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We study ground states and elementary excitations of a system of bosonic atoms and diatomic Feshbach
molecules trapped in a one-dimensional optical lattice using exact diagonalization and variational Monte Carlo
methods. We primarily study the case of an average filling of one boson per site. In agreement with bosonization
theory, we show that the ground state of the system in the thermodynamic limit corresponds to the Pfaffian-like
state when the system is tuned towards the superfluid—to—Mott insulator quantum phase transition. Our study
clarifies the possibility of the creation of exotic Pfaffian-like states in realistic one-dimensional systems. We
also present preliminary evidence that such states support non-Abelian anyonic excitations that have potential
application for fault-tolerant topological quantum computation.
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I. INTRODUCTION

The possibility of a fault-tolerant topological quantum
computation [1-6] based upon topological quasiparticles
that obey non-Abelian statistics (non-Abelian anyons) [7-9]
motivated much recent interest in the new systems that support
such quasiparticles. The idea behind the topological quantum
computation is that non-Abelian anyons could be used to
encode and manipulate information in a way that is resistant
to error. Namely, if a quantum system has topological degrees
of freedom, like non-Abelian anyons, then the information
contained in those degrees of freedom will be protected against
errors caused by local interactions with the environment. This
provides the possibility of using such systems to perform
fault-tolerant quantum computation without decoherence.

Non-Abelian states of matter also present the fundamen-
tal intellectual challenge of principle and of experimental
realization [10-12]. The understanding of the origin and
properties of non-Abelian phases is far from complete and is
at the frontier of current theoretical research. The fundamental
objectives are the understanding of the interplay between
topology and quantum mechanics that leads to the formation
of non-Abelian phases and the investigation of new models
that have non-Abelian quasiparticles [13,14].

Non-Abelian anyons first appeared in the context of the
fractional quantum Hall (FQH) effect [7], since FQH systems
are believed to have a series of exotic non-Abelian states.
Such states, like the Pfaffian state [15-20], which is the exact
ground state of quantum Hall Hamiltonians with three-body
contact interactions, have elementary excitations that are
non-Abelian anyons. Similar states have also been predicted to
occur in cold atoms [19,21-26], superconductors with p-wave
pairing symmetry [4], hybrid systems of superconductors with
topological insulators and/or semiconductors [27-31], and
non-Abelian lattice spin models [32].

Although non-Abelian states are associated with two-
dimensional (2D) systems, analogous states can be found
in certain one-dimensional (1D) models [33—41]. Ultimately,
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such 1D non-Abelian states must be braided in order to
compute. This could be achieved by combining 1D systems
into a 2D network as previously proposed in the case of
Majorana fermions [42]. Understanding how to build states
that support non-Abelian defects is an important building block
towards topological computation. In this paper we refine a
previous proposal for a Pfaffian-like state that was proposed
as an ansatz for the ground state of bosonic atoms subject to
three-body infinite repulsive interactions and in a 1D optical
lattice [37]. Although such three-body interactions are rare
in nature, several experimentally realizable methods have
been proposed to realize dominant three-body interactions
between bosonic atoms in optical lattices [37,43—47]. In
particular, three-body interactions can be efficiently simulated
by mixtures of bosonic atoms and molecules under conditions
that are achievable with current technology in systems of atoms
and molecules in optical lattices [37,43].

Therefore, the physical system that we consider is a
collection of bosonic atoms and diatomic Feshbach molecules
trapped in a 1D optical lattice. Under certain experimentally
achievable conditions, the system can be described by an
effective Hamiltonian for bosonic atoms with two-body and
three-body contact interactions [37]. We study the ground
states and elementary excitations of the system in the limit
of infinite repulsive three-body interactions and for a range of
values of the two-body interaction strength.

The Pfaffian-like ansatz was originally proposed as an
ansatz for the ground-state wave function of the system in
the absence of two-body interactions [37]. However, our
results show that the Pfaffian-like ansatz wave function most
closely corresponds to the exact ground-state wave function
of the system at some finite value of the two-body interaction
strength. The results also indicate that in the thermodynamic
limit this value of the interaction strength might be close
to the value where the system undergoes a quantum phase
transition from the superfluid state to the Mott insulating state,
as previously found within the bosonization approach [48].

Non-Abelian states of matter order their constituent par-
ticles following a hidden global pattern that is not associ-
ated with the breaking of any symmetry [4,49]. This leads
to a degeneracy that is not based upon simple symmetry
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considerations and is robust against perturbations and inter-
actions with the environment. Topological quasiparticles of
such systems exhibit an exotic statistical behavior. Namely,
the interchange of two identical quasiparticles takes one
ground state into another. If two different exchanges are
performed consecutively among the quasiparticles, the final
state of the system will depend upon the order in which these
exchanges were carried out. This ordering dependence is the
reason why such states and their quasiparticles are called non-
Abelian or noncommutative. In addition, the quasiparticles of
a non-Abelian system are neither fermions nor bosons, which
motivated the name anyons.

The Pfaffian-like states that we consider in this paper cannot
be characterized by any local order parameter and exhibit a
global hidden order that is associated with the organization of
bosons in identical indistinguishable clusters. Indistinguisha-
bility between the clusters is achieved by symmetrization over
the subsets of coordinates of each cluster. This symmetrization
introduces the possibility of topological degeneracy in the
space of quasparticles and makes these states potential carriers
of non-Abelian excitations [37,38,50].

Our explicit calculations use variationally optimized
entangled-plaquette states for systems of up to 60 sites. These
are benchmarked with exact diagonalization (ED) studies of
systems of up to 14 sites.

Using the ED method, we first study ground-state properties
and elementary excitations of the system for small system
sizes and with periodic boundary conditions. The Pfaffian-like
ansatz was originally proposed as an ansatz for the ground-
state wave function of the system in the absence of two-
body interactions (vanishing two-body interaction strength)
[37]. However, our ED results clearly demonstrate that the
Pfaffian-like ansatz better approximates the ground state of
the system at some finite value of the two-body interaction
strength. This interaction strength increases with increasing
system size. Also, the overlap of the exact ground-state wave
function at such a value of the two-body interaction strength
and the Pfaffian-like ansatz wave function decreases more
gradually with increasing system size in the presence of
two-body repulsion than it does in the absence of the two-body
interactions.

The ED results thus indicate that in the thermodynamic
limit the Pfaffian-like ansatz wave function most closely
corresponds to the exact ground-state wave function of the
system at some finite value of the two-body interaction
strength. This might be close to the value where the system
undergoes a quantum phase transition from the superfluid
state to the Mott insulating state, as previously found within
the bosonization approach [48]. We also present preliminary
evidence that these states support non-Abelian excitations
required for topological quantum computation.

We further study the ground-state properties of the system
for larger system sizes. Motivated by the recent success of
tensor network methods [51] to numerically simulate a variety
of strongly correlated models, we use the entangled-plaquette-
state (EPS) ansatz, also called the correlator-product-state
(CPS) ansatz, and the variational Monte Carlo (VMC) method
[52-61]. In the EPS approach, the lattice is covered with
overlapping plaquettes and the ground-state wave function is
written in terms of the plaquette coefficients. Configurational
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weights are then optimized using a VMC algorithm. Here,
the plaquette coefficients that minimize the energy are found
using the stochastic minimization method [60—-63]. For small
system sizes we find that the EPS and VMC calculation gives
quite accurate estimates of the ground-state energy and the
one-body and two-body correlation functions.

To examine the proximity of the ground state to the Pfaffian-
like ansatz for larger system sizes, we calculate the one-body
and two-body correlation functions for the exact ground
state and the Pfaffian-like ansatz wave functions and compare
their asymptotic behavior. Since the EPS wave function gives
quite accurate estimates of the correlations within any pla-
quette, we estimate the asymptotic behavior of the correlation
functions from the values of the correlation functions for the
lattice sites within a plaquette.

We study the ground-state properties of the system for the
system sizes L = 40 and 60 sites. The results obtained within
the EPS and VMC approach are consistent with the ED results
for smaller system sizes and with the results for vanishing two-
body interaction strength obtained previously using variational
matrix product states (MPSs). For the system size L = 60 sites,
the maximum system size that we have considered, the results
indicate that at some finite value of the two-body interaction
strength U/t = Uc(L) the exact ground-state wave function
is still very close to the Pfaffian-like ansatz wave function.

The paper is organized as follows. In Sec. II we introduce
the effective three-body interacting atomic Hamiltonian for a
system of bosonic atoms and diatomic Feshbach molecules
trapped in a 1D optical lattice. In Sec. III we review the theory
of the Pfaffian-like states in 1D. In Sec. IV we present ED
results for small system sizes and with periodic boundary
conditions. The results for larger system sizes obtained within
the EPS and VMC approach are presented in Sec. V. In the
final section, Sec. VI, we draw our conclusions and discuss
possible directions for future research.

II. EFFECTIVE THREE-BODY INTERACTING
ATOMIC HAMILTONIAN

We consider a systems of bosonic atoms and diatomic
Feshbach molecules trapped in a 1D optical lattice. The system
can be described by the Hamiltonian [37,64,65]

H =Hx + Hr + Hy, (1
where

Hyx = —t, Y (alaijy +He) =ty Y (mlmipy +He),

U
Hp = Z |:8m:.fm[ + %ai aja,-a,» + %(mjaia,- + H.C.)i|,

i

and
_ Pt Unnm Pt
H; = U, Zmiaiaimi + - Zmim;mimi.
1 1

The bosonic operators for atoms and molecules are denoted a;
and m;, respectively. The term Hg describes the tunneling
processes of atoms and molecules. The term Hp is the
Feshbach resonance term and the term H; describes the on-site
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atom-molecule and molecule-molecule interactions. Here ¢,,
tws> Usas Uam, and Uy, are hopping matrix elements for atoms
and molecules and the on-site atom-atom, atom-molecule,
and molecule-molecule interaction strengths, respectively.
The energy offset between open and closed channels in the
Feshbach resonance model is denoted §, and g is the coupling
strength to the closed channel.

We further assume U,,, Ugn, Upm = 0, and § > 0. In
the limit y2 = g2/28% « 1, the formation of molecules is
highly suppressed and the effective Hamiltonian for the system
can be obtained, to first order in y2, by projection of the
Hamiltonian, (1), onto the subspace with no molecules. The
resulting effective Hamiltonian is [37]

Her = —1, Z(a;\ai +H.c)+ Uamy2 Z(aj)S(aiP
— 1y Y [(@) (@) + Hee!]
+(Uaa — 82/8) Y _(a) (@), )

In the limit 1,,? < 1, valid in typical experiments with 5’Rb
[37], the effective Hamiltonian, (2), further reduces to

Het = —t Y (alaipi +He) + Un Y (@h(@)?
+Us Y (@) (@), 3)

witht = t,,U, = Uy, — g2/8,and Uz = U, y*. The effective
Hamiltonian, (3), is the Hamiltonian for a system of bosonic
atoms in a 1D optical lattice with repulsive two- and three-body
on-site interactions.

We further assume that Uz > t,: the limit accessible in
typical setups with ¥Rb atoms [37]. In the limit U3 — oo,
the Hilbert space is projected onto the subspace of states
with occupation numbers n; = 0,1,2. The bosonic operators
subject to this condition, that is, the condition (a;,i)3 =0, are
referred to as three-hard-core bosonic operators and satisfy the
commutation relations [a3,,-,a;j] =4 (1 — %(a;i)z(aii)z).

Since a;i|n,’) = (1 =96, 2)+/n; + 1|n; + 1), these operators
can be represented by 3 x 3 matrices of the form

0 1 0
azi=[0 0 2. 4)
o 0 O

In terms of these three-hard-core bosons the projected effective
Hamiltonian is

U
Hr = =1 ) (a} a1+ He) + 2 Y (@) Y@’ ()

1

with U = 2U,. We also note that within the experimental situ-
ation that we study, three-body losses are strongly suppressed
(the binding energy, and therefore the released energy, is not
larger than the lattice depth) [37]. In this paper we study the
ground states of the Hamiltonian, (5), for a range of values of
U/t and at the fixed average filling factor of one boson per
lattice site. We compare the ground states to the Pfaffian-like
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ground-state ansatz wave function [37]. The properties of the
Pfaffian-like state are reviewed in the following section.

III. PFAFFIAN-LIKE STATES

The idea of using symmetrized indistinguishable cluster
states as ansatz wave functions for non-Abelian 1D bosonic
liquids was proposed by Paredes, Kielmann, and Cirac
[37,38,50]. The Pfaffian-like ansatz, inspired by the form of
the ground state for fractional quantum Hall bosons subjectto a
three-body interaction [17-19], was originally proposed as an
ansatz for the ground-state wave function of the Hamiltonian,
(5), at U =0 [37].

For bosons in the lowest Landau level subject to the three-
body interaction potential U3 Y, 8%(zi — 2))8%(zi — ),
with z; = x; 4+ iy; being the complex coordinate in the 2D
plane, the exact ground state in the limit Us; — oo is the
Pfaffian state [19,20,40,41]

N2 N2
®; o Sy y ]_[(ziT - z;)2 l—[(z,»¢ - zj)2 : (6)
i<j i<j

This state is a symmetrized product of two identical Laughlin
states [66],

N/2
o3 o Y (&7 —29)°, )
i<j
with o = 1,|. Since the Laughlin state of each cluster is a
zero-energy eigenstate of the two-body interaction potential
>_izj 8(zi — z;), three particles can never coincide in a state
of the form of (6). The operator that symmetrizes over the two
virtual subsets of coordinates {z,T } and {zi¢ } is denoted Sy .
An ansatz for the ground state of the Hamiltonian, (5), at
U = 0 was proposed [37] in direct analogy with the wave
function, (6):

N/2 N/2
W oc Sy [ [IsinGe —xDI] JisinG! —xpig. ®)
i<j i<j

This ansatz has the same form as the Pfaffian state, (6), with
the Laughlin state replaced by a Tonks-Girardeau state [67]:

N/2
Ul o 1_[ |sin(x — x;’)| )
i<j
The Tonks-Girardeau state, (9), is the ground state of 1D
lattice hard-core bosons described by the Hamiltonian H, , =
—t Zi(azT »i%2,0,i+1 + H.c.) and with periodic boundary con-
ditions [6’8]. The hard-core bosonic operators a,,; obey
(a;a_i)2 = 0, allowing only occupation numbers of n{ =0
or 1 boson per site. Here x{ =2z /Li andi =1, ...,L, with
L being the number of lattice sites.
To write the ansatz wave function in second quantized form,
we define a projection operator P such that

W3) = P(¥]) ® [¥3)). (10)
The projection operator P is a local operator of the form
P =P, (11)
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FIG. 1. Schematic of the local projector P; at a lattice site i.
The operator P; projects the two identical local degrees of freedom
onto a new degree of freedom that is symmetric under exchange
of the two components. Here the operator P; maps the single-site
four-dimensional Hilbert space of two species of hard-core bosons,
1 and | (red and blue spheres), to the single-site three-dimensional
Hilbert space of three-hard-core bosons (green spheres).

where L is the number of lattice sites and P; is the local
projector at a lattice site 7,

1 0 0 O
o 1 1 0. (12)
0 0 0 V2
P; maps the single site four-dimensional Hilbert space of
two species of hard-core bosons, 1 and |, to the single-site
three-dimensional Hilbert space of three-hard-core bosons as
illustrated in Fig. 1.

It can be further shown that the one- and two-body
correlation functions for the ansatz wave function, (10), have
the asymptotic behavior [37,68]

P =

T —1/4
{(a; pa;) —> A ,
+A (13)

T -1
(aLAaHAaiai) — A

for large A and for a large system size L. The two-body
correlation function corresponds to the one-particle correlation
function for on-site pairs [37],

(az]L+AaiT+Aaiai>
o (W] lab , ;o ao i 9N (WS lab | a0y i195)
— ATPATR, (14)

where (\Ilg|a;mi+Aa2,m,'|\l/g) — A2 for large A, is the
well-known result for a Tonks-Girardeau gas [68]. In other
words, although the system of atoms has some kind of
coherence, with slowly decaying spatial correlations ocA™!/4,
the underlying system of on-site pairs is in a much more
disordered state with a fast decay of spatial correlations ocA ™"

IV. EXACT DIAGONALIZATION RESULTS FOR SMALL
SYSTEM SIZES

We first examine the ground-state properties and elementary
excitations of the system for small system sizes and with
periodic boundary conditions using the ED method. The
ground-state properties are calculated for a range of values
of the two-body interaction strength U/t and at the filling
factor of one particle per site. We calculate the overlap of
the exact ground-state wave function of the Hamiltonian, (5),
and the ansatz wave function, (10), the average occupation of
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FIG. 2. Overlap of the exact ground-state wave function of the
Hamiltonian, (5), and the ansatz wave function, (10), as a function
of the two-body interaction strength U /¢ for system sizes of L < 14
sites. Here the filling factor v = N/L = 1, with N being the number
of particles.

sites with one and two particles, and the one- and two-body
correlation functions.

The overlap of the exact ground-state wave function and the
Pfaffian-like ansatz wave function for the system sizes L < 14
and as a function of the two-body interaction strength U =
U/t is shown in Fig. 2. The results clearly demonstrate that
the Pfaffian-like ansatz wave function, (10), is a better ansatz
for the exact ground-state wave function of the Hamiltonian,
(5), at some finite value of the two-body interaction strength
Uc(L) than it is for the exact ground-state wave function at
U = 0 as suggested previously [37].

Also, the overlap decreases more gradually with increasing
system size L at Uc(L) than it decreases at U = 0 (Fig. 3).
This indicates that in the thermodynamic limit (L — 00), the
Pfaffian-like ansatz wave function most closely corresponds

00

“‘-———.—

P e |

e 2 @9
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X & &
e T
N\
\
N
\
L L

| (lpExact |¢Ansatz> |

g
o
I\
—_
L

o

o

S
e

0.00 0.05 0.10 0.15 0.20 0.25
1/L

FIG. 3. Overlap of the exact ground-state wave function of
the Hamiltonian, (5), and the ansatz wave function, (10), at the
filling factor v =1 for the values of the two-body interaction
strength U/t = 0 (red symbols) and U/t = Uc(L), where the overlap
[{WExact| W Ansatz) | 18 maximal (blue symbols). Dashed gray lines are
included as guides for the eye and were obtained by the extrapolation
of the ED results for L < 14.
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FIG. 4. The value of the two-body interaction strength U /¢ where
the overlap |(VExact|Wansaz)| is maximal (Uc) for system sizes of

< 14sites and at filling factor v = 1. Dashed gray lines are included
as guides for the eye and were obtained by the extrapolation of the
ED results for L < 14.

to the exact ground-state wave function of the Hamiltonian,
(5), at some finite value of the two-body interaction strength
Uc(L). )

The ED results also indicate that the value of U- where
the overlap is maximal increases with increasing system size
(Fig. 4). It can also be shown that the value of U where
the system undergoes a quantum phase transition from the
superfluid state to the Mott insulating state, Usp_p, decreases
with increasing system size. The ED results thus suggest that
the value of U¢ approaches the value of Ugg.yy With an increase
in the system size L and that the Pfaffian-like state might
be the state at the superfluid—to—Mott insulator boundary as
previously found within the bosonization approach [48].

We have further calculated the average number of sites with
one particle, n, and with two particles, n,, at the filling factor
v = 1 and for a range of values of the two-body interaction
strength U = U/t. The average number of sites with one
particle and with two particles is

L
nlz—Zn(2—n)
i=1

L
1 n
ny = i E : (ajai'a,»ai),
i=

where n; = ajai and n; +2n, = v = 1. The values of n;
and n, for the Pfaffian-like ansatz wave function, (10), and
for the exact ground-state wave function of the Hamiltonian,
(5), at U/t = Uc(L) (where the overlap |{VExact| Wansatz)| 18
maximal) are shown in Fig. 5. The values of n| and n, for the
exact ground-state wave function are very close to the values
of ny and n, for the Pfaffian-like ansatz wave function, as can
be clearly seen in Fig. 5.

We have also calculated the one-body and two-body
correlation functions,

h

s)

C, = aT a;),
1 <1+A ) (16)

Cy = (a] \a) saiai),

n (Ansatz)
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n (Exact)

0.60 ¢

n(Ansatz)

0.55" -3:3 3:
0.50¢ ]
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FIG. 5. Average number of sites with one particle n; =
L Z,L (i (2 n;)) (blue and red symbols) and two particles n, =
2L Z, a; a 'a;a;) (green and purple symbols) for the exact ground-
state wave functlon of the Hamiltonian, (5), at U/t = Uc(L) (blue
and green symbols) and the ansatz wave function, (10) (red and purple
symbols). Here the filling factor v = 1 and Uc(L) denotes the value of
the two-body interaction strength where the overlap |[{WExact| W ansatz) |
is maximal. Dashed gray lines are included as guides for the eye and
were obtained by the extrapolation of the ED results for L < 14.

for the exact ground-state wave function at U/t = Uc(L) and
for the ansatz wave function for a system of L = 14 sites. The
results in Fig. 6 show that the correlation functions for the
exact and ansatz wave functions show very similar asymptotic
behavior.

Ci(Ansatz) C(Exact)
Opr v e

C>(Ansatz)

0.0 0.5 1.0 1.5
In(A)

FIG. 6. The one-body (blue and red symbols) and two-body
(green and purple symbols) correlation functions for the exact ground-
state wave function of the Hamiltonian, (5), at U/t = Uc(L) (blue
and green symbols) and the ansatz wave function, (10) (red and purple
symbols), for the system size L = 14. Here the filling factor v = 1 and
Uc(L) denotes the value of the two-body interaction strength where
the overlap |(VExact|Wansaz)| 18 maximal. The long-distance scaling
of the correlation functions C;j(A) ox A~ and Ch(A) x A™*2 is
o) ~ 0.194 and a, & 0.776 for the exact ground state and oy = 0.212
and a, ~ 0.854 for the ansatz wave function.
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Elementary excitations further reveal the topological nature
of the Pfaffian-like state. By construction, the Pfaffian-like
ansatz, (10), has a hidden global order associated with
the organization of particles in two identical indistinguishable
copies of the same state. Consequently, the elementary
excitations above the Pfaffian-like ground-state ansatz exhibit
non-Abelian statistics [50]. The argument for this proceeds
as follows. The elementary excitations can be constructed by
creating a quasihole in each of the copies and symmetrizing
[50]. Symmetrization leads to a topological degeneracy in the
subspace of elementary excitations and non-Abelian algebra
of exchanges of elementary excitations (quasiholes) [50].

If the ground state of the system is close to the Pfaffian-like
ansatz, elementary excitations above it also exhibit non-
Abelian statistics. To confirm this statement we compare
excited states of the Hamiltonian, (5), with the ansatz wave
functions for the excited states [50]
where |y (k)) are eigenstates for each of two copies. In
particular, we calculate the overlap of the first excited state of
the Hamiltonian, (5), and corresponding ansatz wave function
for the first excited state, (17).

For a fixed number of particles N (with N either even or
odd) an excited state with 2n elementary excitations (quasi-
holes) that are SU(2), (Ising) anyons (similar to Majorana
fermions) is expected to have topological degeneracy 2"~!
[40]. We find that the first excited state of the Hamiltonian,
(5), is twofold degenerate and corresponds to a state with four
quasiholes.

The overlap for each of the two degenerate first excited
states is calculated by considering the total overlap with the
manifold of degenerate ansatz states, (17), that correspond
to the first excited states. We find four degenerate, linearly
independent, ansatz states that correspond to two degenerate
first excited states of the Hamiltonian, (5). The degeneracy
of the exact first excited state is two, and not four, since the
Hamiltonian, (5), does not have particle-hole symmetry. The
overlap is then given by

/ZI Wlo ) = (Wl Vil (1®)

where |1/f-(1) ), with i = 1,2, are two degenerate first excited

states of the Hamiltonian, (5), and |¢(l)) with k =1, ... .4,
are corresponding degenerate ansatz states. We note that the
states |¢,({l)) form an orthonormal basis within the degenerate
manifold, which leads to expression (18) for the total overlap.
We find that O; = O, for all values of the two-body interaction
strength U/t that we have considered.

The overlap of the first excited states and corresponding
ansatz wave functions is shown in Fig. 7. In agreement with
the results for the ground-state wave function, the overlap
decreases more gradually with increasing system size L at
Uc(L) than it decreases at U = 0 (Fig. 3). The results also
demonstrate that the overlap with the ansatz wave function for
four quasiholes is very close to 1, indicating that the elementary
excitations of the system are non-Abelian.
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FIG. 7. Overlap O; = O, = O, (18), for two degenerate first
excited states of the Hamiltonian, (5), at the filling factor v = 1 for
values of the two-body interaction strength U/t = 0 (red symbols)
and U/t = Uc(L), where the overlap |(¥/gact|Wansatz) | for the ground
state of the Hamiltonian, (5), is maximal (blue symbols). Dashed
gray lines are included as guides for the eye and were obtained by the
extrapolation of the ED results for L < 14.

V. VARIATIONAL MONTE CARLO CALCULATION

Studying properties of the system for larger system sizes
with the ED method is not possible due to the rapid increase in
the Hilbert-space size with increasing system size. Motivated
by successes of the tensor network methods [51] to numerically
simulate a variety of strongly correlated models, we further
study the properties of the system for larger system sizes
using the entangled-plaquette-state ansatz optimized using
the variational Monte Carlo method [52-61]. Within the EPS
approach, also called the correlator-product-state approach,
the lattice is covered with overlapping plaquettes and the
ground-state wave function is written in terms of the plaquette
coefficients. Configurational weights can then be optimized
using a VMC algorithm.

For a lattice with L sites, an arbitrary quantum many-body
wave function can be written as

Z Wnl ..... nL|n1,...,nL

,,,,,

=) Waln), (19

where n = {n1 , ...,np} denotes the vector of occupancies and
Wh is the amplitude or weight of a given configuration n. For
the system described by Hamiltonian (5), n; € {0,1,2} for the
lattice sitesi =1, ...,L.

In the EPS (CPS) description of a bosonic system, the
weight W, is expressed as a product of the plaquette coef-
ficients over the lattice

,,,,, = ]_[ cy, (20)

wheren, = {n,1, ... ,n,}is the occupancy vector of the /-site
plaquette p. In many cases, the qualitative behavior of large
systems can be described even by plaquettes with a small
number of sites. The EPS wave function corresponding to the
ground-state wave function of the system gives reasonable esti-
mates of the ground-state energy and short-range correlations.
The estimates improve with an increase in plaquette size and
greater overlap between the plaquettes.
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R

FIG. 8. Illustration of the six-site 1D plaquettes with a five-site
overlap between the plaquettes used in the calculation of the ground-
state properties of the system for larger system sizes.

Here we choose six-site 1D plaquettes with a five-site
overlap between the plaquettes as illustrated in Fig. 8. The
weights Wj, for the ground-state wave function of Hamiltonian
(5) with periodic boundary conditions can then be written as

—_ h1n2,..06 n,n3,..., ny np,ny,...,ns
Wa = C| - Ch o Ch . @D

Within the variational MPS approach [37] this plaquette
choice would correspond to matrices of dimension y = 3L,
with L?, = 5 being the number of overlapping lattice sites.

In a VMC algorithm the energy E is written as

_WIHY) | Yaw W' [Hn) Wy
o Wly) > | Wal?

=Y PuEn, (22)

where it is assumed that the wave function |/) = )" Wy|n)
is not normalized, and the local energy E, and the probability
P, are given by

W
En=)  mHn),

n n
[ Wal
YL I Wal?

The expectation value of any operator O can be expressed
in the same form by replacing the Hamiltonian H with the
operator O. The probability P, is never explicitly calculated
from Eq. (23). Instead, for a given set of plaquette coefficients,
the energy can be efficiently computed using the Metropolis
algorithm [69].

Within the Metropolis algorithm, used to sample the
probability distribution, the overall energy can be efficiently
computed as an average of the sampled local energies. In our
calculation the total number of atoms N is fixed. We start from
arandomly chosen initial configuration |n) = |ny,n,, ...,n1),
with 5 n; = Nandn; € {0,1,2) fori = 1,...,L, and then
generate via the Metropolis algorithm a large set of new
configurations by replacing n; with n; — 1 (if n; > 0) and
n; with nj 4+ 1 (if n; < 2) at two neighboring sites i and j.
Starting from configuration |n), the acceptance probability of
a new configuration |n’) is given by

N2
PA=min|:|W(n)| 1]. (24)

(23)

(W2’

According to the variational principle, minimization of
expression (22) with respect to the weights gives an upper
bound of the ground-state energy. The plaquette coefficients
that minimize the energy can be found by using the stochastic
minimization method [60-63,69,70], which requires only the
first derivative of the energy with respect to the plaquette
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coefficients, which is given by

IE
o = 2y {P,,A';" [E,, -y P,,,E,,} } (25)
r n n’

where the wave function [) in Eq. (22) is approximated by
the EPS (CPS) wave function and

v LW by
P Waacy T Cy
with W, given by Eq. (21). Here b, denotes the number of
times the plaquette coefficient C;” appears in the product,
(21), for the amplitude W, for configuration |n). If the same
plaquette coefficient is used for multiple sites (e.g., for a
translationally invariant choice of plaquettes), b, > 1. If each
plaquette coefficient is used once, b, = 1. Equivalently to the
overall energy the first derivative can be efficiently calculated
using the Metropolis algorithm from the same sample used to
compute the overall energy.

The steps of the VMC algorithm used to calculate the
ground-state properties of the system are as follows: (i) start
from the randomly chosen complex values for the plaquette
coefficients, (ii) evaluate the energy and its gradient vector,
(iii) update all plaquette coefficients C;” according to

(26)

n n . IE \*
C) — C, —rék)- mgn(—n) , 27
0C,"
and (iv) iterate from (ii) until convergence of the energy is
reached. Here r is a random number between O and 1, and §(k)
is the step size for a given iteration k.

In each iteration k, the energy and its derivative are
estimated from F(k) x L values, where L is the number of
lattice sites and F(k) is called the number of sweeps per
sample. In a given sweep each lattice site is visited sequentially
and a move, n — n’, to a new configuration is proposed by
changing the occupancy numbers n; — n; — 1 (for n; > 0)
andn; — n; + 1 (forn; < 2) at two neighboring lattice sites,
i and j. Also, to achieve convergence and reach the optimal
energy value it is important to carefully tune the gradient step
8(k). For each iteration k, the number of sweeps F is increased
linearly, F = Fyk, and the procedure of evaluating the energy
and updating the coefficients is repeated G = Gk times. The
step size is gradually reduced per iteration. Here we use a
geometric form, § = 8,0, with Q = 0.9.

The number of sweeps per iteration is increased because
the derivatives become smaller as the energy minimum is
approached and require more sampling in order not to be
dominated by noise. An increasing G effectively corresponds
to a slower cooling rate. Here we take Fy = 100, Gy = 10, and
Q = 0.9. The initial minimization routine is performed with
8o = 0.5 for 50 iterations. The resulting plaquette coefficients
are then used as a starting point for a new run of 50 iterations
with &y = 0.05. After the minimization is complete the
expectation values are calculated by repeating the procedure
for a single iteration with O step size and large F and G to
obtain more accurate estimates of the expectation values.

It is also important to note that it is more difficult to obtain
good estimates of the ground-state energies and the correlation
functions for small system sizes due to the presence of the
statistical error in the stochastic algorithm. Having a larger
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TABLE I. Ground-state energy per site (in units of 7) for the
system size L = 14 and with periodic boundary conditions. Here R
stands for the relative error with respect to the exact ground-state
energy and is defined as R = (Eogp — Eogps)/ Eo gp-

U/t Eo eps Eo p R (x10%)
0.0 —1.61170 —1.62516 0.828
0.5 —1.49408 —1.50630 0.811
1.0 —1.38258 —1.39293 0.743
~]1.18 ~ Uc —1.33919 —1.35329 1.042
1.5 —1.28014 —1.28519 0.393
2.0 —1.17054 —1.18326 1.075
2.5 —1.07458 —1.08740 1.179
3.0 —0.98504 —0.997966 1.295

number of parameters allows the optimization method more
freedom in finding the minimum energy state and the statistical
error can be controlled by increasing the system size.

The results for the ground-state energy for the system size
L = 14 and for several values of the two-body interaction
strength U/t are listed in Table I and compared to the ED
results (exact ground-state energy values). As can be seen in
Table I, the relative error, defined as

E —E
R — COED O,EPS’ (28)

Eoep

does not exceed 1.3% for any value of the two-body interaction
strength U/¢t. The EPS and VMC calculation also gives quite
accurate estimates of the correlation functions as demonstrated
in Fig. 9.

To examine the proximity of the ground-state wave function
for larger system sizes to the Pfaffian-like ansatz wave func-
tion, we further calculate correlation functions for system sizes
L = 40 and 60 sites. Since the EPS wave function gives quite
accurate estimates of the correlations within any plaquette
p, to estimate the asymptotic behavior of the correlation
functions we calculate the one-body and two-body correlation
functions, (16), for the lattice sites within a plaquette p
(A=1,...,I,=1.

0
’ ¢ ® © o o o
M C\(ED)
o C\(EPS)
= .
! N e -
_4L ‘ ‘ ‘
0.0 0.5 1.0 1.5
In(a)

FIG. 9. The one-body (red and blue symbols) and two-body
(green and purple symbols) correlation functions obtained using the
ED (red and green symbols) and the EPS and VMC (blue and purple
symbols) methods for the system size L = 14 and at the value of the
two-body interaction strength U/t ~ Uc(L) ~ 1.18.
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U=0 L=40,60 a;~0.232,0.205

-0.2

In(Cy)

0.0 0.5 1.0 1.5
In(A)

U=0 L=40,60 a,~0.797,0.724
T

In(Cy)

0.0 0.5 1.0 L5
In(A)

FIG. 10. The one-body (C;) and two-body (C,) correlation
functions for the system sizes L = 40 (red symbols) and L = 60 (blue
symbols) sites and at the value of the two-body interaction strength
U/t = 0. Here the asymptotic behavior of the correlation functions
isC; = (aLAa,-) — A ™% and C; = (aLAaLAaia,—) — A7,

The results for the one-body and two-body correlation
functions at U = 0 and for the system sizes L = 40 and 60
sites are shown in Fig. 10. The values of o and «; that describe
the asymptotic behavior of the correlation functions,

Ci = (a], qai) - A7, (29)
C, = (aj+Aaj+Aaia[) — AT,

move away from the values expected for the Pfaffian-like state
ansatz («; = 0.25 and o, = 1) with increasing system size.
The results thus suggest that the overlap between the exact
ground-state wave function at U = 0 and the Pfaffian-like
ansatz decreases with increasing system size. This is consistent
with the ED results and with the previously obtained results for
the system sizes L < 40 obtained using the variational MPS
[37].

The ED results presented in the previous section also
suggest that the Pfaffian-like ansatz wave function, (10), better
approximates the exact ground state of the Hamiltonian, (5),
at some finite value of the two-body interaction strength
U/t = Uc(L) than it approximates the exact ground-state
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L=60 U/t=0,1.2,13 a;=0.205,0.213, 0.218

0.0 0.5 1.0 1.5
In(A)

L=60 U/t=0,1.2,13 a,~0.724,0.756, 0.764

—20 T T T T T T T

In(C5)

In(A)

FIG. 11. The one-body (C;) and two-body (C,) correlation
functions for the system size L = 60 sites and at the values of the
two-body interaction strength U/¢ = 0 (red symbols), 1.2 (purple
symbols), and 1.3 (blue symbols). Here the asymptotic behavior
of the correlation functions is C; = (aLAa,-) — A7 and C, =

T f —ay
(a4 aGi p0iai) = AT

wave function at U = 0. The results for the one-body and
two-body correlation functions for the system size L = 60
sites (Fig. 11) show that the values of | and o, increase with
an increase in the value of the two-body interaction strength
U/t = U. In other words, at some value Uc(L) the values of
o) and a, will be the closest to the values expected for the
Pfaffian-like ansatz wave function (o¢; = 0.25 and o, = 1).
This indicates that the overlap between the exact ground-state
wave function and the Pfaffian-like ansatz wave function is
maximal at Uc(L), in agreement with the ED results for
smaller system sizes.

Previous calculations with variational MPS found the
values of «; and «; for the system size L = 20 sites to
be o) = 0.22 and o, = 0.83 for the exact ground-state wave
function at U =0 and oy =0.24 and o, = 0.99 for the
Pfaffian-like ansatz wave function [37]. The corresponding
overlap between the exact ground-state and the Pfaffian-like-
state wave functions was found to be ~0.955 [37]. Also, for
the system size L = 40 sites at U = 0O the overlap is ~0.90
[37], which corresponds to oy =~ 0.232 and «, ~ 0.797 ob-
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tained within our EPS and VMC calculation for the exact
ground-state wave function (Fig. 10) and «; =~ 0.25 and
oy ~ 1 for the Pfaffian-like ansatz wave function.

It is difficult to determine the exact values of Uc(L) from
our EPS and VMC calculation. However, for the system
size L = 60 sites, the maximum system size that we have
considered, we find that ; 2 0.218 and oy 2 0.764 at U/t =
Uc(L). Therefore, based on the results mentioned in the
previous paragraph, we estimate that the overlap between the
exact ground-state and the Pfaffian-like-state wave functions
is still good for the system size L = 60 and at U/t = Uc(L).

VI. CONCLUSIONS

We have studied ground states and elementary excitations
of a system of bosonic atoms and diatomic Feshbach molecules
trapped in a 1D optical lattice. Under certain conditions,
which are experimentally achievable with current technology
in systems of cold atoms and molecules in optical lattices,
the system can be described by an effective Hamiltonian for
bosonic atoms with two- and three-body interactions. We have
considered the limit of infinitely strong three-body interactions
for a range of values of the two-body interaction strength. The
ground-state properties of the system were calculated using
the ED method for small system sizes and the EPS and VMC
method for larger system sizes.

The Pfaffian-like ansatz was originally proposed as an
ansatz for the ground-state wave function of the effective
Hamiltonian in the absence of two-body interactions. However,
our results clearly demonstrated that the Pfaffian-like ansatz
wave function is a better ansatz for the ground-state wave
function of the effective Hamiltonian at some finite value
of the two-body interaction strength. This value of the two-
body interaction strength might be close to the value where
the system undergoes a quantum phase transition from the
superfluid state to the Mott insulating state, as previously
found within the bosonization approach. We also demonstrate
that these states support non-Abelian excitations required for
quantum computation.

Further work is necessary to find an experimentally real-
izable model with a ground-state wave function that can be
even better approximated by the Pfaffian-like ansatz wave
function. This can possibly be achieved in a system with
long-range interactions. An additional direction for future
research is to consider similar 2D non-Abelian models, for
example, anisotropic systems consisting of coupled interacting
1D wires. Such anisotropic 2D lattice models can have
interesting non-Abelian Chern insulating phases and fractional
topological insulating phases.

In order to use non-Abelian states for quantum computation,
one must be able to braid them. Although this is not possible
for a strictly 1D system, creating a network of such 1D
systems connected by T-junctions, as suggested previously
in the context of Majorana quantum wires [42], potentially
allows this. In the case of Majorana quantum wires a T-junction
[42] allows for adiabatic exchange of two Majorana fermions.
Such a T-junction has topological and non-topological regions
that can be controlled by individually tunable gates. In
principle, similar T-junction networks can be created for the
bosonic system that we have considered, where topological
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and nontopological regions of the network can be controlled
by tuning the two-body interaction in different regions of the
T-junction network (for example, by changing the depth of the
optical lattice in certain regions of the T-junction).

In a similar manner to fractional quantum Hall states, non-
Abelian anyons can be created by creating pairs of quasiholes,
with one quasihole in each cluster [37,50]. These non-Abelian
anyons are Ising anyons [SU(2), anyons], similar to Majorana
fermions, and excitations of the v = 5/2 fractional quantum
Hall state (Pfaffian state). We also note that braiding of
SU(2), anyons alone does not permit universal quantum
computation [4]. However, to obtain a universal set of gates,
braiding of SU(2), anyons needs to be strengthened only by
a single-qubit 7 /8 phase gate and a two-qubit measurement
[4]. Also, Pfaffian-like states obtained by symmetrization of
two identical copies can be generalized to states obtained
by symmetrization of k identical copies that support SU(2);

PHYSICAL REVIEW B 93, 085143 (2016)

anyons [38,50] and can be used for universal quantum
computation. For example SU(2); anyons (like Fibonacci
anyons) can be used for universal quantum computation [4].
The results presented here thus constitute an important step
towards understanding generalized states that support SU(2)y
anyons.
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