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Abstract

We calculate the rank and idempotent rank of the semigroup E(X,P) generated by the idempotents of the
semigroup T (X,P), which consists of all transformations of the finite set X preserving a non-uniform partition P.
We also classify and enumerate the idempotent generating sets of this minimal possible size. This extends results
of the first two authors in the uniform case.
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1 Introduction

Let S be a monoid with identity 1, and E(S) = {s ∈ S : s2 = s} the set of all idempotents of S. For a subset U ⊆ S,
we write 〈U〉 for the submonoid of S generated by U , which consists of all products u1 · · ·uk with u1, . . . , uk ∈ U ∪{1}.
The rank of S, denoted rank(S), is the minimal cardinality of a subset U ⊆ S such that S = 〈U〉. If S is idempotent
generated, then the idempotent rank of S, denoted idrank(S), is the minimal cardinality of a subset U ⊆ E(S) such
that S = 〈U〉.

The full transformation semigroup on a set X, denoted TX , is the set of all transformations of X (i.e., all functions
X → X), under the semigroup operation of composition. Let P = {Ci : i ∈ I} be a partition of X; that is, the sets
Ci are non-empty, pairwise disjoint, and their union is all of X. The set

T (X,P) = {f ∈ TX : (∀i ∈ I)(∃j ∈ I) Cif ⊆ Cj},

consisting of all transformations of X preserving P, is a subsemigroup of TX . A calculation of rank(T (X,P)) for finite
X is given in [2] and [1] for the uniform and non-uniform cases, respectively. (Recall that P is uniform if |Ci| = |Cj |
for all i, j ∈ I.) We write E(X,P) = 〈E(T (X,P))〉 for the idempotent generated subsemigroup of T (X,P). In [3], the
first two authors calculated rank(E(X,P)) and idrank(E(X,P)) in the case of X being finite and P uniform; among
other things, it was shown that the rank and idempotent rank are equal, and the idempotent generating sets of this
minimal possible size were also classified and enumerated. The purpose of the current work is to extend these results
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to the non-uniform case. Our main results include the classification and enumeration of the idempotents of T (X,P)
(Propositions 3.1 and 3.2); the calculation of the rank and idempotent rank of E(X,P) (Theorem 3.16 — in particular,
the rank and idempotent rank are equal unless P has exactly two blocks of size 1 (and at least one other block)); and
the classification and enumeration of all idempotent generating sets of the minimal possible size (Proposition 3.15 and
Theorem 3.17).

2 Preliminaries

In this section, we state a number of results we will need concerning TX and T (X,P) for uniform P. For the
remainder of the article, we fix a finite set X. The group of units of TX is the symmetric group SX , which consists of
all permutations of X (i.e., all bijections X → X). Denote by EX = 〈E(TX)〉 the idempotent generated subsemigroup
of TX . We generally denote the identity element of any monoid by 1; in particular, 1 ∈ TX denotes the identity map
on X, which we also sometimes write as idX . If x, y ∈ X and x 6= y, then we write exy ∈ TX for the transformation
defined by

zexy =

{
x if z = y

z if z ∈ X \ {y}.
It is clear that exy ∈ E(TX) for all x, y. We write DX = {exy : x, y ∈ X, x 6= y}. The next result collects several facts
from [4–6]. We always interpret a binomial coefficient

(
m
n

)
to be 0 if m < n.

Theorem 2.1. Let X be a finite set with |X| = n ≥ 0. Then

EX = 〈DX〉 = {1} ∪ (TX \ SX).

Further, rank(EX) = idrank(EX) = ρn, where ρ2 = 2 and ρn =
(
n
2

)
if n 6= 2. 2

The minimal idempotent generating sets of EX were characterised in [6] in terms of strongly connected tournaments.
Such tournaments were enumerated in [7], and it was shown in [3] that any idempotent generating set for EX contains
one of minimal size.

Theorem 2.2. Let X be a finite set with |X| = n ≥ 0. Then any idempotent generating set for EX = 〈E(TX)〉
contains an idempotent generating set of minimal possible size. The number of minimal idempotent generating sets
for EX is equal to σn, where σ2 = 1 and σn = wn for n 6= 2, and where the numbers wn satisfy the recurrence

w0 = 1, wn = Fn −
n−1∑
s=1

(
n

s

)
wsFn−s for n ≥ 1,

where Fn = 2(n2) = 2n(n−1)/2. 2

The following analogues of Theorems 2.1 and 2.2 were proved in [3].

Theorem 2.3. Let S = E(X,P), where P is a uniform partition of the finite set X into m ≥ 0 blocks of size n ≥ 1.
Then rank(S) = idrank(S) = ρmn, where ρ21 = 2 and ρmn = mρn + n!

(
m
2

)
if (m,n) 6= (2, 1). The numbers ρn are

defined in Theorem 2.1. 2

Theorem 2.4. Let S = E(X,P), where P is a uniform partition of the finite set X into m ≥ 0 blocks of size n ≥ 1.
Then any idempotent generating set of S contains an idempotent generating set of minimal possible size. The number
of minimal idempotent generating sets for S is equal to σmn, where

σmn =


1 if m = 0

σn if m = 1

σm if n = 1

σmn ×
∑(m2 )
k=0 wmk(2n! − 2)k if m,n ≥ 2.

The numbers σn are defined in Theorem 2.2, and the numbers wnk satisfy the recurrence

w00 = 1, wnk = Fnk −
n−1∑
s=1

(
n

s

) k∑
l=0

wslFn−s,k−l for n ≥ 1,

where Fnk =

((n
2

)
k

)
· 2(n2)−k. 2

Remark 2.5. It might seem odd to include the m = 0 case (when X = ∅) in the previous two results, but these will
be useful for stating and proving later results such as Theorems 3.16 and 3.17.
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3 The semigroup E(X,P)

For a non-negative integer k, we write [k] = {1, . . . , k}, which we interpret to be empty if k = 0. We write Tk = T[k],
and similarly for Sk, Ek, Dk. Denote by T (k, l) the set of all functions [k]→ [l], noting that T (k, k) = Tk. The image,
rank and kernel of a function f : A→ B are defined by

im(f) = {af : a ∈ A}, rank(f) = |im(f)|, ker(f) = {(a, b) ∈ A×A : af = bf},

respectively. Obviously,

im(fg) ⊆ im(g), rank(fg) ≤ min(rank(f), rank(g)), ker(fg) ⊇ ker(f)

for all functions f : A→ B and g : B → C.

Recall that X is a fixed finite set. We also fix a non-uniform partition P = {C1, . . . , Cm} of X. We will write ni = |Ci|
for each i and assume that n1 ≥ · · · ≥ nm. We write n = |X| = n1 + · · · + nm. For convenience, we assume that
Ci = {i} × [ni] for each i ∈ [m], so X = {(i, j) : i ∈ [m], j ∈ [ni]}.

We now define some parameters associated to the partition P that will make statements of results cleaner (see especially
Theorems 3.16 and 3.17). For i ∈ [n], define the sets

Mi = {q ∈ [m] : nq = i} and Ni = {j ∈ [i− 1] : Mj 6= ∅} = {nq : q ∈ [m], nq < i},

and put µi = |Mi| and νi = |Ni|. In particular, µi is the number of blocks of P of size i. As an example, if n = 22,
m = 8 and (n1, . . . , n8) = (5, 5, 3, 2, 2, 2, 2, 1), then the values of µi, νi are as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
µi 1 4 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
νi 0 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Let f ∈ T (X,P). There is a transformation f ∈ Tm such that, for all i ∈ [m], Cif ⊆ Cif . Also, for each i ∈ [m],

there is a function fi ∈ T (ni, nif ) such that (i, j)f = (if , jfi) for all j ∈ [ni]. The transformation f ∈ T (X,P) is

uniquely determined by f1, . . . , fm, f , and we will write f = [f1, . . . , fm; f ]. The product in T (X,P) may easily be
described in terms of this notation. Indeed, if f, g ∈ T (X,P), then fg = [f1g1f , . . . , fmgmf ; fg]. Note that fg = fg
and (fg)i = figif ∈ T (ni, nifg) for all f, g ∈ T (X,P) and i ∈ [m]. When P is uniform, each fi belongs to T (n, n) = Tn
(where n is the common size of each block of P), and T (X,P) is a wreath product Tn o Tm, as noted in [2].

There is a useful way to picture a transformation f = [f1, . . . , fm; f ] ∈ T (X,P). For example, with m = 5, and
f = ( 1 2 3 4 5

2 2 4 2 5 ) ∈ T5, the transformation f = [f1, f2, f3, f4, f5; f ] is pictured in Figure 1. (Note that these diagrams are
not supposed to imply that the sets C1, . . . , Cm have the same size.) This diagrammatic representation allows for easy

f1 f2 f3 f4 f5

C1 C2 C3 C4 C5

Figure 1: Diagrammatic representation of an element of T (X,P).

visualisation of the multiplication. For example, if f is as above, and if g = [g1, g2, g3, g4, g5; g] where g = ( 1 2 3 4 5
1 3 1 4 4 ),

then the product fg = [f1g2, f2g2, f3g4, f4g2, f5g5; fg] may be calculated as in Figure 2. Such diagrammatic methods
may be used to verify various equations; an example is given in the proof of Proposition 3.3 (see Figure 4), but the
rest are left to the reader.

The next result was proved in [3, Proposition 3.1] in the context of uniform partitions, but the argument works
unmodified in the non-uniform case.

Proposition 3.1. A transformation f ∈ T (X,P) is an idempotent if and only if

(i) f ∈ E(Tm),

(ii) fi ∈ E(Tni) for all i ∈ im(f), and

(iii) im(fi) ⊆ im(fif ) for all i ∈ [m] \ im(f). 2
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g1 g2 g3 g4 g5

f1g2 f2g2 f3g4 f4g2 f5g5

f1 f2 f3 f4 f5

=

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

Figure 2: Diagrammatic calculation of a product in T (X,P).

A formula for |E(T (X,P))| was also given in [3, Proposition 3.1] in the uniform case. That formula seems impossible
to extend to the non-uniform case, but we may give a recurrence analogous to that of [3, Proposition 3.2]. For a subset
A ⊆ [m], write XA =

⋃
a∈A Ca and PA = {Ca : a ∈ A}. So PA is a partition of XA (which is empty if A is empty).

Proposition 3.2. Write e(X,P) = |E(T (X,P))|. Then

e(X,P) = 1 if X is empty

e(X,P) =
∑
A

e(XAc ,PAc)
∑
a∈A

na∑
l=1

(
na
l

)
lnA−l if X is non-empty,

where the outer sum is over all A ⊆ [m] with 1 ∈ A, and we write Ac = [m] \A and nA = |XA| =
∑
a∈A na.

Proof. The statement for X empty is clear, so suppose X is non-empty. An idempotent f ∈ E(T (X,P)) is uniquely
determined by:

(i) the set A = {i ∈ [m] : if = 1f},

(ii) the element a = 1f ∈ A (note that 1f ∈ A as f is an idempotent),

(iii) the image im(fa), say of size l ∈ [na] — there are
(
na
l

)
choices for these points, each of which are mapped

identically by fa,

(iv) the images under f of the elements of
(⋃

b∈A Cb
)
\
(
{a} × im(fa)

)
, which must all be in {a} × im(fa) — there

are lnA−l choices for these images, and then finally

(v) the restriction of f to XAc =
⋃
i∈Ac Ci — this restriction belongs to E(T (XAc ,PAc)), which has size e(XAc ,PAc).

Multiplying these values and summing over relevant A, a, l gives the desired result. 2

We now move on to study the idempotent generated subsemigroup E(X,P) = 〈E(T (X,P))〉 of T (X,P). For simplicity,
we will write E = E(T (X,P)) and S = E(X,P) = 〈E〉.

As in Section 2, for k ≥ 2 and i, j ∈ [k] with i 6= j, we write eij ∈ Tk for the idempotent transformation defined by

leij =

{
i if l = j

l if l ∈ [k] \ {j}.

Note that k (the size of the set on which eij acts) depends on the context. For non-negative integers k, l, we write
Inj(k, l) (resp., Surj(k, l)) for the set of all injective (resp., surjective) functions [k] → [l]. Note that Inj(k, k) =
Surj(k, k) = Sk, while if k 6= l, then (exactly) one of Inj(k, l) or Surj(k, l) is empty.

In what follows, certain special idempotents from E will play a crucial role. For i, j ∈ [m] with i 6= j and for any
f ∈ Inj(nj , ni) or Surj(nj , ni), as appropriate, we write

eij;f = [1, . . . , 1, f, 1, . . . , 1; eij ],

where f is in the jth position. Note that here eij = eij;f refers to the idempotent eij ∈ Tm. The transformations
eij;f trivially satisfy conditions (i–iii) of Proposition 3.1, so eij;f ∈ E. If k ∈ [m] and g ∈ Tnk , we will write
g(k) = [1, . . . , 1, g, 1, . . . , 1; 1], where g is in the kth position. For example, with m = 5, the transformations e42;f and
g(2) are pictured in Figure 3. For any k ∈ [m], and for any subset U ⊆ Tnk , we write U (k) = {g(k) : g ∈ U}. If U is a
subsemigroup of Tnk , then U (k) is a subsemigroup of T (X,P) and is isomorphic to U . Note that the kth coordinate

of e
(k)
ij = [1, . . . , 1, eij , 1, . . . , 1; 1] is eij ∈ Tnk .

4



1 f 1 1 1 1 g 1 1 1

C1 C2 C3 C4 C5C1 C2 C3 C4 C5

Figure 3: Diagrammatic representation of e42;f (left) and g(2) (right) from T (X,P) with m = 5.

Proposition 3.3. The semigroup S = E(X,P) is generated by G1 ∪G2, where

G1 = {e(k)ij : k ∈ [m], i, j ∈ [nk], i 6= j} and G2 = {eij;f : i, j ∈ [m], i 6= j, f ∈ Inj(nj , ni) ∪ Surj(nj , ni)}.

Proof. Since the elements of G1 ∪G2 are idempotents, it suffices to show that E ⊆ 〈G1 ∪G2〉. So let f ∈ E. Write
A1, . . . , Ar for the ker(f)-classes of [m]. Since f is an idempotent, we have f = f1 · · · fr where, for each s ∈ [r],
fs ∈ T (X,P) is defined by

xfs =

{
xf if x ∈ XAs =

⋃
a∈As Ca

x if x ∈ X \XAs .

So it suffices to show that f1, . . . , fr ∈ 〈G1 ∪ G2〉. Let s ∈ [r], and write A = As = {a1, . . . , ak}. For simplicity,
write g = fs = [g1, . . . , gm; g]. Without loss of generality, suppose Ag = ak. By Proposition 3.1 and Theorem 2.1,

we have gak ∈ E(Tnak ) ⊆ 〈Dnak 〉, and it quickly follows that g
(ak)
ak ∈ 〈G1〉. In particular, if k = |A| = 1, then

g = g
(ak)
ak ∈ 〈G1〉. So suppose k ≥ 2. Now fix some 1 ≤ j < k. Let ej ∈ E(Tnaj ) be such that ker(ej) = ker(gaj ),

and let hj ∈ Inj(naj , nak) ∪ Surj(naj , nak) be any injective or surjective (as appropriate) map that extends the map
h′j : im(ej)→ im(gak) defined by (xej)h

′
j = xgaj for x ∈ [naj ]. In Figure 4, we show that

g = e
(a1)
1 · · · e(ak−1)

k−1 · g(ak)ak
· eaka1;h1

· · · eakak−1;hk−1
.

(In the diagram, we only picture the action of the transformations on XA = Ca1 ∪ · · · ∪Cak , and the pictured ordering

of the blocks is not meant to imply that a1 < · · · < ak.) Again, each e
(aj)
j belongs to 〈G1〉, and clearly each eakaj ;hj

belongs to G2. This completes the proof. 2

e1 ek−1 gak

h1 1 1

1 hk−1 1

=

Ca1
Cak-1

Cak

eakak−1;hk−1

eaka1;h1

e
(a1)
1 · · · e(ak−1)

k−1 · g(ak)ak

ga1
gak-1

gak

Ca1
Cak-1

Cak

g

Figure 4: Diagrammatic proof that g = e
(a1)
1 · · · e(ak−1)

k−1 · g(ak)ak · eaka1;h1
· · · eakak−1;hk−1

; see the proof of Proposition 3.3
for more details.

Our next task is to calculate rank(S) and idrank(S). In order to do this, we will show that the generating set G1 ∪G2

from Proposition 3.3 may be significantly reduced in size. The next sequence of results (specifically, Lemmas 3.4, 3.6, 3.8
and 3.13) show what kind of transformations are essential in any (idempotent) generating set.
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Recall that Eni = 〈E(Tni)〉 = {1} ∪ (Tni \ Sni). So E(i)ni , which consists of all maps [1, . . . , 1, f, 1, . . . , 1; 1] ∈ T (X,P)
with f ∈ Eni in the ith position, is a subsemigroup of S isomorphic to Eni . The proof of [3, Lemma 4.3] is easily
adapted to show the following.

Lemma 3.4. Let i ∈ [m]. Then S \E(i)ni is an ideal of S. Consequently, any generating set for S contains a generating

set for E(i)ni . 2

Since the map T (X,P)→ Tm : f 7→ f is a homomorphism, it follows from Proposition 3.1 that f ∈ Em = {1}∪(Tm\Sm)
for all f ∈ S. We will frequently make use of this fact. The next simple result describes the preimage of 1 ∈ Tm under
the above map.

Lemma 3.5. Let f ∈ S. If f = 1, then fi ∈ Eni for all i ∈ [m].

Proof. Let f = h1 · · ·hk, where h1, . . . , hk ∈ E, and write hj = [hj1, . . . , hjm;hj ] for each j. Since 1 = f = h1 · · ·hk,
we see that hj = 1 for all j. It follows that hji ∈ E(Tni) for each i, j. So fi = h1i · · ·hki ∈ 〈E(Tni)〉 = Eni for each i. 2

For 1 ≤ i < j ≤ m, we write εij = εji for the equivalence relation on [m] with unique non-trivial equivalence class
{i, j}. Note that ker(eij) = ker(eji) = εij . We also write ∆ = {(i, i) : i ∈ [m]} for the trivial equivalence on [m] (i.e.,
the equality relation on [m]).

Lemma 3.6. Let 1 ≤ i < j ≤ m and f ∈ Inj(nj , ni), and suppose eij;f = gh where g, h ∈ S and g 6= 1. Then

(i) ker(g) = εij, (ii) g1, . . . , gm are injective, (iii) gi ∈ Sni and gjg
−1
i = f .

Consequently, any generating set for S contains such an element g for each such i, j, f . Further, if g is an idempotent,
then

(iv) if ni = nj, then either g = eij;f or g = eji;f−1 ,

(v) if ni > nj, then g = eij;f .

Proof. Now, [1, . . . , 1, f, 1, . . . , 1; eij ] = eij;f = gh = [g1h1g, . . . , gmhmg; gh]. Since each grhrg is injective (equal to
either 1 or f), it follows that each gr is injective, establishing (ii). If g = 1, then gr ∈ Enr for each r by Lemma 3.5;
but the only injective element of Enr is the identity element 1, so gr = 1 for all r, giving g = [1, . . . , 1; 1] = 1, a
contradiction. So g 6= 1, whence g ∈ Tm \ Sm. But then ∆ 6= ker(g) ⊆ ker(gh) = ker(eij) = εij , so that ker(g) = εij ,
giving (i). Put k = ig = jg.

Next we claim that nk = ni. Indeed, suppose this was not the case. Since gi ∈ Inj(ni, nk), we have ni ≤ nk, so we
must in fact have ni < nk. Let L = {r ∈ [m] : nr > ni}, noting that k ∈ L. Since n1 ≥ · · · ≥ nm, it follows that
L = [s] for some s ≥ 1. Now, since g maps [m] \ {i, j} injectively into [m] \ {k}, and since s < i < j, it follows that
there exists r ∈ L = [s] such that rg > s. But then gr ∈ T (nr, nrg) with nrg ≤ ni < nr, contradicting the fact that gr
is injective. This completes the proof of the claim.

In particular, it follows that gi ∈ Inj(ni, nk) = Inj(ni, ni) = Sni . Also, hk = hig ∈ T (nk, ni) since i = ieij = igh = kh.
We also have 1 = gihk, so that hk = g−1i , from which it follows that f = gjhjg = gjhk = gjg

−1
i , completing the proof

of (iii).

Next, suppose G is an arbitrary generating set for S. By considering an expression eij;f = h1 · · ·hk, where h1, . . . , hk ∈
G \ {1}, we see that h1 ∈ G satisfies conditions (i–iii).

Finally, suppose g is an idempotent. Since g ∈ E(Tm) by Proposition 3.1, and since ker(g) = εij , it follows that g = eij
or g = eji. Suppose first that g = eij . Proposition 3.1 also gives gr ∈ E(Tnr ) for each r ∈ im(g) = [m] \ {j}; but each
gr is injective, so it follows that gr = 1 if r 6= j. We also have f = gjg

−1
i = gj , giving g = eij;f . Next suppose g = eji.

In particular, ni = nj as gi ∈ Inj(ni, nj) and ni ≥ nj . Again, we have gr = 1 for all r ∈ [m] \ {i}, and this time we
have f = gjg

−1
i = g−1i , which gives gi = f−1, and g = eji;f−1 . This completes the proof. 2

Let i, j ∈ [m] with ni > nj . As a consequence of the previous result, we see that any idempotent generating set G for
S contains all of {eik;f : k ∈ [m], nk = nj , f ∈ Inj(nj , ni)}. It might be tempting to guess that G must also contain
all of {eki;f : k ∈ [m], nk = nj , f ∈ Surj(ni, nj)}. But this is far from the case. In fact, G need only contain a single
element of the latter set, as we show in Lemma 3.8 and Proposition 3.15, the proof of which requires the next technical
result (which will also be useful elsewhere).

Lemma 3.7. Let j ∈ [n] and put L = {q ∈ [m] : nq > j}. Suppose f ∈ S is such that f |L is injective and |Cqf | > j
for all q ∈ L. Then f |L = idL and fq ∈ Enq for all q ∈ L.
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Proof. If L = ∅, there is nothing to show, so suppose L 6= ∅. By Proposition 3.3, we may write f = g1 · · · gk where
g1, . . . , gk ∈ E and rank(gl) ≥ m−1 for each l ∈ [k]. (We could be more specific by insisting that g1, . . . , gk ∈ G1∪G2,
but it will be convenient later to argue more generally, as we do here.) We claim that gl|L = idL for each l. Indeed,
suppose this is not the case, and let l ∈ [k] be minimal so that gl|L 6= idL. Since gl 6= 1, it follows that rank(gl) = m−1,
so gl = eab for some a, b ∈ [m] with a 6= b. Note that at least one of a, b belongs to L since gl|L 6= idL. We could not
have a, b ∈ L or else then (ag1 · · · gl−1)gl = agl = bgl = (bg1 · · · gl−1)gl, giving af = bf , contradicting the assumption

that f |L is injective. We also could not have a ∈ L or else then b ∈ [m] \ L so that gl|L = idL, another contradiction.
So a ∈ [m] \ L and b ∈ L. But then |Cbf | = |Cbg1 · · · gk| ≤ |(Cbg1 · · · gl−1)gl| ≤ |Cbgl| ≤ |Ca| ≤ j, contradicting the
assumption that |Cqf | > j for all q ∈ L. This establishes the claim that gl|L = idL for each l. It obviously follows
that f |L = idL. For l ∈ [k], write gl = [gl1, . . . , glm; gl]. Since L ⊆ im(gl) and gl ∈ E for each l ∈ [k], it follows
from Proposition 3.1 that glq ∈ E(Tnq ) for each l ∈ [k] and q ∈ L. Since gl|L = idL for all l ∈ [k], it follows that
fq = g1q · · · gkq ∈ Enq for each q ∈ L. 2

Lemma 3.8. Let i, j ∈ [m] be such that ni > nj, and let f ∈ Surj(ni, nj). Suppose eji;f = g1 · · · gr where g1, . . . , gr ∈
S \ {1}. Put L = {q ∈ [m] : nq > nj}. Let l ∈ [r] be minimal so that gl|L 6= idL. Let h = gl and write h =
[h1, . . . , hm;h]. Then

(i) rank(h) = m− 1, (ii) |Cih| = nj, and (iii) hq is injective for all q ∈ L \ {i}.

Consequently, any generating set for S contains such an element h for each such i, j. Further, if h is an idempotent,
then h = eki;f ′ for some k ∈ [m] with nk = nj and some f ′ ∈ Surj(ni, nj).

Proof. First note that h 6= 1 since h|L 6= idL, so h ∈ Tm \ Sm and rank(h) ≤ m− 1. But also rank(h) ≥ rank(eji) =
m− 1, so (i) holds.

Next, suppose (ii) does not hold. First note that nj = |Cj | = |Cieji;f | = |Cig1 · · · gr| ≤ |(Cig1 · · · gl−1)h| ≤ |Cih|, since
g1 · · · gl−1 acts as the identity on L and i ∈ L. So, since we are assuming that |Cih| 6= nj , we must have |Cih| > nj .
A similar calculation shows that nq ≤ |Cqh| for any q ∈ L \ {i}. In particular, together with the assumption that
|Cih| > nj , this gives |Cqh| > nj for all q ∈ L. Since (g1 · · · gl−1hgl+1 · · · gr)|L = eji|L is injective, and since

(g1 · · · gl−1)|L = idL, it follows that h|L is injective. But then Lemma 3.7 says that h|L = idL, a contradiction. This
completes the proof of (ii).

Next, let q ∈ L\{i} be arbitrary. We have already seen that |Cqh| ≥ nq. But we also trivially have |Cqh| ≤ |Cq| = nq,
whence h|Cq is injective, and (iii) holds. As in the proof of Lemma 3.6, the statement about the generating set G
follows quickly.

Finally, suppose h is an idempotent. Since h ∈ E(Tm) and rank(h) = m− 1, it follows that h = eab for some a, b ∈ [m]
with a 6= b. Since (g1 · · · gl−1)|L = idL but (g1 · · · gl−1h)|L 6= idL, we again conclude that a ∈ [m] \ L and b ∈ L. We
observe that b = i. Indeed, if this was not the case, then we would have |Cbh| ≤ |Ca| = na < nb, contradicting the fact
that hq is injective for all q ∈ L\{i}. In particular, h = eai. So h maps Ci into Ca, which gives nj = |Cih| ≤ |Ca| = na.
But also na ≤ nj since a ∈ [m] \ L, so it follows that na = nj . So far we know that

h = [h1, . . . , hi, . . . , hm; eai].

Since we know that h maps Ci into Ca and |Cih| = nj = |Ca|, it follows that hi ∈ Surj(ni, nj). We wish to show
that h = eai;hi . This will complete the proof of the lemma (with k = a and f ′ = hi). It remains to show that
hq = 1 for all q ∈ [m] \ {i}. In fact, since h is an idempotent, and since im(h) = im(eai) = [m] \ {i}, we already
know that hq ∈ E(Tnq ) for all q ∈ [m] \ {i}, so it suffices to show that each such hq is injective. We already know
this is the case for q ∈ L \ {i}. We also know that Ca = Cih ⊆ Cah by Proposition 3.1(iii), so it follows that ha is
surjective. But all surjective transformations of a finite set are injective, so it follows that ha is injective. It remains
to establish the injectivity of each hq with q ∈ [m] \ (L ∪ {a}). To do this, we must consider two separate cases. To
simplify notation, put u = g1 · · · gl−1 and v = gl · · · gr, and write u = [u1, . . . , um;u] and v = [v1, . . . , vm; v]. Since
eji;f = uv = [u1v1u, . . . , umvmu;uv], it follows that uq is injective for all q ∈ [m] \ {i}. Similarly, uqhqu is injective for
all such q.

Case 1. Suppose first that u = 1. Then uq ∈ Enq for each q ∈ [m]. Since uq is injective for each q ∈ [m] \ {i}, it
follows that uq = 1 for each such q. So

uh = [u1h1, . . . , umhm; eai] = [h1, . . . , hi−1, uihi, hi+1, . . . , hm; eai].

In particular, for any q ∈ [m] \ {i}, hq = uqhq = uqhqu is injective, as noted above. This completes the proof in this
case.

Case 2. Finally, suppose u 6= 1. So u ∈ Tm \ Sm. Since εij = ker(eji) = ker(u v) ⊇ ker(u) 6= ∆, it follows that
ker(u) = εij . We claim that a 6∈ im(u). Indeed, suppose this was not the case, so a = cu for some c ∈ [m]. Since
u|L = idL and ju = iu, it follows that u maps L ∪ {j} into L, so c ∈ [m] \ (L ∪ {j}). But then

ceji = cg1 · · · gr = cueaigl+1 · · · gr = aeaigl+1 · · · gr = ieaigl+1 · · · gr = iueaigl+1 · · · gr = ieji = j,
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a contradiction, since c 6∈ {i, j}. This completes the proof of the claim that a 6∈ im(u). Since rank(u) = m − 1, it
follows that im(u) = [m] \ {a}. Let Q = [m] \ L, and put

Y =
⋃

q∈Q\{j}

Cq and Z =
⋃

q∈Q\{a}

Cq.

Since |Ca| = nj = |Cj |, it follows that |Y | = |Z|. Since u maps Q \ {j} bijectively onto Q \ {a}, and since up
is injective for all p ∈ Q, it follows that up is bijective for each p ∈ Q \ {j}. Now let q ∈ Q \ {a} be arbitrary.
Since Q \ {a} = [m] \ (L ∪ {a}), the proof of the lemma will be complete if we can show that hq is injective. Put
p = qu−1 ∈ Q \ {j}. Note that

uh = [u1h1u, . . . , uphq, . . . , umhmu;ueai].

Since uphq is injective, and since up is bijective, it follows that hq is injective. As noted above, this completes the
proof of the lemma. 2

We are now able to give a lower bound for rank(S). The next result is stated in terms of the parameters µi, νi, ρi
introduced at the beginning of this section and in Theorem 2.1.

Corollary 3.9. We have rank(S) ≥ ρ, where

ρ =

n∑
i=1

(
µiρi + i!

(
µi
2

)
+ µiνi

)
+

∑
1≤i<j≤n

µiµj
j!

(j − i)!
.

Proof. Let G be an arbitrary generating set for S. By Lemma 3.4, G contains a generating set for E(r)nr for each
r ∈ [m]. These are pairwise disjoint, and each has size at least rank(Enr ) = ρnr , so G contains at least

m∑
r=1

ρnr =

n∑
i=1

µiρi (3.9.1)

transformations coming from these generating sets of E(1)n1 , . . . , E
(m)
nm .

Next, fix some i ∈ [n] with µi ≥ 2. Lemma 3.6 tells us that for each p, q ∈ Mi with p < q, and for each f ∈ Si, G
contains some transformation g such that

(i) ker(g) = εpq, (ii) g1, . . . , gm are injective, (iii) gp ∈ Si and gqg
−1
p = f .

(For future reference, we note that if this g is an idempotent, then Lemma 3.6 gives g = eij;f or eji;f−1 .) There are(
µi
2

)
such p, q, and there are i! such f . Summing over all appropriate i, and noting that

(
µi
2

)
= 0 if µi ≤ 1, we see

that G contains at least ∑
i∈[n]
µi≥2

i!

(
µi
2

)
=

n∑
i=1

i!

(
µi
2

)
(3.9.2)

transformations of this type.

Next, suppose 1 ≤ p < q ≤ m are such that np > nq. Let f ∈ Inj(nq, np) be arbitrary. Lemma 3.6 tells us that G
must contain a transformation g such that

(i) ker(g) = εpq, (ii) g1, . . . , gm are injective, (iii) gp ∈ Snp and gqg
−1
p = f .

There are | Inj(nq, np)| = np!/(np − nq)! such transformations. For 1 ≤ i < j ≤ n, there are µiµj choices of
1 ≤ p < q ≤ m with j = np and i = nq, so G contains at least∑

1≤p<q≤m
np>nq

np!

(np − nq)!
=

∑
1≤i<j≤n

µiµj
j!

(j − i)!
(3.9.3)

transformations of this type.

Finally, let i ∈ [n] be such that µi 6= 0, and suppose p ∈ [m] is such that np = i. Let L = {q ∈ [m] : nq ≥ i}. If
1 ≤ j < i is such that µj 6= 0, then Lemma 3.8 says that G must contain some transformation g such that

(i) rank(g) = m− 1, (ii) |Cpg| = j, and (iii) gq is injective for all q ∈ L \ {i}.
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There are µi such p, and νi such j. So G contains at least

∑
i∈[n]
µi 6=0

µiνi =

n∑
i=1

µiνi (3.9.4)

transformations of this type. Finally, adding equations (3.9.1–3.9.4) shows that |G| ≥ ρ. Since G is an arbitrary
generating set, the result follows. 2

We show below that this lower bound for rank(S) is precise (see Theorem 3.16). In fact, we will also show that
idrank(S) = rank(S) apart from the special case in which µ1 = 2. In order to deal with that case, we need Lemma 3.13
below, which will also be useful when we later classify and enumerate the minimal idempotent generating sets for S
(Theorem 3.17). But first we need a number of technical results.

Let i ∈ [n]. Recall that Mi = {q ∈ [m] : nq = i}. Let Xi =
⋃
q∈Mi

Cq, and put

Si = {f ∈ S : f |X\Xi = idX\Xi , Xif ⊆ Xi}.

The reader should not confuse Si with Si, the symmetric group on [i]. Let Pi = {Cq : q ∈Mi}. So Pi is a uniform
partition of Xi into µi blocks of size i. We aim to show that Si is isomorphic to E(Xi,Pi), the idempotent generated
subsemigroup of T (Xi,Pi). The following was proved in [3, Proposition 4.1].

Proposition 3.10. Let i ∈ [n] and write Mi = {q1, . . . , qµi}. Then f = [fq1 , . . . , fqµi ; f ] ∈ T (Xi,Pi) belongs to
E(Xi,Pi) if and only if one of the following holds:

(i) f = 1 and fq1 , . . . , fqµi ∈ Ei, (ii) f ∈ TXi \ SXi . 2

Lemma 3.11. Let i ∈ [n]. Then Si is isomorphic to E(Xi,Pi).

Proof. There is an obvious embedding φ : T (Xi,Pi)→ T (X,P) defined, for f ∈ T (Xi,Pi), by

x(fφ) =

{
xf if x ∈ Xi

x if x ∈ X \Xi.

So E(Xi,Pi) is isomorphic to its image, T = E(Xi,Pi)φ. It remains to show that Si = T . Clearly, T ⊆ Si. Conversely,
suppose f ∈ Si, and put g = f |Xi ∈ T (Xi,Pi). Obviously, f = gφ, so it suffices to prove that g ∈ E(Xi,Pi). But this
follows quickly from Lemma 3.5 and Proposition 3.10. 2

Next, we aim to show that any idempotent generating set for S must contain a generating set for each Si. To do this,
we require the next technical result.

Lemma 3.12. Let r ∈ [n] with µr 6= 0, and let h ∈ S be such that rank(h) = m− 1, Mrh ⊆Mr, |Mrh| = µr − 1, and
hq is injective for all q ∈ [m]. Suppose also that g ∈ E \ Sr is such that rank(hg) = m − 1 and (hg)q is injective for
all q ∈ [m]. Then g|Y = idY where Y = Xrh. In particular, (hg)|Xr = h|Xr .

Proof. It is clear that (hg)|Xr = h|Xr follows from g|Y = idY , so we just prove the latter. By assumption, we have
Mrh = Mr \ {a} for some a ∈ Mr. Note that m − 1 = rank(hg) ≤ rank(g) ≤ m. We now break up the proof into
cases, according to whether rank(g) = m or m− 1.

Case 1. Suppose first that rank(g) = m. So g = 1 and gq ∈ E(Tnq ) for all q ∈ [m]. Let q ∈ Mr \ {a}, and suppose

q = ph where p ∈Mr. Then (hg)p = hpgph = hpgq. But hp and (hg)p are injective, by assumption. Since ph = q ∈Mr,

it follows that hp ∈ Sr, so in fact gq = h−1p (hg)p is injective. Since also gq ∈ E(Tr), as noted above, we conclude that
gq = 1. Since this is true for all q ∈Mr \ {a}, and since g = 1, it follows that g|Y = idY , as desired.

Case 2. Suppose now that rank(g) = m− 1. Since g ∈ E, we must have g = ebc for some b, c ∈ [m] with b 6= c. Since
rank(hg) = rank(h) = m−1, we cannot have both b, c ∈ im(h). We also have gq ∈ E(Tnq ) for all q ∈ im(g) = [m]\{c}.
We now consider two subcases, according to whether a belongs to im(h) or not.

Subcase 2.1. Suppose first that a 6∈ im(h). Since b, c do not both belong to im(h), we must have either b = a
or c = a. Suppose first that c = a. Note that g|Mr\{a} = idMr\{a} and gq ∈ E(Tr) for all q ∈ Mr \ {a} so, as in
Case 1, we conclude that gq = 1 for all such q, and therefore, g|Y = idY . Now suppose b = a. If c 6∈ Mr, then again
g|Mr\{a} = idMr\{a} and gq ∈ E(Tr) for all q ∈ Mr \ {a}, and the proof concludes as above. So suppose c ∈ Mr.
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In fact, we will show that this case is not possible. Since im(h) = [m] \ {a} and Mrh ⊆ Mr, it follows that h maps
[m] \Mr bijectively into [m] \Mr. But hq is injective for all q ∈ [m] \Mr, so it follows that h|X\Xr ∈ TX\Xr is

injective, and hence bijective. We deduce that hq is bijective for all q ∈ [m] \Mr. Let q ∈ [m] \Mr and put p = qh
−1

.
Since (gh)p = hpgq is injective, it follows that gq is injective. But also gq ∈ E(Tnq ) for all such q, giving gq = 1 for
q ∈ [m] \Mr. Since also g|[m]\Mr

= id[m]\Mr
, we would have g ∈ Sr, a contradiction. This completes the proof in

Subcase 2.1.

Subcase 2.2. Finally, suppose a ∈ im(h). As before, if c 6∈ Mr \ {a}, then g|Y = idY quickly follows. So suppose
c ∈ Mr \ {a}. Actually, we will show that this is impossible. In particular, c ∈ im(h), so b 6∈ im(h). Next we claim
that nb < r. Indeed, suppose this is not the case. Note first that b 6∈ im(h) implies nb 6= r, since Mr ⊆ im(h). So
we must have nb > r. Then some q ∈ [m] with nq > r is mapped by h to some p ∈ [m] with np ≤ r < nq. But then
|Cqh| ≤ |Cp| < |Cq|, contradicting the fact that hq is injective. This completes the proof of the claim that nb < r.
But now let q ∈ Mr be such that qh = c. Then |Cqhg| ≤ |Ccg| ≤ |Cb| = nb < r = |Cq|, contradicting the assumption
that (hg)q is injective. This completes the proof. 2

Lemma 3.13. Let U be an arbitrary idempotent generating set for S and let r ∈ [n]. Then U ∩Sr is a generating set
for Sr.

Proof. If µr = 0, then Sr = {1} = 〈∅〉, and the result is trivially true. So suppose µr ≥ 1, and write Ur = U ∩Sr. By
Lemma 3.11 and [3, Corollary 4.2], Sr is generated by all elements of the form

(a) e
(k)
ij for i, j ∈ [r] with i 6= j and all k ∈Mr, and (b) eij;f for i, j ∈Mr with i 6= j and all f ∈ Sr.

So it suffices to show that 〈Ur〉 contains each element of type (a) and (b). Now, for each k ∈ Mr, U contains

a generating set V for E(k)nk = E(k)r by Lemma 3.4, and we clearly have V ⊆ Ur. In particular, 〈Ur〉 contains all
elements of type (a). So now fix f ∈ Sr and i, j ∈ Mr with i 6= j. Consider an expression eij;f = g1 · · · gk, where
g1, . . . , gk ∈ U \ {1}. Let L = {q ∈ [k] : gq ∈ Ur}, and write L = {q1, . . . , ql} where q1 < · · · < ql. We first aim to show
that (g1 · · · gk)|Xr = (gq1 · · · gql)|Xr .

For p ∈ [k], let hp = g1 · · · gp, and write hp = [hp1, . . . , hpm;hp]. We claim that for all p ∈ [k],

(i) hpq is injective for all q ∈ [m],

(ii) rank(hp) = m− 1,

(iii) Mrhp ⊆Mr,

(iv) |Mrhp| = µr − 1.

By Lemma 3.6, h1 = g1 = eij;f or eji;f−1 , so the claim is true for p = 1. Now suppose (i–iv) all hold for some
1 ≤ p < k. Since eij;f = hp+1gp+2 · · · gk, it is clear that each hp+1,q is injective, so (i) holds. Next, note that
m − 1 = rank(g1) ≤ rank(hp+1) ≤ rank(eij) = m − 1, giving (ii). Next, we have |Mrhp+1| ≤ |Mrg1| = µr − 1. But
rank(hp+1) = m− 1, so |Ahp+1| ≥ |A| − 1 for any subset A ⊆ [m], and (iv) follows. For (iii), note that the induction
hypothesis gives Mrhp ⊆ Mr. If gp+1 ∈ Sr, then Mrgp+1 ⊆ Mr by definition, so Mrhp+1 = Mrhpgp+1 ⊆ Mr. If
gp+1 6∈ Sr, then all the conditions of Lemma 3.12 are satisfied (with h = hp and g = gp+1). We conclude then that
gp+1|Y = idY , where Y = Xrhp. In particular, gp+1|Mrhp

= idMrhp
. But then Mrhp+1 = Mrhpgp+1 = Mrhp ⊆ Mr.

This completes the proof of the inductive step and, hence, of the claim.

Now suppose p ∈ [k] is such that gp 6∈ Sr. In particular, p ≥ 2 (since g1 ∈ Sr, as noted above). By the above claim
(and as noted in its proof), the conditions of Lemma 3.12 are satisfied (for h = hp−1 and g = gp), so we conclude that
hp|Xr = hp−1|Xr . So, if Q = [k] \ L = {p ∈ [k] : gp 6∈ Ur}, and Q = {p1, . . . , ps} where s = k − l and p1 < · · · < ps,
then

eij;f |Xr = (g1 · · · gk)|Xr = hps |Xr (gps+1 · · · gk)

= hps−1|Xr (gps+1 · · · gk)

= hps−1
|Xr (gps−1+1 · · · gps−1)(gps+1 · · · gk)

= hps−1−1|Xr (gps−1+1 · · · gps−1)(gps+1 · · · gk)

...

= (g1 · · · gp1−1)|Xr (gp1+1 · · · gp2−1) · · · (gps+1 · · · gk)

= ((g1 · · · gp1−1)(gp1+1 · · · gp2−1) · · · (gps+1 · · · gk))|Xr
= (gq1 · · · gql)|Xr .

But also eij;f |X\Xr = idX\Xr = (gq1 · · · gql)|X\Xr , so it follows that eij;f = gq1 · · · gql ∈ 〈Ur〉, completing the proof. 2

Corollary 3.14. If µ1 = 2, then idrank(S) ≥ ρ+ 1, where ρ is defined in Corollary 3.9.
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Proof. Let G be an arbitrary idempotent generating set for S. By Lemma 3.13, G contains a generating set Ui for
Si ∼= E(Xi,Pi) for each i ∈ [n], and we have |Ui| ≥ rank(E(Xi,Pi)) = ρµi,i. By Theorem 2.3, ρµi,i = µiρi + i!

(
µi
2

)
,

unless i = 1, in which case ρµi,i = ρ21 = 2 = 1 +
(
µ1ρ1 + 1!

(
µ1

2

))
. So G contains at least

n∑
i=1

ρµi,i = 1 +

n∑
i=1

(
µiρi + i!

(
µi
2

))
elements from these generating sets of S1, . . . , Sn. By the last two paragraphs of the proof of Corollary 3.9, G contains
an additional

n∑
i=1

µiνi +
∑

1≤i<j≤n

µiµj
j!

(j − i)!

elements. Adding the two expressions above, we see that |G| ≥ ρ+ 1, and the proof is complete. 2

For the proof of the next result, we use the standard notation f =
(
A1 ··· Ak
a1 ··· ak

)
to indicate that f is the function with

domain A1 ∪ · · · ∪Ak that maps each of the points in Aq to aq for each q ∈ [k].

Proposition 3.15. For each q ∈ [n], let Uq be an idempotent generating set for Sq. For each i ∈ [m], choose sets
Ji ⊆ [m] such that |Ji| = νni and {nj : j ∈ Ji} = {nq : q ∈ [m], nq < ni}. For each i ∈ [m] and j ∈ Ji, choose some
fij ∈ Surj(ni, nj). Then U = U1 ∪ · · · ∪ Un ∪W1 ∪W2 is a generating set for S, where

W1 = {eij;f : 1 ≤ i < j ≤ m, ni > nj , f ∈ Inj(nj , ni)} and W2 = {eji;fij : i ∈ [m], j ∈ Ji}.

Proof. By Proposition 3.3, it suffices to prove that G1 ∪ G2 ⊆ 〈U〉. Since Sq = 〈Uq〉 for each q ∈ [n], it follows
that 〈U〉 contains

(i) each e
(k)
ij with k ∈ [m], i, j ∈ [nk] and i 6= j, and

(ii) each eij;f with i, j ∈ [m], i 6= j, ni = nj and f ∈ Sni .

Since W1 ⊆ U , it remains to show that 〈U〉 contains

(iii) each eji;f with i, j ∈ [m], ni > nj and f ∈ Surj(ni, nj).

Let i, j, f be as in (iii). Let k ∈ Ji be such that nk = nj , and for simplicity, put g = fik. So eki;g ∈ U . Write f =(
A1 ··· Anj
1 ··· nj

)
and g =

(
B1 ··· Bnj
1 ··· nj

)
. Also, choose b1, . . . , bnj such that bq ∈ Bq for each q. Put h =

(
A1 ··· Anj
b1 ··· bnj

)
∈ Tni .

Since nj < ni, note that h ∈ Eni . So h(i) ∈ E(i)ni ⊆ 〈U〉. It is clear that eki;f = h(i)eki;g ∈ 〈U〉. In particular, if k = j,
then we have shown that eji;f = eki;f ∈ 〈U〉. So suppose k 6= j. Now choose a1, . . . , anj so that aq ∈ Aq for each q.

Put d =
(

1 ··· nj
a1 ··· anj

)
∈ Inj(nj , ni). Note that eij;d ∈ W1 ⊆ U , and that ejk;1 ∈ 〈U〉 as shown above, since nj = nk. It

is clear that df = 1 ∈ Snj , and one may then easily check that eji;f = (eij;dejk;1eki;f )2 ∈ 〈U〉, completing the proof. 2

We are now ready to prove the two main results of the paper. Again, these are stated in terms of the parameters
µi, νi, ρi introduced at the beginning of this section and in Theorem 2.1.

Theorem 3.16. We have rank(S) = idrank(S) = ρ, where

ρ =

n∑
i=1

(
µiρi + i!

(
µi
2

)
+ µiνi

)
+

∑
1≤i<j≤n

µiµj
j!

(j − i)!
,

unless µ1 = 2 in which case rank(S) = ρ and idrank(S) = ρ+ 1.

Proof. Let U = U1 ∪ · · · ∪ Un ∪W1 ∪W2 be an idempotent generating set as described in Proposition 3.15, with
U1, . . . , Un of minimal size. As in the proof of Corollary 3.9,

|W1| =
∑

1≤i<j≤n

µiµj
j!

(j − i)!
and |W2| =

m∑
r=1

νnr =

n∑
i=1

µiνi.

As in the proof of Corollary 3.14,

|U1|+ · · ·+ |Un| =
n∑
i=1

(
µiρi + i!

(
µi
2

))
,
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unless µ1 = 2, in which case we must add 1 to the right hand side of this last expression. Adding these values, we
conclude that

|U | =

{
ρ if µ1 6= 2

ρ+ 1 if µ1 = 2.

Combined with Corollaries 3.9 and 3.14, and noting that U ⊆ E, this shows that rank(S) = idrank(S) = ρ if µ1 6= 2,
and also that idrank(S) = ρ + 1 if µ1 = 2. To complete the proof, it suffices to prove that S = 〈V 〉 for some V ⊆ S
with |S| = ρ if µ1 = 2. For the remainder of the proof, we assume that µ1 = 2.

We have already seen that S = 〈U〉 and |U | = ρ + 1. Also, since there is a unique generating set of size 2 for
S1
∼= E(X1,P1) ∼= E2, namely U1 = {f, g} where f = em−1,m;1 and g = em,m−1;1, we see that U must contain both

f and g. Let h ∈ Inj(1, n1) = Inj(nm, n1) be arbitrary, and put e = e1m;h. So e ∈ W1 ⊆ U . It is easy to check that
e = (eg)f and g = f(eg). It follows that 〈e, f, g〉 = 〈eg, f〉 and so S = 〈V 〉, where V = (U \ {e, g}) ∪ {eg}. Since
|V | = ρ, this completes the proof. 2

For the statement of the next result, by “minimal idempotent generating set” we mean an idempotent generating set
that has the smallest possible size.

Theorem 3.17. (i) Every idempotent generating set of S contains a minimal idempotent generating set.

(ii) Every minimal idempotent generating set of S is of the form described in Proposition 3.15 and with each Uq of
minimal size.

(iii) The number of minimal idempotent generating sets of S is equal to

n∏
i=1

σµi,i ×
∏

1≤i<j≤n
µi 6=06=µj

µiµjS(j, i)i!,

where S(j, i) is a Stirling number (of the second kind) and the numbers σµi,i are defined in Theorem 2.4.

Proof. Let U be an arbitrary idempotent generating set for S. By Lemma 3.13, U contains an idempotent generating
set Ur of Sr for each r ∈ [n]. By Theorem 2.4, each Ur contains an idempotent generating set Vr of minimal size. As
in the proof of Corollary 3.9, U must contain the sets

W1 = {eij;f : 1 ≤ i < j ≤ m, ni > nj , f ∈ Inj(nj , ni)} and W2 = {eji;fij : i ∈ [m], j ∈ Ji},

for some choice of sets Ji and functions fij ∈ Surj(ni, nj). The set V1 ∪ · · · ∪ Vn ∪W1 ∪W2 ⊆ U has size idrank(S), as
stated in Theorem 3.16, and is a generating set for S by Proposition 3.15. This completes the proof of (i).

If U is an arbitrary idempotent generating set of minimal possible size, then we must in fact have U = V1 ∪ · · · ∪ Vn ∪
W1 ∪W2 (in the above notation), proving (ii). For each i ∈ [n], we may choose Vi in σµi,i ways. To specify W2, for
each k ∈Mj where j ∈ [n] is such that µj 6= 0, and for each i ∈ [n] with i < j and µi 6= 0, we must choose some ekl;f
where l ∈ Mi and f ∈ Surj(j, i). There are µj such k, µi such l, and |Surj(j, i)| = S(j, i)i! such f . Multiplying these
values as appropriate gives (iii). 2
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