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Abstract

The rapidly expanding corpus of medical research literature presents major challenges in the understanding of
previous work, the extraction of maximum information from collected data, and the identification of promising
research directions. We present a case for the use of advanced machine learning techniques as an aide in this task and
introduce a novel methodology that is shown to be capable of extracting meaningful information from large
longitudinal corpora and of tracking complex temporal changes within it. Our framework is based on (i) the
discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model,
and (iii) a temporal similarity graph which allows for the modelling of complex topic changes. More specifically, this is
the first work that discusses and distinguishes between two groups of particularly challenging topic evolution
phenomena: topic splitting and speciation and topic convergence and merging, in addition to the more widely
recognized emergence and disappearance and gradual evolution. The proposed framework is evaluated on a public
medical literature corpus.
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1 Introduction
Recent years have witnessed a remarkable convergence
of two broad trends. The first of these concerns infor-
mation, i.e. data, rapid technological advances coupled
with an increased presence of computing in nearly every
aspect of daily life, have for the first time made it possi-
ble to acquire and store massive amounts of highly diverse
types of information. Concurrently and in no small part
propelled by the environment just described, research in
artificial intelligence—in machine learning [3–5, 8], data
mining [14], and pattern recognition, in particular—has
reached a sufficient level of methodological sophistication
and maturity to process and analyse the collected data,
with the aim of extracting novel and useful knowledge
[7, 14–16]. Though it is undeniably wise to refrain from
overly ambitious predictions regarding the type of knowl-
edge which may be discovered in this manner, at the very
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least, it is true that few domains of application of the afore-
said techniques hold as much promise and potential as
that of medicine and health in general.
Large amounts of highly heterogeneous data types are

pervasive in medicine. Usually the concept of so-called big
data in medicine is associated with the analysis of Elec-
tronic Health Records [6, 7, 9, 21, 40, 41, 43], large scale
sociodemographic surveys of death causes [37], clinical
epidemiological [17, 23, 36] and pharmacoepidemiolog-
ical studies [28, 35, 42], as well as in the analysis of
pharmacovigilance [22, 29, 32], health-related economic
effects [11, 20], and public health [18, 27, 30, 34]. Much
less discussed and yet arguably no less important realm
where the amount of information presents a challenge to
the medical field is the medical literature corpus itself.
Namely, considering the overarching and global impor-
tance of health (to say nothing of practical considerations
such as the availability of funding), it is not surprising to
observe that the amount of published medical research
is immense and its growth is only continuing to acceler-
ate. This presents a clear challenge to a researcher. Even
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restricted to a specified field of research, the amount
of published data and findings makes it impossible for
a human to survey the entirety of relevant publications
exhaustively which inherently leads to the question as
to what kind of important information or insight may
go unnoticed or insufficiently appreciated. The premise
of the present work is that advanced machine learning
techniques can be used to assist a human in the analysis
of this data. Specifically, we introduce a novel algorithm
based on Bayesian non-parametric inference that achieves
this goal.

1.1 Previous work
A limitation of most models described in the existing lit-
erature lies in their assumption that the data corpus is
static. Here the term ‘static’ is used to describe the lack
of any associated temporal information associated with
the documents in a corpus—the documents are said to be
exchangeable [19]. However, research articles are added
to the literature corpus in a temporal manner and their
ordering has significance. Consequently, the topic struc-
ture of the corpus changes over time [12, 13, 24]: new ideas
emerge, old ideas are refined, novel discoveries result in
multiple ideas being related to one another thereby form-
ing more complex concepts or a single idea multifurcating
into different ‘sub-ideas’, etc. The premise in the present
work which expands on our preliminary contributions
described in [1, 2] is that documents are not exchange-
able at large temporal scales but can be considered to be
at short time scales, thus allowing the corpus to be treated
as temporally locally static.

2 Methods
In this section, we introduce our main technical contribu-
tions. We begin by reviewing the relevant theory under-
lying Bayesian mixture models and then explain how the
proposed framework employs these for the extraction of
information from temporally varying document corpora.

2.1 Bayesian mixture models
Mixture models are appropriate choices for the mod-
elling of the so-called heterogeneous data whereby het-
erogeneity is taken to mean that observable data is
generated by more than one process (source). The key
challenges lie in the lack of observability of the corre-
spondence between specific data points and their sources
and the lack of a priori information on the number of
sources [38].
Bayesian non-parametric methods place priors on the

infinite-dimensional space of probability distributions
and provide an elegant solution to the aforementioned
modelling problems. Dirichlet Process (DP) in particular
allows for the model to accommodate a potentially infinite
number of mixture components [25]:

p (x|π1:∞,φ1:∞) =
∞∑

k=1
πkf (x|φk) . (1)

where DP (γ ,H) is defined as a distribution of a
random probability measure G over a measurable
space (�,B), such that for any finite measurable
partition (A1,A2, . . . ,Ar) of � the random vector
(G (A1) , . . . ,G (Ar)) is a Dirichlet distribution with
parameters (γH (A1) , . . . , γH (Ar)). A Dirichlet process
mixture model (DPM) is obtained by associating differ-
ent mixture components with atoms φk and assuming
xi|φk

iid∼ f (xi|φk) where f (.) is the kernel of the mixing
components [33].

2.1.1 Hierarchical DPMs
While the DPM is suitable for the clustering of exchange-
able data in a single group, many real-world problems
are more appropriately modelled as comprising multiple
groups of exchangeable data. In such cases, it is desir-
able to model the observations of different groups jointly,
allowing them to share their generative clusters. This
‘sharing of statistical strength’ emerges naturally when a
hierarchical structure is implemented.
The DPM models each group of documents in a col-

lection using an infinite number of topics. However,
it is desirable for multiple group-level DPMs to share
their clusters. The hierarchical DP (HDP) [39] offers a
solution whereby base measures of group-level DPs are
drawn from a corpus-level DP. In this way, the atoms
of the corpus-level DP are shared across the docu-
ments; posterior inference is readily achieved using Gibbs
sampling [39].

2.2 Modelling topic evolution over time
We now show how the described HDP based model can
be applied to the analysis of temporal topic changes in a
longitudinal data corpus.
Owing to the aforementioned assumption of a tempo-

rally locally static corpus, we begin by discretizing time
and dividing the corpus into epochs. Each epoch spans a
certain contiguous time period and has associated with it
all documents with timestamps within this period. Each
epoch is thenmodelled separately using a HDP, with mod-
els corresponding to different epochs sharing their hyper-
parameters and the corpus-level base measure. Hence if
n is the number of epochs, we obtain n sets of topics
φ = {

φt1 , . . . ,φtn
}
where φt = {

φ1,t , . . . ,φKt ,t
}
is the set

of topics that describe epoch t, and Kt their number.

2.2.1 Topic relatedness
Our goal now is to track changes in the topical struc-
ture of a data corpus over time. The simplest changes
of interest include the emergence of new topics and the
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disappearance of others. More subtly, we are also inter-
ested in how a specific topic changes, that is, how it
evolves over time in terms of the contributions of different
words it comprises. Lastly, our aim is to be able to extract
and model complex structural changes of the underlying
topic content which result from the interaction of topics.
Specifically, topics, which can be thought of as collections
of memes, can merge to form new topics or indeed split
into more nuanced memetic collections. This information
can provide valuable insight into the refinement of ideas
and findings in the scientific community, effected by new
research and accumulating evidence.
The key idea behind our tracking of simple topic evo-

lution stems from the observation that while topics may
change significantly over time, changes between succes-
sive epochs are limited. Therefore, we infer the continuity
of a topic in one epoch by relating it to all topics in the
immediately subsequent epoch which are sufficiently sim-
ilar to it under a suitable similarity measure—we adopt the
well-known Bhattacharyya distance (BHD):

ρBHD(p, q) = − ln
∑

i

√
p(i)q(i) (2)

where p(i) and q(i) are two probability distributions. This
approach can be seen to lead naturally to a similarity
graph representation whose nodes correspond to topics
and whose edges link those topics in two epochs which are
related. Formally, the weight of the directed edge that links
φj,t , the jth topic in epoch t, and φk,t+1 is ρBHD

(
φj,t ,φk,t+1

)

where ρBHD denotes the BHD.
In constructing a similarity graph a threshold is used

to eliminate automatically weak edges, retaining only the
connections between sufficiently similar topics in adjacent
epochs. Then, the disappearance of a particular topic, the
emergence of new topics, and gradual topic evolution can
be determined from the structure of the graph. In par-
ticular, if a node does not have any edges incident to it,
the corresponding topic is taken as having emerged in the
associated epoch. Similarly, if no edges originate from a
node, the corresponding topic is taken to vanish in the
associated epoch. Lastly, when exactly one edge originates
from a node in one epoch and it is the only edge incident
to a node in the following epoch, the topic is understood
as having evolved in the sense that its memetic content
may have changed.
A major challenge to the existing methods in the litera-

ture concerns the detection of topic merging and splitting.
Since the connectedness of topics across epochs is based
on their similarity, what the previous work describes as
‘splitting’ or indeed ‘merging’ does not adequately cap-
ture these phenomena. Rather, adopting the terminology
from biological evolution, a more accurate description
would be ‘speciation’ and ‘convergence’, respectively. The
former is illustrated in Fig. 1a whereas the latter is entirely

analogous with the time arrow reversed. What the con-
ceptual diagram shown illustrates is a slow differentiation
of two topics which originate from the same ‘parent’.
Actual topic splitting, which does not have a biological
equivalent in evolution, and which is conceptually illus-
trated in Fig. 1b, cannot be inferred by measuring topic
similarity. Instead, in this work, we propose to employ the
Kullback-Leibler divergence (KLD) for this purpose. The
divergence ρKLD(p, q) is asymmetric, and it measures the
amount of information lost in the approximation of the
probability distribution p(i) with q(i). KLD is defined as
follows:

ρKLD(p, q) =
∑

i
p(i) ln

p(i)
q(i)

(3)

It can be seen that a high penalty is incurred when p(i)
is significant and q(i) is low. Hence, we use the BHD
to track gradual topic evolution, speciation, and conver-
gence, while the KLD (computed both in forward and
backward directions) is used to detect topic splitting and
merging.

2.2.2 Automatic temporal relatedness graph construction
Another novelty of the work first described in this paper
concerns the building of the temporal relatedness graph.
We achieve this almost entirely automatically, requiring
only one free parameter to be set by the user. Moreover,
the meaning of the parameter is readily interpretable and
understood by a non-expert, making our approach highly
usable.
Our methodology comprises two stages. Firstly, we con-

sider all inter-topic connections present in the initial fully
connected graph and extract the empirical estimate of the
corresponding cumulative density function (CDF). Then,
we prune the graph based on the operating point on the
relevant CDF. In other words, if Fρ is the CDF correspond-
ing to a specific initial, fully connected graph formed
using a particular similarity measure (BHD or KLD), and
ζ ∈[ 0, 1] the CDF operating point, we prune the edge
between topics φj,t and φk,t+1 iff ρ(φj,t ,φk,t+1) < F−1

ρ (ζ ).

3 Evaluation and discussion
We now analyse the performance of the proposed frame-
work empirically on a large real-world data set.

3.1 Evaluation data
We used the PubMed interface to access the US National
Library of Medicine and retrieve from it scholarly arti-
cles. We searched for publication on the autism spec-
trum disorder (ASD) and the metabolic syndrome (MetS)
using respectively the keyword ’autism’ and the keyphrase
‘metabolic syndrome’ and collected only those achieved
papers which were written in English. The earliest publi-
cations found were that by Kanner [26] on ASD and by
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Fig. 1We are the first to recognize and describe the difference between two topic evolution phenomena: a topic speciation and b topic splitting
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Berardinelli et al. [10] on MetS. We collected all match-
ing publications up to the final one indexed by PubMed on
10 May 2015, yielding a corpus of 22,508 publications on
ASD and of 31,706 on MetS. We used the corresponding
abstracts to evaluate our contributions.

3.1.1 Pre-processing
The raw data collected from PubMed is in the form of
free text. To prepare it for automatic analysis a series of
‘pre-processing’ steps are required. The goal is to remove
words which are largely uninformative, reduce dispersal of

semantically equivalent terms, and thereafter select terms
which are included in the vocabulary over which topics
are learnt.
We firstly applied soft lemmatization using the Word-

Net® lexicon [31] to normalize for word inflections. No
stemming was performed to avoid semantic distortion
often effected by heuristic rules used by stemming algo-
rithms. After lemmatization and the removal of so-called
stop-words, we obtained approximately 2.2 and 3.8 mil-
lion terms in the entire corpus when repetitions are
counted and 37,626 and 46,114 unique terms, for the ASD

Fig. 2 The proportion of topic connections shared between the BHD and the KLD temporal relatedness graphs, normalized by a the number of BHD
connections and b the number of KLD connections, in an epoch. The low overlap of inferred connections demonstrates that the BHD and the KLD
indeed do capture different types of topic relatedness
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and MetS corpora, respectively. Constructing the vocabu-
lary for our method by selecting the most frequent terms
which explain 90 % of the energy in a specific corpus
resulted in ASD and MetS vocabularies containing 3417
and 2839 terms, respectively.

3.2 Results and discussion
We stared evaluation by examining whether the two topic
relatedness measures (BHD and KLD) are capturing dif-
ferent aspects of relatedness. To obtain a quantitative
measure, we looked at the number of inter-topic connec-
tions formed in respective graphs both when the BHD
is used as well as when the KLD is applied instead. The
results were normalized by the total number of connec-
tions formed between two epochs, to account for changes

in the total number of topics across time. Our results
for the MetS corpus are summarized in Fig. 2; similar
results were obtained for ASD data. A significant differ-
ence between the two graphs is readily evident; across
the entire timespan of the data corpus, the number of
Bhattacharyya distance-based connections also formed
through the use of the KLD is less than 40 % and in
most cases less than 30 %. An even greater difference
is seen when the proportion of the KLD connections is
examined—it is always less than 25 % and most of the
time less than 15 %. The graphs in Fig. 3 show the dis-
tributions of the number of connections leading from
topics in our topic relatedness graph inferred using the
BHD and the KLD using the CDF pruning threshold
of ζ = 0.9.

(a)

(b)

Fig. 3 The distributions of the number of connections leading from topics in our topic relatedness graph inferred using the a BHD and the b KLD
using the CDF pruning threshold of ζ = 0.9. The axis x, y, and z respectively correspond to time (i.e. epochs), number of branches leading from a
topic, and the corresponding number of topics
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To get an even deeper insight into the contribution of
the two relatedness measures, we examined the corre-
sponding topic graphs before edge pruning. The plot in
Fig. 4 shows the variation in inter-topic edge strengths
computed using the BHD and the KLD (in forward and
backward directions)—the former as the x coordinate of
a point corresponding to a pair of topics and the lat-
ter as its y coordinate. The scatter of data in the plot
corroborates our previous observation that the two sim-
ilarity measures indeed do capture different aspects of
topic behaviour.
We also performed extensive qualitative analysis which

is necessitated by the nature of the problem at hand and
the so-called semantic gap that underlies it. In all cases, we
found that our algorithm revealed meaningful and useful
information as verified bymedical experts on the ASD and
MetS. This observation is consistent with previous reports
in the literature using an algorithm with a similar struc-
ture [12]. The key novelties which we emphasized in the
present article are illustrated well in Figs. 5 and 6, which
illustrate respectively topic splitting and topic merging
as introduced by us (as opposed to the phenomena of
topic speciation and topic convergence, previously incor-
rectly termed splitting and merging). The splitting and
the merging shown are identified through the use of the
KLD but not by the BHD based relatedness inference (see
Section 2.2).

3.3 Interactive exploration and visualization
Our final contribution comprises a web application which
allows users to upload and analyse their data sets using the
proposed framework. A screenshot of the initial window
of the application when a data set is loaded is shown in
Fig. 7. Topics are visualized as coloured blobs arranged in
rows, each row corresponding to a single epoch (with the
time arrow pointing downwards). The size of each blob is
proportional to the popularity of the corresponding topic
within its epoch. Each epoch (that is to say, the set of
topics associated with a single epoch) is coloured using
a single colour different from the neighbouring epochs
for easier visualization and navigation. Line connectors
between topics denote temporal topic connections, i.e. the
connections in the resultant temporal relatedness graph
which, as explained in the previous section, depending on
the local graph structure encode topic evolution, merging
and splitting, and convergence and speciation.
The application allows a range of powerful tasks to

be performed quickly and in an intuitive manner. For
example, the user can search for a given topic using key-
words (and obtain a list of topics ranked by the degree to
which they match the query), trace the origin of a spe-
cific topic backwards in time, or follow its development
in the forward direction, examine word clouds associ-
ated with topics, display a range of statistical analyses, or
navigate the temporal relatedness graph freely. Some of

Fig. 4 Relationship between inter-topic edge strengths computed using the BHD and the KLD before the pruning of the respective graphs. The
high degree of scatter corroborates with an even greater strength our previous observation based on the plots in Fig. 2. In particular, the graph
demonstrates that the knowledge of topic relatedness by one of the two distance measures used by our algorithm provides little information on
the value of the other distance measure thereby showing that the two capture different types of topic relatedness
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(a)

(b)

Fig. 5 An example of topic splitting as inferred through the use of the
KLD by our algorithm but which is undetected by the previously
proposed BHD-based relatedness: amagnification of the salient
window region in our interactive application used to explore large
longitudinal text corpora (described in Section 3.3) showing the split
topic and its descendant topics and b the split topic and its
descendent topics shown as word clouds. Recall that the notion of
topic splitting as used in this work differs significantly from that used
in previous work. As argued in Section 2.2, the previous
understanding of topic splitting is better described as topic speciation

these capabilities are showcased in Fig. 8. In particular, the
central part of the screen shows a selected topic and the
strongest ancestral and descendent lineages. The search
box on the left hand side can be used to enter multiple
terms which are used to retrieve and rank topics by quality
of fit to the query. Finally, on the right hand side, relevant
information about the currently selected topic is summa-
rized: its most popular terms are both visualized in the
form of a colour coded word cloud, as well as listed in

(a)

(b)
Fig. 6 An example of topic merging as inferred through the use of
the KLD by our algorithm but which is undetected by the previously
proposed BHD-based relatedness: amagnification of the salient
window region in our interactive application used to explore large
longitudinal text corpora (described in Section 3.3) showing the
merging topics and their descendant topic and b the merging topics
and the resultant topic shown as word clouds. Recall that the notion
of topic merging as used in this work differs significantly from that
used in previous work. As argued in Section 2.2, the previous
understanding of topic splitting is better described as topic
convergence

order in plain text underneath. Additional graph naviga-
tion options include magnification tools accessible from
the bottom of the screen, whereas translation is readily
performed by simply dragging the graph using a mouse or
a touchpad.

4 Conclusions
In this work, we presented a case for the importance of
the use of advanced machine learning techniques in the
analysis and interpretation of large longitudinal text cor-
pora such as specialized medical literature. We described
a novel framework based on non-parametric Bayesian
techniques which is able to extract and track complex,
semantically meaningful changes to the topic structure
of a longitudinal document corpus. Moreover, this work
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Fig. 7 Screenshot of the initial window of the application we developed for free public analysis of custom data sets using the method described in
the present paper. Topics are visualized as coloured blobs arranged in rows, each row corresponding to a single epoch (with the time arrow pointing
downwards). The size of each blob is proportional to the popularity of the corresponding topic within its epoch. Each epoch is coloured using a
single colour different from the neighbouring epochs. Line connectors between topics denote temporal topic connections across the temporal
relatedness graph and encode topic evolution, merging and splitting, and convergence and speciation

Fig. 8 Illustration of some of the capabilities of the developed application: (i) the central part of the screen shows a selected topic and the strongest
ancestral and descendent lineages, (ii) the search box on the left hand side can be used to enter multiple terms which are used to retrieve and rank
topics, and (iii) on the right hand side, relevant information about the currently selected topic is summarized. Magnification tools are accessible from
the bottom of the screen, whereas translation can be performed using a simple dragging motion
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is the first to describe and present a method for differ-
entiating between two types of topic structure changes,
namely topic splitting and what we termed topic specia-
tion. Experiments on a large corpus of medical literature
concerned with the metabolic syndrome was used to illus-
trate the performance of ourmethod. Lastly, we developed
a web application which allows users such as medical
researchers to apply our method for their analysis.
The present work illuminates several promising avenues

for future work. Firstly, considering the important differ-
ence between topic interaction phenomena such as topic
splitting and speciation, and topic merging and conver-
gence, we intend to focus on developing an information-
theoretic framework which is capable of handing all of the
aforementioned interactions in a unified manner. Such a
framework would confer the additional benefit of remov-
ing the need for the free parameter necessitated by our
method—the proportion of edges retained in our topic
relatedness graph. The second direction of research we
intend to pursue concerns the free parameters used to
handle the temporal dimension. Although it is prima fas-
ciae clear that the duration of the epoch length used to
discretize time, as well as the degree of overlap between
consecutive epochs, should be dependent on the dynam-
ics of a particular longitudinal corpus (contrast for exam-
ple the analysis of social media posts and the medical
literature), currently, there are no principled methods for
choosing the values of these parameters. Lastly, we believe
that the nature of the problem at hand, that of temporal
topic modelling, offers opportunities for a more objec-
tive manner of performance assessment, in contrast to the
usual post hoc, qualitative approaches used in the existing
literature on topic modelling.
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3. O Arandjelović, Assessing blinding in clinical trials. Adv. Neural Inform.
Process. Syst. 25, 530–538 (2012)
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