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Abstract
Protein X-ray crystallography — the most popular method for determining protein structures —
remains a laborious process requiring a great deal of manual crystallographer effort to interpret
low-quality protein images. Automating this process is critical in creating a high-throughput
protein-structure determination pipeline. Previously, our group developed ACMI, a probabilistic
framework for producing protein-structure models from electron-density maps produced via X-ray
crystallography. ACMI uses a Markov Random Field to model the three-dimensional (3D)
location of each non-hydrogen atom in a protein. Calculating the best structure in this model is
intractable, so ACMI uses approximate inference methods to estimate the optimal structure. While
previous results have shown ACMI to be the state-of-the-art method on this task, its approximate
inference algorithm remains computationally expensive and susceptible to errors. In this work, we
develop Probabilistic Ensembles in ACMI (PEA), a framework for leveraging multiple,
independent runs of approximate inference to produce estimates of protein structures. Our results
show statistically significant improvements in the accuracy of inference resulting in more
complete and accurate protein structures. In addition, PEA provides a general framework for
advanced approximate inference methods in complex problem domains.
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1. Introduction
Over the past decade, the field of machine learning has seen a large increase in the use and
study of probabilistic graphical models due to their ability to provide a compact
representation of complex, multidimensional problems.1 Recently, the complexity of
problems posed in many areas of data analysis has stressed the ability to reason in graphical
models. New techniques for inference are essential to meet the demands of these problems
in an efficient and accurate manner.

One such application is our group's work on ACMI (Automated Crystallographic Map
Interpretation), a three-phase, probabilistic method for determining protein structures from
electron-density maps.2–5 The task of determining protein structures has been a central one
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to the biological community, with recent years seeing significant investments in structural-
genomic initiatives. X-ray crystallography, a molecular imaging technique, is at the core of
many of these initiatives as it is the most popular method for determining protein structures.
The final step of crystallography involves constructing an all-atom protein model from an
electron-density map (a three-dimensional (3D) image). This step remains a major
bottleneck in need of automation, taking months of manual effort by a crystallographer to
solve.

Previous results show that ACMI outperforms other automated density-map interpretation
methods on difficult protein structures, producing complete and accurate protein structures
where other methods fail.3 ACMI uses a graphical model known as pairwise Markov
random field (MRF)6 to combine visual features derived from the electron-density map with
biochemical constraints in order to identify the most probable locations for each amino acid
in the electron-density map. Unfortunately, exact inference (i.e. finding the best protein
structure model) is intractable due to the complexity of the MRF. ACMI, instead, must
employ approximate inference techniques to estimate each amino acid's location in the
density map.

In this paper, we propose Probabilistic Ensembles in ACMI (PEA), a general framework for
performing approximate inference in complex domains. Our previous approach produced a
single probability estimate of the protein's location. PEA, instead performs multiple,
independent runs of approximate inference in ACMI to produce multiple probability
estimates of the protein's locations. Our results show PEA dramatically outperforms ACMI
in both the quality of inference and accuracy of protein structures produced.

2. Background
2.1. Protein X-ray crystallography

Amino acids form the building blocks of proteins, linking end-to-end to form the linear
protein sequence. The chain of atoms linking amino acids is known as the backbone, and the
molecules hanging off of the backbone are called side chains. All side chains connect to the
backbone via the Cα atom – the central atom in an amino acid — and are unique for each of
the 20 types of amino acids.

X-ray crystallography is the most popular wet-lab technique for determining protein
structures, producing ~88% of protein structures in the Protein Data Bank.7 The final step in
the X-ray crystallography process is taking an electron-density map — a fuzzy, 3D image of
a protein — and determining (or interpreting) the underlying protein molecular model that
produced the image. Figure 1 shows a sample density map and the resulting interpretation.
Figure 1(a) is a contoured electron-density map, similar to what a crystallographer would
see at the beginning of interpretation. In Fig. 1(b) we see the resulting protein structure with
all non-hydrogen atoms in a stick representation. The crystallographer's task is: given a
protein's amino-acid sequence and an electron-density map of the protein, produce the
underlying protein structure.

Several factors make determining the protein structure a difficult and time-consuming
process, mainly by affecting the quality of the electron-density map. The most significant
factor is crystallographic resolution, which describes the highest spatial frequency terms
used to assemble the electron-density map. Resolution is measured in angstroms (Å), with
higher values indicating poorer quality maps with less detail. Additionally, crystallographers
can only estimate the phases needed to calculate the electron-density map (the phase
problem), reducing the interpretability of the image. Lastly, imperfections in the crystal
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structure and the stochastic nature of protein structure can create areas of distortion or
smeared density in the image that contain very little or unreliable features.

The most popular method for automated density-map interpretation is ARP/wARP,8 which
efficiently finds solutions in maps with 2.7-Å resolution or better. TEXTAL9 and
RESOLVE10 work on more difficult maps and have successfully interpreted density maps
up to 3.2 Å in quality. A more detailed description and evaluation of these techniques can be
found in our previous work.2,3

2.2. Ensemble-learning methods
Ensemble-learning methods come primarily from the supervised machine learning
community. The goal of supervised learning is to develop a model (or classifier) with high
predictive performance on future instances of a problem. Traditional learning methods yield
a single-best model, f̂(x), to estimate the underlying (but unknown) true function, f(x).
Ensemble-learning methods, instead, develop a collection of models, f̂1(x), f̂2(x), . . ., f̂N(x),
that, in aggregate, produce a classifier with better performance than any single constituent
model. Empirical evaluations of ensemble-learning methods (or ensembles) show that such
methods outperform the best individual constituent models.11,12

There are two primary design choices in developing an ensemble-learning method. First, the
learner must generate models that are diverse. A lack of diversity means each model will
produce the same answer to a given instance and thus the collective performance will mirror
individual performance. Second, the learner must aggregate the decisions (or predictions) of
each model. This is often accomplished with majority voting, where each model gets a
weighted or unweighted “vote” on the answer to a query instance.

While most work on ensembles is on supervised machine-learning problems, we are
interested in structured-prediction problems such as ACMI. Weiss et al.13 proposed
Structural Ensemble Cascades (SECs), an iterative, hierarchical method for structured
prediction problems. As in Wainwright et al.,14 ensembles are used in inference, where an
intractable graph is converted to a set of tractable (i.e. tree-structured) graphs.

3. Automated Crystallographic Map Interpretation
In previous work, our group developed ACMI (Automated Crystallographic Map
Interpretation),2–5 a probabilistic method for determining protein structures from low-quality
electron-density maps (~3 to 4 Å resolution). Figure 2 provides an overview of ACMI and
its three-phase process. At the heart of ACMI is a probabilistic model known as MRF.6 An
MRF is an undirected graphical model that defines a probability distribution on a graph.
Vertices (or nodes) are associated with random variables, and edges enforce pairwise
constraints on those variables. In our task, ACMI seeks to probabilistically represent all
possible structures of a protein in a compact manner. ACMI constructs a graph where each
vertex describes the location, , of the Cα atom for the amino acid at position i in the
sequence. Edges exist between every two amino acids in the sequence and model the
interactions between the pair of connected amino acids. A sample MRF is show on the right
side of the Phase 2 box in Fig. 2.

Formally, ACMI's MRF model G = (V, E) consists of vertices i ∈ V connected by
undirected edges (i, j) ∈ E. We define the full-joint probability of all amino acid locations,
U, as
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(1)

The first term, , is associated with vertex i and is known as the observation
potential function. It can be thought of as prior probability on the location of an amino acid
given the map, M, and ignoring all other amino acids in the protein. ACMI calculates this
function in Phase 1 by calculating the correlation between (a) the electron-density map and
(b) instances of amino acid i from previously solved structures from the Protein Data Bank
(PDB).

The second term, , is associated with edges and represents one of two pairwise
chemical constraints on the protein structure. Edges between neighboring amino acids in the
linear sequence are represented by the adjacency potential — adjacent amino acids must
maintain an approximate 3.8 Å spacing as well as proper angles (according to the
distributions of bond lengths and angles in the PDB). Edges between non-neighboring amino
acids contain an occupancy potential — no two amino acids can occupy the same space.

Given this MRF, we construct a three-phase pipeline (Fig. 2) to calculate the most probable
protein structure for a given protein sequence and electron-density map. Phase 1 estimates
the observation potential — the location of each amino acid in the density map independent
of information about other amino acids. Phase 2 then takes these results and combines them
with chemical constraints by performing inference on the MRF outlined earlier. Phase 3 uses
these probabilities to sample physically-feasible, all-atom protein structures.

This paper concentrates on the role of inference in ACMI, which occurs in Phase 2. The
model in Eq. (1) represents the full-joint probability distribution over all possible locations
for each amino acid in the target protein. Calculating this probability exactly, however, is
intractable due to the cyclical nature and large size of ACMI's graph. ACMI, instead,
employs loopy belief propagation (BP),15 a fast approximate-inference algorithm, to
calculate an approximate marginal probability distribution for the location of each amino
acid's Cα atom.

Briefly, belief propagation calculates marginal probabilities by utilizing an iterative, local
message-passing scheme to propagate information across a graphical model. A marginal
probability represents the posterior probability of a single amino acid's location,
incorporating all available information. A message, going from some amino acid i to some
amino acid j, states, “Based on my current belief in my location, you should be here (with
weight).” Details of ACMI's belief propagation implementation can be found in DiMaio et
al.2 and Soni et al.5

4. Methods
ACMI's Phase 2 utilizes an approximate inference technique known as loopy belief
propagation (BP) to calculate the location of each amino acid in the protein sequence (see
Sec. 3). Empirically, ACMI's Phase 2 rarely converges to a solution, and while ACMI
performs well on difficult proteins, there are shortcomings in the inference process.3,5 This
section discusses the major contribution of this paper: the use of statistical ensembles to
improve approximate inference solutions in ACMI.
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4.1. Probabilistic ensembles in ACMI
With the well-documented success of ensemble methods in classification tasks, we seek to
extend the idea of aggregating multiple estimates to probabilistic graphical models. As
discussed in Sec. 2.2, current efforts in the area rely on simplifying the structure of an
intractable graph to create a collection of tractable problems.13,14 These techniques,
however, do not easily extend to the graph in ACMI, which is fully connected and thus
difficult to convert to the necessary number of tree-structured graphs. In addition, previous
work in ACMI introduced an approximation that exploited redundancies in messages
passing to dramatically reduce the complexity of inference.2 Converting ACMI to a tree-
structured graph loses the gains from this approximation as well as important information
encoded in edges. Thus, unlike previous approaches, we are interested in an ensemble
solution that boosts the accuracy of inference, not that tractability.

We propose PEA, shown in Fig. 3. PEA is a framework for generating and combining
multiple approximate inference solutions to create more accurate protein structures. As with
ensemble-learning methods in classification, there are two major design components to
address: generating (diverse) solutions and aggregating multiple estimates.

4.1.1. Generating ensemble components—From Sec. 3, Eq. (1) calculates P(U|M) —
the probability distribution over all possible protein structures given the density map. Since
this calculation is intractable, Phase 2 of ACMI produces p̂i, the approximate marginal
probability of each amino acid i's location. Rather than performing inference once, our
proposed framework, PEA, performs several independent runs of inference. As shown in
Fig. 3, each run (C in total) uses a unique protocol and outputs its own marginal probability
distribution for each amino acid's location. Phase 2, in total, produces a matrix of probability

distributions , where each ensemble component c produces P̂c = (p̂1c,
p̂2c, . . ., p̂ic). Here, p̂ic represents the probability of amino acid i's location in the density
map according component c of the ensemble.

As mentioned in Sec. 2.2, a desired property of an ensemble is that the individual
components are diverse. Fortunately, previous work5 showed the choice of a message-
passing protocol (i.e. what order to send and receive messages between nodes) has a large
effect on the outcome of belief propagation in ACMI. Section 4.2 provides example
protocols for generating ensemble components in PEA, each modifying how and when
evidence is shared in the graph.

4.1.2. Aggregating ensemble components—In DiMaio et al.,3 we developed Phase 3
of ACMI, which utilizes particle filtering,16 a sampling algorithm, to generate all-atom
protein structures given the posterior marginal probabilities from Phase 2. Briefly, Phase 3 is
an iterative process that sequentially grows a protein structure one amino acid at a time.a

Figure 4 shows how, at a given iteration, Phase 3 samples the location, ui, of amino acid i.

Phase 3 first samples M potential locations for the new amino acid based on the location of
already placed amino acids in the sequence and a distribution of known angles and distances
between neighboring amino acids. Next, Phase 3 assigns a weight, wm, to each sampled
estimate, uim, correlated with the likelihood of amino acid i being in that location (i.e. the
Phase 2 posterior marginal probabilities):

aPhase 3 maintains multiple estimates (or particles) during the sampling process and uses separate steps to sample backbone and side-
chain atoms. For simplicity, we only consider one particle's backbone placement in this description.
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(2)

Lastly, Phase 3 chooses one of the M samples as its prediction for amino acid i's location in
the structure. The sample is chosen with probability proportional to wm.

In PEA, we no longer have one probability estimate for each amino acid's location, but C
estimates. We propose several functions for combining these probabilities into a single
weight measurement. First, we look at the average score over all ensemble components
using a mixture model:

(3)

where πc is the mixture weight, representing the confidence that component c provides the
correct distribution.b The average score should perform well if the true location tends to
have a high score across all runs of inference while false positives are uncorrelated between
runs. False positives would be smoothed out and consistent peaks would maintain high
probabilities.

Another proposed weight function is to instead take the maximum score for a given location
across all components:

(4)

In difficult sections of a protein, it is very likely that most models will miss the correct
location since there is very little evidence. Given multiple estimates, it is more likely that
one model found the correct answer.

Lastly, we consider using a subsampling approach, where Phase 3 will randomly select one
of the ensemble components to score the location:

(5)

where U[1, C] returns an integer between 1 and C with uniform weight. This technique fits
intuitively into the sampling framework of particle filtering where multiple structure
estimates exist to explore several different paths to the end state.

4.2. Experimental methodology
In Sec. 5, we compare the performance of our original ACMI framework from DiMaio et
al.3 to our proposed algorithm, PEA. We use a set of 10 experimentally phased electron-
density maps described in DiMaio et al.3 for validation. This data was provided by the
Center for Eukaryotic Structural Genomics (CESG) at UW – Madison. Based on the
electron density quality, expert crystallographers selected these maps as the “most difficult”
from a larger data set. These structures have been previously solved and deposited to the
PDB, enabling a direct comparison with the correct model. However, all ten required a great
deal of human effort to build the final atomic model. Test-set solutions are hidden from all
phases of ACMI to prevent biasing results.

bπc can be set by various measures, such as entropy or prior knowledge. We use uniform weights in our experiments.
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Phase 1 (performing an independent search for local features) is the same for both
algorithms, meaning Phase 2 for both the original ACMI and proposed PEA algorithms
begin with the same input. For the experiments in Secs. 5.1 and 5.2, we consider three
variations of ACMI's belief-propagation protocol for Phase 2:

• ORIG, the original protocol of ACMI which is run for 40 iterations per amino acid
in a round-robin fashion starting with amino acid 1, proceeding left to right, and
then reversing at the end of each pass.

• EXT, an extended version of the original protocol going for 160 iterations.

• BEST, the top-performing individual version of ACMI from the four protocols
considered for PEA (see below).

The BEST protocol provides an overly optimistic estimate of ACMI to see how PEA
performs as an ensemble relative to its individual components. For PEA, we generate an
ensemble of size 4 with each component having its own protocol:

• Protocol 1 is the same as ORIG above.

• Protocol 2 is similar to Protocol 1, but starts halfway through the sequence.

• Protocol 3 is similar to Protocol 1, but runs for 20 iterations

• Protocol 4 employs guided belief propagation introduced in Soni et al.5

For the learning curve in Sec. 5.3, 50 protocols were generated. All were based on the
standard, round-robin schedule and executed for 40 iterations. Each varies in the starting
location and the direction of the first iteration with half going left to right and the other half
going right to left.

5. Results
Using the methodology described in Sec. 4.2, we compare the performance of our new
approach of using Probabilistic Ensembles in ACMI (PEA) against the original ACMI
algorithm.3 We compare the results across a set of 10 difficult protein structures. Previous
results show ACMI is the state-of-the-art technique for low-quality protein images, thus
related approaches are not compared in this paper. Section 5.1 first assesses the quality of
approximate inference by comparing the accuracy of the Phase 2 outputs by the two
approaches. In Sec. 5.2, we feed these Phase 2 probabilities to Phase 3 to measure the
accuracy of the all-atom protein structure models produced by PEA and ACMI. Lastly, Sec.
5.3 shows how the accuracy of PEA changes as the number of ensemble components
increases.

5.1. Approximate inference
Our first experiment assesses the quality of approximate inference solutions produced in
Phase 2 for both ACMI and PEA by examining the accuracy of posterior marginal
probabilities. In this experiment, ACMI and PEA use the same Phase 1 outputs to run their
respective Phase 2 algorithms and halt before executing Phase 3. PEA runs Phase 2 with
four ensemble components using the protocols specified in Sec. 4.2. We consider the
maximum score aggregator from Eq. (4) and the average score aggregator from Eq. (3)
(MAX and AVG, respectively). The sampling algorithm from Eq. (5) performs aggregation
as a step in Phase 3 and cannot be compared here. For ACMI, we test the original, round-
robin protocol (ORIG), an extended run of inference (i.e. 160 iterations) in ACMI (EXT),
and the best-performing individual component of PEA (BEST).
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Figures 5(a) and 5(b) show the results of running these techniques on a set of difficult
protein images. Figure 5(a) shows the percentile rank which represents how highly ranked
the correct solution (i.e. location from the deposited structure in the PDB) is in the posterior
marginal probabilities. The optimal score of 100 means the true location had the highest
probability value in the map. In Fig. 5(b), the negative log-likelihood is the probability value
for the true location, transformed as a negative-log score. Here, we desire lower values as
they indicate higher probabilities.

Both figures show that the ensemble method, PEA, drastically outperforms the existing,
single inference version of ACMI across all protocols. Both the maximum and average
aggregators obtain scores in the 89th percentile compared to the original ACMI protocol
which averages scores in the 66th percentile. This implies that, on average, there are three
times as many false positives in ACMI versus PEA. The negative log-likelihoods tell a
similar story; the probability scores improve by over three orders of magnitude by using
ensembles. The results for the best individual component of PEA are only slightly better
than standard ACMI, showing that PEA benefits from combining multiple, good models
rather than from generating one very good model. The extended run of standard ACMI
shows minor improvements as well, but comes nowhere near the performance of PEA,
showing that the gains of our ensemble method cannot be explained away by an increase in
CPU resources. In fact, the results of all pairwise differences between the PEA variations
and the three ACMI variations are statistically significantly at scores of p < 0.01 for both
metrics in Fig. 5 based on a paired t-test.

5.2. Protein structures
While the previous results indicate our ensemble technique improves the accuracy of
approximate inference probabilities, biochemists are more interested in the actual protein
structures produced. As a follow-up experiment, we used the marginal probabilities from
Sec. 5.1 as the input for Phase 3 of the ACMI and PEA algorithms, respectively, to produce
all-atom protein structures for all 10 of our test-set proteins. We use the completeness and
correctness of the resulting protein structures to compare our proposed aggregators for PEA
against ACMI.

Figure 6(a) shows the averaged results of our experiments. The first three pairs of columns
represent the maximum (MAX), average (AVG), and sampling (SAMP) aggregators for
PEA presented in Sec. 4.1.2. The fourth pair of columns represent the original ACMI
protocol. Within each pair, the first column represents the correctness of the predicted
protein structure — what percentage of amino acids predicted were within 2 Å of their
corresponding true-solution location. This is similar to the precision metric used in
information retrieval. The second column represents the completeness of the predictions —
what percent of amino acids available in the PDB solution were accurately predicted (within
2 Å). This is akin to a recall metric. Each column represents an average over all 10 test
proteins. The top performer across both metrics was PEA using the averaging function to
aggregate ensemble components. On average, 90.3% of its predicted amino acid locations
were correct (compared to 79.3% for the original ACMI algorithm) while completing 84.3%
of the real structure (78.6% for ACMI). Importantly, all three PEA methods outperform
ACMI in both correctness and completeness measures.

Figrue 6(b) provides a closer comparison of PEA versus ACMI. Here, each datapoint
represents the results of one protein in our test set. The x-axis value is the accuracy of the
original ACMI algorithm and the y-axis is the accuracy of PEA using the average
aggregator. To assess accuracy, we use an F-measure to combine the correctness and
completeness metrics from Fig. 6(a). The F-measure is commonly used in the information
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retrieval community to balance both the need for high precision and high recall. Here, we
use the traditional F1 metric, which is the harmonic mean of correctness and completeness.

The line represents equivalent performance, and the shaded region represents values, where
PEA outperforms ACMI. In every test case, PEA performs better than or equal to ACMI in
the F1 metric, affirming the results from Fig. 6(a). The largest improvement comes in the
most difficult test case, with the F1-score improving from 0.25 to 0.66. This corresponds to
an extra 41 percentage points of the true structure being built and 42 percentage points of
extra predictions being correct. Overall, PEA shows substantial improvement in 6 of the 10
proteins, with equal performance in the other 4, although these values are not statistically
significant.

Figure 6(b) only considers the average aggregator for PEA since it performed better than the
alternative options. As hypothesized in Sec. 4.1.2, the averaging aggregator's main
advantage is that it can smooth away “noisy” probabilities. The maximum aggregator and
sampling aggregator also produced improved inference probabilities but did not translate
into the same level of improvement in structure quality as the averaging aggregator. It is
difficult to pinpoint the exact reason, but the areas of major difference happened to be in
regions of the map with this least amount of signal, implying the averaging aggregator
handles noise the best.

5.3. Ensemble learning curve
As a final experiment, we consider how the size of an ensemble effects the accuracy of
inference in PEA. Due to resource limitations, we could not run larger ensembles sizes for
the previous experiments. Instead, for the seven smallest test-set proteins, we generated
ensembles with various number of components, ranging from 1 to 50. We assessed each
using percentile scores as described for Fig. 5(a). Figure 7 shows the learning curve for
seven of our test-set proteins as the number of ensemble components increases (the values
past 30 are not shown since no change occurred). PEA uses the mixture-model average
aggregator to combine posteriors. As Fig. 7 shows, PEA gains accuracy from adding more
components, making its largest leap in performance with the first 10 ensemble components
before seeing very little improvement after 20 component ensembles.

6. Conclusions and Future Work
While ACMI was previously shown to outperform other automated density-map
interpretation methods in building all-atom protein structures in low-quality electron-density
maps,3 performing approximate inference in ACMI's model is an expensive process in need
of advanced inference methods. In this work, we developed a new approximate inference
method based on the concept of ensemble-learning methods from the supervised machine
learning community. Our new framework, PEA, executes several independent runs of
inference to provide multiple, diverse solutions to the problem. We suggest several protocols
for generating unique solutions for each component of the ensemble as well as different
techniques for aggregating these models to produce a single accurate prediction of the
protein structure.

Our results show PEA provides improved performance on a test-set of 10 difficult protein
images. This improvement is seen in the accuracy of the inference process, where the
probability distributions from PEA were statistically significantly better in terms of both
percentile rank and probability value assigned to the correct location of each amino acid.
The results show that this improvement could not be explained by extra CPU resources or by
using the single-best component of PEA. More importantly, PEA's improved inference
translates into more complete and correct protein structures. Future work will gather a larger
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set of evaluation proteins, including membrane proteins which present many difficulties for
crystallographers.

While we presented ensembles of approximate inference solutions for the task of protein-
structure determination, our method can generally be applied to difficult inference problems
where the complexity of probabilistic graphical models limits the accuracy of current
methods. In future work, we look to find such applications, and to provide an in-depth
comparison to related inference techniques that rely on simplifying the graph structure.14
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Fig. 1.
The last step in the protein X-ray crystallography pipeline takes (a) an electron-density map
(3D image) of the protein and finds (b) the most likely protein structure that explains the
map.
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Fig. 2.
The three-phase ACMI pipeline. Given an electron-density map and protein sequence, Phase
1 performs a local-match search independently for each amino acid. Phase 2 combines these
results with global constraints to create posterior probabilities of each amino acid's location.
Finally, Phase 3 uses these marginals to sample physically feasible, all-atom protein
structures. The box on the right in Phase 2 shows a portion of an MRF for an example
protein sequence.
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Fig. 3.
Probabilistic Ensembles in ACMI (PEA). Phase 1 (omitted) is the same as in the ACMI
framework (Fig. 2). Phase 2 performs C independent inference runs, each with a unique
protocol. This results in a set of C marginal probabilities for each amino acid's location.
Phase 3 aggregates the set of marginal probabilities to produce a protein structure.

SONI and SHAVLIK Page 14

J Bioinform Comput Biol. Author manuscript; available in PMC 2013 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
ACMI's Phase 3 sampling step for amino acid i. In (a) Phase 3 samples M possible new
locations, uim. In (b) these locations are weighted by their agreement with the Phase 2
probability, p̂i. In (c) one location is chosen from the weighted distribution to be amino acid
i's location, ui.
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Fig. 5.
Accuracy of inference solutions. In (a), the percentile rank of the true solution's probability
is shown. In (b), the negative log-likelihood of the true solution is shown. Lower scores
mean a higher probability value for the correct answer. In both, columns are the average
score over all amino acids in all test-set proteins. Dark (red) bars represent variations of
PEA, while light (green) bars represent variations of ACMI. *denotes a statistically
significant difference with ORIG at p < 0.01.
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Fig. 6.
Protein-structure prediction accuracy. In (a), we show correctness (light blue) and
completeness (dark red) of PEA. *indicates statistically significant difference compared to
ORIG at p < 0.05. In (b) we show a detailed comparison of F1-scores for ACMI (x-axis) and
PEA using the averaging aggregator (y-axis). Each point represents one protein and the
shaded region indicates better scores for PEA.
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Fig. 7.
Learning curve for ensemble inference. Each dashed line represents one protein's percentile
scores for Phase 2 posteriors as the number of ensemble components increases. The solid
black line represents the average learning curve.
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