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Abstract

We are interested in identity-based retrieval of face sets

from large unlabelled collections acquired in uncontrolled

environments. Given a baseline algorithm for measuring

the similarity of two face sets, the meta-algorithm intro-

duced in this paper seeks to leverage the structure of the

data corpus to make the best use of the available base-

line. In particular, we show how partial transitivity of

inter-personal similarity can be exploited to improve the re-

trieval of particularly challenging sets which poorly match

the query under the baseline measure. We: (i) describe the

use of proxy sets as a means of computing the similarity

between two sets, (ii) introduce transitivity meta-features

based on the similarity of salient modes of appearance vari-

ation between sets, (iii) show how quasi-transitivity can be

learnt from such features without any labelling or manual

intervention, and (iv) demonstrate the effectiveness of the

proposed methodology through experiments on the notori-

ously challenging YouTube database.

1. Introduction

The dramatic increase in the capability for large amounts

of visual information to be acquired and stored witnessed in

the last 10–15 years has effected a profound change on the

context in which face recognition algorithms are expected

to operate. While the early work on face recognition fo-

cused on recognition from a single image using verifica-

tion and identification protocols on small databases (usually

a few dozen people), and at least partly controlled condi-

tions [34, 46, 48], more recent efforts have been directed to-

wards video or image set-based recognition [10, 8, 25, 30],

and large databases acquired in highly uncontrolled envi-

ronments [9, 29, 45].

Early work on face recognition in the context of large

data collections primarily sought to extend existing meth-

ods and adapt them for use on low quality images. This

includes pose normalization by affine warps [14] or sim-

plified 3D head models [21], illumination normalization by

filtering [1, 2] and illumination invariance through the use

of local gradient-based features [4]. Later work has been

increasingly oriented towards challenges associated with

learning problems which emerge in large data sets [16, 45].

Another popular direction involves the use of text informa-

tion and natural language processing to extract and asso-

ciate names with detected faces [20, 36]. Concurrently with

the research on face recognition in the context of large data

collections, there has been much progress in video and set-

based recognition[3, 15]. Influential contributions include

advances in the representation of face sets [17, 40], and in

particular manifold-based representations [32, 44], illumi-

nation models [11], and similarity measures [5, 13, 28, 44].

The broad topic of the present paper is that of face set

retrieval and its contribution relates both to the previous

work on set-based recognition and the work concerned with

recognition in the context of large data collections. In con-

trast to most work in the literature our key interest is neither

in the representation of face sets nor the associated similar-

ity measures per se. Rather, given a baseline algorithm for

measuring the similarity of two face sets, our work seeks

to leverage the structure of the data at the large scale, that

of the entire database, to make the best use of the available

baseline. In the sense that our method has as an input both

data (face image sets) and an algorithm (the baseline), it can

be accurately described as a meta-algorithm.

Problem specification Given a query face set our aim is

to retrieve from a large database (gallery), sets of the same

person. More specifically, we wish to order the gallery

sets in decreasing order of confidence that they match the

query in identity. Thus the ideal retrieval has all sets of the

query person first (‘matches’) followed by all others (’non-

matches’). We assume that the gallery is entirely unlabelled

and may contain multiple sets of the same person.

2. Learnt transitive similarity

In this section we introduce the main contribution of

the present paper. In particular, we describe a general

framework for face retrieval especially well suited for large

collections of face images acquired ‘in the wild’ i.e. in

largely unconstrained imaging conditions, and character-

ized by highly unbalanced amounts of training data per class

(person). We start by motivating the intuition behind our

method in the section which follows, and subsequently ex-
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plain how this intuition can be formalized into a general re-

trieval framework.

2.1. Motivation and the key idea

It is useful to consider the motivation behind our idea in

the context of related previous work and in particular the re-

cent Matched Background Similarity (MBS) method [45].

Wolf et al. argue that in building a classifier which dis-

criminates the appearance of a specific person and all other

people, the focus should be on discriminating between this

person and those individuals most similar to him/her; im-

provements in discrimination against very dissimilar people

matter less as these individuals are unlikely to be conflated

with the person of interest anyway. Our idea can be seen

as complementary and builds upon a similarly simple basic

principle. Specifically, we make use of the observation that

if person A is alike in appearance to person B, and similarly

person B to person C, on average persons A and C are more

likely to look alike than two randomly chosen individuals.

We term this Quasi-Transitive Similarity; ‘quasi-’ because

the stated regularity is a statistical rather than a universal

one, as we shall explain shortly.

As stated in our introduction above, the transitivity of

similarity in appearance does not hold universally. It is pos-

sible that persons A and B are similar by virtue of one set of

physical features, and B and C of another. A useful mental

picture can be formed by drawing an analogy from statistics

(or geometry): random variables (or vectors) A and B, and

B and C may be positively correlated (have a positive dot

product), yet A and C may be negatively correlated (have a

negative dot product) with one another.

Lastly it is worth contrasting our work with that of Yin et

al. [47]. Unlike ours, their method necessitates the localiza-

tion of face parts, which is problematic and highly likely to

fail in severe illuminations, extreme poses, or in poor qual-

ity images. Their method also needs to extract estimates of

pose and illumination, again very much unlike ours which

does not have any of the aforementioned bottlenecks – all

learning is performed directly from data and without the

need for an explicit model at a higher semantic level.

2.2. Transitivity metafeatures

We have already noted that the observed transitivity

of similarity is a statistical rather than a universal phe-

nomenon. In other words, while the similarity of persons A

and B, and B and C, on average leads to a greater similarity

between A and C, in some instances this will not be the case.

This suggests that in addition to inter-personal similarities

A-B and B-C, a richer set of features should be used to infer

the similarity A-C. Clearly these features should comple-

ment the inter-personal similarities in the sense that jointly

they should allow for a better estimate of the similarity A-

C than just similarities A-B and B-C, or a direct baseline

comparison of A and C (i.e. without the use of additional

indirect information provided by the relationship of B with

A and C).

To motivate the meta-features that we propose in this pa-

per consider the conceptual illustrations shown in Fig 1.

Solid coloured lines depict the range of appearance varia-

tion within face sets. Our aim is to estimate the similarity

of the query (green) and the set denoted as ‘target’ (red).

The face set marked ‘proxy’ is a database face set of a per-

son similar in appearance to the ‘target’, as assessed by the

baseline similarity measure; for example, the proxies of a

particular target set can be selected as its nearest kp sets in

the database. The dotted red line represents the range of

possible appearance of the ‘target’ person which is not ac-

tually present in the ‘target’ face set. For the time being

the reader may assume that face sets are represented as sets

of actual exemplars and the similarity between two sets is

given by the similarity between their most similar members

– we will explain how the ideas introduced herein can be

generalized in the next section.
Both in the case shown in Fig 1(a) and that in Fig 1(b),

the baseline similarity measure tells us that ‘query’ is close
to ‘proxy’, and of course ‘proxy’ is close to ‘target’ by de-
sign i.e. by the former being a proxy in the first place. The
difference between the two cases, illustrated conceptually,
lies in the similarity of exemplars ftq and ftp i.e. the exem-
plars best matching the query and proxy sets. In particular,
the observation that the baseline similarity measure deems
the proxy set significantly more similar than the query to the
target on the one hand, while both similarities are explained
by similar target exemplars, informs us that the divergence
in query and proxy appearances from the target are of dif-
ferent natures. Thus, even if similarities s1, s2, and s3 are
the same in Figs 1(a) and 1(b), the information contained in
relationships between ftq and ftp, and fpq and fpt tells us
that we should infer different query-target similarities in the
two cases. Therefore we introduce what we term transitivity
meta-features which we use for the said inference. Given a
baseline similarity measure and a triplet consisting of query,
target, and proxy sets, the corresponding transitivity meta-
feature v(query,target|proxy) comprises five similarities –
s1 (‘query’ to ‘proxy’ similarity), s2 (‘query’ to ‘target’
similarity), s3 (‘proxy’ to ‘target’ similarity), s4 (similarity
between the ‘proxy’ exemplar most similar to ‘query’ and
the ‘proxy’ exemplar most similar to ‘target’), and s5 (simi-
larity between the ‘target’ exemplar most similar to ‘query’
and the ‘target’ exemplar most similar to ‘proxy’):

(query,target|proxy) =
[

s1 s2 s3 s4 s5
]T

(1)

2.3. Nonexemplar based representations

In the preceding discussion we asked the reader to think

of appearance variation within each set as being represented

using what is probably conceptually the simplest choice of

representation: as a collection of exemplars. In other words,

each set was a set of representations of individual faces.

This was done for pedagogical reasons and we now show

4884



Target

Proxy

Query

Target

Proxy

Query

Query and target: same identity Query and target: different identities

Figure 1. Transitivity fea-

tures extracted using a

baseline set comparison:

conceptual motivation, using

(a) a matching (same iden-

tity) query-target set pair, and

(b) a non-matching (differing

identities) query-target set

pair.

that the proposed framework is in no way reliant on this

representation.

In particular, to make the transition of applying the pro-

posed method on the special case in which a face set is rep-

resented using a set of directly observed exemplars to the

general case in which an arbitrary set representation is em-

ployed, we need to explain how the concept of a pair of the

most similar exemplars such as those labelled fqp and fpq in

Fig 1(a), as well as the similarity between them (such as that

between fpq and fpt), can be generalized. This is not diffi-

cult – all that is required is a slight reframing of the concept.

Instead of seeking the nearest pair of specific exemplars, in

the general case we are interested in the pair of the most

similar modes of variation captured by the representations

of two sets (as measured by the baseline similarity measure

of course). We illustrate this idea with a few examples.

If the variation within a set is modelled using a lin-

ear subspace and the subspace-to-subspace generalization

of the distance from feature space (DFFS) [44] adopted as

the (dis)similarity measure between them, the most similar

modes of variation between two sets represented using such

subspaces are sub-subspaces themselves. These correspond

to different exemplars fxy in Fig 1 and can be compared us-

ing the DFFS baseline. If, on the other hand, similarity is

measured using the maximum correlation between subspace

spans as in [6], the most similar modes of variation between

two sets are readily extracted as the first pair of the canoni-

cal vectors between subspaces [23] and compared using the

cosine similarity measure [35]. For manifold-to-manifold

distances such as that of Lee et al. [30] the most similar

modes of variation are simply the nearest pairs of points

on two manifolds, with the similarity of two points on the

same manifold readily quantified by the geodesic distance

between them.

The same ideas are readily applied to any of a variety of

set representations and similarity measures described in the

literature.

2.4. Learning quasitransitive similarity

Given a triplet comprising a query, a target, and a proxy
data set, our aim now is to infer the similarity between the
query and the target using the corresponding transitivity fea-

ture defined in (1). Without loss of generality, let us quan-
tify inter-set similarity with a real number in the range [0, 1],
where 0 signifies the least and 1 the greatest possible sim-
ilarity. Then our problem can be stated more formally by
saying that we are seeking a mapping mqts:

mqts : R
5 → [0, 1], (2)

with the ideal output of mqts(v(query,target|proxy)) being

0 iff the identities in the query and target sets are different,

and 1 iff they are the same. Observe that since we are inter-

ested in confidence-based ranking of all sets in a database,

the codomain of mqts is not the set {0, 1}, which would

make this a binary classification problem, but rather [0, 1]
(a range) which makes it a regression task.

In the types of problem setting in which face recognition

is addressed by most of the existing research, obtaining fea-

tures for training, at least in principle, is simple. Whether

it is verification (1-to-1 matching) or identification (1-to-N

matching), the database ‘known’ to the algorithm comprises

data which is, it is assumed, correctly partitioned by the

identity. The retrieval setting adopted in this work is more

challenging in this sense and consequently the learning pro-

cess needs to be approached with more care. In particular,

as described in Sec 1, we assume that our database is en-

tirely unlabelled and that it may contain multiple sets of the

same person. We neither know how many individuals there

are in the database nor the number of sets of each individual

(which can of course vary person to person). Since for any

two database sets we cannot know for certain if they belong

to the same or different individuals, an obvious corollary

is that in the extraction of transitivity features described by

(1) both intra-personal and inter-personal training sets may

contain incorrect examples.

2.4.1 Extraction of transitivity features for training

Given that our data is unlabelled i.e. that we do not know

if the two face sets in the database correspond to the same

person or not, we cannot extract training transitivity fea-

tures in the obvious manner by considering different query,

target, and proxy triplets, with the query and the target ei-

ther matching (producing same identity training data) or not
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(producing differing identities training data). Instead, we

describe how training data, albeit corrupted (this issue is

dealt with in the next section), can be collected by consider-

ing only pairs of sets, that is, all possible database sets and

their proxies. We do this for the two baseline set comparison

methods adopted from Wolf et al. [45]: (i) maximum max-

imorum cosine similarity between sets of exemplars [35],

and (ii) the maximum correlation between vectors confined

to linear subspaces describing within set variability [6, 12].

Exemplar-based baseline Consider a particular database

face set (‘reference’) used for training and one of its proxies.

To extract training transitivity features which correspond

to same identity query-target comparisons, we select both

query and target data from the reference set (i.e. a single

video). In particular, we treat all possible pairs of exem-

plars in the reference set as possible pairs fqt and ftq . In-

deed, for specific choices of possible query and reference

sets, any two appearances may present themselves as the

nearest exemplars in them. The second element s2 in the

transitivity feature is then simply given by the similarity be-

tween the two exemplars. On the other hand the similarity

s1 between the query and the proxy is given by the sim-

ilarity between the unitary set consisting of the reference

set exemplar treated as fqt and the proxy set. The nearest

proxy exemplar to fqt is of course fpq . The similarity s3
is simply computed as the similarity between the reference

set and the proxy, which also gives us exemplars fpt and

ftp, and allows for a straightforward computation of s4 (as

the similarity between fpq and fpt) and s5 (as the similarity

between ftq and ftp). A single pair of reference and proxy

sets thus gives us nr(nr − 1) ‘positive’ training transitivity

features, where nr is the number of faces in the reference

set.

The extraction of training transitivity features which cor-

respond to differing identities query-target comparisons is

similar. Now we iterate through all exemplar pairs of the

proxy set, taking each pair as fqt and fpq in turn. The

closest target exemplar to fqt becomes ftq , while fpt and

ftp are determined as before, allowing for all transitivity

feature entries (exemplar similarities) to be computed as in

the case of same identity query-target training data extrac-

tion. A single pair of reference and proxy sets thus gives us

np(np − 1) ‘negative’ training transitivity features, where

np is the number of faces in the proxy set.

It is important to observe that the set of ‘negative’ train-

ing transitivity features extracted in the described manner

may be corrupt. This is an inherent consequence of the

problem setting – since the database is entirely unlabelled

we cannot know if the identities of the people in the refer-

ence and proxy set are actually different. The proposed pro-

cess of training the regressor, described in Sec 2.4.2, takes

this into account. Nevertheless, the amount of improve-

ment achieved with the proposed method over its baseline

is tied to the proportion of ‘negative’ training data which

is incorrect – the improvement inevitably decreases as this

proportion is increased. However, if this is so, i.e. if a great

proportion of proxies of sets in the database actually repre-

sent the same identity as the sets they are proxies to, this

by design means that the baseline comparison is very good

to start with so no significant improvement can be reason-

ably expected. Thus, our method is particularly attractive in

challenging conditions in which the baseline classifier does

not perform well.

Subspace-based maximum correlation baseline The

extraction of training data for this representation is some-

what simpler than in the previous case. We again extract

transitivity feature training data using only face set pairs

(rather than triplets) which are now represented by linear

subspaces. To extract training transitivity features which

correspond to same identity query-target comparisons, we

iterate through all reference set exemplars as fqt and ob-

tain ftq and fpq by projecting them to respectively the ref-

erence and proxy subspaces. Vectors fpt and ftp are readily

obtained using the baseline set comparison as the princi-

pal vectors of the subspaces corresponding to reference and

proxy subspaces. A single pair of reference and proxy sets

thus gives us nr ‘positive’ training transitivity features.

The extraction of training transitivity features which

correspond to differing identities query-target comparisons

proceeds in exactly the same manner, with the difference

that it is proxy set exemplars that are iterated through as fqt
(as before also taken to be fqp). A single pair of reference

and proxy sets gives us nr ‘positive’ training transitivity fea-

tures, where nr is the number of faces in the reference set,

and np ‘negative’ training transitivity features, where np is

the number of faces in the proxy set. A single pair of ref-

erence and proxy sets thus gives us np ‘negative’ training

transitivity features. The same remarks as before regarding

the corruption of the ‘negative’ training set hold here too.

Closing note In Sec 2.1 we remarked that the basic idea

behind the proposed method can be seen as complementary

to that of MBS [45]. However when the proposed training

scheme is considered it can be seen to contain both con-

ceptually similar elements and complementary elements to

MBS. In particular, since the negative training set of quasi-

transitivity features is extracted by considering elements of

the proxy set as the query, our method learns to discrimi-

nate precisely between a person and those individuals most

similar to him/her (as in MBS), while exploiting the quasi-

transitivity of similarity (complementary to MBS).

2.4.2 Training the predictor

We adopt the use of the ǫ support vector (ǫ-SV) regres-
sion [41]. For comprehensive detail of this regression
technique the reader is referred to the original work by
Vapnik; here we present a brief summary of the ideas
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relevant to the proposed method. Given training data
{(x1, y1), . . . , (xl, yl)} ⊂ F × R, where F is the input
space (in our case this is R5), ǫ-SVR aims to find a func-
tion h(x) which deviates at most ǫ from its targets y. As
in other SV-based methods, an implicit mapping of input
data x → Φ(x) is performed by employing a Mercer-
admissible kernel [33] k(xi, xj) which allows for the dot
products between mapped data to be computed in the input
space: Φ(xi) ·Φ(xj) = k(xi, xj). The function h(x) of the
form

h(x) =
l

∑

i=1

(αi − α
∗

i )k(xi, x) + b (3)

is then learnt by minimizing

l
∑

i=1

l
∑

j=1

(αi − α
∗

i )(αj − α
∗

j )k(xi, xj)

+ǫ

l
∑

i=1

(αi + α
∗

i )−
l

∑

i=1

yi(αi − α
∗

i ) (4)

subject to the constraints
∑l

i=1
(αi−α∗

i ) = 0 and αi, α
∗

i ∈
[0, c]. The parameter c can be seen as penalizing prediction

errors greater than ǫ i.e. as balancing the trade-off between

the smoothness of h(x) and the amount of data predicted

with an error greater than ǫ.
The nature of ǫ-SV regression is particularly well suited

to the problem at hand. Specifically, we train the regres-

sor using the value of 1 as the target for same identity

transitivity features, and 0 for different identities, allow-

ing for a large prediction error margin of ǫ = 0.4 but

severely penalizing greater errors with c = 1000. The

large penalty C ensures that it is the outliers in the form

of the wrongly labelled training data that define the bound-

ary between the penalized and non-penalized regions of the

high-dimensional space, while the wide margin ǫ = 0.4 en-

sures that the correctly labelled bulk of the training corpus

is pushed away from the boundary towards the desired ex-

treme values of 0 and 1. We used the radial basis function

kernel k(xi, xj) = exp{−0.2‖xi − xj‖2}.

2.4.3 Retrieval

Given a query data set we compute its similarity with a

target database set by computing the regression-based es-

timate mqts(v(query,target|proxy)) using each of target’s kp
proxies, and taking the maximum of these and the baseline

similarity between the query and the target. Database sets

are then ordered by decreasing similarity with respect to the

query.

3. Evaluation

In this section we report our evaluation of the proposed

method and discuss our findings. We start by describing the

data set on which the evaluation was performed, consider

the measures used to assess performance, summarize the
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Figure 2. The cumulative distribution function (CDF) of the data

energy contained in the 2nd and 3rd nonlinear kernel PCA com-

ponents relative to the energy of the 1st component, across sets in

the YouTube Faces Database. The variation within sets is strongly

dominated by the 1st nonlinear principal component.

Robust samples

Original feature space

1D KPCA space

Figure 3. Conceptual illustration of our robust sample selection:

(i) original exemplars are projected onto their 1st kernel principal

component, (ii) uniform sampling between the extreme projections

is performed in the 1D kernel space, and (iii) the obtained samples

are re-projected into the original space (step not shown).
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Figure 4. CDF of the error introduced by our robust sample selec-

tion (10 samples were used) in the exemplar-based set method.

evaluated baseline set representations, distances and their

derivatives, and finally present and comment on the results.

3.1. Evaluation data

For evaluation we adopted the YouTube Faces

Database [45] which contains sets of faces extracted

from YouTube videos. There are two key reasons which

motivated this choice. Firstly, the manner in which this

data set was collected and the nature of its contents are

representative of the conditions which the present work

targets. In particular, the total amount of data is large

(3425 videos/sets of 1595 individuals, with the average set

size of approximately 181.3 faces or equivalently 620,953

faces in total), it was extracted from videos acquired in

unconstrained conditions in which large changes in illu-

mination, pose, and facial expressions are present, and the

distribution of data is heterogeneous both with respect to

the set sizes (48–6,070) as well as the number of sets (1–6)
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for each person in the database. The second reason lies in

the reproducibility of results and the ease of comparison

with alternatives in the literature – the database has been

widely adopted as a standard benchmark and a number of

standard face representations are provided ready for use.

Full detail can be found in the original publication [45].

3.2. Performance evaluation

As the cornerstone measure of retrieval performance we
adopt the average normalized rank (ANR) [19, 37]. In brief,
ANR treats each retrieved datum as either matching or not
matching the query and computes the average rank of the
former group, normalized to the range [0, 1], with the ANR
value of 0 corresponding to the best possible performance
(all matching data retrieved before any non-matching) and
1 the worst (all non-matching data retrieved before any
matching). Formally:

ANR(n, {r1, . . . , rc}) =

∑c

i=1
ri −m

M −m
(5)

where n is the database size, {r1, . . . , rc} the set of retrieval
ranks corresponding to the data of interest (i.e. data match-
ing the query), and m and M respectively the minimum and
maximum possible values of the sum of r1, . . . , rc:

m =
c

∑

i=1

i =
c× (c+ 1)

2
(6)

M =
n
∑

i=n+1−c

i = c×
2n− c+ 1

2
(7)

In comparison with other common performance mea-

sures, such as the receiver operating characteristic (ROC)

curve [22], commonly used in verification and identification

problems [7], the average normalized rank more directly

captures the ultimate aim of a retrieval algorithm.

3.3. Methods

Motivated by the results reported by Wolf et al. which

demonstrate its superiority over a number of alternatives,

we adopt the standard local binary pattern (LBP) represen-

tation of individual faces [27]. Using LBP we consider two

baseline set representations: (i) a set of LBP exemplars, and

(ii) a linear LBP subspace, both of which were also evalu-

ated by Wolf et al. The former simply stores all face exem-

plars (i.e. the corresponding LBP vectors), while the latter

uses PCA to represent the main modes of the observed ex-

emplar variation; previous work suggests that for individual

face sets 6-dimensional subspaces produce good results so

this is the dimensionality we adopt too.

We adopt two baseline set similarity measures, again mo-

tivated by the reports of their good performance in the ex-

isting literature. The first of these is the maximum maxi-

morum (‘max-max’) cosine similarity between sets of ex-

emplars maxf1∈S1,f2∈S2
fT
1
f2/‖f1‖/‖f2‖ which in the ex-

periments of Wolf et al. [45] outperformed a number of al-

ternatives including by a large margin the pyramid match

kernel of Graumanand and Darrell [24] and the locality-

constrained linear coding (LLC) of Wang et al. [43]. The

second baseline comparison which we adopt for the com-

parison of sets represented as linear subspaces is the alge-

braic method based on the maximum correlation between

pairs of vectors lying in two subspaces. This method too

performed well in past experiments [45, 6]. Thus in sum-

mary, our two baseline methods are:

• LBP + maximum maximorum set similarity, and

• LBP + maximum correlation between subspaces.

These are used to establish reference performance. They

are then employed in the context of several different ways

of applying our idea of quasi-transitivity:

• Simple arithmetic mean-based quasi-transitivity,

• Simple geometric mean-based quasi-transitivity,

• Simple quadratic mean-based quasi-transitivity, and

• Proposed learnt quasi-transitivity (L-QTS).

The first three methods in the list are simple combination

rules. In the first of these, the arithmetic mean-based quasi-

transitivity, two set similarity of dissimilarity measures ρQP

(query-proxy) and ρPT (proxy-target) are combined by

computing their arithmetic mean i.e. 0.5 × (ρQP + ρPT ).
Similarly, in the geometric and quadratic mean-based meth-

ods quasi-transitivity is attempted by computing respec-

tively
√
ρQP × ρPT and

√

0.5ρQP
2 + 0.5ρPT

2. The pro-

posed learnt quasi-transitivity (applied atop of both baseline

methods) was evaluated using different numbers of proxy

sets (1–10) and as detailed in Sec 2.4.2, ǫ-SV regression was

learnt using the parameter values ǫ = 0.4 and c = 1000.

3.4. Protocol

We train the ǫ-SV regressor using 200 randomly selected

sets and their proxies (which are not necessarily in the ran-

dom 200). In principle there is no reason why the entire

database would not be used (recall that no labelling or man-

ual intervention is used whatsoever) but we found that 200

sets were sufficient to gather sufficient training data. Exam-

ples are shown in Fig 6; clear patterns are observable both

within positive and negative training sets which differ one

from another significantly.

The evaluation of the methods described in the previous

section was performed by examining all possible retrievals.

In other words, we used every set in our database as the

query in turn and evaluated the resulting retrieval. To make

this feasible we propose a robust sample selection method

so as to reduce the computational demands of the otherwise

computationally intensive exemplar-based baseline.

Exemplar baseline: robust sample selection It is well

established by the existing work on face recognition that

the appearance of a face is constrained and thus confined to

a region of the image space. Within this region, which is
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Figure 5. CDF of the average normalized rank obtained using the exemplar-based (a,b) and subspace-based (c,d) methods. (a,c) Comparison

of the respective baseline approach, the three simple quasi-transitivity estimation methods, and the proposed learnt quasi-transitivity. (b,d)

Comparison of the respective baseline approach and the corresponding proposed method for different numbers of proxies.

nonlinear, the appearance variation is mostly approximately

smooth – this is sometimes somewhat loosely stated as the

face appearance being constrained to a nonlinear appear-

ance manifold [32, 44]. That being said, the range of ap-

pearance variation of a person’s face within a single video

typically covers only a portion of the entirety of possible

variation. It is a simple yet important observation that even

within this range of appearance the underlying manifold

is not uniformly sampled, e.g. a person may spend more

time in a specific pose than in others. One consequence is

that while largely redundant face exemplars of the densely

sampled portions of the manifold add little new information

about the appearance of the person’s face, they can dramat-

ically increase the computational cost of set-based compar-

isons. This is the case for example for face set-based com-

parisons which utilize all sample pairs comparisons such as

those based on the maximum maximorum similarity (i.e. all

pairs maximum similarity) [18] or the maximum minimorum

distance (a variation of the Hausdorff distance [42]). More

worryingly, if a sample voting scheme is used [45], redun-

dant exemplars can unduly affect the result even though they

carry little additional information.

We overcome both of the problems described above by

employing a robust sample selection scheme. Our starting

point is the observation that although the intrinsic dimen-

sionality of the entire face manifold is estimated to be in

the range 15–22 [31], the appearance variation exhibited in

a typical video clip is typically dominated by a single fac-

tor such as face yaw changes; the plot in Fig 2 corroborates

this. Led by this insight we employ kernel principal com-

ponent analysis (KPCA) [39] to project the original face ex-

emplars onto their dominant nonlinear principal component,

uniformly sample the resulting 1D space between the two

projections of the two most extreme exemplars, and finally

project them back into the original space. The process is

illustrated in Fig 3. The plot in Fig 4 demonstrates that the

proposed sample selection does not greatly affect inter-set

similarities; a computational improvement of over 2.5 or-

ders of magnitude (approximately 330 times) was achieved.

3.5. Results and discussion

The main set of results of our experiments is summarized

in the plots in Fig 5(a) and 5(c) which show the cumulative
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Figure 6. Training data for the exemplar-based (a,b) and subspace-

based (c, d) experiments, in the form of intra-class and inter-class

transitivity features shown using parallel coordinates.

densities of the ANR achieved for the two baseline methods

and different quasi-transitivity approaches. Firstly note that

the two baseline methods performed approximately equally

well, which is consistent with the previous reports in the

literature [45]. The three simple attempts at exploiting

quasi-transitivity worsened performance significantly, save

for the arithmetic mean-based similarity combination for

the subspace-based baseline which effected neither an im-

provement nor deterioration. This confirmed our expecta-

tion expressed in Sec 2.2 that the use of inter-personal sim-

ilarities only is unlikely to be successful and that a richer

set of similarity features is needed instead. This leads us to

the proposed method which in both cases effected a major

performance improvement over both of the baselines. For

example, while the exemplar-based baseline produced re-

trievals with the ANR less than 0.3 in 54.0% of the cases,

the corresponding learnt quasi-transitivity did so in 72.5%

of the cases (an improvement of 34%). Similarly, while the

subspace-based baseline produced retrievals with the ANR

less than 0.3 in 54.9% of the cases, the corresponding learnt

quasi-transitivity did so in 72.8% of the cases. It is partic-

ularly interesting to observe in how few cases our method
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Figure 7. Rank-100: (a) prob-

ability of a correct match be-

ing retrieved, and (b) number

of correct matches retrieved,

vs. number of matches in the

database.

produced bad results (i.e. high ANR) – for both baselines

our method achieved ANR lower than 0.5 for over 98%

of retrievals. In contrast, the 98% quantile of the baseline

methods corresponds to the ANR values of 0.92 and 0.88

for the exemplar and subspace-based methods.

The effect of the number of proxies is summarized in

Figs 5(b) and 5(d). For both baselines performance im-

provement is immediately apparent even using a single

proxy per set. Interestingly, while in the case of the exem-

plar baseline the performance gradually improves up until

kp = 5, staying approximately steady thereafter, the im-

provement using the subspace-based baseline is much more

dramatic and reaches its peak (on par with the peak of the

exemplar baseline) for kp = 1 already (ANR plots for

different kp are virtually indistinguishable). Although we

are not sure of the exact mechanism that explains this be-

haviour, it does appear to be linked to the inherent properties

of the subspace-based baseline which is additionally sup-

ported by the observation that the within-class variability

of the corresponding training meta-features is significantly

smaller than for the exemplar-based baseline; see Fig 6.

Let us next turn our attention to the plot in Fig 7(a). It

shows the proportion of retrievals which result in at least

one correct match being retrieved in the top 100 ranked

sets as a function of the total number of target sets in

the database which correctly match the query. Plotted

as solid blue and red lines are the results obtained using

the proposed method (with 10 neighbours used as quasi-

transitivity proxies) atop of the exemplar-based baseline,

and the baseline itself (as expected from Fig 5, the results

for the subspace-based method are similar and are thus not

included to avoid unnecessary repetition). The plots also

show predictions based on the methods’ performances for

queries in which only a single correct match is present in

the entire database. Specifically, starting from the estimate

of the probability p1,100 of a correct match being retrieved

in the top 100 ranked sets using queries where only a sin-

gle correct match is possible, if different correct matches

are ranked independently when k correct matches exist, the

probability of at least a single correct match being retrieved

in the top 100 is approximately 1 − (1 − p1,100)
k. Since

the greatest number of admissible queries (591 individuals

in the database have only a single set; these were not mean-

ingful queries for performance evaluation), approximately

48%, has k = 1 this is a reasonable estimate to base the

prediction on.

Fig 7(a) reveals interesting insight into the performance

of the proposed method. Specifically, note that unlike the

empirical plot of the baseline, the empirical plot of the pro-

posed method grows faster with the number of retrievable

sets than the corresponding prediction. This means that the

independence assumption underlying the prediction does

not hold well, supporting the premise that quasi-transitivity

of similarity can be used to improve the retrieval of sets

poorly retrieved by the baseline by propagating information

from similarly looking individuals or sets of the same per-

son which are acquired in less challenging conditions.

Lastly Fig 7(b) shows the average number of correct

matches retrieved in the top 100 ranked sets as a function

of the total number of target sets in the database which

correctly match the query. As before the plots also show

the corresponding predictions based on the methods’ per-

formances for queries in which only a single correct match

is present in the entire database. Starting from n1,100 the

average number of correct matches retrieved in the top

100 ranked sets using queries where only a single correct

match is possible, if different correct matches are ranked

independently when k correct matches exist, the expected

number of correct matches in the top 100 is approximately

k × n1,100. The improvement effected by the proposed

method is again consistent and significant.

4. Summary and conclusions

We introduced a novel framework for improving the per-

formance of retrieval algorithms on large and highly hetero-

geneous face sets acquired in uncontrolled conditions. In

sharp contrast to the previous work, the proposed method

learns to benefit from inter-personal similarity using what

we term quasi-transitivity. A principled and carefully en-

gineered framework performs learning automatically, with

no human intervention whatsoever, making our approach

readily employable on large data. Effectiveness was demon-

strated on the notoriously challenging YouTube database.

4890



References

[1] O. Arandjelović. Unfolding a face: from singular to mani-

fold. In Proc. Asian Conference on Computer Vision, 3:203–

213, 2009.
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[6] O. Arandjelović. Discriminative extended canonical corre-

lation analysis for pattern set matching. Machine Learning,

94(3):353–370, 2014.
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