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ABSTRACT 
Identifying critical shifts in ecosystems caused by human impacts has become a priority for 

understanding resilience to change and setting realistic management goals. Previous work suggests that 

many British blanket peats have suffered a loss of functional integrity over recent centuries, but it is 

unclear whether all moorland habitats are equally vulnerable. This study examines the relative 

sensitivity of four contrasting moorland communities to historic land-use changes and assesses whether 

these management pressures are pushing some moorlands beyond their Holocene range of variability. 

Late Holocene dynamics in the Peak District, northern England, were investigated using high-resolution 

pollen, fungal spore and charcoal data, and multivariate analyses. All sites show high Calluna values 

during the nineteenth century and converge on local Poaceae-dominance during the twentieth century. 

This involved a shift from gradual or cyclical variability and moderate changes in pollen abundance 

during preceding centuries, to rapid transitions between mono-dominant pollen assemblages and a 

functional shift to taxa with competitive traits; these are interpreted as a regime shift. Evidence for the 

recent recovery of dwarf-shrubs and Sphagnum is strong at one site, with slight evidence from two 

others, but disturbance could push the system back to grass-dominance. The deep blanket peat site may 

have crossed a threshold, leading to a persistent grass-dominated state. Studying regime shifts on 

decadal to centennial scales can help bridge the gap between ecology and palaeoecology by providing a 

robust basis for assessing vulnerability, setting restoration priorities and managing novel peatland 

states. 
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Introduction 
Long time-series are essential for understanding the variability that underpins ecosystem function and 

for detecting when a system is moving outside its ‘normal’ response range (Jackson 2006; Wolkovich et 

al. 2014). This is particularly relevant for peatlands because they contribute substantially to biodiversity, 

biogeochemical processes and ecosystem services, and are also at high risk of degradation from climate 

change and inappropriate management (Gallego-Sala et al. 2013; Holden et al. 2007; Parish et al. 2008). 

The United Kingdom (UK) is amongst the top ten countries in terms of peatland area, supporting around 

9-15% of Europe’s peatland, but only ca. 20% of UK peatlands are considered undamaged (Bain et al. 

2011; Tallis 1998). Numerous changes over the last ca. 200–800 years have contributed to a loss of 

functional integrity in some UK peatlands, including regional evidence for the contraction of heather 

(Calluna vulgaris) moorland and spread of unpalatable grasses (Poaceae: mainly Molinia caerulea and 

Nardus stricta), the local extinction of key peat-forming Sphagnum species and onset of extensive 

blanket peat erosion (Chambers et al. 2007a; Hughes et al. 2008; Stevenson and Thompson 1993; Tallis 

1998; Tipping 2000; higher plant nomenclature follows Stace 2010). It is therefore unsurprising that 

several authors have advocated the use of palaeoecology to inform peatland conservation and 

restoration (Chambers et al. 2007a; Davies and Bunting 2010). 

 

Most existing analyses, however, either derive from lakes with a regional pollen source area reflecting 

catchment-scale trends rather than community-level patterns, or focus on ‘degraded’ communities, 

such as eroding blanket peat or grass-dominated moors. As a result, it is unclear whether all moorland 

habitats should be considered equally vulnerable or if they exhibit differential sensitivity to stress which 

could help prioritise sites for conservation and restoration. In particular, there is a lack of data on the 

dynamics of non-eroding communities during recent centuries, when severe impacts have emerged. 

This creates uncertainty about the extent of moorland turnover (Dallimer et al. 2009) and the role of 

burning in sustainable management (Lee et al. 2013). Extrapolating across heterogeneous upland 

terrain may underestimate the extent of past spatial heterogeneity and temporal variability (Davies and 

Tipping 2004; Fyfe and Woodbridge 2012), so high spatial-resolution pollen analyses from different 

peatland habitats can usefully be employed to address these issues. This is also the scale at which 

palaeoecology can contribute to management (Davies and Bunting 2010). 

 

This paper examines changes in the late Holocene (historic) range of variability across a network of four 

non-eroding sites, i.e. with continuous vegetation cover, and representing a gradient from degraded 

grass-dominated moor (grassmoor) to heather moorland with high conservation-value. It assesses 

whether changes in the relative abundance of the main moorland taxa (Calluna and Poaceae) are 

comparable with previous findings, indicating regional homogenisation (Chambers et al. 1999, 2013; 

Smart et al. 2006; Stevenson and Thompson 1993), or whether they show heterogeneous patch-scale 

dynamics indicative of differential sensitivity to late Holocene land-use pressures. The paper then 

considers whether cumulative pressures during the late Holocene have caused some moorland 

communities to move beyond their previous range of variability, and assesses the implications for 

conservation management, particularly the restoration of heterogeneity on grass-dominated moors. 
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Study area 
The study sites are located in the Peak District, South Pennines, northern England (Fig. 1). The Pennine 

uplands contain the main area of deep blanket peat in England (Joint Nature Conservation Committee 

2011). South Pennine moors lie on the south-eastern range limits for extensive, deep blanket peat in 

Britain, and so are at risk from climate change (House et al. 2010). Historic and twentieth-century 

grazing densities were high, and the moorlands inherited a heavy pollution burden from adjacent, 

formerly industrial, cities and towns (Dallimer et al. 2009; Lee 1998; Shimwell 1974). These accumulated 

pressures contributed to extensive erosion which may challenge ecosystem capacity for recovery and 

have costly implications for biodiversity conservation, managing carbon budgets and water quality 

(Anderson et al. 2009; Worrall et al. 2006). 

 

Materials and methods 
 
Site selection 
Four sites were selected along a gradient from ‘degraded’ grassmoor on deep blanket peat (Withens 

Moor), where drainage may enhance decomposition and reinforce Molinia dominance (cf. Tallis 1985), 

to a Calluna-rich moor (Emlin Dike) which represents an internationally-distinctive community and 

restoration target (Thompson et al. 1995) (Table 1, Online resource 1). These are complemented by two 

grass/dwarf-shrub moors with heterogeneous hydrology and vegetation, including some Vaccinium 

oxycoccos, V. myrtillus and Erica tetralix (Bar Brook; Cranberry Bed). All sites are grazed, and heather 

cover on Emlin Dike has been managed by rotational patch burning for grouse production since AD 1950 

(Estate manager, 2010, personal communication). The topography and small diameter of the sampling 

sites suggest that vegetation growing within ca. 2–50 m dominates the pollen signal (particularly for 

herbaceous and heath taxa), with smaller contributions from the surrounding 400–1000 m (Broström et 

al. 2005; Bunting 2003). The sites thus record community variability on a spatial scale comparable with 

ecological monitoring, albeit with differing taxonomic resolution. High-resolution analyses focus on 

recent centuries. As Peak District moors have been monitored since 1913, this provides a century of 

overlap between ecology and palaeoecology (Online resource 2). 

 

Sampling and analysis 

A 50 cm peat core was extracted at each site using a golf-hole corer, which allows an undisturbed 

sediment core to be obtained from poorly-humified, near-surface peat deposits. Cores were analysed 

for pollen, non-pollen palynomorphs (NPP) and microscopic charcoal. Analysis of 0.5 cm3 samples 

followed standard pollen processing techniques (Moore et al. 1991). Pollen identification was based on 

standard keys (Moore et al. 1991) and the University of Stirling reference collection. Pollen 

nomenclature follows Bennett (1994). Vaccinium-type follows Bennett (1994). Grains were identified as 

Erica where colpus margins were sufficiently clear to permit distinction (cf. Oldfield 1959). Ericales 

includes all ericoid tetrads that could not be identified to a higher taxonomic unit. Selected NPP were 

identified and counted on pollen slides to provide additional proxies for grazing (coprophilous fungal 

spores: Sporormiella HdV-113, Sordaria-type HdV-55A, Podospora-type HdV-368), burning 

(Gelasinospora HdV-1, Gelasinospora cf. reticulispora HdV-2, Coniochaeta xylariispora HdV-6, 

Neurospora HdV-55C), and particular moorland taxa or hydrological conditions (Meliola ellisii HdV-14, 

Trigocladium opacum HdV-10, HdV-18) (van Geel 1978; van Geel and Aptroot 2006; Yeloff et al. 2007). 

Microscopic charcoal fragments >10 μm were counted on pollen slides in different size classes as a 

proxy for burning. Charcoal quantities were overwhelmingly high in a few samples (primarily dated to 

the 20th century), so only fragments >75μm were tallied in these. A minimum of 300 total land pollen 

(TLP, including bog taxa as important components of moorland vegetation, but excluding aquatic taxa 
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and spores) was counted for each sample (mean count: 352 TLP). Percentage values for taxa outside the 

TLP sum were calculated as TLP + taxon. Non-pollen sums (charcoal fragments, NPP) were calculated as 

a percentage of TLP. 

 

Pollen diagrams were constructed using TILIA and TILIA*GRAPH, with local pollen assemblage zones 

defined at each site using constrained sum of squares analysis (Grimm 1987) to identify periods of 

similar pollen composition. Changes in pollen diversity are estimated using rarefaction (Birks and Line 

1992) implemented in Psimpoll 4.27 (written by K.D. Bennett) with a standardised pollen sum of 300 

TLP. Using small sites maximises the local pollen signal (alpha-diversity) over landscape and regional 

pollen contributions (gamma-diversity). Rarefaction results are interpreted as an indication of species 

richness and vegetation evenness, since changes in local population size are likely to influence 

palynological richness values at sites with a small pollen source area (Birks and Line 1992; Odgaard 

2013). 

 

The combined pollen dataset from the four sequences was analysed using principal components 

analysis (PCA) to compare compositional differences and trajectories between sites. Gradient length in 

an initial detrended correspondence analysis was <2 SD, indicating that a linear response model was 

appropriate. Only taxa with a value of ≥2% in at least one site were included to avoid rare types biasing 

the analysis. To compare the extent of compositional change among sites, each sequence was also 

analysed using detrended canonical correspondence analysis (DCCA). Gradient length on the first DCCA 

axis provides an estimate of the amount of compositional turnover (beta-diversity) over time (Birks 

2007). Sample age was used as the external constraint (canonical variable). DCCA was implemented for 

each full sequence and also for the period since ca. AD 1860 to summarise the amount of turnover for 

the longest common timespan represented in all four profiles. Percentage data were square-root 

transformed prior to PCA and DCCA analysis to stabilise variance, and were detrended by segments. 

Ordinations were carried out in Canoco 4.5 (ter Braak and Smilauer 2002). 

 

The sequences were dated using radiocarbon (AMS 14C ) ages, calibrated using Calib 7.1 and INTCAL13 

(Reimer et al. 2013), combined with lead-210 (210Pb) and spheroidal carbonaceous particle data (SCPs: 

soot particles from fossil fuel combustion; Yang et al. 2001, method modified by R. McCulloch, unpubl.). 
210Pb and SCP records provide generally more precise age estimates than 14C after AD 1850 (Oldfield et 

al. 1995; Rose and Appleby 2005). 210Pb dates were obtained from the Environmental Radioactivity 

Laboratory, University of Stirling, and ages were calculated using the Constant Rate of Supply model 

(Oldfield and Appleby 1984). Calendar ages were assigned to the earliest appearance of SCPs (AD 1850 ± 

25), rapid rise (AD 1955 ± 15) and peak concentration (AD 1974 ± 4) using data from UK lake profiles 

that have been dated using radiometric methods (Rose and Appleby 2005). The study area lies on the 

boundary between three UK SCP regions (Rose and Appleby 2005), and age estimates were based on an 

average of two of these (the south and central, and north-western England regions), excluding the third 

(north-east England region), where sites are fewer in number and more distant from the study area. A 

composite chronology was constructed for each site using the probability-weighted average of the 

calibrated 14C dates to provide basal age estimates, with 210Pb and SCP ages to constrain the chronology 

from ca. AD 1850 to the present, assuming a linear rate of accumulation between dated samples. 

 

Results 
 
Chronology and basis for vegetation interpretation 
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The chronological data and time-depth curve constructed for each sequence are shown in Fig. 2. All 

dates are presented in calibrated years AD. The three key SCP dating horizons compare well (within 

error margins) with the 210Pb results for three of the sites and the more highly-resolved 210Pb dates were 

used to construct the chronologies at all sites. Divergence between 210Pb and SCP results at Cranberry 

Bed occurs mainly near the limits of the 210Pb method, which could suggest that the chronology is 

subject to a higher uncertainty. The SCP estimate for AD 1850 was therefore included in this chronology. 
14C dating is omitted from the Emlin Dike chronology because the discrepancy between the basal 14C 

date (cal. AD 1580 at 49 cm) and 210Pb and SCP dates (nineteenth century AD ages below 46 cm) 

indicates a potential hiatus or contamination by older carbon at the base. The SCP estimate for AD 1850 

was also used at Withens Moor due to an incomplete 210Pb inventory. 

 

Peat accumulation rates were much higher at the fen sites (Cranberry Bed, Emlin Dike) than the blanket 

peats (Bar Brook, Withens Moor). The sequences span the last 200–1200 years (Figs. 3-6), with longer 

records available from the blanket peat sites. Sampling intervals of 2-4 cm (occasionally less during key 

transitions) at all sites produced histories with differing temporal resolution. There is an average of ca. 

10–60 years between samples (mean sampling resolution ca. 10–15 years after AD 1850 in less 

humified, acrotelm peat at all sites) and each sample represents ca. 3–7 years of pollen accumulation. 

 

Pollen data are interpreted as a reflection of changing vegetation community composition based on 

comparisons between pollen assemblages from plant growth at the top of the cores and current 

vegetation (Table 1), and general pollen productivity patterns (Broström et al. 2008; Bunting 2003). 

Calluna and Poaceae pollen dominate the top of core samples, as reflected in their positions across PCA 

Axis 1 (Online resource 3): heather-dominant moorland at Emlin Dike contributes 60% Calluna pollen, 

while substantial areas of grass dominance (primarily M. caerulea) at Withens Moor contribute 60% 

Poaceae pollen. Cranberry Bed and Bar Brook show intermediate Calluna and Poaceae values. Co-

dominant pollen taxa at Cranberry Bed (32% Poaceae, 23% Erica and Vaccinium-type, 15% Calluna) 

reflect the approximately equivalent pollen contribution of heath, grass and fen communities. On this 

basis, 60–70% Calluna and Poaceae pollen values are considered to indicate that ling and grasses were 

the dominant contributors to the vegetation within the pollen source area. Herbaceous taxa such as 

Potentilla-type (cf. P. erecta) and Rumex spp. are indicative of acidic conditions, and, with Plantago 

lanceolata and coprophilic fungal spores (CFS), reflect the sheep grazing observed around all sites 

during sampling. Sphagnum spores are only recorded in any abundance in the topmost core sample 

from Bar Brook. 

 

Vegetation dynamics 

 

Bar Brook. From ca. AD 670–1690 (zone BB1) the assemblage is characterised by Poaceae with Calluna 

vulgaris, trees and shrubs, primarily Betula, Quercus and Corylus avellana-type (Fig. 3). In subzone BB1b 

(AD 890-1690), temporary increases in heather and then grass coincide with higher frequencies for 

Cyperaceae, Potentilla-type, Sphagnum and HdV-18, a NPP associated with wetter conditions and 

Cyperaceae pollen (van Geel 1978). Charcoal values are variable but remain comparatively high 

throughout zone BB1 and fungal spore types associated with charred material are also recorded 

(Gelasinospora HdV-1 and HdV-2, Coniochaeta HdV-6). Zone BB2 (AD 1690-1920) is characterised by a 

shift towards Calluna dominance, with increased values for P. lanceolata and reduced occurrence of 

many herb pollen taxa. This coincides with a reduction in arboreal pollen (AP) values. Charcoal values 

are also lower and HdV-18 disappears. Rarefaction values rise through subzone BB1b, before declining 
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as Calluna frequencies increase. Poaceae pollen dominates the assemblage in zone BB3 (AD 1920-2008), 

with reductions in Calluna and the two most common herb taxa, P. lanceolata and Potentilla-type. CFS 

(Sporormiella HdV-113, Sordaria HdV-55A and Podospora HdV-368) are recorded at higher levels, as is 

Coniochaeta xylariispora (HdV-6), a non-obligate dung fungus. Rarefaction values rise with the transition 

towards a more mixed pollen assemblage (AD 1060-1550), before declining as Calluna and then 

Poaceae frequencies increase. AP values, including coniferous and deciduous taxa, rise after ca. AD 

1930, with a slight increase in Calluna values. 

 

Withens Moor. Subzones WM1a and WM1b (AD 830–1880) are characterised by rising Calluna 

frequencies and decreasing tree and shrub values, particularly after ca. AD 1620 when Poaceae levels 

increase (Fig. 4). Charcoal frequencies are comparatively high. P. lanceolata and CFS values rise at ca. AD 

1410 and increase further at ca. AD 1720, when Sphagnum disappears from the record. Calluna 

representation declines and Poaceae values increase in subzones WM1c and 2a (AD 1880–1930). 

Plantain and CFS frequencies peak during this transition and AP values rise. A high abundance of 

charcoal fragments is present from ca. AD 1890–1940 and at ca. AD 1970, but no pyrophilic NPP are 

recorded, with the possible exception of C. xylariispora (HdV-6) which may be responding to grazing 

and/or burning (Yeloff et al. 2007). Grass pollen remains dominant up to AD 2008 and input from all 

Ericaceae types is low after ca. AD 1910 (subzone WM2b). There are no strong rarefaction trends. 

 

Cranberry Bed. Calluna is the main pollen producer in zone CB1 (AD 1800–1870), with continuous curves 

for Meliola ellisii (HdV-14) and Trigocladium opacum (HdV-10), which are associated with Ericaceae 

roots and relatively dry peat, respectively (van Geel 1978; Yeloff et al. 2007) (Fig. 5). P. lanceolata values 

rise through the zone, with peak levels of CFS and C. xylariispora (HdV-6) at the end of zone CB1 and in 

subzone CB2a (AD 1870–1880). Temporary increases in Empetrum nigrum and then Poaceae occur in 

subzone CB2a. Calluna values recover in subzone CB2b (AD 1880–1960), but Meliola (HdV-14) and 

Trigocladium (HdV-10) spores are largely absent, suggesting localised heather loss. Sphagnum declines 

markedly around AD 1880. Plantain remains the most abundant herb pollen type in subzone CB2b, 

although CFS values are lower and discontinuous. Heather is replaced by Poaceae with rising tree pollen 

values, particularly Pinus sylvestris, in zone CB3 (AD 1960–2008). Samples were black with charcoal 

during rising and peak grass values at ca. AD 1910 and 1970, respectively. The plantain curve declines 

and consistent, low levels of CFS are recorded during zone CB3. Palynological richness fluctuates around 

the mean, with higher values associated with mixed pollen assemblages. 

 

Emlin Dike. Calluna is the main pollen producer in zone ED1 (Fig. 6). A stepped rise in Poaceae around 

AD 1950 coincides with increased charcoal values. P. lanceolata and Sordaria (Hdv-55A) are the most 

consistent herb and CFS types, respectively. Zone ED2 (AD 1960–1980) is characterised by a switch from 

heather to grass pollen abundance and comparatively high charcoal values. Calluna values exceed 

Poaceae in zone ED3 (AD 1980–2008), in which palynological richness is also higher. Empetrum is 

present at low frequencies from ca. AD 1980 and Sphagnum values become continuous from ca. AD 

2000, when plantain frequencies decline but Sporormiella (HdV-113) is consistently recorded. AP values, 

including Betula, P. sylvestris and Quercus, are higher from ca. AD 1990. 

 

Ordination 

In the PCA (Online resource 3), Axis 1 (explaining 52% of variation) differentiates between the relative 

abundance of Poaceae (positive values) and Calluna (negative), and Axis 2 (17% variation) separates the 

pre-eighteenth century AD landscape, with relict native tree and shrub growth (positive), from more 
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recent moorland with plantation trees (negative values). The sites are locally treeless, so 10–26% tree 

pollen at the top of the cores reflects trees in the surrounding landscape and long-distance transport, 

especially at Cranberry Bed and Withens Moor, which lie in catchments with extensive conifer 

plantations. Extralocal and regional AP values thus exaggerate the separation of the four sites on PCA 

Axis 2. Sample scores for the two shorter sequences (Cranberry Bed and Emlin Dike) align with Axis 1, 

shifting between Calluna (negative) to Poaceae (positive) values. Emlin Dike shows the strongest shift 

back towards the quadrant dominated by dwarf-shrubs (negative values on Axes 1 and 2) over recent 

decades. Bar Brook displays a near circular trajectory, transitioning from a grass/dwarf-shrub/tree 

assemblage towards Calluna and then Poaceae scores, before fluctuating between high grass and more 

mixed species scores during the late twentieth century. Withens Moor displays the strongest directional 

trend, reflecting the loss of trees and shrubs during the transition to high Calluna scores, before the 

twentieth century shift to Poaceae dominance. This site also exhibits the highest amount of 

compositional change in the DCCA summary statistics (Online resource 3). Sample scores for Cranberry 

Bed show relative stability around the dwarf-shrub quadrant prior to ca. AD 1950 and this sequence has 

the least compositional change from AD 1860–2008, the time period represented at all sites. All 

sequences exhibit higher compositional change (turnover) near the base of the profile and a slight rise 

in turnover approaching AD 2008 (Figs. 3-6). For Bar Brook and Withens Moor, the extent of 

compositional change is greatest post-AD 1860 than for the full profile. Lower rarefaction values and 

reduced or stabilised turnover are common during phases of increased grass and heather pollen 

abundance (Figs. 3-6). 

 

Discussion 

The vegetation histories of the four study sites are compared and set in the context of previous 

palaeoecological evidence from the Pennines and the UK before discussing the evidence for regime 

change and implications for conservation. 

 

Late Holocene moorland dynamics 

Open moorland has dominated the Pennines for over 2000 years (Hicks 1971; Tallis 1991), although the 

two older records from Bar Brook and Withens Moor, spanning the last ca. 1200–1340 years, indicate 

that fragmented tree and shrub cover persisted until the seventeenth century AD (Scurfield 1999). At 

Withens Moor, an increase in P. lanceolata and coprophilic fungal spore (CFS) levels at ca. AD 1400 and 

1700 suggests that grazing intensification allowed Calluna moorland to replace tree cover. There are no 

marked changes in grazing indicators or CFS at Bar Brook, suggesting that prolonged grazing led to 

gradual woodland attrition and the expansion of a mixed grass-heather community. Consistent charcoal 

values and associated pyrophilic NPP suggest that fire was also used in management and may have 

contributed to the contraction of trees and shrubs. The economic importance of livestock, particularly 

sheep, is likely to have encouraged pastoral expansion (Anderson and Shimwell 1981; Shimwell 1974). 

These sequences indicate that Calluna dominance emerged via different trajectories. At Bar Brook, 

heather values increased following cyclical changes heather and grass; a similar relationship is evident 

on other British moors over the last ca. 1200–2000 years (Chambers et al. 1999, 2007b). The stepped 

rise in Calluna values at Withen Moor indicates that some heathland formed via a more direct process 

of tree replacement and moorland expansion. 

 

Calluna pollen values of 60–80% are recorded in all four sequences during the nineteenth century, 

suggesting that heather-dominated moorlands were regionally widespread. This compares well with 

extensive heather moorlands mapped in the South Pennines during the early twentieth century 
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(Anderson and Yalden 1981; see Online resource 2). When these first developed in the region is less 

clear: Calluna pollen values rise above 60% from ca. AD 1460 at Withens Moor, but not until nearly four 

centuries later at Bar Brook (ca. AD 1820). High Calluna values are present at the base of the sequences 

from Cranberry Bed (ca. AD 1770) and Emlin Dike (ca. AD 1870), so it is not possible to establish when 

heather dominance first emerged there. Some existing pollen records from the south, central and north 

Pennines show a mid–late nineteenth century rise in Calluna abundance (Hicks 1971; Livett et al. 1979) 

and a similar pattern is evident in moorland sequences from northern England and south Wales, dated 

to the nineteenth and twentieth centuries (Atherden 2004; Chambers et al. 2007a; Livett et al. 1979; 

Turner et al. 2014). This may indicate a widespread shift in moorland composition between the mid-

nineteenth and twentieth centuries, with some sites, like Withens Moor, showing long-standing heather 

dominance. 

 

The subsequent rapid replacement of Calluna by high Poaceae values at all four sites is also comparable 

with previous evidence for the loss of heather and spread of grasses in the Pennines and on many 

British blanket moors over the last ca. 100–500 years, particularly in England and Wales (Chambers et al. 

1999, 2007b; Conway 1947; Eyre 1966; Hicks 1971; Stevenson and Thompson 1993; Tallis 1964, 1985). 

The range of dates for reductions in Calluna pollen (from ca. 1900 at Withens Moor to 1960 at Emlin 

Dike) indicates that heather contraction was asynchronous not only between but also within regions 

(Stevenson and Thompson 1993). 

 

In common with previous studies, changing grazing and burning regimes are likely to be the main 

mechanisms for heather and grass expansion in this study, possibly interacting with drainage and the 

deposition of atmospheric pollution (Chambers et al. 2007a; Davies and Dixon 2007; Stevenson and 

Rhodes 2000; Yeloff et al. 2006). However, interpretation of grazing proxies is by no means 

straightforward since pollen indicators (Behre 1981) and CFS values show similar trends at some sites 

and times, but contrasting relationships at others. For instance, at Withens Moor, there is similarity in 

subzone WM1b (with Calluna expansion), but a reciprocal pattern (lower P. lanceolata and higher CFS 

values) in subzones WM2a and WM2b (with grass expansion). Reciprocal trends are a feature of 

twentieth century grass-dominated assemblages (e.g. zones BB3 and CB3, late in zone ED3), and were 

also recorded during the preceding temporary grass increase at Cranberry Bed (subzone CB2a). Stocking 

densities were high during the second half of the twentieth century (Dallimer et al. 2009). Intense 

herbivory, disturbance and competition could have increased the abundance of dung (and hence CFS) 

while reducing the flowering or abundance of grazing-resistant herbs (cf. Gill et al. 2013; Hjelle 1998). 

This inference would benefit from further testing, including the potential influence of increased extra-

local tree pollen on local pollen representation. 

 

The complexity of the grazing signal highlights the difficulty of identifying causal factors, many of which 

are likely to have had interacting and cumulative impacts. This is evident from palynological and NPP 

dynamics during grass expansion. The tussock-forming habit of coarse grasses, such as Molinia, can 

enable them to resist burning and grazing, particularly if heather is checked by winter grazing (Hulme et 

al. 2002; Taylor et al. 2001). For example, at both Withens Moor and Emlin Dike, the transition to 

Poaceae abundance coincides with higher grazing indicators (P. lanceolata, CFS) and high charcoal 

abundance. A continuous curve for C. xylariispora (HdV-6) at Emlin Dike indicates local burning (Yeloff et 

al. 2007). The spread of grasses at Withens Moor and Bar Brook may have been reinforced by moorland 

drainage, inferred from reduced Sphagnum values at Bar Brook around AD 1880, and from increases in 
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Empetrum and Cyperaceae representation at Withens Moor around AD 1900–1960. Similar responses 

have been recorded on eroding blanket peats due to gullying (Tallis 1994, 1997). 

 

Proximity to former industrial centres led to high atmospheric pollution deposition in the Pennines and 

the disappearance of Sphagnum has been attributed to sulphate deposition (Lee 1998; Tallis 1964). 

However, the range of dates for Sphagnum disappearance (from AD 1770 at Withens Moor, to AD 1900 

at Cranberry Bed, and AD 1920 at Bar Brook) suggests that sulphate pollution compounded other 

pressures, rather than being the main cause of decline (Hughes et al. 2008; Yeloff et al. 2006). The 

twentieth century increase in nitrogen deposition may have reinforced grass dominance due to 

fertilisation and acidification effects, especially when combined with disturbance (Lee 1998; Maskell et 

al. 2010; Taylor et al. 2001). This could be a contributory factor at Withens Moor (cf. Chambers et al. 

2007a), but the reappearance of Sphagnum at the other three sites between 1960 and 1990 suggests 

that N-deposition has not exceeded critical levels in recent decades. 

 

Moorland regime shift and conservation implications 
The widespread emergence of common trends suggests that Pennine and other British moorlands 

exhibit regime change, that is, a shift beyond the bounds of recent ‘normality’ in terms of the patterns 

of turnover and the range of variability (Wolkovich et al. 2014). This is inferred from the shift from 

gradual or cyclical variability and moderate changes in species abundance before ca. AD 1800, to 

ecosystems characterised by more rapid transitions between mono-dominant pollen assemblages, and 

from the ‘atypically’ high historic Calluna and Poaceae values when viewed in a broader Holocene 

context (Chambers et al. 1999, 2007a, b; Hicks 1971). These features indicate an increase in the range of 

variability, extent and pace of turnover. The shifts occurred across a range of communities, from 

‘degraded’ grassmoor on eroding and uneroded blanket peat (Bar Brook, Withens Moor; Chambers et 

al. 1999, 2007a, 2013; Hicks 1971; Yeloff et al. 2006), to fen peats (Cranberry Bed), drier moors (Davies 

and Dixon 2007; Tipping 2000), and ‘high conservation value’ heather moorland (Emlin Dike; Stevenson 

and Thompson 1993). 

 

In addition to converging on local heather and then grass dominance, the pollen data suggest significant 

functional shifts in moorland floras. Intensified management since ca. AD 1800 (Berglund et al. 2008; 

Davies and Dixon 2007; Hanley et al. 2008) and within the last century (Jiang et al. 2013) has 

contributed to biodiversity loss in many ecosystems. No overall diversity trend emerges in this study, 

possibly due to comparatively low pollen counts and/or the characteristic low diversity of moorland 

vegetation. However, the palynological ‘winners’ and ‘losers’ indicate that competitive traits are 

required for survival during the late Holocene. Rising heather representation at Bar Brook is 

characterised by a prolonged decline in rarefaction which may reflect shifts in vegetation composition 

and/or the swamping effect of Calluna pollen on the probability of encountering other taxa (Fig. 3). 

Reductions in grazing-sensitive (e.g. Melampyrum, Pteropsida) and more grazing-tolerant taxa (e.g. 

Rumex, Rubiaceae), followed around AD 1950 by the disappearance of Potentilla-type (cf. P. erecta, 

which is considered unpalatable to livestock), suggest significant growth stress and homogenisation 

within the pollen source area. At Withens Moor, the taxa persisting after ca. AD 1900 are those that 

benefit from nutrient enrichment and have morphological and/or chemical defences that allow them to 

resist grazing pressure (e.g. P. lanceolata, Rumex, Urtica, Artemisia-type) (cf. Smart et al. 2005). These 

changes are in addition to the documented decline or regional extinction of distinctive moorland taxa, 

like Drosera rotundifolia and Andromeda polifolia (Anderson and Shimwell 1981; Chambers et al. 

2007a). These functional shifts are comparable with survey evidence for biotic homogenisation during 
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the late twentieth century (Smart et al. 2006), and emphasise the scale of the challenge facing 

conservation. 

 

Evidence of late Holocene regime shift in a range of moorland settings raises significant questions about 

the feasibility of restoration. Practical experience demonstrates that restoration of grassmoors is a 

costly, time-consuming and uncertain process (Marrs et al. 2004). The present findings are therefore 

used to assess the opportunities and difficulties likely to face conservation managers, based on longer-

term knowledge of changes in composition and dynamics. Some moorland communities have alternated 

between heather and grass over the last ca. 1200–1500 years (e.g. Bar Brook; Chambers et al. 1999, 

2007b), but it is unclear whether the systems can revert to this dynamic given the unprecedented 

extent of change during recent centuries. Recent evidence is equivocal. Positive indicators include 

ecological evidence that the study sites are in ‘recovering’ conservation condition, based on dwarf-

shrub diversity and structure (Table 1). This is partially supported by the palynological data. The 

vegetation and pollen data are in agreement at Emlin Dike, which shows a strong reversal of grass 

pollen dominance and corresponding recovery in Calluna and other dwarf-shrub values since ca. AD 

1970 (Table 1, Fig. 6). There is a more modest rise in Calluna at Bar Brook around AD 1980 (Fig. 3) and in 

Ericales within the topmost core sample at Cranberry Bed (Fig. 5), but no dwarf-shrub recovery is 

recorded at Withens Moor (Fig. 4). In part, differences between the vegetation and pollen evidence may 

be due to vegetative changes that are not yet evident in pollen production. The influx of extra-local 

plantation pollen may also influence local representation, particularly of comparatively low pollen 

producers like Ericales other than Calluna and Vaccinium (Broström et al. 2008). 

 

Increased dwarf-shrub representation (most notably in the pollen record at Emlin Dike) and rising 

diversity (such as the rarefaction trends at Emlin Dike and Cranberry Bed) are common early 

successional characteristics (Hobbs and Gimingham 1987). These could provide a favourable stage for 

increasing species richness and structural diversity through managed disturbance (Mitchell et al. 2008). 

The reappearance of Sphagnum at Cranberry Bed, Emlin Dike and Bar Brook since ca. AD 1960–1990, 

post-dating the AD 1956 Clean Air Act, also suggests local-level recovery from disturbance and sulphur 

deposition (Lee 1998). However, higher pollen values for Ericales other than Calluna were also recorded 

at all sites during the transition to Poaceae dominance, so recent mixed grass/dwarf-shrub assemblages 

represent a delicate balance that could switch back to grass dominance if burning, grazing or drainage 

stress occur. This illustrates the importance of using long time-series to identify potential turning points 

and vulnerabilities associated with them. 

 

In contrast, at Withens Moor, heather dominance begins earlier and the declines in Calluna and 

Sphagnum are more persistent than at the other study sites. This could reflect more intensive local 

land-use, but may also indicate the sensitivity of deep, extensive blanket peats to disturbance (Ellis 

2008; Tallis 1998). ‘Recovering’ conservation status relates mainly to steeper slopes with Nardus and 

bilberry/crowberry mix, than to wet areas with substantial Molinia. The failure of dwarf-shrubs to 

recover on deep peat at Withens Moor could suggest that the grassmoor represents a persistent state, 

rather than a temporarily ‘unfavourable’ phase in conservation management (Grime et al. 2008; Hobbs 

et al. 2009). Although the time-depth curve suggests that peat is continuing to accumulate (Fig. 2b), 

grass abundance can have negative impacts on peatland carbon balance under warmer conditions 

(Ward et al. 2013). This could lead to a switch from carbon sequestration to emission, particularly where 

peatlands are already showing signs of historical climate-induced drying or may face increased drought 

stress in the near future (House et al. 2010; Swindles et al. 2010; Worrall et al. 2006). 
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Conclusions 

Palaeoecological research on regime shifts often considers regional responses over millennial 

timescales, in recognition that these can unfold slowly and that non-equilibrium conditions may persist 

for millennia (Hughes et al. 2012; Jackson 2006; Wolkovich et al. 2014). The present data show how 

studying regime shifts on decadal to centennial scales using a multi-site approach can capitalise on the 

temporal overlap between palaeoecology and ecology. Moorland transitions appear abrupt on 

palaeoecological timescales, with the shift from peak heather to high grass values taking ca. 25–80 years 

(± <1–26 years), but from an ecological monitoring perspective, this trend would only become evident 

after multi-decadal surveys. This study indicates that even 100 years of intermittent ecological 

monitoring does not reveal the extent of moorland variability (Online resource 2). Without 

palaeoecological input, the slow unfolding of regime change and survey intervals which do not capture 

vegetation variability could lead to over-optimistic assessments of the ability of peatlands to tolerate 

environmental or management pressures. 

 

Quantitative approaches are increasingly used to assess regime shifts (Scheffer et al. 2009) and are also 

being applied to palaeoenvironmental data (Seddon et al. 2014; Streeter and Dugmore 2014). However, 

rigorous data demands mean that a statistical approach will not be applicable to all datasets. In this 

case, high-resolution data for the period predating the expansion of Calluna are needed to assess 

whether these systems show statistical signs of increasing sensitivity to perturbations or impending 

state change (e.g. critical slowing or increased variance). These may provide an empirical basis for 

assessing whether late nineteenth and twentieth-century communities represent a novel state in the 

history of the ecosystem. However, independent records of the management changes that may be 

causal will be difficult to obtain on appropriate spatial or temporal scales. In the absence of ‘ideal’ data, 

the results indicate the ability of multi-site, semi-quantitative approaches to identify regime shifts 

predating recent ecological records. Future work would benefit from cross-scale approaches to 

diagnose and monitor vulnerability. For example, combining high-resolution palaeoecology as an 

indicator of temporal mosaic dynamics (Williams et al. 2011) with spatial changes from monitoring and 

remotely sensed data (e.g. patch-size distribution as a measure of degradation; Kéfi et al. 2014) could 

provide a more robust method of assessing contemporary and long-term dimensions of ecosystem 

dynamics and contribute a more integrated temporal and spatial framework for managing 

environmental change (Wolkovich et al. 2014). 
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LIST OF FIGURE LEGENDS 

Fig. 1 Map of the study area showing the location of the four sampling sites and other geographical 

features. Inset shows the location of the study area (rectangle) in a British/Irish context and distribution 

of blanket peat (UK only) 

 

Fig. 2 Age-depth curves for study sites, showing 210Pb, spheroidal carbonaceous particle (SCP) and AMS 
14C age estimates with 95% confidence intervals, and the time-depth curve (TDC) constructed for each 

sequence. Basis for chronologies: (a) Bar Brook: 14C and 210Pb, omitting oldest 210Pb result because of 

large error range; (b) Withens Moor: 14C, 210Pb and SCP estimate for AD 1850 at 19 cm; (c) Cranberry 

Bed: 14C, SCP estimate for AD 1850 at 40 cm and 210Pb, omitting the two oldest 210Pb dates with high 

errors at the limits of detection for this method; (d) Emlin Dike: 210Pb only, omitting radiocarbon dates 

(see text for explanation) 

 

Fig. 3 Selected percentage pollen, NPP and charcoal data for Bar Brook, with palynological richness 

(rarefaction values and mean) and compositional change (DCCA, axis 1). Charcoal histogram represents 

all size classes, except where plus symbols (+) indicate samples with extremely high charcoal abundance 

when only fragments >75 μm (shown as line) were counted. Exaggeration x10 is indicated by a 

silhouette on selected curves. CFS = Coprophilic fungal spores 

 

Fig. 4 Selected percentage pollen, spore, charcoal and statistical data for Withens Moor. See Fig. 3 for 

details 

 

Fig. 5 Selected percentage pollen, spore, charcoal and statistical data for Cranberry Bed. See Fig. 3 for 

details 

 

Fig. 6 Selected percentage pollen, spore, charcoal and statistical data for Emlin Dike. See Fig. 3 for 

details 
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Table 1. Sampling site descriptions 

 

Site and location Description 

Bar Brook (BB) 

53°18’05’’N 1°34’49’’W, 360 m OD 

Channel mire on southern edge of blanket bog with wet heath, Molinia and dry heath, and adjacent dry acid 

grassland (all Biodiversity Action Plan [BAP] priority habitats). Many channels on this moor have been modified by 

drainage. Selected as a relatively rare intact deep peat; sampled previously to study prehistoric vegetation history 

(Hicks 1971). Main habitat: bog. Conservation status: ‘unfavourable recovering’ (March 2010) 

Withens Moor (WM) 

53°31’08’’N 1°50’53’’W, 440 m OD 

Peat shelf on west-sloping extensive deep blanket peat (>1.5-2.0 m), adjacent to Molinia and rush pasture (BAP 

priority habitats) with substantial areas of grass dominance, including Molinia and Nardus. Selected to assess timing 

and drivers of grass expansion on deep peat. Main habitat: acid grassland. Conservation status: ‘unfavourable 

recovering’ (March 2013) 

Cranberry Bed (CB) 

53°27’19’’N 1°44’38’’W, 290 m OD 

Fen showing acidic tendency, formed behind landslip at base of valley slope (Briggs et al. 1985), within Molinia and 

rush pasture, with upland heath and blanket bog on surrounding slopes and tops (all BAP priority habitats). Underlain 

by up to 4.1 m peat (University of Sheffield, 2004, unpublished). Selected to assess long-term ecology of valley-

bottom community with relatively species-rich mosaic. Main habitat: acid grassland. Conservation status: 

‘unfavourable recovering’ (March 2009) 

Emlin Dike (ED) 

53°25’54’’N 1°39’21’’W, 390 m OD 

Fen containing one of few deeper peat deposits on eastern heather-rich moors, located in heather-dominant upland 

heath with diverse dwarf-shrub heath and blanket bog (BAP priority habitats). Selected to examine heathland 

dynamics near the moorland-edge, in an area with a history of grouse management. Peat overlies sandy clay. Main 

habitat: dwarf-shrub heath. Conservation status: ‘favourable’, with localised bracken encroachment (September 

2012) 
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