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Abstract 15 

Afro-Palaearctic migrants are declining to a greater degree than other European species, suggesting 16 

that processes occurring in Africa or on migration may be driving these trends.  Constraints in food 17 

availability on the wintering grounds may contribute to the declines but little is known about when 18 

and where these resource constraints may occur. Sufficient resources are particularly important prior 19 

to spring migration, when migrants must cross the Sahara desert.  We examined mass gain and 20 

departure phenology in a long-distance Palaearctic passerine migrant to determine the degree to 21 

which pre-migratory fattening occurs in their long-term non-breeding territories in the Guinea 22 

Savannah region of Africa. We monitored 75 Whinchats Saxicola rubetra for departure from their non-23 

breeding territories in one spring, and analysed mass data of 377 Whinchats collected over three non-24 

breeding seasons plus 141 migrating Whinchats caught in April over eight years, all within the same 25 

few square kilometres of anthropogenically-modified Guinea Savannah in central Nigeria. Whinchats 26 

left their winter territories throughout April, with males departing on average eight days earlier than 27 

females. However, there was no evidence that time of departure from territory was linked to age, 28 

body size or mass at capture.  Whinchats departed their territories with a predicted mass of 16.8 ± 0.3 29 

g, which is much less than the ~24 g required for the average Whinchat to cross the Sahara directly. 30 

Comparing departure dates with arrival dates in southern Europe shows a discrepancy of at least two 31 

weeks, suggesting that many Whinchats spend considerable time on pre-migratory fuelling outside of 32 

their territory prior to crossing the Sahara. Over-wintering birds gained mass slowly during February 33 

and March (0.03 gd-1), and non-territorial or migrating birds at a much higher rate in April (at least 34 

0.23 gd-1), with up to 20% of migrating Whinchats in April potentially having sufficient fuel loads to 35 

cross the Sahara directly from central Nigeria.  Our results suggest that most Whinchats leave their 36 

winter territories to fatten up locally or, possibly, by staging further north. Resource constraints are 37 

therefore likely to be particularly focussed in West Africa during mid-April and possibly at staging areas 38 

before the crossing of the Sahara desert.  39 
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Introduction 40 

Pronounced declines of long-distance Afro-Palaearctic migrants in comparison to other European 41 

species point towards mechanisms operating on African wintering grounds as possible drivers 42 

(Bohning-Gaese & Bauer 1996, Sanderson et al. 2006, Heldbjerg & Fox 2008). Limited resources on 43 

the wintering grounds, especially prior to spring migration, may contribute to these declines (Baillie 44 

et al. 2008) by constraining spring fattening and delaying spring departure (Marra et al. 1998, Studds 45 

& Marra 2005, 2011).  Additionally, migrants wintering in the Sahel region face one of the largest 46 

barriers in the world, the Sahara desert, and therefore availability of adequate resources to sustain a 47 

>2000 km flight during early spring is of critical importance.  48 

There is some evidence, however, that food resources around the semi-arid Sahel or Guinea Savannah 49 

wintering grounds may not be a limiting factor for more generalist migrant species, which many long-50 

distant migrants are thought to be (Cresswell 2014; see Ockendon et al. 2012 for species classifications 51 

and trends). For example, Ockenden et al. (2012) showed that generalist species are generally 52 

increasing in comparison to specialists, even those wintering in the African humid and southern 53 

bioclimatic regions associated with strong migrant population declines.  Furthermore, Hulme & 54 

Cresswell (2012) found that typical human-modified habitat in the Guinea Savannah zone of West 55 

Africa may not limit Whinchat density, and this indicates that, where suitable habitat is present and 56 

species are not at carrying capacity, individuals may be fully capable of not only surviving but also 57 

fattening up in preparation for spring migration in these habitats. This is supported by the fact that 58 

energy requirements in the tropics and sub-tropics are relatively low (Wikelski et al. 2003); for 59 

example, wintering Whinchats spend only 11% of their time foraging (Barshep et al. 2012), and the 60 

process of meeting energy budgets outwith of migration in sub-tropical savannahs may only require a 61 

few hours foraging a day (Brandt & Cresswell 2009). If this is the case, then overwintering migrants in 62 

the Sahel and Guinea Savannah regions may be able to gain sufficient mass for the first major leg of 63 

their spring migration - the crossing of the Sahara - without leaving their territory or home range. This 64 

strategy would have the advantage of minimizing the risk involved in searching for food in potentially 65 
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unknown areas (Cresswell 2014), plus reduce the number of staging locations, a factor hypothesised 66 

to be relatively important during spring migration when time schedules are tighter than in autumn 67 

(Hedenström & Alerstam 1997, Weber & Houston 1997; but see McKinnon et al. 2013).   68 

This study aimed to explore spring departure phenology from African wintering territories in a long-69 

distance migrant, the Whinchat Saxicola rubetra, and link this to patterns in mass gain over the 70 

wintering period in order to infer to what extent pre-migratory fattening occurs on territory.  We also 71 

compared departure dates from territory to phenology data from stopover sites in southern Europe 72 

to further determine whether there was time available between departure and arrival in Europe for 73 

additional pre-migratory fuelling. 74 

The Whinchat is an Afro-Palaearctic migrant that breeds from western Europe east to Siberia, and 75 

winters in eastern central Africa and south of the Sahel in open landscapes and farmland (Cramp 76 

1988).  Although widespread, Whinchats have undergone significant declines over much of their range 77 

over the last 20 years (BirdLife International 2004, Henderson et al. 2004).  This is thought particularly 78 

to be due to changes in land use on their European breeding grounds affecting breeding success rather 79 

than their wintering grounds (Müller et al. 2005; Grüebler et al. 2008); nevertheless, ecological 80 

interactions on the non-breeding grounds will be important for any migratory species.  Individuals 81 

hold small, distinct territories during the winter (Barshep et al. 2012, Blackburn & Cresswell 2015a), 82 

and their preference for open habitat and tendency to perch on low shrubs make them highly 83 

detectable (Hulme & Cresswell 2012).  84 

We monitored individually marked Whinchats on a daily basis for departure from their long-term 85 

territories over several neighbouring sites (within the same 40 km2 location) in central Nigeria 86 

(hereafter referred to as ‘resident’ Whinchats) to study departure patterns. We used mass data from 87 

the same resident population collected over three non-breeding seasons, combined with mass data 88 

from migrating individuals of unknown origin, but caught in an area within the same location but 89 
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where Whinchats do not hold territories (i.e. ‘non-resident’) in April, to analyse temporal patterns in 90 

mass gain on and off territory within the same location prior to the crossing of the Sahara. 91 

If birds depart on migration straight from their wintering territories then a series of predictions 92 

regarding departure timing and mass can be made:  93 

1) Departure timing from territory for the population should match arrival times in southern Europe 94 

(arrival times on the Italian island of Capri: late-April – mid-May; Jonzen et al. 2006) with an estimated 95 

lag time of around a week to cross the Sahara (a conservative estimate based on birds crossing 2500 96 

km at 36 km/hour for 12 hours per day = 5.8 days; Pilastro & Spina 1997, Schmaljohann et al. 2007, 97 

Delingat et al. 2008). We focus on southern Europe rather than eventual breeding grounds as these 98 

areas represent likely first refuelling stopover sites after the Sahara crossing.  99 

2) Individuals will depart when they reach a mass that allows them to cross the Sahara. The Sahara 100 

border is 400 km north of the study site (an 11 hour flight for a small passerine), and the crossing from 101 

central Nigeria is a minimum journey of 2500 km, which is calculated to require 100% fuel load for a 102 

Whinchat (see Delingat et al. 2008).  This is equivalent to a mass of approximately 24 g. Alternatively, 103 

if masses on departure are lower than these levels this would suggest that Whinchats add mass 104 

outside of their winter territories. If subsequent fattening can occur in the same area (i.e. within a few 105 

kilometres of the territory) then we would expect that Whinchats caught outside of their territories 106 

but still in the local area to show levels of mass that will allow them to cross the Sahara. 107 

3) Birds may depart with a mass dependent on their dominance status (age) because territory quality 108 

is likely to correlate with dominance status (Piper 1997). Sub-dominant birds in their first winter 109 

(controlling for sex because males may inherently leave earlier than females to re-establish breeding 110 

territories; Maggini & Bairlein 2012) may depart later or with lower mass than birds of greater age and 111 

experience because they occupy lower quality territories.  112 

 113 



6 
 

Methods 114 

Study system 115 

The study took place over three non-breeding seasons (September - April) between 2012 and 2014 on 116 

the Jos Plateau in the Guinea Savannah zone of Nigeria, West Africa (09°53’N, 08°59’E) where many 117 

Afro-Palaearctic migrants winter (Fig. 1).  We studied six sites over a 4000 ha area east of Jos 118 

containing typical overwintering habitat for Whinchats. Sites consisted of degraded Guinea Savannah: 119 

open scrub with moderate levels of grazing and small subsistence farming.  Sites were selected on the 120 

basis of containing suitable Whinchat habitat and for logistical reasons, and did not differ significantly 121 

in habitat characteristics (Blackburn & Cresswell 2015a). Sites ranged from 50 to 200 ha in size, were 122 

no more than 2 km apart, and were surrounded by similar areas of habitat. Whinchats were common 123 

at a much larger scale around the whole study location (see Hulme & Cresswell 2012). 124 

Whinchats were caught with spring traps with live bait and mist nets, both using a playback lure. All 125 

captured birds were uniquely colour-ringed. Most individuals were either captured in the winter of 126 

2014 or had returned to territories occupied in previous winters, resulting in a population of 127 

individually recognisable resident birds for departure study in April 2014. We fitted geolocator devices 128 

(~0.65 g; see Appendix A for permit information) to approximately half of the birds as part of a tracking 129 

study not considered here, but the opportunity was used to examine the effects of experimental 130 

application of additional mass on departure dates. Data from non-resident Whinchats of unknown 131 

origin (either migrants passing through or local birds off their territories were collected as part of a 132 

Constant Effort Ringing Scheme (CES; see Stevens et al. 2013 for details) during April from 2002 to 133 

2013 inclusive, in an area adjacent to the territorial study areas where few whinchats hold territories 134 

(Fig. 1).  135 

Flattened wing chord length (to the nearest 0.5 mm), tarsus length (to 0.1 mm), body mass (to 0.1 g 136 

using digital scales) and moult score were measured following Svensson (1992). Whinchats were sexed 137 

and aged as either first-winter (hatched the previous year; EURING code 5) or adult (hatched before 138 



7 
 

the previous year; EURING code 6), using a combination of features described by Svensson (1992) and 139 

Jenni & Winkler (1994). Detailed photographs were taken of all birds, and age and sex were 140 

independently corroborated by both A.R. and E.B.   141 

Estimating departure dates 142 

Mapping of marked individuals was carried out at all six sites from 3rd March 2014 by systematically 143 

walking each site every two to four days using binoculars and a telescope. Whinchats characteristically 144 

spend 80% of their time perching on the top of small bushes in open habitat (Barshep et al. 2012), 145 

therefore we could accurately identify the majority of individuals present during any visit. From 2nd 146 

April, known territories of marked birds at three of the six sites (for purposes of practicality) were 147 

visited almost daily to monitor for departure (mean number of visits over 24 days per individual = 20.1 148 

± 3.4 SE, n = 1509 total visits; including a decrease in territory visit frequency once an individual was 149 

not seen for five consecutive visits). If an individual was not resighted after five consecutive visits then 150 

it was assumed departed from its winter territory. All territories were visited at least every two-three 151 

days over the entire monitoring period to confirm absence and detect whether individuals were 152 

moving over a larger local scale than their winter territory just prior to departure. Territorial birds are 153 

extremely site-faithful: only one bird was recorded moving ~500 m from original territory prior to 154 

departure after unusual weather conditions and no others were seen outside their territories during 155 

departure monitoring.   156 

Departure was measured as relative days after the first bird departed (day zero; 1st April). Only 157 

individuals which were consistently seen on territory (i.e. resident in the study area over winter) were 158 

included in analyses (n = 75). Birds visited four times or less during April before they departed were 159 

only included if they had been resighted regularly on territory prior to daily departure monitoring 160 

beginning (n = 5). These birds departed between 25th March and 1st April and were assigned a 161 

departure date of day zero (1st April) because their exact departure date was unknown. Although error 162 

in departure is higher for these individuals than the rest, excluding them from analyses did not 163 
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significantly change any results, therefore they were retained in analyses. Additionally, assuming these 164 

five birds departed the day after they were last resighted as opposed to 1st April did not significantly 165 

affect mean or standard deviation of departure date across the monitored population (13.0 ± 8.1 SD 166 

and 13.4 ± 7.25 SD days after 1st April respectively).  Error in departure was calculated to be 1.4 ± 1.1 167 

SE days after last resighting (n = 70; Appendix B). 168 

Analysis 169 

Modelling departure 170 

Model selection for all analyses was carried out using the information-theoretic approach based on 171 

Akaike’s Information Criterion (AIC; Burnham & Anderson 2002).   Candidate general linear models 172 

(LM) were first constructed using the subset of the birds captured in 2014 which had biometric and 173 

mass data collected within 3 months of departure (n = 57). Age, sex, wing length, tarsus length, mass 174 

and time of day were included as main effects. Site and attachment of geolocator were also included 175 

as fixed factors to control for any confounding effect they may have had.  Replacing tarsus and wing 176 

length with a single principal component that summarised 53% of the variation did not change any of 177 

the models in terms of biological or statistical significance. Component models were compared using 178 

AIC, and where there was no clear optimum model, model averaging was applied (including candidate 179 

models with ΔAIC < 4) and variable estimates and importance are presented.  Because we lacked 180 

recent body size data for 18 individuals, candidate models were constructed again for all birds but 181 

excluding mass, wing and tarsus lengths to maximise sample sizes, and model selection repeated as 182 

above. Where individuals had been captured multiple times in 2014, we used the most recent capture 183 

event data to avoid pseudo-replication and to apply the mass nearest to departure. Using first 184 

captures instead makes no difference to model selection outcome. Repeating analyses with all 185 

captures and recaptures, and including individual and site as random effects in a linear mixed model 186 

(LMM; lme4 package, Bates et al. 2014), did not affect statistical or biological results, therefore we 187 

presented the simpler fixed effect models. There were no significant quadratic effects in any model.   188 
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Predicting mass at departure 189 

In order to predict mass at departure, we modelled mass at capture against days until departure (from 190 

capture) using a general linear model for all resident birds sampled, controlling for tarsus length, age, 191 

sex and time by including these as predictor effects and comparing candidate models using AIC. The 192 

best model included only mass (days until departure ~ mass; see results), indicating that mass at 193 

capture is related to when the individual will depart from that date. Because the intercept of the 194 

model (mass at 0 days = departure) is an extrapolation as we lacked samples from birds less than 6 195 

days before departure, fitting a linear relationship including any time prior to the commencement of 196 

mass gain would bias our estimate of departure mass downwards. Therefore we carried out a 197 

sensitivity analysis (reported in the results), reducing the sampling period to samples less than 70 days 198 

from departure, then to samples less than 60 days from departure, and so on, to ascertain any change 199 

in rate of mass gain prior to departure. 200 

Mass patterns over non-breeding season 201 

Patterns in mass gain were analysed using birds with complete biometric data captured over the three 202 

non-breeding seasons of the study to increase sample sizes and to allow description of mass over the 203 

entire winter period as well as departure (n = 377).  Where birds were caught more than once, the 204 

first capture event data was used, unless any data was missing for first capture or there was a capture 205 

available in March or early-April, when this single capture was used instead to balance sample sizes, 206 

because there were many fewer captures during March and April during the study. 207 

We split the wintering season into two periods (before and after 1st January) to explore strategies of 208 

mass gain over the winter: a model containing all data showed a significant interaction between these 209 

two periods and mass gain trajectory so justifying this split (see results).   Candidate models predicting 210 

mass were constructed using sex, age, tarsus, wing, date, time, season, site and stage of pre-breeding 211 

partial moult (moulting/not-moulting as a 2-way factor) as main effects, and compared using AIC as 212 

above. 213 
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We estimated mass gain for non-resident Whinchats using the CES April mass data. An LM model was 214 

constructed with mass as dependent variable and date, sex, time, wing, year and site as predictors, 215 

using as similar models as possible to that found for the resident birds in the second half of winter 216 

(described above and in the results below) so that mass patterns would be as comparable as possible. 217 

As most birds had finished moulting by April we did not include moult stage. We compared predicted 218 

mass gain between the two models (i.e. February and March period against April) by comparing the 219 

confidence intervals of the parameter estimates for date. We did not model all the data together 220 

because they were collected at different sites, and the CES data was missing a reliable estimate of age 221 

and tarsus for most individuals.   We used these CES data only to test whether fuelling rates 222 

(acknowledging that any estimate will be an underestimate; Minias & Kaczmarek 2013) were different 223 

for birds that were not on winter territories or on passage. 224 

Calculating flight ranges 225 

Flight ranges were calculated in the following way: to calculate the average fuel load (f), the following 226 

equation was used:  f = [(m – mi)/ mi], where m = actual mass and mi = lean body mass (LBM) (Delingat 227 

et al. 2008).  An average lean body mass of 12.8 g was used, based on the average mass of Whinchats 228 

captured after crossing the Sahara with fat and muscle scores of zero (Pilastro & Spina 1997).  A lower 229 

average lean body mass of 11.6 g was identified by Salewski et al. (2010), and although using this value 230 

did not alter final conclusions, we include ranges calculated from this value in the text as an example 231 

of what is possible for a Whinchat if it utilizes all possible energy reserves (including muscle mass). 232 

These two values were used because very few Whinchats were recorded in this study in poor condition 233 

(i.e. very low fat and muscle scores); therefore we suggest they did not accurately represent lean body 234 

mass. The 12.8 g value was similar to the lightest Whinchats recorded on our site, with 25% of captures 235 

under 14 g.  Applying parameters higher than 12.8 g resulted in very high expected departure mass, 236 

which have not been recorded in sub-Saharan Africa, supporting the use of these chosen LBM 237 

parameters.  Flight range in km (Y) from estimated fuel load at departure was calculated using the 238 
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method according to Delingat et al. (2008): Y = 100 x U x ln(1 + f), where U = ground speed and f = fuel 239 

load.  We used the air speed of 36 km h-1 reported for small passerines (Bruderer & Boldt 2008).   240 

Analyses were carried out in R software version 3.1.1 (R Core Team 2014). All means are given ± 1 241 

standard error (SE) unless otherwise stated. 242 

Results 243 

Phenology of departure 244 

In total, 75 individually marked Whinchats were monitored for departure over April 2014 in central 245 

Nigeria.  Birds departed over a four-week period between 25th March and 24th April 2014 (mean = 14th 246 

April + 7.3 SD days; Fig. 2).  247 

Sex was retained in all top models predicting departure for individuals with recent mass and biometric 248 

data (captured in February and March 2014, n = 57), and was the only factor retained in the top model 249 

(Table 1a).  Model averaging of all models with ΔAIC < 4 also resulted in sex being the only significant 250 

factor influencing departure date (Table 2a).   251 

Repeating the analysis with all birds (n = 75, Table 1b) confirmed that sex was still the only significant 252 

factor: although site was retained in the top model, model averaging indicated that site was not a 253 

significant predictor (Table 2b). The optimal model to predict departure timing therefore contained 254 

sex only (F1,75 = 31.5, R2 = 0.30, p < 0.0001), with males leaving on average 8 days before females (Fig 255 

2).  Departure was not significantly related to age, although statistical power for males was low due 256 

to low numbers of first winter males (adults: n = 21; first-winter: n = 9).  However, there was clearer 257 

evidence that there was no difference in departure timing between adult and first-winter females 258 

(adults: n = 26, first-winter: n = 19; Fig 2).  Whether a bird had been fitted with a geolocator was 259 

retained in some of the top models when all birds were included, although it was not a significant 260 

factor when averaged out across top models, nor was it statistically significant in the models in which 261 
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it was retained. These models in any case predict a very small biological effect: birds with a geolocator 262 

left on average 1.4 ± 4.3 days earlier than birds without geolocators (Table 2b).   263 

Mass gain at departure 264 

Days until departure from time of capture significantly predicted mass with an intercept (i.e. predicted 265 

mass on departure) of 16.8 ± 0.3 g, using all data from less than 80 days before departure (Fig. 3). 266 

Rates of mass gain over the period sampled (6 – 77 days before departure) were 0.03 ± 0.007 g per 267 

day (Fig. 3). The value of the intercept did not change significantly between periods sampled (birds 268 

captured within 80 days from departure as above, n = 57; <70 days, intercept = 16.8 ± 0.3 g, n = 55; 269 

<60 days, 16.5 ± 0.4 g, n = 45; <50 days 16.2 ± 0.4, n = 36; <40 days, 16.5 ± 0.5, n = 25; <30 days, 16.9 270 

± 0.6, n = 21: see Fig. 3) suggesting that the intercept calculated using all of the available data was 271 

robust for the period up until 6 days before departure.  272 

Comparing phenology with southern Europe 273 

Whinchats pass through the Italian island of Capri between 22nd April (mean of earliest 10th percentile) 274 

and 12th May (mean of the latest 10th percentile; Jonzen et. al 2006 supplementary material): note 275 

that there are almost no ringing recoveries of Whinchats in Africa and so limited data to support this 276 

route except for a single Whinchat ringed on the study site recovered on spring passage in Northern 277 

Italy (unpublished data) and our own preliminary geolocator data which shows this route is common 278 

(unpublished data). This range of 20 days is similar to the departure range in our population study, 279 

and indicates that there is a three-week period between birds departing territory and arriving in 280 

southern Europe. 281 

Seasonal mass gain patterns 282 

An overall model using mass data of 377 resident colour-ringed Whinchats showed that the 283 

relationship between mass and date was significantly dependent upon whether a Whinchat was 284 

captured before December or after January (period * date, additional mass gained in the second 285 
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period with date = 0.026 + 0.01 g, t = 3.7, P < 0.001; full model including all variables in Table 3, overall 286 

adjusted R2 = 0.34, F16, 360= 13.3, P < 0.0001; Fig. 4). Models predicting mass in the first half of the non-287 

breeding season show that only tarsus length, wing length and year of capture were retained in the 288 

top models (Table 3a), and also had high importance when averaged out across top models (Table 4).  289 

Birds caught in 2013 were slightly heavier than those caught in 2012. Sex, age, date of capture, site 290 

and time of day were rarely retained in top models and model averaging across top models confirmed 291 

that these variables had low importance: during early winter mass remained uniformly low (Fig. 4). In 292 

contrast, model comparison for the second half of the wintering period presented a clear optimum 293 

model which retained tarsus length, sex, age, date of capture, time of day, stage of moult and site as 294 

predictors of mass (Table 3b; full model coefficients in Table 5).  The Akaike weight of this model shows 295 

that it was 2.3 times more likely than the next ranking model (ω= 0.57 versus 0.25) which additionally 296 

retained wing length. This model predicted that mass in the second half of the wintering season 297 

increased with date, tarsus length, time of day, moult stage and that males were heavier than females 298 

(Fig. 4) and adults were heavier than birds in their first winter (Table 5). 299 

There were 141 captures (no recaptures) in April from the CES (constant effort ringing; 5 in 2002, 30 300 

in 2003, 16 in 2004, 18 in 2007, 7 in 2008, 14 in 2010, 10 in 2011 and 41 in 2013) from non-resident 301 

birds. Mass increased significantly with date in April (0.228 + 0.063 g/day, t1,127 = 3.6, P = 0.0005; Fig. 302 

4) controlling for year, time of day, location, wing length and sex, and the confidence limits of this rate 303 

of change did not overlap with the confidence limits of the much lower rate of change during January 304 

to March (0.031 + 0.009 g/day; note the coefficient differs slightly from this value given above because 305 

a slightly different model structure was used to allow the most similar comparison possible between 306 

resident bird data and that from the CES transient birds, due to tarsus length and age not being 307 

available for CES data). Males were also heavier than females throughout April (1.4 ± 0.5 g heavier, t1, 308 

127 = 2.9, P = 0.008; Fig. 4).  309 

Flight ranges 310 
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A fuel load of 100% LBM was calculated to be required to cross the Sahara from the study site in 311 

central Nigeria (~2500 km), and 74% LBM from the Saharan border (~2000 km).  A mass of 16.8 g – 312 

the predicted departure mass from territory for the resident birds in 2014 – was calculated to be 313 

between 31% or 45% of lean body mass, which allows an estimated flight range of 979 km or 1333 km 314 

(depending on whether the higher or lower LBM was used, respectively; Fig. 5). If we use the range of 315 

observed body masses (n = 141) from April CES non-resident birds then predicted ranges vary 316 

considerably. Assuming a higher lean body mass then c. 5% of Whinchats in April could cross the 317 

Sahara directly from the study site at Jos without a stopover, and assuming the lower lean body mass 318 

then 20% of Whinchats could directly cross the Sahara (Fig. 5).    319 

Discussion 320 

Whinchats departed their wintering territories in central Nigeria between late March and late April, 321 

with males departing earlier than females on average; however, no patterns relating to age, body size 322 

or condition at capture were found. Departures were unlikely to have been confounded by mortality 323 

because winter survival rates for Whinchats are extremely high, with probability of return the 324 

following year being unrelated to the timing of departure (Blackburn & Cresswell; unpublished data).  325 

Whinchats were predicted to depart from territory with an average mass of 16.8 g, 31 - 45% of lean 326 

body mass (LBM). This suggests that most Whinchats do not have sufficient fuel loads for a direct 2500 327 

km minimum crossing of the Sahara (i.e. without further fattening) when they leave their primary 328 

winter territories, a journey which is calculated to require 100% LBM (23.2 – 25.6 g) from central 329 

Nigeria. Moreover, it suggests that Whinchats at most only start to fatten up on their winter 330 

territories, and then depart with relatively low fuel reserves to fatten up elsewhere, possibly further 331 

north. The small and gradual amount of mass gain from January to March is perhaps more consistent 332 

with physiological changes, including increased reserves to deal with the cost of moulting (see Lind & 333 

Gustin 2004, Bauchinger & Biebach 2006, Fox & King 2013) and increased fat reserves associated with 334 

increasing foraging unpredictability as the dry season progresses (McNamara & Houston 1990, 335 
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Houston & McNamara 1993). Although it is possible that many individuals could potentially have 336 

gained more mass on territory between capture and departure from their territory, it is very unlikely 337 

that the individuals captured within two weeks of departure (n = 8) had enough time to gain enough 338 

mass on territory, and probably impossible for those caught within a week of departure (n = 4). 339 

Maximum fuel deposition rates found in comparably sized species Common Redstart Phoenicurus 340 

phoenicurus and Common Whitethroat Sylvia communis on stopover in Senegal during spring 341 

migration were found to be between 2.6 ± 2.2 and 3.5 ± 2.6% LBM/day, respectively (Bayly et al. 2012; 342 

no information on the Whinchat available), which translates to a mass gain of 0.3 - 0.5 g per day for 343 

the average Whinchat.  It is therefore unlikely that many of the sampled resident Whinchats, even if 344 

they were indeed fattening up at a faster rate just prior to departure from their territory, would be 345 

fuelling at a sufficient rate to reach a mass sufficient to cross the Sahara. 346 

Comparing departure dates from territory to arrival timing in southern Europe also provides evidence 347 

that pre-migratory fattening occurs after departure from territory. Whinchats pass through the Italian 348 

island of Capri (likely to be one of the first stops for many migrants after the Sahara) three weeks after 349 

departing territories in Nigeria. This period is much longer than expected if birds were leaving directly 350 

from their wintering territories if it takes only 2 – 6 days to cross the Sahara (Schmaljohann et al. 2007, 351 

Delingat et al. 2008). Our unpublished geolocator data shows that Whinchats cross the Sahara directly 352 

without stopping and then refuel in North Africa for several days (Blackburn et. al. unpublished data).  353 

There are three non-mutually exclusive possible explanations for why birds may not reach maximum 354 

fuel load on winter territory: 1) limited resources on a small territory do not allow sufficient fuel 355 

loading to cross the Sahara, and therefore birds abandon their territory to search for better quality 356 

habitat locally; 2) habitat quality in the area is not sufficient for migratory fuelling and therefore birds 357 

abandon their territory and move out of the local area to find better quality habitat regionally; or 3) 358 

resources on territory or locally are not limiting but birds move north as a strategy to reach maximum 359 

fuel loads closer to the Sahara desert, the border of which begins roughly 400-500 km further north, 360 
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even though fattening on territory (and/or locally) is possible.  Our results suggest that habitat quality 361 

in the area generally is not a limiting factor, with 5 - 20% of transient individuals caught locally 362 

potentially able to cross the Sahara at the time of capture, although it cannot be ruled out that these 363 

birds fattened up further south. However, there was little evidence that birds were staying in the local 364 

area encompassed by the study sites to fatten up because no colour-ringed birds were resighted 365 

between sites in April or were caught nearby at the CES site over the three-year study period. 366 

Therefore the most likely explanation may be that birds are moving further north to fatten up as close 367 

to the desert barrier as possible.  Although individuals with sufficient fuel loads to cross the Sahara 368 

are captured in the region, the average mass in April is around 20.0 ± 3.3 g (see also Smith 1966 which 369 

reports almost identical masses at a nearby site in central Nigeria), indicating that most Whinchats 370 

reach some level of migratory condition in this region, but may delay depositing the maximum fuel 371 

load until further north.  Although very few data exist for Whinchats in northern Nigeria, Fry (1969) 372 

found slightly lower masses (19.2 g [SD not reported], n = 11), which would be consistent with birds 373 

requiring lower fuel loads to cross a shorter distance, although more data is needed to confirm this.  374 

Agriculture and vegetation extends another 400 km north to the edge of the desert from Jos, and 375 

important wetlands such as Hdejia-Nguru and Lake Chad lie 350 and 600 km to the northeast 376 

respectively.  Although Whinchats are unlikely to be found in typical wetland habitat in the non-377 

breeding season (e.g. Bayly et al. 2012), the surrounding vegetation and farmland may provide crucial 378 

resources in gaining sufficient fat for the >2000 km desert crossing from the desert border. 379 

The hypothesis of moving north to fatten up is consistent with other studies which have shown that 380 

passerines tend to delay depositing large fuel loads during migration until reaching a major ecological 381 

barrier, such as the Sahara (Schaub & Jenni 2000, Ottosson et al. 2005), and that timing of maximum 382 

fuel loading is inherently linked to the latitude of these barriers (Fransson et al. 2001). Depositing 383 

maximum fat loads as late as possible avoids the increased predation risk associated with high fuel 384 

loads (Kullberg et al. 1996, Dierschke 2003) and the maintenance of high body mass (Alerstam & 385 

Lindström 1990, Klaassen & Lindström 1996).  Departing from 400 km further north at the desert 386 
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border reduces the required fuel load to cross the Sahara by at least 25%, which may outweigh the 387 

advantages of remaining on territory or in central Nigeria.  However, Ottosson et al. (2005) found 388 

evidence that many Garden Warblers (Sylvia borin) had sufficient mass to depart directly from this 389 

zone in the spring, rather than moving north, suggesting that other species may have different 390 

strategies, or their “barrier” starts at a lower latitude or that the best fattening area is in the Guinea 391 

Savannah. An alternative hypothesis, of course, is that migrants can refuel during stopovers in the 392 

Sahara: whether this is strategy at all for Whinchats requires further study.  393 

Although we cannot measure mass gain immediately prior to departure, if mass at departure was an 394 

important driver of departure then patterns in mass gain over the non-breeding period may indirectly 395 

affect departure timing, for example, via processes such as dominance-based habitat segregation 396 

whereby dominant birds (e.g. males and adults) have access to the best resources (Marra & Holmes 397 

2001, Arizaga & Bairlein 2011). However, although mass in the latter part of the non-breeding season 398 

differs between sexes, ages and sites – potentially indicating dominance-based access to resources – 399 

this is not reflected in departure patterns, suggesting that mass is not a key driver of departure from 400 

territory. Sex was the strongest predictor of departure, with males departing territories on average 401 

eight days before females, reflecting patterns observed on arrival at the breeding grounds in 402 

Whinchats (Tøttrup & Thorup 2008) and other migratory species (Francis & Cooke 1986, Cooper et al. 403 

2009).  However, neither age nor body size appeared to have any relationship with timing of 404 

departure, although segregation by these traits is sometimes reported on arrival at the breeding 405 

grounds (Stewart et al. 2002, Cooper et al. 2009, Risely et al. 2013).   406 

In order to understand the mechanisms behind patterns in departure and mass, it should be noted 407 

that migratory timing is controlled by both endogenous (e.g. circannual rhythm) and by exogenous 408 

(e.g. resource availability) mechanisms (Gwinner 1986, Studds & Marra 2005, 2011, Maggini & Bairlein 409 

2012). Resource availability and its relationship with condition has been identified as a significant 410 

limiting factor during spring departure in the Neotropics, with American Redstarts Setophaga ruticilla 411 
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occupying better quality habitat reaching migratory condition and departing earlier on spring 412 

migration than those occupying poorer quality habitat (Marra et al. 1998, Studds & Marra 2005). This 413 

may not be the case in the Old World, however, where suitable wintering habitat may be more 414 

abundant (see Newton 2008), and differences in quality between habitats are not so well defined 415 

(Cresswell 2014). Indeed, there is no evidence of sex or age based habitat occupancy for wintering 416 

Whinchats over the study area based on fine-scale habitat characteristics (Blackburn & Cresswell 417 

2015a, 2015b), although it is possible these habitat characteristics do not necessarily reflect prey 418 

abundance.  A lack of segregation would be expected in an area with low competition (Whinchats are 419 

not at carrying capacity in this area; Hulme & Cresswell 2012) and where energy costs are low 420 

(Whinchats spend only 11% of the day foraging; Barshep et al. 2012), indicating that differences in 421 

territory quality are probably not important for overwinter survival. In this system, patterns in 422 

departure phenology may more closely reflect differences in endogenous triggers rather than 423 

resource constraints.  Studies on captive birds have shown that there are differences in endogenous 424 

timing of migration between populations (Maggini & Bairlein 2010) and sexes (Coppack & Pulido 2009, 425 

Maggini & Bairlein 2012), with males preparing for departure earlier than females independent of 426 

external factors; however, this has not been shown to be linked to age, although experimental 427 

evidence for this is lacking due to the difficulty is keeping individual birds captive over many years (but 428 

see Sergio et al. 2014 for age effects in a free-living raptor species). Therefore the pattern of departure 429 

we observed could be expected if departure timing from territory was triggered by endogenous 430 

mechanisms and relatively unconstrained by resource limitations. If Whinchats mostly fatten up 431 

outside of their territories, then territory quality cannot be a constraining factor, and therefore 432 

unlikely to have a strong effect on departure timing. Resource availability and dominance-related 433 

differences in access to resources may, however, become a constraining factor during migration, 434 

especially prior to the Sahara crossing when individuals need to deposit larger reserves of fat to fuel 435 

the desert crossing (Biebach 1992).   436 
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Overall, this study suggests that although this population of Whinchats may reach some level of 437 

migratory condition on territory (particularly if fuel deposition rate increased a few days just before 438 

territory departure), it seems more likely that most do not fatten up within their wintering territories.  439 

It is unknown whether they then reach maximum mass locally or move further north to fatten up 440 

closer to the Sahara, where they would require a smaller fuel load due to the shorter distance to travel. 441 

Indeed, many Palaearctic migrants, including Whinchats, have been captured in April on stopover near 442 

Lake Chad in north-east Nigeria (Fry 1969), although these areas have not been systematically studied. 443 

This is, however, a risky strategy if resources are not limiting on territory, because it involves 444 

expending energy searching for plentiful resources in unknown areas for first years on their first return 445 

migration. Further research is needed to determine whether this is an inherent strategy, which might 446 

in any case be expected for other wintering populations which winter further south in Kenya, Tanzania 447 

and Zambia, rather than close to the Sahara border. Additionally, these calculations are based on the 448 

assumption that Whinchats (and other generalist species) do not deliberately stopover in the desert 449 

to feed as a strategy. Stopovers seem unlikely if migrants have sufficient resources prior to the desert 450 

crossing, which many do even from local fattening as demonstrated in this study, as relying on finding 451 

suitable stopover sites in the desert must be extremely risky. Additionally, Whinchats have not been 452 

documented in any numbers refuelling in Saharan vegetation (Jenni-Eiermann et al. 2011) although 453 

this is absence of evidence rather than evidence of absence.   454 

In conclusion, if territorial overwintering migrants largely leave their territories to fuel up elsewhere 455 

then initial winter territory selection may not be influential for Palaearctic passerine migrants because 456 

low quality territories may suffice in terms of over-winter survival (Cresswell 2014). However, the 457 

quality of staging sites (i.e. their potential to provide sufficient resources for large and rapid mass gain) 458 

in the spring prior to major barriers may be critical for some, if not all, of the population, determining 459 

phenology and likely survival, and so ultimately population dynamics.  Further research is needed to 460 

determine how habitat quality further north in the northern Guinea savannah and in the Sahel 461 

constrains migration ecology in sub-Saharan Africa. 462 
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 Appendices 610 

Appendix A 611 

Permits 612 

Note that no permits are required in Nigeria to trap, colour-ring or to place geolocators on birds. 613 

Nevertheless all people in this study involved in ringing and deployment of geolocators had been 614 

licenced to do this within Europe for other studies and all ethical criteria and animal handling and 615 

welfare procedures used were those that would have been acceptable for an equivalent study based 616 

within Europe.  617 

Appendix B 618 

Error in departure estimates 619 

Across monitored individuals (excluding early departing birds which were visited less than four times 620 

after 2nd April, because averaging over so few visits is less meaningful), the probability of resighting an 621 

individual during a territory visit before departure was 81 ± 14 % (n = 68 individuals; measured simply 622 

by dividing number of detections by total number of visits for each individual). There was a 96% 623 

probability of detecting an individual after only two visits and a >99% probability of detection after 624 

three visits. Therefore our power of observing real departures from territory rather than non-625 

detections was high and on the scale of a few days. In effect our probability of detecting a real 626 

departure was likely to be much higher, because on average approximately 5-10 minutes were spent 627 
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looking for each missing individual initially, and then effort was increased if a bird had not been 628 

detected for two consecutive visits.   629 

Errors in departure date were not accounted for during analyses due to the high consistency of 630 

resighting and therefore detection probability, as outlined above.  Excluding birds which departed 631 

prior to 2nd April (n = 5), the maximum number of consecutive days a bird was not detected when it 632 

was known to be present over the monitoring period was 1.4 ± 1.1 days after last resighting (n = 70 633 

individuals).  Therefore variation in error of departure date for 95% of individuals would be 0 – 2.2 634 

days after a bird was detected for the last time.  This variation is small (9% of total variation in 635 

departure range) compared to the total duration of the departure period (24 days) and therefore 636 

unlikely to affect analyses. 637 
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Table 1.  Top 10 competing candidate models to explain departure timing from wintering territory for 638 

a) birds caught in 2014 (biometric data included; n = 57) and b) all birds (biometric data not included; 639 

n = 75). Retained parameters in the models are indicated by + signs if categorical or the parameter 640 

estimate if continuous; details are given in Table 2. Grey areas indicate where the variables were not 641 

included a priori in any model. Geo = presence of geolocator tag. Date and winter of capture are not 642 

included as they were not retained in any of the top models. 643 

a) Sex Age Site Geo Mass Tarsus Time Wing adj R2 F df logLik ΔAICc Weight ω 

1 +        0.18 13.5 3 -186.5 0 (379.4) 0.08 

2 +  +      0.22 6.1 5 -184.2 0.2 0.07 

3 +  +   1.33   0.23 5.1 6 -183.3 0.9 0.05 

4 +       -0.01 0.18 7.4 4 -185.9 1.1 0.05 

5 +  +     -0.01 0.22 4.9 6 -183.6 1.5 0.04 

6 + +       0.18 7.0 4 -186.2 1.7 0.03 

7 +  + +     0.21 4.8 6 -183.8 1.8 0.03 

8 +   +     0.17 6.9 4 -186.3 1.9 0.03 

9 +     0.57   0.17 6.8 4 -186.3 2.0 0.03 

10 +  +  0.66    0.21 4.7 6 -183.9 2.0 0.03 

b)               

1 +  +      0.30 11.8 5 -239.4 0 (489.8) 0.3 

2 +  + +     0.31 9.3 6 -238.6 0.6 0.2 

3 +   +     0.28 15.1 4 -241.4 1.7 0.1 

4 + + +      0.29 8.7 6 -239.4 2.3 0.1 

5 +        0.26 26.8 3 -242.9 2.3 0.1 

6 + + + +     0.30 7.4 7 -238.5 2.9 0.1 

7 + +  +     0.27 10.2 5 -241.1 3.4 0.1 

8 + +       0.25 13.2 4 -242.9 4.5 0 

9  +  +     0.08 4.2 4 -250.4 19.7 0 

10  + + +     0.10 3.1 6 -248.5 20.5 0 

 644 

 645 

 646 

 647 

  648 
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Table 2.  Relative importance and estimates of variables hypothesized to influence departure timing 649 

in Whinchats for a) birds caught in 2014 (n = 57) and b) all birds (n = 75) for candidate models (see 650 

Table 1) within ΔAICc < 4 of the top model (number of candidate models: a, n = 27; b, n = 7). Significant 651 

variables are in bold. 652 

 a) b) 

 
Relative 

Importance Estimate 2.50% 97.50% Importance Estimate 2.50% 97.50% 

         

Sex (♀) 1.00 6.18 2.62 9.75 1.00 7.23 4.31 10.16 

Site 1 0.5    0.71    

       2  2.8 -1.40 7.01  1.67 -0.76 5.43 

       3  -2.3 -6.92 2.29  -1.79 -6.80 1.78 
Geolocator (none) 0.18 1.56 -2.52 5.63 0.49 1.09 -0.90 5.34 
Age (1st winter) 0.17 1.38 -2.56 5.32 0.23 0.09 -3.20 3.95 

Tarsus 0.26 1.08 -1.22 3.39 – – – – 
Mass 0.19 0.20 -1.67 2.08 – – – – 

Wing 0.26 -0.01 -0.03 0.01 – – – – 
Time 0.04 -0.35 -0.96 0.26     

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 
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Table 3. Top 10 candidate LM models predicting Whinchat mass during a) September – December 664 

(period 1; n = 176) and b) January – March (period 2; n = 164). Parameters retained in the model are 665 

indicated by + if categorical or the parameter estimate if continuous. Details are given in Table 4.  666 

a) Tarsus Wing Sex Age Moult Site Year Date Time Adj R2 F df logLik ΔAICc Weight ω 

1 0.37 0.09     +   0.21 17.1 5 -212.0 0(434.4) 0.09 

2 0.38 0.09     + -0.01  0.21 13.2 6 -211.3 0.7 0.06 

3 0.37 0.07 +    +   0.21 13.2 6 -211.4 0.8 0.06 

4 0.38 0.10     +  0.04 0.21 13.1 6 -211.4 0.9 0.06 

5 0.37 0.09   -0.13  +   0.21 12.9 6 -211.7 1.5 0.04 

6 0.39 0.10     + -0.01 0.04 0.21 10.8 7 -210.6 1.5 0.04 

7 0.38 0.08 +    +  0.04 0.21 10.8 7 -210.7 1.6 0.04 

8 0.38 0.08 +    + -0.01  0.21 10.8 7 -210.8 1.8 0.04 

9 0.37 0.09  +   +   0.21 12.8 6 -212.0 2.1 0.03 

10 0.37 0.07 +  -0.13  +   0.21 10.6 7 -211.0 2.3 0.03 

b)                

1 0.40  + + 0.17 +  0.03 0.07 0.44 15.1 13 -241.4 0(510.9) 0.57 

2 0.41 0.00 + + 0.18 +  0.03 0.07 0.44 13.8 14 -241.1 1.7 0.25 

3 0.41  + + 0.17 + + 0.03 0.07 0.44 12.6 15 -241.3 4.5 0.06 

4 0.42 0.00 + + 0.17 + + 0.03 0.07 0.44 11.8 16 -241.0 6.1 0.03 

5 0.45  + + 0.14   0.03 0.07 0.41 23.2 8 -250.4 6.6 0.02 

6 0.46 0.00 + + 0.15   0.03 0.07 0.41 20.2 9 -249.5 7.0 0.02 

7 0.41  + + 0.16 +  0.02  0.42 14.9 12 -246.5 7.8 0.01 

8 0.40  +  0.15 +  0.03 0.07 0.41 14.7 12 -246.9 8.7 0.01 

9 0.41  + +  +  0.03 0.07 0.41 14.7 12 -247.2 9.2 0.01 

10 0.42 0.00 + + 0.163 +  0.02  0.41 13.6 13 -246.2 9.5 0.00 

 667 

 668 
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Table 4. Relative importance and coefficient estimates of variables predicting mass in Whinchats 674 

during the first half of the non-breeding season (September – December) for 24 candidate models 675 

with ΔAICc < 4 (see Table 3a). Significant variables are in bold. 676 

   95% CI 
Variable Importance Estimate Lower Upper 

Tarsus 1.00 0.37 0.20 0.56 
Season 1.00 0.59 0.23 0.96 
Wing 0.97 0.09 0.02 0.16 

Sex (♀) 0.39 -0.16 -0.43 0.11 
Time 0.37 0.04 -0.03 0.12 
Date 0.36 0.00 -0.02 0.00 
Moult 0.25 -0.12 -0.44 0.20 
Age (1st winter) 0.19 0.02 -0.27 0.23 
Site 0 0 0 0 

 677 

  678 
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Table 5. Optimal general linear model identified by AICc (Table 3) identifying variables predicting mass 679 

for 196 Whinchats caught in the second half of the non-breeding period in Nigeria. Significant variables 680 

are in bold.  Full model statistics: adjusted R2 = 0.44, F11,184 = 15.1, p < 0.0001. 681 

  95% CI 

Variable Estimate Lower Upper 

Tarsus 0.40 0.22 0.58 

Date 0.03 0.02 0.04 

Sex (♀) -0.49 -0.75 -0.23 

Age (1st winter) -0.41 -0.66 -0.16 

Moult 0.17 0.07 0.27 

Time 0.07 0.03 0.12 

Site    

2 -0.41 -0.81 -0.01 

3 -0.44 -0.93 0.05 

4 -0.44 -0.85 -0.02 

5 -0.87 -1.30 -0.44 

6 -0.91 -1.69 -0.13 

 682 

 683 

 684 

  685 



34 
 

Figure Legends: 686 

Figure 1: Map of the 6 sites used in the study (see methods for details). Departure monitoring from 687 

2nd April was focussed on sites 1-3, shown numbered in bold. The CES site was located between (and 688 

outwith) sites 1 and 2. 689 

Figure 2: Phenology of departure from territory for Whinchats in central Nigeria; a) top graph shows 690 

the cumulative percent of birds departing by a particular date – all birds had departed by the 24th 691 

April. The bottom histogram shows the frequency of departure on particular dates for both male and 692 

female; b) departure timing relative to the earliest departing individuals (day zero) from winter 693 

territory for adult and second year Whinchats of both sexes (n = 75). Note that sample size for 694 

second year males is low (n = 9).  For full model statistics see Tables 1 and 2. 695 

Figure 3: The relationship between mass and days from departure to show predicted average mass 696 

on departure (day 0 – the vertical dotted line). The solid black line shows the predicted relationship 697 

using all data (<80 days from departure, R2 = 0.23, F1,55 = 16.1, P = 0.0002),  and the dotted black line 698 

using <60 days from departure only (R2 = 0.04, F1,44 = 3.0, P = 0.09). The dotted grey lines show the 699 

predicted relationship using all data plus and minus two standard errors to demonstrate that all 700 

relationships fitted were statistically similar. Black-filled circles represent males and grey circles 701 

females. 702 

Figure 4:  Mass of 377 Whinchats captured over three non-breeding seasons in relation to date 703 

captured (intensive study data) for the period September to March inclusive, and mass of 141 704 

Whinchats captured over 8 years during April (CES ringing data): note different scales on all graphs. 705 

Predicted lines are plotted for males (light grey) and females (black) from the models predicting 706 

mass from date, winter season, time of day, wing length, minimum tarsus length, sex, age and 707 

location, except for CES data where age and minimum tarsus data were not available. All predicted 708 

lines are for an average sized bird, from the same ringing location, at 07:00, in 2013. 709 
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Figure 5: Estimated flight ranges of all Whinchats caught during April at Jos, the study site, and 710 

shown by a grey dot, with a map of West Africa (shaded area is the extent of the Sahara desert) 711 

scaled to the y axis and positioned with respect to the study site in the background. The grey 2,500 712 

km dashed line shows the approximate shortest distance to cross the Sahara from Jos; the grey 713 

2,800 dotted line the approximate distance to cross the Sahara to most northern part of Africa. The 714 

heavy solid increasing curve is the cumulative percent of birds with a respective flight range 715 

assuming a lean mass of 12.8 g – for example, all birds could migrate c. 400 km but only c. 5% could 716 

cross the shortest part of the Sahara if they left from the study site at Jos (i.e. the intersection of the 717 

dashed grey 2,500 km line with the 5% line). The dashed solid increasing curve is the cumulative 718 

percent of birds with a respective flight range assuming a minimum lean mass of 11.6 g – for 719 

example, all birds could migrate c. 600 km, c. 20% could cross the shortest part of the Sahara if they 720 

left from the study site at Jos (i.e. the intersection of the  dashed grey 2,500 km line with the 20% 721 

line), and c. 5% could cross to the most northerly shore of Africa (i.e. the intersection of the dotted 722 

grey line with the 5% line). (A) & (B) show two potential flight ranges estimated from the observed 723 

average departure mass for resident birds, solid arrows (A) use an estimated lean mass of 12.8 g and 724 

dashed arrows (B) a lean mass of 11.6 g. 725 

 726 

  727 
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Figure 1. 728 
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Figure 2. 731 

 732 

 733 

734 

      735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 



38 
 

Figure 3. 745 
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Figure 4. 748 
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Figure 5. 752 
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