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Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the
solar wind

P. J. Weck, D. A. Schaffner, and M. R. Brown
Swarthmore College, Swarthmore, Pennsylvania 19081, USA

R. T. Wicks
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

(Received 18 September 2014; revised manuscript received 19 December 2014; published 4 February 2015)

The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze
fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the
plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation
current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic
fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented
as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation
models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the
three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that
these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly
less complexity than the LAPD edge Isat. The CH plane coordinates are compared to the shape and distribution
of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind)
occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have
less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool
on solar wind plasma, as well as on an MHD turbulent experimental plasma.

DOI: 10.1103/PhysRevE.91.023101 PACS number(s): 52.30.Cv, 89.70.Cf, 89.70.Eg, 96.50.Ci

I. INTRODUCTION

Since Bandt and Pompe introduced their probability dis-
tribution based on ordinal patterns in arbitrary time series
in 2002 [1], their methodology has found a wide variety of
applications, from tracking the effects of anesthetic drugs
on the brain [2–4] to informing economic policy [5–7] to
various other areas [8–12]. In 2007, Rosso et al. used the
ordinal pattern distribution of Bandt and Pompe to construct
the complexity-entropy plane, or “CH plane” whose horizontal
coordinates are the computed values of the permutation
entropy and whose vertical coordinates are the statistical
complexity. This plane provides a graphical framework on
which to compare time series from periodic, chaotic, and
stochastic systems [13]. The CH plane has been used to
determine the statistical character of fluctuations in several
plasma systems, including magnetic flux ropes [14] and
electron heat transport [15]. However this approach has yet
to be extended to the study of dynamical MHD turbulence,
either in the solar wind or in laboratory MHD plasma. The
purpose of this paper is to provide the CH plane coordinates
for these turbulent systems and compare to previous results,
as well as to further the interpretation of this analysis tool for
the study of turbulent plasma systems.

We compute the values of the permutation entropy and
Jenson-Shannon statistical complexity for time series from
three different turbulent plasmas, each with potentially dif-
ferent dominant physical mechanisms. First, we examine
magnetic fluctuations in a spheromak of hydrogen plasma in
the wind-tunnel configuration of the Swarthmore Spheromak
Experiment (SSX). Then we analyze the density fluctuations
on the edge of a helium plasma generated by a barium-
oxide cathode source in the Large Plasma Device (LAPD).

Finally, we compare both laboratory measurements to satellite
measurements of the fluctuating magnetic field in the solar
wind. The computed values of the permutation entropy and
Jenson-Shannon complexity are then used as horizontal and
vertical coordinates (respectively) on the CH plane, for
comparison both across plasma systems and with well-known
chaotic and stochastic models. The magnetic fluctuations in the
solar wind are found to have the highest level of permutation
entropy and lowest complexity, occupying a position on the
lower right region of the CH plane nearest that of a purely
random signal, which has zero complexity and maximal
entropy. This result suggests that fully developed turbulence,
as the solar wind is thought to represent, can be identified by
its proximity to maximal stochasticity on the CH plane. The
LAPD edge fluctuations have the highest level of complexity
of the three measured data sets and occupy a middle region
in terms of the permutation entropy. Previous work has shown
that the LAPD drift-wave turbulence may be dominated by
nonlinear interactions of relatively small numbers of modes,
and thus tend to exhibit more chaotic, complex behavior [16];
thus, its coordinates occupy a position closest to known
chaotic maps. Finally, the SSX fluctuations exhibit a level of
complexity in between the other two plasmas. This suggests
that the SSX plasma has more degrees of freedom in its
fluctuations than the LAPD drift-wave plasma, but does not
exhibit fully developed turbulence, possibly because it is
constrained by the laboratory boundaries. The permutation
entropy of the SSX magnetic fluctuations is relatively high
or low depending on whether fluctuations in dB/dt [Ḃ(t)] or
temporally integrated B-field fluctuations [B(t)] are analyzed.
This difference suggests that the level of entropy of a time
series may be related to the rate of decrease in power as
frequency increases.
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It should be emphasized that, at this stage, the goal of this
comparative study is to highlight the variations in outcomes
using this particular analysis tool rather than attempting to
unravel differences in the physical mechanisms underlying
each data set. In a sense, the work presented here was designed
to be as physics-blind as possible. However, through study of
how various mechanisms manifest in the complexity-entropy
plane, a comprehensive physical understanding of each system
can be pursued.

A description of how each data set was generated is pro-
vided. The MHD wind tunnel configuration of the Swarthmore
Spheromak Experiment (SSX) consists of a plasma gun which
injects a spheromak of magnetized plasma into an ∼1-m-long
cylindrical copper flux conserver [17]. Probes embedded in
the chamber collect data on turbulent fluctuations in Ḃ as
the plasma evolves down the length of the tube, eventually
relaxing into a Taylor state [17–20]. After injection the plasma
is completely dynamical, as there is no guide or vacuum field
in the body of the chamber. The Ḃ fluctuation signals for SSX
were recorded by a 16-channel, three-direction, single-loop
pickup coil probe array embedded in the midplane of the
cylindrical wind tunnel, with a 65-MHz sampling rate and
14-bit dynamic range. By varying the amount of magnetic
flux through the core of the gun, referred to here as “stuffing
flux,” the magnetic helicity of the injected plasma can be finely
controlled [19]. Magnetic helicity corresponds to the degree of
twistedness in the magnetic field, so varying injected helicity
affects the resulting turbulent dynamics of the plasma as it
evolves towards a relaxed Taylor state.

While SSX primarily exhibits magnetic turbulence, many
other plasma laboratories exhibit turbulent fluctuations of their
density and temperature, typically generated by free energy
in the gradients of these quantities. This form of turbulence
is often referred to as pressure-gradient-driven, drift-wave,
or transport turbulence and is an important topic in fusion
confinement studies [21]. Drift-wave turbulence can be studied
in detail on the Large Plasma Device (LAPD) at UCLA [22].
LAPD generates a 17-m-long, ∼60-cm-diameter cylindrical
plasma with a barium-oxide coated nickel cathode. In the
data reported here, a plasma of density ∼ 2 × 1012cm−3 and
peak temperature of 8 eV is produced in a uniform solenoidal
magnetic field of 1000 G. Measurements of ion saturation
current (Isat ∝ ne

√
Te) are taken with a nine-tip Langmuir

probe (flush-mount tantalum tips) inserted radially into the
edge of the cylindrical plasma produced by the source, a region
where the turbulent fluctuations tend to be strongest. Signals
were sampled at 1.5 MHz from a radial location of 26 cm [23].
The fluctuations in the edge are shown to be dominated by
drift-wave modes due to the pressure gradient that develops
between the plasma core and the chamber wall [24]. Since
there is a strong background field in the LAPD, the magnetic
fluctuations are not significant; thus fluctuations in the ion
saturation current are used for this study.

Finally, we compare the laboratory plasma measurements
of magnetic and drift-wave turbulence to observations from
the Wind spacecraft of the turbulent solar wind. The Wind
spacecraft provides high-cadence magnetic field observations
of the solar wind using the Magnetic Field Investigation (MFI)
instrument [25] from the L1 Lagrangian point between the
Earth and the Sun. Measurements are made 11 times per

second using a flux gate magnetometer and then averaged
to 3 s to remove the spacecraft spin signal from the data. Flux
gate measurements provide a dc magnetic field observation
by measuring the bias required for no current to flow in a
coil of wire subject to a changing magnetic field. Thus the
observations are equivalent to B(t) observations made in SSX,
rather than Ḃ. The solar wind is highly variable but there are
two broad types: fast wind (V > 600 km/s) which is emitted
from open coronal field lines and is typically low density
(<5 protons/cm3), has few large scale structures and has
high amplitude but less developed turbulence, and slow wind,
(V < 500 km/s) which is typically found in the ecliptic plane
and originates from more complex coronal magnetic topology
and is denser and more structured than the fast wind with more
evolved but lower amplitude turbulence [26,27]. Here we use
multiday long intervals of a fast wind stream (January 14–21,
2008) and a slow wind stream (January 24–29, 2010) with
large scale magnetic fluctuations on the order of 10 nT.

II. PERMUTATION ENTROPY AND THE CH PLANE

Bandt-Pompe permutation entropy and Jensen-Shannon
statistical complexity are statistical metrics which measure two
distinct properties of a data set. Permutation entropy represents
the randomness inherent in a process as displayed by discrete
measurements of a parameter of the system. The greater
the tendency of the system to repeat just a few fluctuation
patterns in the measured signal (i.e., the more predictable it
is), the lower its permutation entropy. Conversely, the more a
system tends to exhibit all possible fluctuation patterns in the
measurements (i.e., the more unpredictable it is), the higher the
permutation entropy. On the other hand, for a given entropy,
the Jensen-Shannon statistical complexity measures the degree
to which there exist privileged fluctuations among those acces-
sible to the system. By calculating both quantities for a given
time series, valuable information can be gained simultaneously
about the randomness of fluctuations in the system and the
degree of correlational structure in these fluctuations.

The permutation entropy of an arbitrary time series is
defined in terms of a window length called the embedding
dimension n. The embedding dimension determines the size of
patterns investigated in calculating the entropy and complexity
of the series. The instances of each ordinal patterns of that size
are counted in order to associate an ordinal pattern probability
distribution with the time series, from which the calculation of
entropy and complexity is straightforward.

For embedding dimension n, the probability distribution
introduced by Bandt and Pompe consists of the frequencies of
occurrence of all possible length n ordinal patterns in segments
of n consecutive terms from an arbitrary time series [1]. In
their methodology, a length n ordinal pattern is defined for a
segment s = (xt ,xt+1, . . . ,xt+(n−1)) of the time series as the
permutation π of the index set {0,1, . . . ,n − 1} corresponding
to the ranking of the xi in ascending order, namely xπt

<

xπt+1 < · · · < xπt+(n−1) . In order to guarantee a unique result, if
xi = xj where i < j , then in the ranking xi < xj . For example,
if x0 = 5, x1 = −2, and x2 = 0.33 are three consecutive terms
in the time series, then since x1 < x2 < x0, the ordinal pattern
for this segment is the permutation π = (1,2,0). Given a
time series of length L, the corresponding ordinal pattern

023101-2



PERMUTATION ENTROPY AND STATISTICAL . . . PHYSICAL REVIEW E 91, 023101 (2015)

probability distribution P = {p(π )} is defined in terms of
all L − n + 1 length n segments s in the series and all n!
permutations π of order n by

p(π ) = |{s : s has ordinal pattern π}|
L − n + 1

, (1)

where | · · · | denotes the size of the set. The permutation
entropy PE is defined as Shannon’s information entropy for
this ordinal pattern probability distribution, or

PE = −
n!∑

p(π ) log2 p(π ) (2)

Instead of considering consecutive points in calculating the
ordinal pattern probability distribution for a time series, an
embedding delay τ can be used to sample ordinal patterns
on a larger time scale, thereby placing a lower limit on the
temporal size of structures resolved, consequently limiting
the maximum associated frequency. Embedding delays can
be implemented as a simple subsampling of data in which
only L/τ values of the time series are considered [14,15]
or all portions of the original time series can be used [28],
a method referred to here as the length-preserving method.
For example, for an embedding delay τ = 10 using the former
approach, a new time series X′ of length L′ = 1

10L is generated
by selecting every tenth value of the original series X and
the ordinal pattern probability distribution calculated for that
series in the usual manner. In the length-preserving method,
segments (xt ,xt+10, . . . ,xt+10(n−1)) of X are used to calculate
the ordinal pattern probability distribution, where t runs from
1 to L − 10(n − 1), thereby including the 9/10ths of the
dataset thrown out in the first method. Which method is
used depends in part on the length of the record in question.
Unless L′ � n!, the first method may not yield reliable
statistics [14], and the length-preserving method thus appears
preferable.

While the permutation entropy quantifies the randomness
in an arbitrary time series, a measure of statistical complexity
such as the Jensen-Shannon complexity is required to quantify
any additional physical structure which might be reflected in
the probability distribution constructed from the signal. The
Jensen-Shannon complexity, or CJS , of the distribution P of
N probabilities associated with a time series is defined as the
product

CJS[P ] = QJ [P,Pe]H [P ], (3)

where H [P ] is the normalized Shannon entropy and the
quantity QJ [P,Pe] is a measure of disequilibrium, where
Pe = { 1

N
, . . . , 1

N
} is the uniform distribution [29]. In other

words, QJ [P,Pe] quantifies how different P is from an
equiprobable distribution, characteristic of a system such as
an isolated ideal gas [30]. Therefore the quantity CJS[P ]
will be nonzero only if there exist privileged states among
those accessible to the system, and largest for a given
entropy the further the distribution of accessible states is
from uniform. Formally, once the disequilibrium is normalized
such that 0 � CJS � 1, the Jensen-Shannon complexity can be

expressed,

CJS[P ] = −2
S
[

P+Pe

2

]− 1
2S[P ] − 1

2S[Pe]
N+1
N

log2(N + 1) − 2 log2(2N ) + log2(N )
H [P ],

(4)

where S denotes the un-normalized Shannon entropy. When
using the Bandt-Pompe methodology, the distribution P asso-
ciated with the time series is the distribution of length n ordinal
patterns, so that N = n!, S[P ] = PE, and H [P ] = PEnorm =
PE/ log2 n!. CJS can then be interpreted as a measure of the
“nontriviality” of the frequencies of occurrence of ordinal
patterns in the time series, reflecting underlying physical
structures which would be excluded if only a measure of
entropy were considered [29].

In order to develop some intuition about these metrics,
it is often useful to consider simple examples. The simplest
would be a monotonic time series, say representing a line with
positive slope. The only length n ordinal pattern appearing
in this time series is the permutation (0,1, . . . ,n), and thus
the permutation entropy is −1 log2 1 = 0. The corresponding
ordinal pattern probability distribution is far from a uniform
distribution, with only one bin filled, so the disequilibrium is
large. Nevertheless, CJS is zero since PE is zero. The fact that a
monotonic time series has zero complexity intuitively matches
the characterization of the Jensen-Shannon complexity as a
measure of structure, or nontriviality. At the other extreme is
a completely random time series, from a maximally stochastic
system where every possible ordinal pattern occurs with equal
frequency 1/n!. By construction, such a series maximizes
the permutation entropy, so that PE = log2(n!). However,
the disequilibrium is zero, so the CJS also vanishes. This
again intuitively fits with the identification of Jensen-Shannon
complexity as a measure of correlational structure.

In intermediate systems with entropies between these
extremes, there is a corresponding range of possible com-
plexities. As shown in [13], by mapping out the positions
of these systems on the CH plane PEnorm × CJS , differing
degrees of periodic, chaotic, and stochastic dynamics can be
identified. As a functional of the entropy, CJS is constrained
between well-defined extremes for a given value of H [30,31].
These crescent-shaped maximum and minimum complexity
curves are shown in Fig. 1. Within these bounds, regions of low
entropy and low complexity are associated with predictable,
orderly but unstructured dynamics, such as those of periodic
systems. A time series generated from a sine function would
occupy this region of the plane. Since a sine function must be
discretized in order to generate a time series, ordinal patterns
other than the basic monotonically increasing and decreasing
patterns are introduced near the peaks and troughs. Therefore
the permutation entropy and Jensen-Shannon complexity of
a sine curve is nonzero, except in the limit of infinitesimal
sampling. The middle to upper region of the plane, on the other
hand is associated with relatively unpredictable systems which
nevertheless possess a large degree of structure, manifested in
a distribution of ordinal patterns which is far from uniform.
This is the region of the CH plane occupied by deterministic
chaos [13]. Finally, the lower-right region of the plane is
associated with highly unpredictable systems which lack
structure, in the sense that all possible ordinal patterns occur
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FIG. 1. (Color online) The n = 5 CH plane with SSX Ḃ and B (time integrated from Ḃ) data for two injected helicities, Wind fast and slow
stream B data, LAPD edge plasma ion saturation current signals, and paradigmatic chaotic, periodic, and stochastic systems for comparison.
The purple star, cross, and × markers represent chaotic skew tent, Henon, and logistic maps, respectively. The parameters used to generate
time series for these chaotic maps are the same as in Rosso 2007 [13]. The pentagon marks the position of the sine function, and stochastic
fBm signals are indicated by a dashed black line. Crescent shaped curves show the maximum and minimum possible CJS for a given PEnorm.
Error bars indicate standard deviation from the ensemble average. Note that solar wind bars are smaller than the displayed size of the markers.

with more or less the same frequency. Inherently probabilistic,
or stochastic, models generally occupy this region of the plane.
The less correlation between successive terms in a time series,
the farther it tends towards the PEnorm = 1,CJS = 0 corner of
the plane [13].

The n = 5 CH plane in Fig. 1 includes the positions of
several well-known models in order to illustrate each of these
regions and provide some point of reference for subsequent
comparisons of physical data. In particular, the CH positions
of time series generated by a simple sine curve, chaotic
Henon, skew tent, and logistic maps, and stochastic fractional
Brownian motion (fBm) are shown. The three chaotic maps
and fBm are described in Rosso 2007 [13]; the parameters
used to generate time series in that publication are repeated
here and are shown to occupy the same positions on the CH
plane. Note that the dotted line corresponding to fBm was
generated by varying the Hurst exponent, thereby scanning
the degree of correlation between increments in the model
from strong negative correlations to positive correlations.

III. CH COMPARISON OF SSX, WIND, AND LAPD DATA

SSX magnetic fluctuations were analyzed over a 20-μs
window during the stationary period of the discharge, cor-
responding to 1300-sample records, and then averaged over
40 shots. Actual magnetic field fluctuations B are obtained
by integrating the dB/dt signal over time. The normalized

permutation entropy and Jensen-Shannon complexity were
calculated for each series, using n = 5 in order to satisfy
the common condition L > 5n!, as recommended in [32]
and [33]. The length-preserving embedding delay method
was employed to preserve this condition after subsampling.
An embedding delay of τ = 8 was used to filter frequencies
above 9 MHz to avoid contamination from a high frequency
noise mode inherent in the SSX plasma discharge, but small
enough compared to the record length to avoid artificial
numerical effects we found to be associated with small L/τ

ratios. The average CH plane coordinate is computed from
the individually computed coordinates of each orthogonal
direction of the four innermost coil locations on the magnetic
probe array. Two separate markers in Fig. 1, one open and one
filled, are shown in blue designating two different helicity
settings. Error bars indicate standard deviations from the
ensemble average.

Figure 1 also shows the positions of both fast and slow
stream magnetic fluctuations in the solar wind. The fast stream
magnetic signal from Wind consisted of almost 230 000 values,
and the slow stream signal of over 170 000. Since both signals
were highly stationary, a set of subseries could be treated as
an ensemble. The length of subseries Lwind was chosen in
conjunction with the embedding delay τwind so as to satisfy the
condition Lwind/τwind = Lssx/τssx . Entropies and complexities
were averaged over 20 subseries each 11 375 values in length
for the fast stream signal and 15 subseries of 11 375 values for
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the slow stream. Delays of τwind = 70 were used, which limits
the upper frequency range of the dynamics under investigation
to well within the inertial range. Error bars are within the range
of the marker.

Previous work using frequency spectra has suggested that
the edge fluctuations of magnetized plasmas in the LAPD and
other devices are chaotic in nature [34]. The CH coordinate of
the LAPD edge plasma shown in Fig. 1 in red was averaged
over 25 shots and five sections of 1000 values for each shot
with no embedding delay.

The relative coordinates of each measurement show that
the solar wind magnetic fluctuations at 1 AU are the most
stochasticlike of the three with permutation entropy and
complexity values of (H = 0.964,C = 0.057) for fast and
(H = 0.956,C = 0.069) for slow wind, both close to that of
pure white noise and more random than even classical Brow-
nian motion, or fBm with Hurst exponent of 1/2 (fBm models
have also been explored as a potential model for turbulent
fluctuations in the solar wind and the magnetosphere [35]).
The fast stream signal exhibits slightly more entropy and
less complexity than the slow stream signal; it is as yet
unclear whether this slight difference has a physical meaning,
however. One possible hypothesis is that the higher incidence
of uncorrelated Alfvenic fluctuations in the fast wind could
contribute to a greater degree of stochasticity [36]. Although
it has been well documented that the solar wind exhibits
well-developed turbulence [27], the use of this complexity-
entropy plane analysis allows for direct comparison of this
fully developed astrophysical MHD turbulent plasma with
other plasma sources, both in terrestrial experiments and in
space.

Conversely LAPD edge fluctuations are the most chaoti-
clike with coordinates of (H = 0.441,C = 0.296), closest
of the three measurements to the chaotic models at the
top of the CH plane. Although the complexity values for
the full LAPD edge are slightly less than that observed in
smaller drift-wave experimental setups [15], the relatively high
complexity compared to the other measurements suggests a
larger contribution from chaotic dynamics, likely associated
with the nonlinear interaction of the drift-wave modes [34].

Finally, SSX magnetic fluctuations have entropy and
complexity values of (H = 0.776,0.786; C = 0.24,0.242)
for Ḃ(t) data (0.0 and 1.0 mWb stuffing fluxes) and
(H = 0.448,0.392; C = 0.305,0.272) for B(t) (same stuffing
fluxes). The complexity values are in between that of LAPD
and the solar wind, while the permutation entropy values
differ substantially whether dB/dt or B is used. Naturally,
this suggests that the magnetic fluctuations have a slightly
more stochastic character than the density fluctuations of the
LAPD edge, but do not reach the level of stochasticity of solar
wind fluctuations. The large gap in entropy may be associated
with the nature of the power spectrum, as will be discussed
next.

The results of the CH plane analysis can be compared
to a typical power spectrum analysis. Figure 2 shows the
wavelet-generated power spectra [37] for the time series under
investigation. Each spectrum is normalized to its minimum
frequency in order for each curve to be placed on the same axis.
This allows for the overall shape of the spectra to be directly
compared. Furthermore, each curve is placed arbitrarily on

FIG. 2. (Color online) Spectra of LAPD edge Isat fluctuations,
SSX magnetic fluctuations, and solar wind magnetic fluctuations are
shown in thick lines with symbols. Each spectrum is normalized
to a different time scale: LAPD is normalized to 500 Hz; SSX
is normalized to 12.8 kHz; solar wind is normalized to 165 μHz.
Analytic forms for an exponential, a −11/3 power law, and a −5/3
power law (Kolmogorov) are indicated by the thin dashed lines. The
power scale is arbitrary as the emphasis here is on the shape of the
curves, not the relative power content of the spectra. The three spectra
indicate a clear transition from exponential-like to power-law-like
broadband spectra. As an intermediate case, the SSX data exhibit both
power-law behavior (steep and shallow) and exponential behavior
(transition between steep and shallow).

the y axis. Each spectrum is also cut off at the frequency
associated with the embedding delay used in the CH plane
analysis. The LAPD spectrum shows the most exponential-like
(∼eτf ) shape while the solar wind spectrum is the most
power-law like (∼f −α). SSX Ḃ and B spectra are in between
and would appear to have both power-law and exponential
behavior. Previous work on SSX [20] has shown that the
spectra have two power-law regimes, a steep and a shallow
regime. The transition region, on the other hand, appears to
have a somewhat exponential character to it. Since exponential
spectra are typically identified with low-dimensional chaotic
behavior [34], the range in spectra mirror the results of the
complexity analysis. The most exponential spectrum (LAPD)
has the highest level of complexity while the most power-law
like (solar wind) has the least complexity and the SSX data,
having potentially both power-law and exponential aspects,
have complexities somewhere in between.

The spectra also shed light on interpretation of the per-
mutation entropy. The steepest spectra in Fig. 2 is the SSX
B spectrum; the corresponding time series have the lowest
entropies. The LAPD data, if they were compared to a

023101-5



WECK, SCHAFFNER, BROWN, AND WICKS PHYSICAL REVIEW E 91, 023101 (2015)

power-law slope, would have the second steepest spectrum
while the SSX Ḃ spectrum is third, and finally the solar wind
is the shallowest. This ordering is consistent with the relative
magnitudes of permutation entropy for each data set. These
results suggest that the permutation entropy is associated with
the overall distribution of frequency power content of the
time series, while the exponential versus power-law shape
is associated with the level of complexity. It is clear that
though each of these spectra is considered broadband and
would perhaps be described as turbulent, the CH plane analysis
reflects the different physical mechanisms which produce the
fluctuations.

Next, the meaning of turbulence can be explored in the
context of the CH positions of these fluctuations. The coor-
dinates of solar wind magnetic fluctuations on the CH plane
suggest that fully developed turbulence should occupy a region
close to the stochastic limit. Meanwhile, while often referred
to as turbulent, fluctuations in a laboratory setting (drift-wave
turbulence for LAPD, MHD turbulence for SSX) may not be
truly turbulent, or considered only weakly turbulent. Instead
there appears to be a limit on how turbulent these fluctuations
can be whether it is due to a limit on the number of modes
associated with the fluctuations (as is thought to be the case in
the LAPD [15]) or whether there is a limit on how much power
can be distributed to higher frequencies (or smaller scales). In
SSX, this latter issue may arise due to boundary or temporal
development limits, both of which are not encountered by
solar wind plasma (but may be relevant for the more bounded
turbulent system of the magnetosheath [38,39], for example).
The results of the CH plane analysis highlight that more work
is needed to push laboratory plasma turbulence research into
the fully developed regime.

Finally, some discussion of how this analysis may be related
to the typical measure of degrees of freedom in a turbulent
plasma—Reynolds number—is warranted. Reynolds number,
whether in reference to flow or magnetic turbulence (i.e., Re

or Rm), can be defined as the ratio of energy injection scale to
energy dissipation scale in a turbulent cascade, and as such, can
be interpreted as the number of degrees of freedom available to
the system (or in other words, how many different scales energy
can occupy between input and dissipation). The magnetic
Reynolds number for the solar wind is typically on the order
of 1 × 107 while SSX magnetic Reynolds numbers have been
calculated (based on typical length scales and assuming Spizter
resistivity as the dissipative mechanism) to be on the order of
1 × 102. Thus, Reynolds number shows a separation between
solar wind data and SSX data though only in one dimension
and qualitatively matches the difference in degrees of freedom
suggested by the CH analysis. A complication arises when
the LAPD data are introduced for comparison. Reynolds
numbers are predicated on the separation of energy injection
and dissipation scales. However, drift-wave turbulence may
not have a clear separation of scales as energy can potentially
be injected or dissipated at different scales [40], and thus a
Reynolds number may have less meaning in this case. The

complexity-entropy analysis performed here, on the other
hand, does not rely on any specific physical model and thus
can be used to compare disparate systems.

IV. CONCLUSION

In this paper, spectrally broadband magnetic fluctuations
in laboratory and astrophysical plasmas have been compared
using the ordinal pattern-based CH plane introduced by Rosso
et al. Comparing the relative coordinates of drift-wave, MHD
wind tunnel, and solar wind plasmas, it was found that the
three systems occupy different regions of the CH plane,
suggesting that despite the broadband spectra exhibited by
all these systems, the CH analysis is capable of highlighting
differences in the underlying nature of the fluctuations,
particularly among drift-wave, partially developed, and fully
developed turbulence. Drift-wave turbulence is thought to be
a result of the nonlinear interactions of relatively few modes
while fully developed turbulence contains too many modes to
distinguish; it appears that the entropy-complexity analysis of
these magnetized plasmas effectively highlights the number of
degrees of freedom of the system in question. In particular, the
smaller number of modes generating drift-wave turbulence in
LAPD edge plasmas are revealed by the low-middle entropy
and middle-range complexity of that system, while the high
entropy and low complexity of magnetic fluctuations in the
solar wind may reflect the multitude of degrees of freedom
active in that system. The analysis also showed that variations
in permutation entropy may be related to power-law scaling
of the spectra; in other words, permutation entropy may be
proportional to the evenness of energy distribution among
spectral frequencies. Based on the relative CH positions of
SSX MHD wind tunnel and Wind data, although SSX is on its
way towards the highly stochastic turbulence in the solar wind,
this analysis indicates that further steps are needed for SSX to
more accurately model solar wind turbulence. The confined
nature of the experiment and short lifetimes involved are
both potential contributors to the discrepancy in CH positions.
Other than the boundary conditions imposed by astrophysical
bodies, the solar wind is an unconfined and extremely long
lived plasma. Whether one or both of these parameters could
be varied to reduce the complexity and increase the entropy of
SSX to that of the solar wind is an open question. In any case,
the CH methodology has provided us with another avenue for
comparing and understanding turbulence in plasmas.
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