
 

 

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, 

typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of 

Record. Please cite this article as doi: 10.1111/evo.12731. 

 

This article is protected by copyright. All rights reserved.   1 

 

Original Article 

 

 

Running header: Disassortative mating in Narcissus papyraceus 

 

 

Disassortative mating prevails in style-dimorphic Narcissus papyraceus despite low 

reciprocity and compatibility of morphs 

 

 

Authors: Violeta I. Simón-Porcar1, Thomas R. Meagher2 and Juan Arroyo1 

1. Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain 

2. School of Biology, University of St Andrews. St Andrews, United Kingdom  

 

 

Keywords: female fecundity, heterostyly, long-tongued pollinators, morph ratio, paternity 

analysis, siring success. 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/73346198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

This article is protected by copyright. All rights reserved.   2 

 

Contact information:  

Violeta I. Simón-Porcar. Departamento de Biología Vegetal y Ecología, Universidad de 

Sevilla, Apartado 1095, 41080 Sevilla, Spain. Telephone Number: +34 954 557058. Email: 

violetasp@us.es. Current address: Department of Biological and Environmental Sciences, 

School of Natural Sciences, University of Stirling, Scotland, United Kingdom. Telephone 

Number: +44 1786 467840. Email: vp12@stir.ac.uk 

Juan Arroyo, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 

Apartado 1095, 41080 Sevilla, Spain. Telephone Number: +34 954 557058. Email: 

arroyo@us.es 

Thomas R. Meagher, School of Biology, Harold Mitchell Building, University of St Andrews, 

St Andrews, Fife, KY16 9TH, UK. Telephone Number: +44 1334 463364. Email: trm3@st-

andrews.ac.uk 

 

Number of words: 6942 

Number of tables: 3 

Number of figures: 3  



 

 

This article is protected by copyright. All rights reserved.   3 

 

Abstract 

Evolution to reduce inbreeding can favor disassortative (inter-morph) over assortative (intra-

morph) mating in hermaphroditic sexually polymorphic plant species. Heterostyly enhances 

disassortative pollination through reciprocal placement of stigmas and anthers of morphs 

and appropriate pollinators. Stylar dimorphism in which there is not reciprocal anther 

placement may compromise disassortative mating, particularly when there is not intra-morph 

incompatibility. Variable rates of disassortative mating along with differential female fecundity 

or siring success among floral morphs could lead to variation in morph ratio. We investigated 

mating patterns, female fecundity and siring success of style-length morphs in Narcissus 

papyraceus, a self-incompatible but morph-compatible species with dimorphic (long- and 

short-styled) and monomorphic (long-styled) populations in central and north regions of its 

range respectively. We established experimental populations in both regions and exposed 

them to ambient pollinators. Using paternity analysis, we found similar siring success of 

morphs and high disassortative mating in most populations. Female fecundity of morphs was 

similar in all populations. Although these results could not completely explain the loss of 

dimorphism in the species’ northern range, they provided evidence for the evolutionary 

stability of stylar dimorphism in N. papyraceus in at least some populations. Our findings 

support the hypothesis that prevailing inter-morph mating is key for the maintenance of stylar 

dimorphism.
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Introduction 

Sexual polymorphisms have arisen multiple times during the evolution of flowering plants in 

response to selection favoring outcrossing among other factors (Darwin 1877, Barrett 2002). 

Dioecy is an extreme sexual polymorphism that enforces outcrossing, but hermaphrodites 

can also manifest outcrossing through physiological self or cross incompatibilities (Castric 

and Vekemans 2004), contrasting phenology (Renner 2001) and variable positioning of sex 

organs in different floral morphs (Barrett et al. 2000). The outcome of such processes is the 

presence of mating morphs within populations, whose maintenance depends on the 

prevalence of mating between morphs, i.e. disassortative, over mating within morphs, i.e. 

assortative (Eckert et al. 1996, Pannell et al. 2005). Disassortative mating is a major 

mechanism of negative frequency-dependent selection that increases the mating 

opportunities of the less frequent morph in a population, leading to the equilibrium ratio of 

floral morphs (Fisher 1930, Heuch 1979, Barrett et al. 2004). On the other hand, many 

sexual polymorphisms in hermaphroditic plants do not avoid assortative mating completely 

and this may lead to variation in population morph ratio. It is expected that an increase in 

assortative mating in one morph would raise its frequency in a population, which in turn 

would eventually drive that population towards monomorphism (Baker et al. 2000a). It has 

also been suggested that transitory differences in female fecundity or siring success among 

floral morphs could be the factors contributing to variation in morph ratio (Eckert and Barrett 

1995, Baker et al. 2000a, Hodgins and Barrett 2008, Pérez-Barrales and Arroyo 2010). 

Heterostyly is a sexual polymorphism in which two or three morphs differ in the 

position of sexual organs, which are placed reciprocally in the different floral morphs. In this 

way, there is increased pollen transfer between morphs through precise pollen delivery and 

deposition by pollinators (Darwin 1877, Barrett and Shore 2008). Typically, this 

morphological polymorphism is accompanied by a physiological heteromorphic 

incompatibility system which impedes self- and within-morph mating success (Ganders 

1979), although exceptions occur (Casper 1985, Eckert and Barrett 1994, Ferrero et al. 
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2012). Stylar dimorphism, a condition similar to heterostyly, consists of the occurrence of two 

floral morphs that differ in the position of the stigma (above or below the anthers), while the 

anthers maintain a constant position across floral morphs. Thus, style-dimorphic plants lack 

the reciprocity between sex organs displayed by typical heterostylous species. Most style-

dimorphic species also lack a heteromorphic incompatibility system (Barrett 1992). The 

evolutionary models of Charlesworth and Charlesworth (1979), and later Lloyd and Webb 

(1992) propose that stylar dimorphism represents an intermediate step in the evolution from 

monomorphism to heterostyly. In particular, Lloyd and Webb (1992) suggested that floral 

morphs are maintained in populations if disassortative mating results in greater reproductive 

success than assortative mating, i.e.  
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under non pollen-limited conditions. In these equations, q represents reproductive success, 

and the subscripts L and S represent long-styled and short-styled floral morphs respectively, 

the maternal morph being in first position. Hence, q's with the same subscript represent 

assortative mating and different subscripts mean disassortative mating, so the four possible 

types of crosses are included in the equations. Note that estimating q values in a population 

entails to identify the morph of both parents for each successful reproductive event. Due to 

the lack of reciprocity in spatial placement of sexual organs and absence of heteromorphic 

incompatibility, stylar dimorphism might not meet the requirements above, and the 

polymorphism would be unstable. In fact, stylar dimorphism, which has been reported in six 

families of angiosperms, is much less common than heterostyly, which has been reported in 

28 families (Barrett and Shore 2008).  

In spite of its overall rarity, stylar dimorphism is widespread in the Mediterranean 

genus Narcissus (Barrett and Harder 2005). This observation seems to contradict the model 

proposed by Lloyd and Webb (1992) and might result from the effectiveness of stylar 

dimorphism in promoting disassortative mating in the genus in the absence of heteromorphic 

incompatibility (Cesaro and Thompson 2004). On the other hand, population morph ratios 

show considerable variation in style-dimorphic Narcissus species (Arroyo and Dafni 1995, 

Barrett et al. 1996, Baker et al. 2000b, Arroyo et al. 2002, Thompson et al. 2012, Santos-

Gally et al. 2013). In order to explain morph ratio variation in Narcissus, some studies have 
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investigated the association between morph ratio and differential maternal fitness between 

floral morphs (Baker et al. 2000a, Pérez-Barrales and Arroyo 2010). However, total fitness 

also includes a paternal component and a full understanding of selection driving morph 

ratios requires that both maternal and paternal fitness are taken into account. Moreover, to 

date the assessment of the relationship between morph ratio and mating patterns in 

Narcissus is mostly based on indirect procedures (Thompson et al. 2003, Cesaro and 

Thompson 2004, Pérez-Barrales and Arroyo 2010). However, the increasing use of paternity 

analysis to investigate patterns of reproductive success in natural populations (e.g. Meagher 

1986, Smouse et al., 1999, Wright and Meagher 2004, Kitamoto et al. 2006, Hodgins and 

Barrett 2008, Rosas and Domínguez 2009, see also Kulbaba and Worley 2012) provides a 

means to obtain a more complete picture of the relationship between reproductive success 

and morph ratio variation, and it is indeed the only straightforward way to estimate q values 

in Lloyd and Webb equations. 

Due to the widespread occurrence of stylar dimorphism in Narcissus, this genus 

represents a good system for investigating the relationship between stylar dimorphism and 

reproductive success. However, no study to date has dealt with all of the factors involved: 

female fitness, male fitness, mating patterns and their relationship with population morph 

ratio in a style-dimorphic plant. In order to develop a more comprehensive view on the 

evolution of stylar dimorphism, the present study focuses on Narcissus papyraceus Ker-

Gawler, a winter-flowering, style-dimorphic geophyte whose floral morphs present very low 

reciprocity between stigma and anthers placement. The flowers present two stamen whorls 

(upper and lower) and stigmas in different morphs occur at different heights, above or below 

the lower stamen whorl. In long-styled (L-) flowers, the lower stamen whorls are slightly 

shorter than those of short-styled (S-) flowers (Fig. 1; Pérez-Barrales and Arroyo 2010). Both 

morphs co-occur in populations around the Strait of Gibraltar, but in the northern limit of the 

species range (Guadalquivir Basin, in SW Spain) populations are monomorphic for the L-

morph (Arroyo et al. 2002). The species has a late acting self-incompatibility system of 
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imperfect action (Simón-Porcar et al. 2015a) similar to that reported in other species in the 

genus (Dulberger 1964, Sage et al. 1999) that permits either between- and within-morph 

fertilization (Arroyo et al. 2002). Flowers of this species have a long and narrow floral tube 

with nectaries at the bottom that suggests an adaptation to pollination by long-tongued 

insects (Pérez-Barrales et al. 2007). In spite of this apparent floral specialisation, a variety of 

pollinators visit flowers of N. papyraceus, including long-tongued butterflies and moths and 

short-tongued hoverflies and bees (Pérez-Barrales et al. 2007, Santos-Gally et al. 2013). 

There is some evidence that short-tongued pollinators are more common in the 

monomorphic region in southwest Spain (Santos-Gally et al. 2013), which might have led to 

the disappearance of the S-morph by reducing their female fecundity or increasing 

assortative mating in the L-morph. This happens because short-tongued pollinators cannot 

reach the stigma of the S-morph, placed inside the narrow floral tube, and so they only 

contact the stigma of the L-morph (Pérez-Barrales and Arroyo 2010, Simón-Porcar et al. 

2014). The maintenance of the stylar dimorphism in populations around the Strait of 

Gibraltar could be due to higher rates of disassortative mating in that region owing to the 

prevalence of long-tongued pollinators (Santos-Gally et al. 2013, Simón-Porcar et al. 2014). 

The alternative hypothesis of genetic drift or founder events as a cause of this pattern has 

been recently discarded (Simón-Porcar et al. 2015b). 

We report on an experiment to assess the maternal and paternal fitness of each floral 

morph and mating patterns in the dimorphic and monomorphic natural regions of N. 

papyraceus. We compared the maternal and paternal fitness of floral morphs in terms of 

female fecundity and siring success and estimated levels of assortative and disassortative 

mating to evaluate Lloyd and Webb’s model for the maintenance of stylar dimorphism. We 

also compared progeny performance (survival and growth) at early stages of development 

as an additional component of fitness of floral morphs (i.e. post-dispersal fitness). Our 

approach included experimental populations with genotyped plants, which increased the 

probability of paternity assignment while allowing us to test the effect of different morph 
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ratios on mating patterns. Ultimately, we aimed to determine whether stylar dimorphism, 

despite limited reciprocity of sex organs, can lead to disassortative mating, and whether 

variation in the extent of disassortative mating accounts for the absence or presence of 

stylar dimorphism in the monomorphic and dimorphic regions of N. papyraceus. 

Methods 

Source material and parental genotyping 

In December 2008, we collected 150 Narcissus papyraceus individuals from a single 

population close to Tarifa, South Spain (36.1º N, 5.73º W). This population is located in the 

center of the distribution range of the species and is isoplethic (equal proportions of L- and 

S-morph), large (thousands of plants) and harbors a high genetic diversity (Hs = 0.75; Simón-

Porcar et al. 2015b). We collected individuals separated by at least two meters from each 

other to ensure collecting different genets, given the vegetative reproduction but low bulb 

dispersal of the species. Individuals were collected after the end of the flowering period to 

diminish plant stress for subsequent flowering. Thus, we determined the morph from the 

wilted flowers to collect equal numbers of the two style morphs. Plants were labeled, potted 

and moved to a glasshouse at the University of Seville. Plants were watered at levels 

consistent with natural conditions until the end of winter and kept in darkness during 

summer. This procedure was repeated for two years until massive flowering occurred in 

2010–2011. In November 2010, we collected leaf samples from each individual, which were 

immediately frozen at -80ºC. DNA was isolated following Bernartzky and Tanksley's (1986) 

protocol without mercaptoethanol, and each individual was genotyped for four specific 

microsatellite markers which had high genetic variability and good amplification rates (A116, 

A121, B104 and B112; Simón et al. 2010). Polymerase Chain Reactions (PCR) were 

performed in 25 μL of reaction mixture containing 50 ng of template DNA,   × PCR buffer, 

  5 mM MgCl2, 0   μM fluorescently labeled (6-FAM™, VIC®, NED™ and PET® dyes) 

forward primer, 0   μM reverse primer, 0 05 mM each dNTP and   25 U Taq polymerase  
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PCRs were performed in a Biometra Gradient Thermal Cycler (Biometra, Göttingen, 

Germany), with an initial 5 min of denaturation at 94°C, 45 cycles at 94°C for 30 s, annealing 

at 58ºC (markers A116 and A121) or 59ºC (markers B104 and B112) for 30 s, extension at 

72°C for 30 s, and a final extension at 72°C for 5 min. Polymerase chain reaction products 

were analyzed on an ABI 3130 × 1 Genetic Analyzer and sized using GeneMapper v.4.0 

(Applied Biosystems, Foster City, USA) and GeneScanTM 500 LIZ size standard (data 

available in the Dryad depository doi: xx.xxxx/dryad.xxxxx). 

 

Field experiment 

The field experiment was performed during the flowering season 2010-2011. We set up a 

total of 15 artificial populations in two locations within the dimorphic and the monomorphic 

natural distribution regions of the species but without nearby natural populations (Fig. 2a). In 

the dimorphic region, experimental plots were located at Finca de la Alcaidesa (36.3º N, 5.4º 

W; Alcaidesa hereafter), 16 km from the closest known naturally occurring population. In the 

monomorphic region, experimental plots were located at Pinares de Hinojos (37.3º N, 6.4º 

W; Hinojos hereafter), 8 km from the closest known naturally occurring population.  

Three types of populations were established at each site: Isoplethic, L-biased and S-

biased populations, with proportions of 1:1, 3:1 and 1:3 of L- to S-styled plants, respectively 

(Fig. 2b). Each population was composed of 8–12 individuals, with morphs alternating in a 

circular pattern in order to ensure regular distances between individuals (Fig. 2b). Plants 

were selected to ensure synchronic flowering and high multilocus microsatellite diversity for 

marker-based paternity assignment within populations. For each experimental population, 

the number of alleles with the four markers ranged from 24 (Population 5) to 47 (Population 

11). The experimental populations were set up to be synchronous with the natural flowering 

period of natural populations at each region to ensure similar pollinators to them (but see 

Discussion). At Alcaidesa, three replicates of each experimental population type were 
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maintained from 23 December 2010 until 21 January 2011. The means of maximum and 

minimum daily temperatures during this period were 16.9ºC and 9.7ºC, respectively, and the 

mean daily rainfall was 35.8 mm (Spanish National Meteorological Agency 2012). At 

Hinojos, two replicates of each experimental population type were maintained from 11 until 

31 January 2011 with mean maximum and minimum temperatures of 14.9ºC and 6.3ºC, 

respectively, and mean daily rainfall of 2.7 mm (Spanish National Meteorological Agency 

2012). These values were within the normal ranges of climatic conditions in the flowering 

period of each region in a period of 50 years excepting significantly higher rain rates at 

Alcaidesa during the experiment (mean daily max.temp/min.temp/rainfall: Alcaidesa: 15.9ºC 

/ 8.2ºC / 4.2 mm; Hinojos 14.3ºC / 6.4ºC / 2.2 mm; Climatic Data from WorldClim database, 

Hijmans et al. 2005). Populations within each site were located at least 300 meters apart 

from each other to prevent pollen flow between them (Barthelmess et al. 2006). We counted 

the number of flowers per individual 2–4 times in each population to estimate the total 

number of flowers of each morph during the experiment. Populations were exposed to 

natural pollinators at each site. Plants were removed from the field after flower withering and 

kept in the greenhouse until fruit maturation. 

Three populations were damaged by wild boars: one isoplethic and one L-dominant 

replicate at Alcaidesa, and one L-dominant replicate at Hinojos. These populations were 

removed from the study leaving 12 populations in our final analysis. Some flowers and fruits 

were also grazed by insects or snails (0.04% of total number of flowers) and were discarded 

for the female fecundity analysis. Individuals affected by herbivory in half or more of the 

flowers (0.05% of total number of individuals) were not included in the female fecundity 

analysis, but all individuals were included in the paternity analysis, as they could have sired 

seeds prior to be grazed.  
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Female fecundity 

In March 2011, we collected all matured fruits. For each maternal individual we counted 

fruits and seeds per fruit and estimated fruit set, the average number of seeds per fruit and 

total seed production per plant as female fecundity measures (data available in the Dryad 

depository doi: xx.xxxx/dryad.xxxxx). Fruit and seed production were strongly dependent on 

flower position. Seed production of the first flower was statistically indistinguishable from that 

of the second, third and fourth flowers (F7, 948 = 8.01; P > 0.27; ANOVA and Tukey HSD), but 

was significantly different from that of the fifth to eighth flowers (average number of seeds 

set per flower ± s.d.: first-fourth flower, N=714, 3.4 ± 5.9; fifth-eighth flower, N=242, 0.9 ± 

2.2; P < 0.04). Overall, 92% of seeds were produced in the first four flowers of each plant. 

Because plants varied in the number of flowers and this variation was originated in the 

greenhouse, irrespective of morphs, we used the four first flowers per inflorescence to 

calculate female fecundity so that values were comparable between morphs and regions. 

We performed Generalized Linear Models (GLM) for the fixed effects of floral morph (L-

morph and S-morph), morph ratio (isoplethic, L-biased and S-biased) and region (Alcaidesa 

and Hinojos) on fruit set, the average number of seeds per fruit and total seed production. 

We employed a binomial distribution of errors to analyze fruit set and Gaussian distribution 

of errors to analyze the average number of seeds per fruit and total seed production. 

Analyses were conducted with the package stats of the software R 2.13.1 (R Core Team 

2011). 

Progeny germination, growth and genotyping 

Seeds were stored at 4ºC in darkness until the next season. In November 2011, we sowed a 

total of 2,566 seeds from 315 fruits in trays (30 × 50 cm) with a mixture of peat and 

vermiculite grade 2 (3:1; PROJAR, Málaga, Spain), which were watered to field capacity 

twice a week for 18 weeks until germination and growing was deliberately stopped in March 

2012, similarly as in field conditions. Fruits from each individual were distributed haphazardly 
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in trays, whose position was changed weekly to homogenize growing conditions. Seed 

germination, seedling height, anomalous growth (i.e. distorted or discolored leaves) and 

survival were monitored weekly during the entire experiment. Only successful seedlings 

(those that germinated and grew healthy) were considered in the rest of our study. This 

excludes mating events lost due to biparental inbreeding or other genetic incompatibilities 

and therefore, the term cross refers only to legitimate crosses hereafter. To ensure enough 

DNA material, we selected the three tallest seedlings of each fruit (N = 748 seedlings). Since 

germination percentage and maximum height did not differ between maternal style morphs 

or mating combinations (see Results), sampling bias was regarded as negligible. The 

aboveground fractions of seedlings were dried in silica gel, and DNA was extracted using the 

DNeasy Plant Mini Kit (Qiagen Inc., Chatsworth, CA, USA). Seedling genotyping for the four 

markers (A116, A121, B104 and B112) was performed under the same conditions as for 

parents but with an annealing temperature of 50ºC (data available in the Dryad depository 

doi: xx.xxxx/dryad.xxxxx). Over the course of our study we discovered that a much lower 

annealing temperature allowed higher amplification rates. Comparison of the same 

genotypes with the two annealing temperatures indicated that this change does not affect 

marker results. Including parental individuals, we genotyped 40 individuals twice to estimate 

genotyping error per locus, which was 1.4 ± 0.2%. 

Paternity analysis and deviations from random mating 

We analyzed the deviation of the observed number of crosses of each type in each 

population from the expected number under the null model of random mating. The observed 

number of crosses of each mating combination in each population was determined with 

paternity exclusion analyses. In order to maximize precision and percentage of assignment, 

we combined direct and probabilistic assignments of seedlings. First, progeny and parental 

genotypes were compared to categorically assign a single paternal parent to all possible 

seedlings in each population. Autogamy was considered as some flowers set seeds by 

selfing (Arroyo et al. 2002). From the 748 genotyped seedlings, we could assign directly a 
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total of 545 seedlings (73%) to a single paternal parent. Seedlings that remained unassigned 

were subjected to exclusion analysis with the software CERVUS 3.0 (Marshall et al. 1998), 

which assigned categorically the most probable paternal parent to each seedling with 80 –

95% of confidence based on a log-likelihood ratio (Meagher 1986). We ran separate 

analyses for each population, simulating 10,000 offspring with 100% candidate paternal 

parents sampled and allowing for selfing. The mistyping error rate was set as the estimated 

genotyping error (0.014), and a minimum of two loci typed was required. CERVUS assigned 

68 and 38 seedlings to a single father with the 80 and 95% of confidence, respectively (total 

seedlings assigned 106; 14%). Hence, in this study we assigned a total of 651 seedlings 

(87%) with an overall assignment probability of 97.6%. Correlated paternity, calculated as 

the proportion of seedlings sired by the same individual, was 37 ± 23% (average ± SD) 

within maternal individuals, and 22 ± 26% within fruits, with no significant differences 

between maternal morphs or experimental sites (results not shown). Because each seedling 

has the same potential contribution to the morph ratio in the next generation of the 

population, we considered all the assigned seedlings as independent events in the following 

analyses. Some seedlings were self-fertilized; these seedlings were discarded for the 

analyses of mating patterns between floral morphs, which were performed on 18–91 

assigned seedlings per population (N = 592 in total). Final contingency tables with the 

observed number of crosses of each mating combination in each population were obtained 

including the seedlings assigned directly and probabilistically to a single paternal parent. 

 The expected number of crosses between i and j morphs in the population p (EijP) under 

random mating was estimated as:  

 

 

    

    (
       

  
)                                                                                           Eq  5 



 

 

This article is protected by copyright. All rights reserved.   15 

 

 

 

were   is the number of seeds assigned to a paternal parent and   is the counted number of 

flowers, which in the case of random mating determines the frequency of crosses for each 

combination. In each population, we performed a X2 test with 10,000 permutations to 

determine the goodness-of-fit between the observed and expected distributions and its 

significance. In addition, within each of four possible cross-types (regarding to each parental 

morph), we performed a sign test to determine significant directionality of the pattern of 

excess or deficiency of observed vs. expected crosses across the twelve populations (Sokal 

and Rohlf 1981). Analyses were performed with the package stats of the software R 2.13.1 

(R Core Team 2011). Finally, to evaluate the model equations of Lloyd and Webb (1992) in 

each experimental population, we employed the observed number of seedlings from each 

cross combination as q values in equations 1, 2, 3 and 4. It is noteworthy that the occurrence 

of pollen limitation in Narcissus papyraceus is unknown, and our study cannot provide any 

insight about it. In other Narcissus, it was found that pollen limitation was very variable 

across pops and seasons (Baker et al. 2000c). Our aim was to explore trends in mating 

patterns, which are independent of the existence of pollen limitation. For this reason, we 

examined both scenarios using equations 1-4. 

 

Siring success modelling 

We used the software PatQuest 4.0 (Smouse et al. 1999, Meagher 2002) to directly estimate 

the effect of the parental morphs on mating success in each population. The software 

employs maximum likelihood to estimate the relative siring success of each individual male 

(λi, i=1, …, number of males), and the effect of phenotypic characters (βk, k= , …, number of 

phenotypic characters evaluated) and maternal-paternal interactions (γ) such as distance 

between mating pairs, using univariate or multivariate log-linear models (Smouse and 

Meagher 1994, Smouse et al. 1999, Wright and Meagher 2004). Univariate models were 
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employed to investigate (1) the variation in λi among individuals and (2) the effect of the 

spatial distance between mating pairs (γs). Multivariate models were applied to assess (3) 

the joint effect of the total number of flowers per individual (β) and the interaction between 

mating-pair morphs (γm), and (4) the joint effect of the λ distribution and the interaction 

between mating-pair morphs (γm). Model (3) allowed us to investigate the effect of the 

interaction between mating-pair morphs while taking into account the different number of 

flowers of each morph in each population, as in the former approach (see equation 1). 

The interaction between mating-pair morphs (γm) was evaluated using a morph 

distance between individuals, with a distance of 0 for individuals of the same morph and a 

distance of 1 for individuals of different morph. In all analyses but (4), we assessed the 

significance of the estimated parameters by feature-based permutations (Smouse et al. 

1999) and by pedigree-based bootstrap (Morgan and Conner 2001) with 1,000 iterations. As 

we did with female fecundity measures, we performed a GLM for the fixed effects of floral 

morph (L-morph and S-morph), morph ratio (isoplethic, L-biased and S-biased) and region 

(Alcaidesa and Hinojos) on siring success of individuals (λ), using Gaussian distribution of 

errors with the package stats of the software R 2.13.1 (R Core Team 2011). 

 

Progeny performance 

We analyzed the variation in the performance of seedlings from different maternal morphs 

and mating combinations. Some seedlings exhibited anomalous growth (2.4% overall) or 

died (1% overall) so these seedlings were excluded from the following analyses. From the 

remaining number of seeds sown (N = 2,492) we estimated percentage of germination and 

average germination time of seedlings for each of the 89 maternal sibships (range 1–104 

seedlings per maternal sibship; data available in the Dryad depository doi: 

xx.xxxx/dryad.xxxxx). We analyzed the effect of the maternal morph (L-morph and S-morph) 

with GLMs with Gaussian-distributed errors for each germination variable. Next, we adjusted 

a logistic model with a spline to the growth curves of the seedlings as implemented in the R 
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package Grofit (Kahm et al. 2010). We extracted the four growth curve parameters Λ (length 

of lag phase), µ (maximum growth rate), A (maximum growth) and I (the integral) from the 

models for each seedling. We performed GLMs with Gaussian-distributed errors for the fixed 

effect of the maternal morph (L-morph and S-morph) on each of the four growth curve 

parameters, including maternal identity as random factor and germination week as covariate 

in the models. With the subset of the seedlings that were assigned to a paternal parent we 

also analyzed the effect of both maternal and paternal morphs and their interaction on the 

four growth curve parameters (Λ, µ, A, I), performing different GLMs with Gaussian-

distributed errors as before. 

 

Results 

 

Female fecundity 

Floral morph, morph ratio and region and their interactions did not have a significant effect 

on fruit set, average number of seeds per fruit and total seed production (F1/2, 85/113 < 3.13; P 

> 0.077). Only the interaction among floral morph, morph ratio and region had a significant 

effect on fruit production (F2,102 = 3.87; P = 0.021). The mean (± SD) number of fruits 

produced per individual was 1.6 ± 1.3, the average number of seeds per fruit was 9.0 ± 6.2 

and total seed production per plant was 14.5 ± 14.9 (Table S1). 

 

Paternity analysis and deviations from random mating 

Exclusion analyses revealed that a total of 59 seedlings (9%) from 29 maternal parents were 

self-fertilized, being 41 (69%) seedlings from S-morph mothers. The highest rates of self-

fertilization occurred in populations 10 and 11 (Hinojos), which accounted for 39 self-

fertilized seedlings. Overall, there were 34 and 13 selfed seedlings of the S- and the L-
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morph in Hinojos, and 7 and 5 selfed seedlings of the S- and the L-morph in Alcaidesa, 

respectively. 

Nine out of 12 populations showed significant departures from random mating (Table 

1). In all these cases excepting one population the observed number of disassortative mates 

was higher than expected by chance for the S-morph. Two different patterns were repeated 

across experimental populations: populations 1, 5 and 8 showed more disassortative 

crosses and less assortative crosses for both morphs observed than expected by chance, 

and populations 2, 3, 9 and 11 showed more S×L crosses and less crosses of the other 

types than expected by chance. When comparing morphs, disassortative mating was higher 

than expected under random mating in seven populations for the L- morph, which was a 

statistically non significant trend (P=0.774; sign test), and in 10 populations for the S-morph, 

which was a statistically significant trend (P=0.039; sign test). Meanwhile, assortative mating 

was higher than expected under random mating only in two populations for the L-morph 

(P=0.039; sign test) and in three populations for the S-morph (P=0.146; sign test; Table 1). 

Based on the observed number of seedlings from each mating combination, four 

populations, all of them S-biased, satisfied the Lloyd and Webb conditions meaning 

prevalence of disassortative mating to the L-morph both in pollen-limited and non pollen-

limited conditions (Equations 1 and 3; Table 1). Three populations in Alcaidesa, none of 

them S-biased, satisfied the Lloyd and Webb conditions representing prevalence of 

disassortative mating to the S-morph in pollen-limited and non pollen-limited conditions 

(Equations 2 and 4; Table 1). Two populations differing in site and morph ratio satisfied 

equations 1, 2 and 4. Finally, three populations in Hinojos and none in Alcaidesa met all of 

the Lloyd and Webb conditions (Equations 1–4) for maintenance of stylar dimorphism. 
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Siring success modelling 

The univariate log-linear regression for the γs parameter showed that only four populations 

(Populations 5, 8, 10 and 11) had a significant negative effect of spatial distance between 

mates based on pedigree bootstrapping (Table 2), indicating that the distance between 

individuals within these experimental populations had an impact on mating, whereas 

remaining eight experimental populations were panmictic. The multivariate analyses of β and 

γm revealed a significant positive effect of the number of flowers per individual (β) on 

paternal success in populations 1 and 3 (Alcaidesa), and 9 and 10 (Hinojos), based on 

pedigree bootstrapping (Table 2). The interaction between parental morphs (γm) was positive 

and significant in populations 5 and 8 (one from each region, Alcaidesa and Hinojos), 

indicating increased mating success between individuals of different morph (Table 2). 

Populations 6 (Alcaidesa) and 9, 10 and 11 (Hinojos) showed a negative γm parameter 

(Table 2). For the joint estimate of γm and λ, every population except 9 and 10 (Hinojos) had 

a positive value for γm. The siring success was highly variable among individuals, with λ 

values ranging from 0 to 0.32 (Table S1). Floral morph, morph ratio and region did not have 

a significant effect on siring success (F2,119 < 2.4; P > 0.1). 

Progeny performance 

There were no significant differences between maternal morphs in the percentage of 

germination (F1,88 = 0.293, P = 0.59). The overall percentage of germination was 84.4%. The 

progeny from S-morph maternal parents germinated significantly earlier than those from L-

morph maternal parents (mean ± SD: S-morph progeny: 7.5 ± 1.6 weeks; L-morph progeny: 

8.3 ± 1.5 weeks; F1,86 = 6.422, P = 0.013). The logistic models yielded average (± SD) 

parameters µ = 49.0 ± 9.3 (mm / week), Λ = 7.3 ± 1.4 (week), A = 189.1 ± 40.6 (mm), and I = 

1267.6 ± 436.6 (mm × week). Germination week and maternal identity had a high effect over 

all the growth curve parameters (F > 5.942, P < 0.016). The growth curve of the progeny 

from S-morph maternal parents had significantly higher A and Integer and lower Λ 
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parameters than progeny from L-morph maternal parents (Table 3, Fig. 3). No parameter 

differed significantly among progeny from different paternal morphs or parental morph 

combinations (Table 3). 

 

Discussion 

 

In this study we found evidence of frequent disassortative mating in the style-dimorphic 

Narcissus papyraceus, thus one of the key conditions for the evolutionary stability of stylar 

dimorphism in this species was met. We validated results from previous studies in this and 

other species of Narcissus, which were based on indirect approaches to incorporating 

paternal success in style-dimorphic plants (Pérez-Barrales and Arroyo 2010, Thompson et 

al. 2003, Cesaro and Thompson 2004) as well as on direct paternity analysis of 

heterostylous N. triandrus (Hodgins and Barrett 2008). Specifically, our results showed 

increased rates of disassortative mating in the S-morph. This trend may well reflect the more 

accurate correspondence between the L-morph lower stamens and the S-morph stigma, 

which could lead the S-morph to receive a greater proportion of pollen from the opposite 

morph than the L-morph does (Cesaro and Thompson 2004). 

 

Effects of morph ratio variation 

Our different approaches concurred in indicating a prevalence of dissasortative mating, but 

they showed different patterns in regard to the higher occurrence of disassortative mating in 

the dimorphic and the monomorphic regions. According to the Lloyd and Webb model 

disassortative mating prevailed in most populations in Hinojos, while estimates of γm showed 

a trend to increased disassortative mating in Alcaidesa. Overall these results indicate that, in 

contrast to our hypothesis, disassortative mating occurred independently of the site. Hence, 
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our results on mating patterns of N. papyraceus cannot explain the disappearance of the S-

morph in the northern limit of the species range. In addition, we found similar female 

fecundity and siring success of both floral morphs in both regions, which can neither account 

for the disappearance of the S-morph in the northern range. According to the observed 

patterns of pollination efficiency in floral morphs of N. papyraceus (Simón-Porcar et al. 

2014), seed production in the S-morph depends on the action of long-tongued pollinators 

that, in contrast to the observed trends in previous studies (Pérez-Barrales et al. 2007, 

Santos-Gally et al. 2013), were probably as frequent as short-tongued pollinators during our 

experiment in Hinojos. Inter-annual variability in pollinator activity might be determined by 

inconsistent weather conditions. However, during our experiment there were exceptional 

rainfalls in Alcaidesa but the weather in Hinojos matched the average conditions in the 

season. Hence, we cannot attribute our results contrary to our expectations in Hinojos to this 

reason, and other factors related to the oscillation of the insect populations should be 

involved. The only advantage reported for the S-morph in the dimorphic region was its higher 

assortative mating in one population at Alcaidesa, a result in concordance with female 

fecundity of experimental S-monomorphic populations in that region (Pérez-Barrales and 

Arroyo 2010). In contrast to our study, the previous work by Pérez-Barrales and Arroyo 

(2010) found a lower female fitness of the S-morph in the monomorphic region than in the 

dimorphic region. Their study included monomorphic populations of L- and S-morphs and 

isoplethic populations but not anisoplethic populations, which apart from weather may also 

explain the different results. Even though our experiment has not been able to detect 

differences between the monomorphic and dimorphic regions, the assessment of mating 

patterns among populations of different morph ratios sheds light into the maintenance of 

biased populations and the reversion to monomorphism. 
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According to the model of Lloyd and Webb (1992), populations should meet the 

conditions for increased disassortative mating in both morphs (i.e. satisfy equation 1 or 3 for 

the L-morph, and equations 2 or 4 from the S-morph, depending on the pollen limited 

conditions) to reach an equilibrium morph ratio. In our study, the four equations were 

satisfied in three populations in Hinojos, two isoplethic and one S-biased. Populations 2 

(Alcaidesa, Isoplethic) and 10 (Hinojos, L-biased) satisfied equations 1, 2 and 4, while the 

rest of populations met two conditions (either equations 1 and 3, or equations 2 and 4). In 

such cases the model equations 1 and 3 for disassortative mating prevailing to the L-morph 

were never satisfied in L-biased populations, while equations 2 and 4 for disassortative 

mating prevailing to the S-morph were never satisfied in S-biased populations (Table 1). 

According to the theory on negative frequency-dependent selection, this result indicates that 

assortative mating prevailed in the dominant morph in each population. Given the lack of 

heteromorphic incompatibility in N. papyraceus, this should lead to maintenance of biased 

morph ratios. This could account for the stability of biased populations and the reversion to 

monomorphism in the northern range of N. papyraceus, though the consistent loss of the S-

morph would require additional explanations. One such explanation comes from the putative 

inheritance system in Narcissus (Dulberger 1964), according to which assortative mating in 

the S-morph (heterozygote for the diallelic gene of stylar polymorphism) would lead to a 

percentage of L-morph individuals (homozygote recessive). This could account for the 

absence of S-biased populations in the wild, though the genetic base of stylar dimorphism 

needs to be explored. Second, mating disadvantages of the S-morph under the action of 

prevailing short-tongued pollinators could also account for the observed pattern (Santos-

Gally et al. 2013, Simón-Porcar et al. 2014). Finally, in case of no differences in assortative 

mating but with disassortative mating consistently higher than assortative mating in the S-

morph but not in the L-morph, like the trend shown, the L-morph would have greater siring 

success than the S-morph, and therefore a fitness advantage which could lead to its fixation 

in populations. 
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Effects of parental morphs on progeny performance 

In our study, we found some distinct features in the progeny from different parental morphs 

that could potentially have implications for the occurrence of floral morphs in the wild, and in 

particular for the maintenance of the S-morph. First, we attributed a higher number of 

seedlings from S-maternal parents to self-fertilization, as shown from previous hand 

pollinations (Arroyo et al. 2002). Two factors acting in concert may account for the higher 

probability of selfing in the S-morph: the late-acting self-incompatibility system of imperfect 

action of N. papyraceus, which is particularly weak in the S-morph, and the reduced 

dichogamy of the S-morph (Simón-Porcar et al. 2015a), as previously reported for N. 

assoanus (Cesaro et al. 2004). It is generally agreed that increased rates of self-fertilization 

have been proved to attain the maintenance of floral morphs in other style-polymorphic 

species (Barrett et al. 1989). In the case of N. papyraceus this advantage seems to be 

insufficient, maybe due to the associated negative effects of ovule discounting in late-acting 

self-incompatibility (Dulberger 1964, Sage et al. 1999). 

The second distinct feature of the S-morph was the better performance of the 

progeny of S-morph maternal parents, which germinated earlier than progeny of L-morph 

maternal parents. This result contradicts expected effects of increased pollen competition in 

long styles (Mulcahy and Mulcahy 1975, Mulcahy et al. 1983, McKenna 1986, Armbruster 

1996), and may derive from genetic differences between floral morphs. Quantitative genetic 

approaches would be an effective means by which to explore the mechanisms underlying 

this difference, such as pleiotropic effects of the alleles codifying stylar morphs (Eckert and 

Barrett 1995). Alternatively, the concealing of the S-stigmas could permit their longer 

receptivity due to lesser rate of successful pollination events, which would allow to the S-

morph to mate with a higher number of males increasing progeny fitness due to sexual 
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selection (Simmons 2005) or resource partitioning (Barton and Post 1986). Intra-fruit 

paternity analyses would be a useful way to test this hypothesis. 

 

Disassortative mating in Narcissus 

Theory on the evolution of sexual polymorphism emphasizes the role of disassortative 

mating in the evolutionary maintenance of different floral morphs in populations. In the 

evolution of heterostyly, enhanced inter-morph mating should be important for the 

establishment of intermediate stylar dimorphism (Lloyd and Webb 1992). In this study, we 

have directly estimated mating patterns for the first time in a stylar dimorphic plant. Our 

experimental design has also allowed us to obtain replicates for explicit testing of this 

question while increasing the percentage of paternal assignation up to 87%, something 

difficult to achieve in studies of natural populations. We have provided direct experimental 

evidence for the potential of stylar dimorphism in promoting disassortative mating in N. 

papyraceus, supported by similar results from goodness-of-fit tests, siring success modelling 

and the fulfillment of at least two Lloyd and Webb’s ( 992) model conditions in each 

experimental population. Taken together, our results help explain the commonness of stylar 

dimorphism in Narcissus and confirm previous studies on the genus using other methods 

(Pérez-Barrales and Arroyo 2010, Thompson et al. 2003, Cesaro and Thompson 2004, 

Hodgins and Barrett 2008).  

Disassortative mating is obligate in most heterostylous species due to their 

heteromorphic incompatibility system. The finding of disassortative mating in Narcissus 

style-polymorphic species, where both inter- and intra-morph crosses can succeed, reveals 

the central role of morphological reciprocity of sexual organs between floral morphs in 

promoting disassortative pollination, even when such reciprocity is imperfect. Though no 

overall differences have been found in the rates of disassortative mating between regions 

with prevalent either long- and short-tongued pollinators, disassortative pollination is 
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probably conducted by long-tongued pollinators (Santos-Gally et al. 2013, Simón-Porcar et 

al. 2014). The incompatibility system in Narcissus is probably shared with ancestors of the 

genus and is unrelated with the promotion of disassortative mating. Hence, our results could 

provide the basis for the maintenance of stylar polymorphisms in other taxa which also lack 

a heteromorphic incompatibility system, such as some Boraginaceae (Dulberger 1970, 

Philipp and Schou 1981, Schou and Philipp 1983, Ferrero et al. 2012), and support the 

independence of sexual polymorphism and physiological heteromorphic incompatibility. 
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Figure 1. Diagram of the long (L) and short (S) styled morphs of Narcissus papyraceus in 

longitudinal sections of flowers. 
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Figure 2. (a) Main distribution range of Narcissus papyraceus and experimental sites in the 

monomorphic and dimorphic regions of the species distribution range. (b) Arrangement of 

experimental population types with different morph ratios. L, L-morph; S, S-morph. 
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Figure 3. Growth of the progeny of each maternal morph throughout 16 weeks in a 

greenhouse experiment. Each data point is the average height of siblings with 95% 

confidence intervals. 
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Table 1. Observed / expected number of seedlings from each possible mating combination in each experimental population (maternal morph in 

first position). Results of the goodness-of-fit test between both distributions are given. The last column indicates the equations of the 

Lloyd and Webb (1992) model that were fulfilled in each population (Eqns.1 and 3: sufficient disassortative mating to maintain L-morph 

in populations with pollen-limited and non pollen-limited conditions, respectively; Eqns. 2 and 4: sufficient disassortative mating to 

maintain S-morph in populations with pollen-limited and non pollen-limited conditions). Significance: ***, P < 0.001; **, P < 0.01; *, P < 

0.05; ns, non significant. 

Region Morph Ratio Pop N L×L L×S S×S S×L Χ2-value L-W Eqs. 

Alcaidesa Isoplethic 1 73 28 / 33.6 21 / 15.9 2 / 7.6 22 / 15.9 8.94 * 2,4 

  Isoplethic 2 18 4 / 4.8 3 / 4.5 2 / 4.2 9 / 4.5 6.31 ns 1,2,4 

  L-biased 3 44 19 / 20.7 8 / 9.5 0 / 4.4 17 / 9.5 10.67 * 2,4 

  L-biased 4 38 21 / 15.6 11 / 8.7 0 / 4.9 6 / 8.7 8.18 * 2,4 

  S-biased 5 91 0 / 1.8 20 / 11.1 38 / 67.1 33 / 11.1 65.16 *** 1,3 

  S-biased 6 40 1 / 4.6 9 / 8.9 25 / 17.5 5 / 8.9 7.7 ns 1,3 

  S-biased 7 49 0 / 2.8 10 / 8.9 30 / 28.3 9 / 8.9 3.05 ns 1,3 

                    

Hinojos Isoplethic 8 72 7 / 17.3 28 / 18 8 / 18.7 29 / 18 24.56 *** 1,2,3,4 

  Isoplethic 9 26 1 / 5.2 6 / 6.4 7 / 7.9 12 / 6.4 8.38 * 1,2,3,4 

  L-biased 10 45 11 / 20 7 / 10 6 / 5 21 / 10 17.25 *** 1,2,4 

  S-biased 11 65 0 / 0.6 5 / 5.8 39 / 52.8 21 / 5.8 44.13 *** 1,3 

  S-biased 12 31 5 / 2.4 11 / 6.2 5 / 16.2 10 / 6.2 16.53 ** 1,2,3,4 
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Table 2. Results of univariate and multivariate models performed with PatQuest for the factors affecting siring success of individuals in each 

experimental population. A LLR test of heterogeneity in i is followed by presentation and statistical testing of: γs: effect of the spatial distance 

between mating pairs (univariate model); β (γm): effect of the number of flowers per individual estimated in a multivariate model jointly with the 

interaction between mating-pair morphs, γm (β). γm (λ): interaction between mating-pair morphs estimated jointly with the λ distribution. Log-

likelihood (LLR) test statistics and significance based on feature-based permutations (Smouse et al. 1999; left) and based on pedigree-based 

bootstrap (Morgan and Conner 2001; right) are given. ***, P < 0.005; **, P < 0.01; *, P < 0.05; ns, non significant. 

Site Morph Ratio Pop N LLR  γs LLR  β (γm) LLR  γm (β) LLR  γm (λ) 

Alcaidesa Isoplethic 1 85 34.87 -/*** 0.050 0.08 ns/ns 0.022 5.22 ns/* 0.291 2.00 ns/ns 0.688 

 Isoplethic 2 30 19.76 -/* -0.738 3.15 ns/ns 0.076 1.03 ns/ns 0.250 0.33 ns/ns 0.244 

 L-biased 3 47 31.21 -/*** 0.031 0.01 ns/ns 0.077 14.09 ns/*** 0.394 3.76 ns/ns 1.744 

 L-biased 4 47 22.02 -/ns -0.150 0.31 ns/ns 0.029 1.73 ns/ns 0.463 3.22 ns/ns 1.638 

 S-biased 5 107 49.71 -/*** -0.295 3.80 ns/* 0.050 0.03 ns/ns 0.925 18.79 ns/*** 0.909 

 S-biased 6 54 24.11 -/*** -0.144 0.35 ns/ns 0.029 0.88 ns/ns -0.306 1.02 ns/ns 0.044 

 S-biased 7 56 27.73 -/** 0.188 0.50 ns/ns -0.014 0.13 ns/ns 0.297 1.42 ns/ns 1.475 

                

Hinojos Isoplethic 8 83 11.76 -/ns -0.584 9.65 ns/*** -0.008 0.03 ns/ns 1.075 25.96 ***/*** 1.144 

 Isoplethic 9 30 23.43 -/*** -0.438 2.30 ns/ns 0.406 14.33 */*** -0.431 3.68 ns/ns -0.525 

 L-biased 10 71 33.64 -/*** -1.081 24.26 ***/*** 0.172 15.45 */*** -0.156 1.65 ns/ns -0.041 

 S-biased 11 108 16.23 -/ns -1.363 49.59 ***/*** 0.026 2.30 ns/ns -0.075 0.91 ns/ns 0.766 

 S-biased 12 38 12.95 -/ns 0.463 2.30 ns/ns -0.215 2.32 ns/ns 0.500 2.33 ns/ns 0.263 
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 Table 3. Results of the progeny growth experiment. a) Results of the Generalized Linear Models testing the effect of maternal morph on four 

growth curve parameters measuring the performance of all germinated siblings (i), and the effect of both parental morphs and their 

interaction on the performance of siblings assigned to a paternal parent (ii). Degrees of freedom (d.f.) and F-values are given. 

Significance: *, P < 0.05; ns, non significant. b) Mean (± SD) of four parameters that define the growth curves of the progeny from 

different parental morphs. N, number of siblings; Λ, length of lag phase (weeks); µ, maximum growth rate (mm/week); A, maximum 

growth (mm); I, integral (mm*week). L, L-morph; S, S-morph. 

 

 

 

 

 

 

 

 

a Fixed effect d.f. / d.f. error   µ λ              A                I 

 I Maternal morph (M) 1 / 2014 0.12 ns 331.81 *** 45.33 *** 146.61 *** 

    
      ii Maternal morph (M) 1 / 591 2.34 ns 46.77 *** 1.04 ns 19.43 *** 

  Paternal morph (P) 
 

0.22 ns 2.26 ns 3.59 ns 0.08 ns 

  M × P 
 

0.11 ns 0.00 ns 0.25 ns 0.27 ns 

    
      b Parental morphs N 

     I L maternal parent 874 50.5 ± 14.4 7.6 ± 2.6 182.9 ± 57.9 1195.2 ± 636.5 

  S maternal parent 1231 50.3 ± 14.5 7.1 ± 2.8 192.4 ± 59.3 1335.7 ± 719.7 

    
      ii L × L cross type 97 56.6 ± 14.1 6.6 ± 2.2 225.3 ± 47.3 1578.8 ± 573.9 

  S × S cross type 162 54.8 ± 11.8 6 ± 2.3 222.9 ± 48.1 1692.9 ± 670.4 

  L × S cross type 139 57 ± 13.2 6 ± 2 222.5 ± 55 1706.0 ± 640.3 

  S × L cross type 194 55.8 ± 11.7 5.7 ± 2 229.4 ± 44.9 1784.7 ± 610.5 


