log 2
x−

log λ
log 2

with c = δεlog λ/ log 2 depending continuously on λ.
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3 Piecewise Convexity

Numerical approximations of the maps φλ suggest that there are ranges of λ

close to 1 in which the maps φλ are piecewise convex. For the value λ = 1√
2
,

one can see directly from the calculation of the previous section that φλ is

piecewise convex, although of course this value of λ is rather special and

Bernoulli convolutions are already well understood for λ = 1/ n
√

2.

In this section we prove various properties of νλ that would follow from

φλ|[0, 1
2
] being convex. We use the term ‘piecewise convex’ as shorthand for

the statement that φλ is convex on each of the two intervals [0, 1
2
] and [1

2
, 1].

The following theorem shows the relevance of the piecewise convexity of φλ
to the study of Bernoulli convolutions.

Theorem 3.1. Suppose that there exists an interval (a, b) ⊂ (1
2
, 1) such that

φλ is piecewise convex for each λ in (a, b). Then for each λ ∈ (a, b) the

Bernoulli convolution νλ is absolutely continuous with bounded density.

We stress that if φλ is piecewise convex for almost every λ in (a, b), then it

is piecewise convex for all λ in (a, b), since the maps φλ are continuous in λ

and convexity is preserved by passing to continuous limits.

Proof. This theorem relies on results of Rychlik [15].

Given a function g : [0, 1]→ R, we define the total variation of g by

var g := sup
0=x0<x1<···<xn=1

n∑
i=1

|g(xi)− g(xi−1)|.

The function g is said to have bounded variation if var g <∞. Suppose that

T : [0, 1] → [0, 1] is a piecewise continuous map, such that there exists a

function g of bounded variation satisfying g = 1/|T ′| almost everywhere. We

consider the transfer operator L defined on functions of bounded variation

by

Lf(x) =
∑

T (y)=x

g(y)f(y).

We put gn = g · (g ◦ T ) · · · (g ◦ T n−1). Then

Lnf(x) =
∑

Tn(y)=x

gn(y)f(y).
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Let Cn denote the (n− 1)th refinement of the partition {[0, 1
2
], (1

2
, 1]} by T .

In [15, Corollary 3], Rychlik proved that

varLnf ≤ κ var f +D‖f‖1, (7)

where κ = sup gn + maxCn varCn gn and D = maxCn varCn gn/|Cn|.

We can apply this to our tent maps, replacing T with φλ. Suppose that

the tent map is convex on each of the intervals [0, 1
2
] and [1

2
, 1]. Then φλ is

differentiable everywhere except for at most countably many points, and this

derivative is increasing on [0, 1
2
) and on (1

2
, 1]. So there exists a function g

which is of bounded variation, which satisfies the assumptions of [15], and

which satisfies g = 1
|φ′λ|

almost everywhere. We have

sup g = g(0) = g(1) = λ and var[0, 1
2
] g = var[ 1

2
,1] g ≤ λ,

with equality if and only if |φ′λ(x)| → ∞ when x → 1
2

(which is the case by

Lemma 2.3). From this we get that

sup gn = λn and varCn gn ≤ 2n−1λn,

Combining this with (7) we get that

varLnf ≤ 2λn var f +
2n−1λn

min |Cn|
‖f‖1. (8)

In the setting of our tent map, Cn corresponds to the cylinders of generation

n, and so Cn depends continuously on n. In particular, for each n ∈ N the

value of min |Cn| corresponding to φλ is continuous in λ.

By Rychlik [15], there is a unique non-negative function hλ of bounded varia-

tion, such that ‖hλ‖1 = 1 and Lhλ = hλ. The existence follows by Theorem 1

in Rychlik’s paper, and the uniqueness is clear since φλ maps each of the in-

tervals [0, 1/2] and [1/2, 1] onto [0, 1]. The function hλ is the density of the

unique absolutely continuous invariant measure of φλ. If we pick n such that

2λn < 1, then (8) implies that

varhλ ≤ 2λn varhλ +
2n−1λn

min |Cn|
,

giving

varhλ ≤
2n−1λn

min |Cn|
1

1− 2λn
.
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Hence we have that

suphλ ≤ 1 +
2n−1λn

min |Cn|
1

1− 2λn
,

and so hλ is bounded. Furthermore, since all of the quantities involved are

continuous in λ, there is a uniform bound on suphλ across all of (a, b).

Now we recall that hλ was the density of the absolutely continuous invariant

measure of φλ. But for almost every λ ∈ (a, b), the Bernoulli convolution

νλ is absolutely continuous and is preserved by φλ, and so hλ is the density

of νλ. But now any weak∗ limit point of a family of measures which is ab-

solutely continuous with uniformly bounded density must also be absolutely

continuous with the same bound on the density. Therefore, since the family

νλ evolves continuously (in the weak∗ topology), we see that νλ is absolutely

continuous for all λ ∈ (a, b) and has bounded density hλ.

4 Computational Techniques

We have seen in the previous section that showing that φλ is piecewise convex

for all λ in an interval would have significant consequences for Bernoulli

convolutions. Analytically, we have been able to show piecewise convexity

only for some special values of λ for which the distribution Fλ is already

known. We remain optimistic that some further progress could be made here,

see the comments section. In this section we show how numerical information

on φλ can show convexity up to a certain scale.

4.1 Showing convexity up to a certain scale for fixed λ

First we choose a natural number M and let xi denote the point i
M

for

i ∈ {0, . . . ,M}. We wish to show that

φλ(xi) ≤
1

2
(φλ(xi−1) + φλ(xi+1)), (9)
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for i < M
2

and λ in a certain parameter range. It will then follow that

φλ(xj) ≤
(
j − i
k − i

)
φλ(xk) +

(
k − j
k − i

)
φλ(xi)

for 0 ≤ i ≤ j ≤ k ≤ M
2

. This is what we call ‘convexity up to scale 1
M

’. It

corresponds to the usual definition of convexity restricted to the set of points

{x0, . . . , xM
2
}, using the fact that

xj =

(
j − i
k − i

)
xk +

(
k − j
k − i

)
xi.

Because Lemma 2.2 that tells us that φλ(x) = λ−1x for 0 ≤ x ≤ 1 − λ, we

only need to check (9) for i with 1− λ < xi <
M
2

.

For large L we estimate Fλ(x) by noting that

Fλ(x) ≤ F+
λ,L(x) := 2−L

∣∣∣∣∣{a1 · · · aL ∈ {0, 1}L : (λ−1 − 1)
L∑
i=1

aiλ
i ≤ x}

∣∣∣∣∣
and

Fλ(x) ≥ F−λ,L(x) := 2−L

∣∣∣∣∣{a1 · · · aL ∈ {0, 1}L : (λ−1 − 1)
L∑
i=1

aiλ
i ≤ x− λL}

∣∣∣∣∣
= F+

λ,L(x− λ−L).

Then given the values of F+
λ,L(xi) and F−λ,L(xi) for i ∈ {1, . . . ,M}, we can

bound φλ from below and above by

φ−λ,L(xi) ≤ φλ(xi) ≤ φ+
λ,L(xi),

where φ−λ,L and φ+
λ,L are defined for 0 ≤ xi ≤ 1/2 by

φ−λ,L(xi) = y where y is the largest y such that F+
λ,L(y) ≤ 2F−λ,L(xi),

φ+
λ,L(xi) = y where y is the smallest y such that F−λ,L(y) ≥ 2F+

λ,L(xi).

Hence, if we have

φ+
λ (xi) ≤

1

2
(φ−λ (xi−1) + φ−λ (xi+1)), (10)
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Figure 4: Plot of φ−λ,L and φ+
λ,L with L = 24, M = 50, and λ = 0.6 (left),

λ = 0.7, λ = 0.8 and λ = 0.9 (right).

for all i with 1− λ < xi < 1/2, then (9) holds for all i < M
2

.

The inequalities (10) can be checked with a computer, at least up to errors

in the floating point arithmetics. We have written a program in C1, that

calculates the approximations φ−λ,L and φ+
λ,L of φλ,L. Figure 4 shows four

plots of the approximations, obtained from the mentioned program.

4.2 Techniques for all λ in an interval

To apply Theorem 3.1 we would like to show that φλ is piecewise convex for

all λ in an interval. We cannot do this computationally, but instead consider

how to show φλ is piecewise convex up to a certain scale for all λ in an

interval.

We consider a small interval Iε = [λ0 − ε, λ0 + ε]. The map

Iε 3 λ 7→ (λ−1 − 1)
∞∑
i=1

aiλ
i

1The source code for this program is available on the homepage of the second author,

http://www.maths.lth.se/matematiklth/personal/tomasp/
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is differentiable, and if we put D := 1
(λ0+ε)(1−λ0+ε) , then∣∣∣∣ d

dλ
(λ−1 − 1)

∞∑
i=1

aiλ
i

∣∣∣∣ =

∣∣∣∣− 1

λ2

∞∑
i=1

aiλ
i + (λ−1 − 1)

∞∑
i=1

aiiλ
i−1
∣∣∣∣

≤ max

{
1

λ2

∞∑
i=1

aiλ
i, (λ−1 − 1)

∞∑
i=1

aiiλ
i−1
}

≤ max

{
1

λ2

∞∑
i=1

λi, (λ−1 − 1)
∞∑
i=1

iλi−1
}

= max
{ 1

λ(1− λ)
,

1

λ(1− λ)

}
=

1

λ(1− λ)
≤ D,

holds for all λ ∈ Iε and all sequences with ai ∈ {0, 1}. We conclude that

(λ−10 − 1)
L∑
i=1

aiλ
i
0 ≤ x =⇒ (λ−1 − 1)

L∑
i=1

aiλ
i ≤ x+ |λ− λ0|D

for any λ ∈ Iε. Similarly, we have

(λ−10 − 1)
L∑
i=1

aiλ
i
0 ≥ x =⇒ (λ−1 − 1)

L∑
i=1

aiλ
i ≥ x− |λ− λ0|D

for any λ ∈ Iε. Using these two estimates we can use F±λ0,L to estimate F±λ,L.

We get

F−λ,L(x) ≥ F−λ0,L(x− εD) and F+
λ,L(x) ≤ F+

λ0,L
(x+ εD).

Hence, the estimates F±λ0,L of Fλ0 gives us estimates on F±λ,L that we can use

to estimate φ−λ,L from below and φ+
λ,L from above. It is then possible to check

with a computer if the inequalities in (9) are satisfied for all λ ∈ Iε. This has

been implemented in our program.

Table 1 shows some result of our program. It displays some values for which

we have been able to show nummericaly convexity to a certain scale.

A convolution argument shows that hλ is differentiable for almost all λ ∈
(2−

1
3 , 1), see [17]. One might suspect that using this information it would be

possible to show that φλ is piecewise convex for all λ ∈ [2−
1
3 , 1). However,

this does not seem to be true, since just as we can sometimes show convexity
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λ0 ε convexity to scale

0.65 0.000001 0.02

0.7 0 0.02

2−1/2 ≈ 0.707106781186548 0.00001 0.125

0.75 0 0.02

0.75 0.00001 0.125

2−1/3 ≈ 0.793700525984100 0.00001 0.125

0.8 0 0.02

0.8 0.00001 0.125

0.85 0.000001 0.125

Table 1: Numerical observations of piecewise convexity to a scale

to a scale using numerics, we are sometimes also capable of observing non-

convexity at a certain scale.

Using our program we have observed that φλ is not piecewise convex when λ

is the inverse of the root of x5 +x4−x2−x−1 that is larger than 1. We then

have λ ≈ 0.8501 . . ., and since 2−
1
3 ≈ 0.7937 . . ., we do not have piecewise

convexity of φλ for all λ ∈ [2−
1
3 , 1). In this case, 1/λ is a Salem number.

(A Salem number is a real algebraic integer, larger than 1, such that all its

conjugates have absolute value smaller than or equal to 1, and at least one

of the conjugates has absolute value equal to 1.)

Similarly, the program can be used to show that φλ is not convex for λ =√
5−1
2

. Since νλ is known not to be absolutely continuous for this value of λ,

this is not too surprising. We also see a lack of convexity for 1/λ equal to

certain other Pisot numbers. For instance when 1/λ is the root of x4−x3−1

or x3 − x− 1, then φλ is not convex to scale 0.005.

Let us mention some of the computational difficulties associated with trying

to prove convexity to a scale for the entire interval Iε. Suppose L is even. Our

program calculates all the 2L/2 sums
∑L/2

i=1 aiλ
i and stores them in an ordered

list. This requires quite a lot of memory even for L as small as 60, but the

time required to preform the calculations is rather short. The sums in the

list are then combined to get the sums
∑L

i=1 aiλ
i with double as many terms,

when needed. This method of storing only the sums of length L/2 instead of

storing the sums of length L, saves memory but increases computation time.
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However we found that doing so yields a better balance between the use of

memory and the computation time.

When λ is close to 1, large values of L are needed to get a good accuracy

in the estimates, requiring an unrealistic amount of memory. This is clearly

illustrated in Figure 4, where for λ = 0.9, the two maps φ+
λ,L and φ−λ,L differ

quite a lot, while for λ = 0.6 they are indistinguishable.

With a computer with 64 GB of memory we are able to run our program for

L ≤ 60. Table 1 was obtained from running the program with 56 ≤ L ≤ 60.

5 Further Questions

There are a number of natural questions that follow on from our work.

Question 1: Can one show that for all λ sufficiently close to 1 we have that

νλ is absolutely continuous? For almost all λ ∈ (2−1/n, 1) one has that the

density hλ is (n − 1)-times differentiable, does this extra regularity of the

density give rise to extra regularity in the functions φλ?

Question 2: Can one show that there is an interval J ⊂ R containing 1/
√

2

such that νλ is absolutely continuous for all λ ∈ J . Perhaps this would

involve showing that the map φλ evolves smoothly in a neighbourhood of

1/
√

2.

Question 3: Are there any other properties of νλ (besides the question of

absolute continuity) which could be studied using φλ? In particular, can one

forbid the possibility of singular Bernoulli convolutions which have Hausdorff

dimension 1 by proving a similar result for invariant measures of φλ? Such

results do exist in the literature for one-dimensional dynamics, see e.g. [11]

and [4], but at present are not in such a form that they would apply to φλ.

Such a result would be extremely interesting given recent results of Hochman

[8] giving necessary conditions for ‘dimension drop’ in overlapping iterated

functions systems. In the special case of Bernoulli convolutions, Shmerkin

[16] was able to use [8] to prove that Bernoulli convolutions are absolutely

continuous for all parameters outside of a set of Hausdorff dimension zero,

but Shmerkin’s techniques were heavily reliant on the convolution structure
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of Bernoulli convolutions. In this light, an alternative approach for demon-

strating that certain fractal measures of Hausdorff dimension one are in fact

absolutely continuous would be very interesting.
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