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Encoding complex valued fields using intensity
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Abstract: We present an approach enabling the representation of complex values using intensity
only fields. The method can be used for imaging with structured illumination and allows the study
of new propagating physical quantities with the classical coherent or incoherent light field playing
the role of hidden variable. This approach can further be generalized to encode higher order
N-dimensional vectors and ensembles of N orthogonal fields. Different orthogonal, incoherent
illumination patterns (Hadamard, sinusoidal, Laguerre-Gauss) have been experimentally tested
in a single-pixel detection imaging scheme in order to compare their performances in terms of
obtainable resolution. We show experimentally that our encoding technique allows to reduce the
required number of illuminations for a given, desired resolution.
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1. Introduction

In a conventional imaging system, the light coming from a source uniformly illuminates the object
to be imaged. The reflected, scattered, transmitted or diffused light is then typically collected
and detected by a CCD camera, characterized by m x n pixels. In this case, the resolution of the
final image depends on the total number of pixels used. However, the direct use of an m X n array
of detectors is not always possible. Many applications such as confocal [1], two-photon [2, 3],
Raman [4] and CARS [5] microscopies are relying on pixel-by-pixel scanning and in these cases
the resolution is linearly proportional to the acquisition time. The higher the number of single
acquisitions, the higher the final resolution and the total acquisition time. This makes it difficult
to perform spectral imaging on a living (i.e. moving) sample such as a single cell [6, 7].

On the other hand, Helmholtz reciprocity principle [8,9] allows to transfer the information
relative to spatial resolution from the detector to the illumination side, reducing the detector
itself to a “single pixel” device (e.g. a photodiode or a spectrometer [10]). In this case, it is the
light emitted by the source that is used to encode more or less complex illumination patterns
by means of a spatial light modulator. A digital-micromirror-device (DMD), for example, can
reach refresh rates of tens of kHz, allowing the change of the illumination pattern in a short time
interval [11]. Each pattern acts like a probe enabling the detection of higher spatial information
of the imaged object as the spatial complexity of the illumination increases. The main application
of this approach are hyper-spectral microscopy [12] and imaging in wavelength ranges in the
absence of CCD or CMOS technology [13].

Depending on the physical properties of the illumination source, it is possible to distinguish
between different families of illumination patterns. In the case of coherent illumination, there are
many possible beams that can be used to illuminate/excite the sample, such as Laguerre-Gauss
beams [14], Airy beams [15] and optical eigenmode beams [16]. In the case of incoherent
illumination, Hadamard patterns [17] are used to illuminate the samples. In both cases, the use
of orthogonal patterns offers advantages in terms of easy of image reconstructions [18] and in
obtaining efficient non-redundant imaging [19]. Orthogonality is achieved when the dot product
between the complex fields associated with two beams is zero. However, in the case of incoherent
illumination it is difficult to access real orthogonality as the incoherent intensity is a positively
defined quantity and not many intensity illumination profiles are orthogonal to each other with
respect to this definition. Indeed, only non-overlapping intensity beams are orthogonal to each
other. It is therefore advantageous to redefine the problem such that it would be possible to detect
negative and complex valued intensities.

In the present paper, we introduce a new way to encode phase and amplitude on intensity-
only light patterns. The encoding is based on the representation of complex numbers in a
quasi 3D-space involving only positive decomposition coefficients. Going beyond structured
illumination, this technique can be used to create new propagating physical quantities where
classical electromagnetism plays the role of hidden variable. Here, we consider three different
orthogonal incoherent light patterns (Hadamard, sinusoidal and Laguerre-Gauss probes) that we
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use in a single-pixel detection scheme. We compare their performance in terms of resolution by
retrieving the point spread function (PSF) of the system and by comparing the reconstructed
images of several extended targets with the original. Finally, we extended the encoding technique
to any set of N orthogonal fields by representing it in quasi N + 1 dimensional space.

2. Negative and complex valued “intensity”

The fundamental idea of structured illumination is to expand the number of optical degrees of
freedom (ODoF) detected when imaging by replacing uniform illumination with a family of
light fields. Here, the ODoF are defined by the number of linearly independent optical fields
that are supported within a finite optical system where linear independence is equivalent to
orthogonality [20]. However, in order to achieve general orthogonality the fields need to be able
to take positive/negative or complex values. In the case of coherent monochromatic illumination
this can be achieved using the phase and amplitude of the electric field. On the other hand, the
intensity of incoherent light fields is always positive and as such we need to define a different
way to “encode” negative or complex values in the incoherent field.

A simple way to encode negative intensities is to use two light patterns for each probe; one
to encode the positive part of the illumination and one for the negative part. The intensity
measured for the second pattern is then subtracted from the one obtained from the first pattern.
This encoding process in represented in Figs. 1(a)-1(f) for a sinusoidal function in one and two
dimensions. This procedure implies that, if N real valued probes are to be used in a sequence
of measurements, then the number of actual illuminations will be 2N. We note here that from
a practical point of view, the order of these measurements is important. Indeed, an improved
signal to noise ratio (SNR) can be achieved by alternating addition and subtraction rejecting low
frequency background fluctuations akin to a lock-in amplifier.

Complex valued field encoding generalizes this idea from the 1-D real axis to the 2-D complex
plane. To achieve this we use what we termed the 2-simplex encoding technique. Let us consider
a complex number z = x + iy with x,y € R. Both real and imaginary parts can assume positive or
negative values, so, according to previous approach, for a single complex probe 4 illuminations
would be needed. Figure 1(g) illustrates that using the 2-simplex convention only three patterns
are necessary: the 2-simplex corresponds to an equilateral triangle and the vectors linking its
barycenter to the three vertices are splitting the 2-D plane into three equal parts. Each point in
the plane will lie in one of these three parts and can be written as a convex superposition of
two of the three vectors partitioning the plane. We can therefore represent a complex number
by two positive numbers and one zero component. This encoding convention is a variation of
the convex combination in the case of barycentric coordinate system [21]. Using the 2-simplex
coordinate system we need to project only 3 illuminations to create a complex valued pattern
instead of the 4 illuminations needed when using twice the real valued encoding method. To
illustrate, we associate each of the three illuminations with one of the three fundamental colors
red, green and blue (corresponding to three intensities r, g,b € R™). Practically, the use of colors
has the potential of replacing the sequential illumination by parallel measures as one can detect
the intensities from the three color channels independently from each other.

The 2-simplex encoding can be considered as a particular case of the more generalized N-
simplex technique (see Fig. 1(h) for the 3-simplex) which can be used to encode higher order
vectors of any dimensions. In the general case, we consider a N-dimensional real vector space that
is partitioned using the barycentre-vertex vectors of an N-simplex into N + 1 equal parts. Using
the same procedure as before, we can represent the N real values by defining the illumination
using N + 1 positive values corresponding to the decomposition of the vector in its convex
sub-space and one zero component. To represent the whole vector, we need N + 1 illuminations
instead of 2N.

We remark that this approach allows the formal encoding of additional information onto the
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Fig. 1. (a-f) A single element of a sinusoidal pattern can be expressed as the difference
of two elements with no negative values. (g) 2-simplex encoding: a complex number z
can be represented in the complex plane with components x and y respect to the real and
imaginary axis or in a three-dimensional “rgb space" where the components of z can assume
only positive values and at least one of them equals zero. (h) 3-simplex encoding: for each
pixel P, a set of 3 orthogonal fields can be represented in a 3-dimensional space with real
components x, y,z or in a 4-dimensional space with real, positive components r, g, b, c, where
at least one of them equals zero.

intensity going beyond a complex scalar field to encode higher order vector fields. Indeed any
kind of fields can be used and the laws which govern the evolution of the encoded quantities can
be changed through the interplay between the encoding mechanism itself and the propagation
of the underlying fields. In effect, the underlying fields become hidden variables that can only
be observed as statistical fluctuation within the encoded fields. To illustrate this possibility, we
consider the following red, green and blue time dependent intensities:

Lon(t) =A(1+cos(@t+A,p)) €))

where A is the field amplitude and the three phase delays A, =0, A, = 27/3 and A, = 27/3.
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The evolution of the scalar field V (¢) in the complex z-plane is defined by
3A :
V() =L0)u+1L(t)ug+ (1w, = 7exp(za)t) 2

withu, = (1,0), ug = (—1/2,4/3/2) and u, = (—1/2,—/3/2) defining the three vertex vectors
of the 2-simplex. This complex field corresponds to a color coded “monochromatic wave” that
propagates with the speed of light but not bound by the dispersion relationship linking wave-
vector and frequency.

Furthermore, it is worth highlighting that this procedure is not restricted to the encoding onto
incoherent fields. Similar results can be achieved using the modulated intensity of coherent
beams defined by the beating of two coherent monochromatic waves

Srap(t) = a(cos((@ygp+ @/2)t 4+ Argp) +cOS((Drgp — @/2)t —Argp)), 3)

where @,., 5 define three monochromatic carrier waves respectively in the red, green and blue
spectral region. These superpositions deliver the intensities

Irgp(t) = ffg’b(t) = a2(1 +cos(@r + A p)) (14 cos(20,g 1)) 4

where the last term disappears when averaging the signal over the optical period of the carrier
wave. However, when considering instantaneous measures then the carrier wave come across as
stochastic fluctuations governed by hidden variables.

In the following, to illustrate a possible application of this encoding approach, we use the
complex field and N-simplex encoding in the case of incoherent structured illumination for single
pixel imaging.

3. Results and discussion

One of the criteria helping distinguish between different families of structured illumination is
considering the point spread function (PSF) associated with each family. Here, we experimentally
measure the PSF by imaging a point excitation for the system. To achieve this, we made use of
a small piece of silver paper put onto a black velvet screen. For it to act as a two-dimensional
delta function, it has to be smaller than the smallest feature of the pattern of highest cardinality
(equivalent to highest spatial frequency). Some results, for given numbers of probes, are reported
in Fig. 2(a). We observe that the PSF obtained using the LG illumination patterns is accompanied
by circular sidebands related to the symmetry of Laguerre-Gauss modes (see Eq. (8)). This
implies that, even though LG beams guarantee the best performance in terms of local resolution
(at the center of the imaging domain). This is further illustrated when imaging extended targets
where we observe that there is a decrease in off axis resolution for these same illumination
family.

This behavior can be understood in terms of local density of ODoF as introduced in [20]. If
tj(x,y) is the detected local intensity associated to each illumination, the local density of ODoF
can be defined as:

px.y) =} ti(x.y) 5)

provided that the illuminations #;(x,y) are orthogonal to each other. Thus, when illumination
using the family of LG beams we have a non-uniform distribution of ODoF which exhibit a
higher local density in the center of the illumination. This is not the case for the Hadamard and
sinusoidal probes. This criteria can be used to choose between illumination sets depending on
requirements. For example, the LG probes deliver higher imaging resolution in the center of
the image. Indeed, Fig. 3 shows that the resolution, as defined by the full width half maximum
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Fig. 2. Experimentally retrieved PSFs obtained by making use of 1024 Hadamard probes,
841 sinusoidal probes and 810 LG beams, respectively (a); examples of reconstructions of

target 3 for a given cardinality N using respectively: 1024 binary masks generated from
Hadamard matrices, 625 sinusoidal probes, and 816 LG beams (b).

(FWHM) of the experimental PSF, is higher in the case of the LG probes compared to Hadamard
and sinusoidal probes.

Another approach to compare different families of illumination is by imaging larger samples.
The four extended targets we used for image retrieval are reported in Appendix. They consist of
vertical black and white stripes of increasing density. The presence of straight edges of increasing
spatial frequency allows an accurate determination of contrast and retrieval accuracy as a function
of the number of illuminating probes. Examples of retrieved images of target number 3 when
illuminated using different probes are reported in Fig. 2(b). Contrast has been defined as the
standard deviation (SD) of the intensity histogram associated to the image; the bigger the SD,
the bigger the contrast. Plots of the contrast as a function of the number of probes, for different
targets and illumination patterns is reported in Fig. 4(a). In general, we observe an increase in
contrast with the number of projected probes until a more or less pronounced plateau is reached.
For Hadamard patterns, due to the binary nature of the corresponding matrices, the SD value
reached in the plateau is higher than that relative to sinusoidal and LG patterns, even though the
plateau itself is reached by projecting a bigger number of probes.

The accuracy in the reproduction of the targets has been evaluated in terms of Mean Squared
Error (MSE) along a linear section of the retrieved image:

1 M

MSE = — Y (xj—%j)? ©)
Nszl( J J)

where Np is the total number of pixels along the considered section; x; is the intensity value of
the j-th pixel of the retrieved image and %; is the corresponding value in the target. As can be
seen in Fig. 4(b), a general decrease in MSE as a function of the number of probes is observed
for all the considered patterns and for all targets.

The results presented so far relate to the negative and complex intensity encoding method.
However, our approach allows for the generalization of the method to encode higher dimensional
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Fig. 3. Full width half maximum (FWHM) of the point spread function (PSF) as a function
of the number of probes for different families of structured illumination.

vectors spaces using the N-simplex algorithm. Let’s consider N sinusoidal probes illuminating
our target. In Fig. 5 MSE is plotted, not as a function of the number of probes but as a function of
the number of illuminations needed to encode the probes. As it can be see, the use of N-simplex
encoding strongly affects the accuracy in target reconstruction and allows to reach significantly
lower values of MSE for a number of illuminations quite below the ones necessary in its absence.
This can be understood by considering the distributive effects of the N-simplex algorithm on the
actual illumination. Indeed, the N-simplex algorithm mixes equally all orthogonal probes in each
illuminations.

4. Conclusions

A new technique allowing the encoding of complex valued scalar fields in the intensity of
incoherent light fields has been introduced and applied to single pixel imaging. This technique
can be extended to the case of N orthogonal fields illuminating a target in a structured-light, single-
pixel-detection imaging scheme. Further, the approach can be also be applied in conjunction
with coherent fields. More generally, for the incoherent and the coherent case, the encoding
mechanism can be seen as defining new “physical quantities” that are propagating on top of
the electromagnetic field. For example, using the beating between two coherent light sources
centered on three different wavelengths, enables us to redefine the propagation of encoded
plane waves where the underlying electromagnetic fields play the role of hidden variables. This
property can pave the way to a more general case of hidden variable encoding in the framework
of quantum optics.
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Fig. 4. Standard deviation (SD) of the intensity histograms (a) and mean squared error (MSE)
evaluated along a linear section of the targets (b) as a function of the number of probes for
Hadamard (left), sinusoidal (center) and Laguerre-Gauss (right) patterns. Black, red, blue
and dark cyan plots refer respectively to Targets 1, 2, 3, and 4 as defined in Fig. 6(c).

5. Appendix A: Numerical simulations

In order to test the proposed technique and evaluate its performance in terms of resolution, we
made use of a numerical model that simulates the whole process of illumination of the target and
retrieval of its image. In our model the correlation between the orthogonal illumination patterns
Eq,...,Ey and the illuminated target provides a series of coefficients ay,...,ay. Every coefficient
a; represents the weight of the N-th pattern in the reconstruction algorithm:

=Y aE; i=1,...,N (7
i

where I is the image to be reconstructed. In these scheme the ay, ..., ay coefficients represent the
detected signals corresponding to every illumination.

We made use of three different families of illumination patterns: binary masks generated from
Hadamard matrices, continuous grey scale sinusoidal patterns and Laguerre-Gauss (LG) beams,
encoded by the methods reported in section 2 (see Fig. 1).

In particular, for LG beams we considered two different families of functions, distinguished
by a different way to define their cardinality. In general, a LG mode is defined as follows:

1 >
Clp r\/i - I 272 ik 16 T
— w2@) [ e R pil9 pliCpHIF1)E(R)]
u(r,9,z) v \wi | € AtEI e (8)

where r, ¢,z are respectively the radial and angular distance from the propagation axis and the
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Fig. 5. Mean Squared Error along a linear section in image reconstruction of Target 3 as a
function of the number of illuminations and for sinusoidal probes, with (red) and without
(black) the application of N-simplex encoding.

distance from the beam waist along the axis itself; Cy, is a normalization constant; p and / are the
radial and azimuthal parameters; w(z) is the spot size along the axis z; k is the wavenumber; R(z)
and {(z) are the radius of curvature and the longitudinal phase delay at z, respectively; finally Lﬁ)
are the generalized Laguerre polynomials defined as follows:

B x~led dr

Lé(x)— o dxpefxel“’ ©)

We defined two kinds of cardinality, which determine two ways of ordering the beams themselves.
We called Laguerre-Gauss LG the ones ordered according to the following cardinality N:

p=0,..,N; l=—p,...,p (10)
while the Laguerre-Gauss beams LG, of order N are defined by:
n=2p+]|l| n=0,...,N; 11

Figure 7(a) shows the numerical point spread function (PSF), i.e. the response of the system
to a point target, for all the considered types of patterns and for a given number of probes. We
simulated the point Dirac target by a single white pixel in a black background and reconstructed
it using families of patterns of increasing cardinality. This allows to understand how the number
of probes, and, consequently, the number of illuminations, affect the resolution capability of the
system.
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Target2

Target3 Targeta

Fig. 6. (a) Tested illumination patterns: binary mask generated by Hadamard matrix; continu-
ous grayscale sinusoidal pattern; 2-simplex encoded Laguerre-Gaussian beam. (b) 2-simplex
encoding of a Laguerre-Gauss beam. Every complex value of phase is decomposed in rgh
space where every component corresponds to a fundamental color. (¢) Extended targets used
in image retrieval. (d) Schematic layout of the experimental set-up. PC: personal computer;
DLP: digital light projector; PD: photodiode; DAQ: data acquisition board.

Figure 7(b) shows the full-width at half maximum (FWHM) of the retrieved PSFs as a function
of the number of probes for the different tested pattern families. We can observe that Hadamard
and sinusoidal patterns present more or less the same performances in terms of resolution, with
an improvement of sinusoidal ones respect to Hadamard for high number of illuminations. The
most surprising result, on the other way, is the noticeable difference in behaviour of LG| beams
respect to LG, ones, with remarkably better performances for the latter. This means that not only
the number of probes, but also the order in which they are projected onto the target determines a
dramatic difference in the resolution obtained by the system.

6. Appendix B: Experimental Setup

The schematic layout of our experimental set-up is shown in Fig. 6(d). A digital light projector
(DLP Light Crafter 4500, Texas Instruments) sequentially illuminates the target, whose image
is to be reconstructed, by a set of orthogonal structured light patterns (or probes) generated by
a computer. The intensity of the backscattered light is collected by a photodiode (PDA36A-
EC, Si Switchable Gain Detector, Thorlabs) acting as a single-pixel detector, whose output
signal is digitized by a DAQ board (NI USB-6351, National Instruments) and sent back to the
computer to feed the reconstruction algorithm. This is based on the correlation between the
projected pattern and the measured backscattered intensity, i.e. each measured value is used as a
coefficient to weight the corresponding probe, and the weighted sum of the patterns provide the
reconstructed image (see Eq. (7)). The DLP is composed by two principal elements: a digital
micro-mirror device (DMD) and a light engine composed by three colored (red, green and
blue) light emitting diodes (LEDs). The DMD consists of a matrix of electronically controlled
micro-mirrors, acting as a reflective spatial light modulator on the light coming from the LEDs.
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Fig. 7. Simulated PSFs for Hadamard (N=1024), sinusoidal (N=841), LG (810) and LG,
(N=820) probes respectively (a); FWHM of PSFs as a function of the number of probes for
the different illumination patterns (b).

The DLP also provides trigger signals that allow a synchronization between the illumination and
the acquisition processes. Both the DAQ and the DMD were controlled by customized Matlab
scripts. The pattern generation, data treatment and reconstruction algorithm were implemented
in Matlab environment, too.

7. Appendix C: Patterns encoding

As noticed above, Hadamard matrices and sinusoidal masks contain both positive and negative
values, while the intensity measured by a photodiode is, by definition, only positive. So, following
the encoding technique introduced in section 2, for each pattern we projected two masks, the
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first built setting to zero all the negative values of the starting mask, and the second setting to
zero all the negative values of the inverted mask. These masks were loaded on the DMD, after a
rendering via software in order to obtain continuous values, and projected working with all the
three LED sources permanently on. By subtracting the measured values of the two masks we
could simulate a negative intensity and obtain the intensity values of the original pattern.

For LG beams, according to 2-simplex encoding technique, each complex value of phase
corresponds to a triad of positive numbers associated to red, green and blue channels. For each
pattern we end up with three new masks obtained turning on only the corresponding LED and
maintaining the other two off. The three projected colored patterns give rise to three measured
intensity values. After a calibration procedure that takes into account the different sensitivity of
the detector to the different colors, the three values are converted back to a unique complex value
by an inverse 2-simplex transformation; the result is finally used as weight for the corresponding
complex pattern in the reconstruction algorithm.

Research data

The research data supporting this publication can be accessed at [22].
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