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Femtosecond laser-induced formation of submicrometer spikes on silicon
in water

M. Y. Shen,a) C. H. Crouch,b) J. E. Carey, and E. Mazurc)

Department of Physics and Division of Engineering and Applied Sciences, Harvard University,
9 Oxford Street, Cambridge, Massachusetts 02138

(Received 3 August 2004; accepted 2 September 2004)

We fabricate submicrometer silicon spikes by irradiating a silicon surface that is submerged in water
with 400 nm, 100 fs laser pulses. These spikes are less than a micrometer tall and about 200 nm
wide—one to two orders of magnitude smaller than the microspikes formed by laser irradiation of
silicon in gases or vacuum. Scanning electron micrographs of the surface show that the formation
of the spikes involves a combination of capillary waves on the molten silicon surface and
laser-induced etching of silicon. Chemical analysis and scanning electron microscopy of the spikes
show that they are composed of silicon with a 20-nm-thick surface oxide layer. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1828575]

A number of different techniques have been reported to
form micrometer-sized structures on silicon surfaces using
pulsed laser irradiation.1–4 Previously we reported that quasi-
ordered arrays of conical spikes form spontaneously on sili-
con under irradiation with high-fluence femtosecond laser
pulses in the presence of SF6.

2 The silicon spikes have many
potential applications, such as electron emitters5 and infrared
photodetectors.6 We found that capillary waves at the molten
silicon surface play a role in the spike formation and that
imposing boundary conditions on the capillary wave pro-
duces ordered arrays of spikes.7,8

Most previous studies of laser-induced spike formation
on silicon were performed by irradiating samples in vacuum
or in the presence of a gas. Here we report the results of
femtosecond laser irradiation of silicon in water. When sili-
con is irradiated with femtosecond laser pulses of 400 nm
wavelength, we observe the formation of submicrometer
spikes at the silicon surface. For 800 nm pulses we do not
observe the formation of spikes. Instead we observe a com-
bination of roughening and hole formation. In contrast, in a
gas, we observe virtually no difference in the structures that
form at 400 and 800 nm.9 In this letter we concentrate on the
spike formation at 400 nm. We will report on the very dif-
ferent hole formation at 800 nm in a forthcoming letter.

We performed our experiments on Si(111) wafers that
are cleaned with acetone and then rinsed in methanol. The
wafer is placed in a glass container, which is mounted on a
three-axis translation stage and filled with distilled water.
The silicon surface is irradiated by a 1 kHz train of 100 fs, 60
µJ pulses at 400 nm wavelength from a frequency-doubled,
amplified Ti:sapphire laser. A fast shutter is used to control
the number of laser pulses incident on the silicon surface.
The laser pulses are focused by a 0.25 m focal-length lens
and travel through 10 mm of water before striking the sur-
face at normal incidence. The focal point is about 10 mm
behind the silicon surface and the spatial profile of the laser
spot is nearly Gaussian, with a fixed beam waist of 50µm at

the sample surface. To correct for chirping of the laser pulse
in the water and ensure minimum pulse duration at the sili-
con surface, we prechirp the pulse to obtain the lowest pos-
sible damage threshold at the silicon surface. The results
presented here, however, do not depend strongly on the
chirping of the laser pulse.

During sample irradiation, we monitor the sample sur-
face with an optical imaging system with a spatial resolution
of about 5 µm. The irradiation causes the formation of
micrometer-sized water bubbles at the silicon–water inter-
face. After a single pulse we observe two or three mi-
crobubbles; for irradiation with trains of laser pulses thou-
sands of bubbles are generated. Sometimes the bubbles
coalesce to form larger bubbles; some of these large bubbles
adhere to the silicon surface and remain there until the cell is
shaken vigorously.

Figure 1 shows electron micrographs of the silicon sur-
face after irradiation with 1000 laser pulses. The shape of the
spikes is more columnar than the conical spikes formed in
the presence of SF6. The spikes are typically 200 nm in di-
ameter and 500 nm tall, and they protrude up to 100 nm
above the original surface of the wafer[Fig. 1(c)].

We measured the x-ray photoelectron spectrum(XPS) to
determine the chemical composition of the uppermost 10 nm
of the spikes’ surface layer. The XPS spectra show that this
layer is composed of about 83% SiO2 and 17% Si. To re-
move the oxide, we etched the sample in 5% HF for 15 min,
which removes the 20-nm SiO2 layer but leaves the underly-
ing unoxidized Si intact. Electron micrographs of the spikes
before [Fig. 2(a)] and after [Fig. 2(b)] etching show that
etching reduces the width of the spikes by about 40 nm and
renders their surface smoother. After etching, we detect no
SiO2 in the x-ray photoelectron spectra indicating that the
interior of the spikes consists of silicon and that the spikes
are covered by an oxide layer of at most 20 nm thickness.

To study the development of the spikes we irradiated
samples with various numbers of laser pulses. Figure 3
shows a series of scanning electron micrographs of the sur-
face of silicon irradiated with an increasing number of laser
pulses. The pictures only show the central portion of the
irradiated area. A single laser pulse forms surface structures
resembling ripples on a liquid surface with a wavelength of
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about 500 nm. Lower magnification micrographs(not shown
here) show that the irradiated region typically contains two
or three of these ripple-like structures. We believe each
ripple structure corresponds to one of the two or three mi-
crobubbles we observe after irradiation. After two pulses, the
surface shows overlapping ripple structures. As the number
of laser pulses is increased from 5 to 20, the silicon surface
roughens from the interaction of many ripple structures. Af-
ter 50 laser pulses, the surface is covered with submicrome-
ter bead-like structures, which then evolve into spikes as the
number of pulses is further increased. The average separation
of the resulting spikes is roughly 500 nm and equal to the
wavelength of the initial ripple structures.

The silicon spikes prepared in water described in this
letter are one to two orders of magnitude smaller than spikes
induced by lasers in gases.1–9 This remarkable size difference
suggests different formation mechanisms for the two types of
spikes. When the 400 nm laser pulse interacts with the sili-
con surface, most of the light is absorbed by a silicon layer
tens of nanometers thick near the silicon–water interface.
The absorption of intense light in such a thin silicon layer
excites a plasma at the silicon–water interface; the plasma
then equilibrates with the surrounding water and silicon,
leaving behind a molten silicon layer on the surface, which
solidifies before the next laser pulse arrives. Due to the high
temperature of the plasma, some of the water vaporizes or

dissociates,10 generating bubbles at the silicon–water inter-
face. Because the large bubbles we observe after irradiation
can remain in the water for days, they must consist primarily
of gaseous hydrogen and oxygen rather than water vapor.

There are several possible mechanisms by which the
bubbles may produce the wave-like structures shown in Fig.
3. Diffraction of the laser beam by the bubbles may produce
rings of light intensity on the silicon surface, or the heat of

FIG. 1. Scanning electron micrographs of silicon spikes formed by irradia-
tion with 100 fs, 400 nm, 60µJ laser pulses on a silicon surface in distilled
water [(a,b)] viewed at 45° to the surface normal, and(c) viewed from the
side.

FIG. 2. Scanning electron micrographs of silicon spikes formed in distilled
water (a) before and(b) after HF etching.

FIG. 3. Scanning electron micrographs of a silicon surface irradiated in
distilled water by an increasing number of laser pulses. The width of the
irradiated area is approximately 50µm.
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vaporization and dissociation required to form a bubble at
the silicon–water interface may cool the silicon surface lo-
cally, exciting a capillary wave in the molten silicon through
Marangoni flow.11 The latter is the most likely formation
mechanism for the structures observed after a single pulse;
those structures cannot be formed by diffraction from a laser-
induced bubble, as the pulse duration is only 100 fs, and the
observed wave-like structures can be several micrometers in
diameter. A micrometer-sized bubble requires much longer
than 100 fs to form12,13and therefore cannot diffract the first
pulse.

Roughness on the silicon surface causes the laser pulse
energy to be absorbed unevenly across the surface;14 the re-
sulting nonuniform temperature of the surface produces a
random arrangement of bubbles. Silicon–water has a contact
angle of 45°, making a gaseous layer between the silicon and
water unstable and leading to the formation of bubbles. The
vaporization and dissociation remove thermal energy from
the molten silicon surface just below the bubble causing it to
cool rapidly. Because the surface tension of liquid silicon
decreases with increasing temperature,15 the surrounding hot
liquid silicon flows toward the cooled region, deforming the
surface.11 This deformation can then excite a circular capil-
lary wave at the liquid-silicon surface. Superposition of
ripple structures caused by multiple laser pulses produces the
randomly distributed submicrometer beads that appear after
20 laser pulses in Fig. 3. These beads subsequently sharpen
into spikes through preferential removal of material around
the beads by laser-assisted etching.1,16

The early stages of submicrometer spike formation in
water is different from that in gaseous SF6, while the later
stages are very similar.7–9 In SF6, straight submicrometer-
sized ripple structures first form on the silicon surface, then
coarser, micrometer-scale ridges form on top of(and perpen-
dicular to) the ripples. Next, the coarsened layer breaks up
into micrometer-sized beads, and finally the beads evolve
into spikes through etching. In both SF6 and water, the length
scale of the final structures is set by the arrangement of bead-
like structures that form after roughly 10–20 pulses, and this
length scale appears to be determined by capillary waves in
the molten silicon.4,8 The much smaller size of the spikes
formed in water must therefore be due to a difference in
capillary wavelength in the two cases.

The molten silicon layer should solidify much faster in
water than in SF6, as the thermal conductivity and heat ca-
pacity of liquid water are much greater than those of gaseous
SF6. The dispersion relation for capillary waves in a shallow
layer of molten silicon8 indicates that decreasing the lifetime
of the liquid layer should also decrease the longest allowed
capillary wavelength. Using a simple model17 that neglects
the effects of ablation and cooling by heat transfer to the
environment to calculate the lifetime and depth of the liquid
layer, we find that the longest allowed capillary wavelength

is about 1µm. Because the lifetime is certainly reduced by
the flow of heat to the surrounding water in the experiments
presented here, the longest allowed wavelength should be
less than 1µm, in agreement with submicrometer spike sepa-
ration observed here.

In summary, we find that irradiating a silicon surface
with 100 fs, 400 nm laser pulses in water produces
submicrometer-sized spikes; the spikes consist of silicon
covered with a 20-nm-thick layer of silicon oxide. Scanning
electron micrographs of the silicon surface after irradiation
with increasing number of laser pulses suggest that capillary
waves generated by bubble formation on the molten silicon
surface and laser-induced etching of the resulting structures
give rise to the observed spike formation.

This work was supported by the Harvard NSEC program
(NSF-PHY 0117795) and the Department of Energy(DOE
DE FC36 01GO11053). We thank Professor Howard Stone
for helpful discussions and Yuan Lu for assistance with the
XPS measurements.
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