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 Putting the Pieces Together: Understanding
 Robinson's Nonperiodic Tilings
 Aimee Johnson and Kathleen Madden

 Aimee Johnson (aimee@swarthmore.edu) obtained her B.A.
 from the University of California, Berkeley, in 1984 and her
 Ph.D. from the University of Maryland, College Park, in
 1990. She is now part of the Department of Mathematics
 and Statistics at Swarthmore College. Her research interests
 are ergodic theory and symbolic dynamics. It is in the latter
 context that she and her coauthor came across the

 undecidability question for tilings that motivates this paper.

 Kathleen Madden (maddenk@lafayette.edu) received her
 B.A. from the University of Colorado, and after two years
 teaching mathematics in Cameroon, West Africa, with the
 Peace Corps, she received her M.A. and Ph.D. from the
 University of Maryland. She is currently an assistant
 professor at Lafayette College where her research interests
 include topological and symbolic dynamics. In her free time,
 she likes hiking, biking, and generally just being outdoors.

 Suppose that you wish to tiie a huge floor using square tiles of equal size with
 variously colored edges. When you place two tiles next to each other, their edge
 colors must match, and of course you must leave no gaps anywhere. There are only
 a finite number of tiie types available, but you may use as many tiles of each type
 as you want. For simplicity, assume that you may not rotate your tiles as you place
 them. (We could allow rotations simply by including the rotated tiles as new tiie
 types, so this is not a fundamental restriction.) Can you look at the tiie types available
 and determine whether the task is possible or not?

 If it is possible to cover the whole plane with a given set of tiie types, we say that
 this set will tiie the plane. Certainly you can envision a situation where the available
 tiie types will not tiie the plane. For instance, with only the two tiie types illustrated
 in Figure 1, you would never be able to place one tiie above another.

 red  red

 blue  green  green  blue
 Figure 1

 yellow  yellow

 But it is not always so easy to decide. For example, does the set of four tiie types
 shown in Figure 2 tiie the plane? In attempting to answer this question, you might
 begin trying to tiie 2x2 squares. If that works, you might try tiling 3x3 squares,
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 and so on. Should you find some size square that you cannot complete, you could
 conclude that these tile types will not tile the plane. (What is the smallest square that
 you cannot complete with the tiles in Figure 2?) But even if you managed to tile all
 squares with a million tiles on a side, maybe the square whose sides take a million
 and one tiles could not be tiled.

 Figure 2. Four tile types; numbers represent edge colors.

 In 1961, Hao Wang speculated that this process will always eventually end?either
 you will find a square that you cannot complete or you will find a "periodic square"
 [7]. An n x n square of tiles is periodic if its top and bottom rows of tiles are the same
 and if its left and right columns of tiles are the same. If you can construct a periodic
 square with your tile types, you can tile the plane, because periodic squares can be
 stacked end to end vertically and horizontally with the matching edges of each square
 overlapping. (Equivalently, removing the bottom row and the right column of tiles
 from each periodic square, we could tile the plane with the resulting (n ? 1) x (n? 1)
 squares.)

 Wang's conjecture. Any set of tiles that tiles the plane can be used to tile the plane
 with periodic squares.

 A tiling of the plane with periodic squares is called a periodic tiling. You can tell
 that a tiling is periodic if there are at least two places you can stand from which the
 resulting floor pattern looks exactly the same. In fact there are then infinitely many
 places from which you can see the same pattern, since any translation that moves
 you from one such spot to another can be repeated to move you to a third spot from
 which the pattern looks the same. Figure 3 shows part of a periodic tiling. (In this
 simple example any edge of a tile can meet either possible edge of tiles of the other
 type.) Can you see the periodic squares? What translations move you between spots
 from which the pattern looks the same?

 Figure 3
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 Wang's conjecture seems reasonable because it is true in one dimension. That
 is, suppose you are tiling not a two-dimensional floor but a one-dimensional strip,
 laying the tiles end to end. Having only finitely many tiie types, you must use at least
 one tiie type twice. But then you have a block of tiles, beginning and ending with
 the same tiie type, which you can use over and over in a periodic tiling of the strip.
 For instance, given the set of tiie types in Figure 4a, the periodic block in Figure 4b
 tiles the infinite strip periodically, with a three-tile repeating pattern.

 Figure 4a  Figure 4b

 If Wang's conjecture were true in two dimensions as well, we would have a general
 method for determining whether a given set of tiie types tiles the plane. Simply
 construct all tilings of 2 x 2 squares, then of 3 x 3 squares, and so on. If the tiles
 do not tiie the plane, eventually we would find a square that cannot be tiled. If the
 tiles do tiie the plane, the conjecture says that eventually a periodic square would
 be found. Either way, the search process would eventually terminate, thus allowing
 us to decide whether the given tiie types tiie the plane.

 Wang's conjecture remained an open question for several years until shown to be
 false by one of his students, Robert Berger [1], who found a set of tiles that tiles
 the plane but for which no tiling using them is periodic. Berger's original example
 involved a set of over 20,000 tiie types! In 1971 Raphael Robinson [51 found a simpler
 example with just 28 tiie types.

 So the answer to the original question is "no": We do not know a general method
 of determining whether a given finite set of tiie types will tiie the plane. Our main
 goal here is to understand why Robinson's tiles will tiie the plane and yet no tiling
 with them can be periodic. In a final section we will briefly consider other familiar
 nonperiodic tilings with nonsquare tiles: the Penrose tilings and pinwheel tilings.

 Robinson's Example

 Before describing Robinson's tiles, we introduce an improved labeling system that
 makes it easy to see which tiles can be juxtaposed. When we use square tiles with
 colored or numbered edges, these labeled edges give us "matching rules." Other
 markings on the tiles could be used to express the desired matching rules in other
 ways. We will mark the tiles with arrows that must match head to tail when a juxta-
 position is allowed. The color-edged tiles in Figure 1 might thus be relabeled as in
 Figure 5, to indicate that the two tiles must alternate horizontally and that no vertical
 juxtapositions are allowed.

 arrow tail

 Figure 5
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 n a a a

 4-?.-?> <4-

 -??-? M-?  Figure 6

 Similarly, the matching rules for the four tiles in Figure 2 could be expressed with
 arrow markings as in Figure 6.

 The 28 tile types in Robinson's example are illustrated in Figure 7. Let's refer to tiles
 1 through 4 as crosses; these are the tiles with two doubleheaded arrows crossing
 at the center and a doubleheaded "elbow." The remaining tiles we call arms-, these
 tiles contain no doubleheaded arrows.

 V V

 ?

 18

 * T

 22  26

 Figure 7. Robinson's tiles.

 In addition to requiring that arrowheads and arrow tails always meet, we will
 require that our tilings satisfy the alternating cross rule, illustrated in Figure 8. It is
 important to note that crosses may appear in other locations besides those specified
 by this rule. The alternating cross rule is not technically a matching rule, but we could
 add four more tile types with additional markings to obtain an essentially equivalent
 set of 32 tiles that obey matching rules. (This is in fact what Robinson did [5]. He
 also pointed out that if we wanted to use only tiles with colored edges, we could
 do so with a set of 56 tile types.)

 Figure 8. The alternating cross rule:
 Crosses must appear in eveiy other
 position in every other row.
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 3x3 squares. Let's think about the consequences of the matching rule requiring
 arrowheads to meet arrow tails. First of all, a cross cannot sit next to another cross

 (vertically or horizontally), since that would force two arrowheads to touch. Next,
 consider any two crosses separated by a sequence of arms: either their elbows bend
 toward one another (the crosses face each other, as in Figure 9) or they bend away
 (the crosses are back to back, as in Figure 10). When they are back to back, two
 configurations are possible: they may be mirror images or inverted.

 i-?-<-1
 Figure 9. Crosses facing each other.

 ~;-1-rn-1 a a-

 4-p.-?.-4-4-p

 ?-' I-?
 ? 1 1 1 I i 111 1 i

 T T?I I | | I I I I 1 X
 I-?

 -4-^-p.-4-<-p.

 M-1
 _::_I_i_LJ_Lj:_

 Figure 10. Crosses back to back.
 Above: mirror images;
 below: inverted.

 These three arrangements of the crosses are the only possibilities. Anything else
 yields a configuration with different numbers of arrowheads or different locations of
 arrowheads on the sides of the crosses nearest each other. But then these cannot be

 connected by a sequence of arms because on each arm the number and location
 of arrows on any edge are ahvays the same as on the opposite edge. For example,
 consider the two crosses in Figure 11 and tiy to fill in the middle tiie with an arm.
 It can't be done! A similar argument holds for a pair of crosses appearing vertically
 with a sequence of arms in between them.

 I-* I-*
 Figure 11

 Consequently, adjacent crosses appearing in one of the alternating rows specified
 by the alternating cross rule must either face each other or be back to back. So any
 one of these crosses faces another one two units to its left or right. Consider a 3 x 3
 square with two such facing crosses in the corners of its bottom row. We know that
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 its other corners must be crosses (by the alternating cross rule) and that they must
 face those in the bottom row.

 Thus the 3x3 square looks like Figure 12.

 Figure 12

 Because crosses cannot sit side by side, we also know that an arm must be in
 position A. There are three choices for the arm in position A: tiles 5, 6, and 11. Note
 that all of these arms have arrows pointing away from the center of the 3x3 square.
 Similarly there are three choices for positions B, C, and D, and the arrowheads in
 all of these arms point away from the center of the square. So no matter how we
 choose the four arms for positions A-D, the tile in position E must have arrowheads
 on all four sides?in other words, it has to be a cross. Moreover, for each of the
 four crosses in Figure 7 there is a unique 3x3 square with this cross in the central
 position.

 Three of the four possible 3x3 squares are illustrated in Figure 13. Can you
 construct the fourth?

 a 'i a a a ^ n a a ik a

 r-?-4-1 |-*-4-1 |-?-4-1
 4-fr-4-fr. 4-fr-4-fr. 4-fr-4-fr.

 V V_" V v V_w U V V_V v
 ik ik ik ii ik

 I-?-?
 <-4]-fr*-fr? <4-4-fr*-fr> 4-41-fr*-fr-

 M-4-1 I-fr.-fr.
 _::_-::-:u.-
 ik n a n iv a a a a a a a a ii ik

 M-fr.-4-^ M-fr.-M-? M-fr.-4-fr

 -fr.-M- I-fr.-4- I-fr.-^-
 _ym_;;_;;_ _][_ym_}[_ _u I i ? I ?

 Figure 13

 7x7 squares. Let's say that a 3 x 3 square faces in the direction indicated by the
 elbow in its central cross; for example, the 3x3 square on the left in Figure 13 faces
 up and to the left, or northwest. We can extend any 3x3 square in the direction it
 faces. The northwest-facing square in Figure 13, for instance, can be extended to a
 7x7 square with itself in the lower right corner.
 How do we perform this extension? First, notice that all the exterior edges of the
 3x3 square have arrowheads, which crosses cannot meet; so we know that the
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 top and left sides of our 3x3 square must meet arms. Secondly, by the alternating
 cross rule, the crosses in the 7x7 square must be located as shown in Figure 14a.
 Then, because crosses cannot sit next to crosses, we will have arms in between, as
 indicated.

 In fact the crosses will be oriented as in Figure 14b. This is not obvious, but playing
 with our tiles a bit should make it clear. We have five choices for the arm in position
 A of Figure 14a: tiles 5, 6, 8, 11, or 21. All have tails on their top edge. Since heads
 must meet tails, this forces the arm in position B to have its arrowhead(s) point away
 from the center of the 7x7 square. Similarly, by considering the choices for arm
 C, we see that arm D also points away from the center of the 7x7 square. So the
 central tiie of the 7x7 square must have arrowheads on at least two sides; that is,
 it must be a cross.

 b.

 Figure 14

 The cross labeled 1 in Figure 14a will be back to back with the cross in the upper
 left corner of the original 3x3 square, either inverted or a mirror image. If it were
 inverted then the configuration in Figure 15 would be in the center of our 7x7
 square. How would you fill in the arms and the central cross in Figure 15? It can't be
 done. Thus, cross 1 must be the mirror image of the cross in the upper left corner of
 the original 3x3 square. A similar argument applies to cross 2. Thus crosses 1 and
 2 are forced to appear as in Figure 14b, and they in turn force the remaining crosses
 in Figure 14a to be oriented as in Figure 14b.

 From Figure 14b, we see that each corner must have a 3 x 3 square whose central
 cross is determined by the central cross of our initial 3x3 square. The central cross

 Figure 15. Center of 7 x 7 square.
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 of the lower left 3x3 square must face the central cross of the initial 3x3 square;
 then the central cross of the upper left 3x3 square must face toward the central cross
 of the lower left 3x3 square; and so on. Finally, because all the 3x3 configurations
 have arrowheads pointing away from their central cross, so must the horizontal row
 and vertical column of tiles radiating away from the central cross of the 7x7 square.

 Once again, note that each choice for the central cross produces a unique 7x7
 square. One possibility is illustrated in Figure 16.

 Figure 16

 Aperiodic tiling. In a similar way each 7x7 square can be extended in the
 direction of its central cross to a 15 x 15 square. This 15 x 15 square will have two
 familiar features: a central cross with a row and column of arms pointing away from
 it, and four corners consisting of 7 x 7 squares facing each other. The 15 x 15 square
 can then be extended to a 31 x 31 square with a central cross and with its 15 x 15
 corner squares facing each other, and so on.

 Because (2n ? 1) x (2n ? 1) squares can be tiled for all values of n, it follows
 that the plane can be tiled with this set of tiles! None of the tilings can be periodic,
 however. No matter how we translate a tiling of the plane formed using these tiles,
 some tiles will fail to match up. (In other words, we can't stand at two different spots
 on our infinite floor and have the pattern look exactly the same.) Let's see why this
 is so.

 Imagine that, having tiled the floor using these tiles, you now stand on one of
 the crosses found in alternate positions in alternate rows. As described before, this
 cross is part of a 3 x 3 square with a pattern as in Figure 13, and this 3x3 square
 lies in some 7x7 square as in Figure 16, and so on. Look at the 3x3 square you
 are standing on and memorize its pattern. Now, move four units away horizontally
 or vertically, staying within your 7x7 square. You will be in a new 3x3 square,
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 so the pattern will look similar. But the central cross of your new 3x3 square faces
 the central cross of your original 3x3 square, so these 3x3 squares cannot look
 exactly the same! Thus the tiling is not invariant under a translation by 22. Nor is
 it invariant under a translation by 3 or 2; moving horizontally or vertically by these
 amounts you see a pattern quite different from your original 3x3 square.

 Now return to the cross you started on and memorize the pattern of the 7x7
 square you are in. Move horizontally or vertically by 8, staying in the 15x15 square
 that contains your 7x7 square. Again you are in a 7 x 7 square, so the pattern is
 familiar. But, again, the center cross of the new 7x7 faces the central cross of the
 original 7x7 square, so the two squares do not look exactly the same. So the tiling
 is not invariant under a translation by 23. It is also not invariant under a translation
 by 5, 6, or 7, because under such translations the pattern does not even resemble
 your original 7x7 square.

 By similar arguments, the tiling is not invariant under horizontal or vertical trans?
 lation by any value 2n or any value m ^ 2n. Therefore no tiling that satisfies the
 alternating cross rule is periodic.

 Other Facts and Examples

 We have shown that Robinson's tiles provide an example of a set that tiles the plane
 but whose tiling is not invariant under a translation. In fact, no tiling constructed
 using this set of tiles is invariant under a rotation [51.

 Interestingly, although no tiling constructed with this set of tiles is periodic, they
 are almost periodic, that is, if you choose a large enough period, an arbitrarily large
 percentage of the tiles will repeat. For example, the corner crosses of the 3x3
 squares repeat horizontally and vertically with period 4. These crosses comprise one
 quarter of the total tiles. To see this, divide any 2n x 2n block into 2x2 blocks; each
 will contain exactly one such cross. So, one quarter of the tiles repeat with period 4.
 Similarly, we can divide any 2n x 2n block into 4x4 blocks, each containing exactly
 one 3x3 square. The 3x3 squares are determined by their central crosses and
 they repeat with period 8. So 9/16th of the tiles repeat with period 8. In general,
 [(2n - l)/2n]2 of the tiles repeat with period 2n+1.

 Penrose tilings. Another famous tiling of the plane was discovered by Roger Pen?
 rose in 1973 [2], [4]. A later modification of the Penrose tiling uses finitely many
 different rotations of only two tiie shapes, kites and darts. The vertices of each tiie
 alternate in color, as indicated by the open and filled circles in Figure 17, and the
 tilings are required to satisfy the matching rule that colored vertices match.

 The Penrose tilings are not periodic under any translation; however, they can
 be periodic under rotations by 72?. The Penrose tilings are almost periodic in the
 sense that the pattern seen in any arbitrarily large block repeats within a bounded
 translation. The Penrose tiles are useful in understanding the geometrie properties
 of quasicrystals [6]; they have actually been patented.

 Pinwheel tilings. Figure 18 shows pinwheel tilings, which feature a single tiie shape,
 a l-2-\/5 right triangle. These tilings, unlike our earlier ones, involve infinitely many
 different tiie types because in each tiling the triangle occurs in infinitely many dif?
 ferent orientations [3]. The pinwheel tilings are nonperiodic under translations and
 rotations; and they too are almost periodic in the sense described above.
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 kite

 dart

 Figure 17. A Penrose tiling with kites and darts.

 Figure 18. A pinwheel tiling.

 We recommend [2] for further exploration of many other interesting tiling exam?
 ples.
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