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ABSTRACT

We perform numerical experiments of test particle acceleration on turbulent magnetic and electric fields obtained
from pseudospectral direct numerical solutions of the compressible three-dimensional MHD equations. We find
consistent acceleration of the particles to many times the plasma characteristic (Alfve´n) speed and extended power
laws in the density distribution of energies. Scaling laws of maximum and mean energy of particles with the
nominal gyrofrequency and the MHD electric field are observed and a simple estimate is presented.

Subject headings: acceleration of particles — MHD — turbulence

Understanding the mechanisms that accelerate charged par-
ticles in dynamical plasmas is an intense subject of study, with
applications in astrophysical, space, and laboratory situations.
Charged particles are energized in solar flares, in planetary
magnetospheres, at interplanetary shocks, and in the interstellar
medium. A potential contributor to this particle acceleration is
magnetic field reconnection and turbulence, in which strong
electric fields arise near X-type magnetic neutral points. This
has been recently confirmed in the laboratory in a three-
dimensional reconnection experiment (Brown et al. 2002) as
well as corresponding numerical simulations (Qin et al. 2001).
Coupling with simulations is useful because they can extrap-
olate laboratory results to larger spatial scales. Many theoretical
studies have been devoted to studying the behavior of charged
particles in a reconnecting field configuration (Speiser 1965;
Sonnerup 1971; Vasyliunas et al. 1980; Litvinenko 1996; So-
mov & Kosugi 1997). Because of the complexity of particle
motion in such circumstances, a useful approach has been to
resort to numerical experiments based on test particle simula-
tions, in which no interaction among the particles and no back-
reaction to the imposed electromagnetic fields is considered. In-
vestigations differ in the type of reconnection fields where the
particles move. Analytical and numerical solutions have been
considered in two-dimensional and three-dimensional field con-
figurations (Sato, Matsumoto, & Nagai 1982; Scholer & Jamitsky
1989; Birn & Hesse 1994; Veltri et al. 1998; Mori, Sakai, &
Zhao 1998; Schopper, Birk, & Lesch 1999; Heerikuisen, Lit-
vinenko, & Craig 2002). Here we show and analyze new results
of test particle acceleration in direct simulations of homogeneous
three-dimensional MHD turbulence.

Turbulent perturbations have a distinct impact on particle
acceleration by reconnection. Test particle simulations in a dy-
namic two-dimensional MHD current sheet, initialized with a
seed population of fluctuations, indicate that turbulence can
temporarily trap particles in strong electric field regions and
accelerate them to large multiples of the plasma characteristic
speed (Matthaeus, Ambrosiano, & Goldstein 1984; Ambrosi-
ano et al. 1988). Broad particle energy distributions are ob-
tained, extending to high energies. Energetic particle distri-
butions also have been confirmed by modeled turbulent effects
in Monte Carlo simulations (Kobak & Ostrowski 2000).

In fully developed turbulence, the nonlinear cascade transfers
energy from large to small scales, and reconnection events are
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a consistently observed mode of energy dissipation (Matthaeus
& Lamkin 1986). It is then of interest to address the issue of
particle acceleration in homogeneous MHD turbulence, where
instead of a single reconnecting site, as considered in the above-
mentioned studies, many current sheet-type sites (X-points) and
merging magnetic islands (O-points) may be present. The sit-
uation also relates to the process of second-order stochastic
acceleration. When purely stochastic acceleration is considered
for cosmic rays in galactic magnetic fields (Fermi 1949), high-
energy relativistic particles are required to overcome losses due
to, for instance, ionization. However, stochastic acceleration
works well for both low- and high-energy particles in solar
flares (Ryan & Lee 1991; Miller et al. 1997). In the situation
that we are addressing, besides the second-order process, we
consider an additional mechanism associated with localized
intense electric field regions. Particles may be trapped in those
regions by the action of turbulence, thus leading to effective
acceleration even for low initial energies. This acceleration
process can therefore be described (Ambrosiano et al. 1988)
as consisting of both stochastic and coherent elements that
interact cooperatively. Observations and simulations confirm
the importance of coherent effects on particle acceleration at,
for instance, the magnetosphere (Birn & Hesse 1994), solar
flares (Aschwanden 2002), solar wind (le Roux, Zank, & Mat-
thaeus 2002), and laboratory experiments (Brown et al. 2002).
The consideration of both stochastic and coherent effects is
also reminiscent of diffusive shock acceleration (Blandford &
Eichler 1987), which is as well an effective mechanism for
energizing particles.

A study of particle acceleration in homogeneous MHD tur-
bulence was considered in Gray & Matthaeus (1992), in which
numerical solutions of two-dimensional MHD were employed
for the fields. Preliminary results indicated the similarity of the
particle acceleration process to the earlier results for turbulent
reconnection (Matthaeus et al. 1984; Ambrosiano et al. 1988).
The maximum and mean energy of the particles was found to
scale with the product of the nominal gyrofrequency and the
Alfvén time. Power laws on the energy distribution of particles
were obtained. Acceleration of particles by random localized
electric fields (Anastasiadis, Vlahos, & Georgoulis 1997) is
also a related study, in which a statistical cellular automata
model is used instead of a direct MHD solution.

In the current study we consider the acceleration of test
particles in turbulent fields obtained from a direct numerical
solution of the fully three-dimensional compressible MHD
equations. A large range of gyrofrequency values is employed
to obtain scaling laws, which are explained by a simple estimate
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Fig. 1.—Visualization of the turbulent magnetic field (top) and electricFBF
field (bottom) in the simulation box. High values are in yellow (light)FEF
and low values in blue (dark).

for the maximum and mean energies of the particles after a
typical turbulence time.

The macroscopic description of a plasma given by com-
pressible three-dimensional MHD involves a fluctuating flow
velocity v(x, y, z, t), magnetic field , and densityB(x, y, z, t)

. We considered periodic boundary conditions in ar(x, y, z, t)
cube of side and take the initial magnetic fluctuation rms2pL
value , the length scaleL, and the initial mean densityr0 asB̄
the units of magnetic field, length, and density, respectively.3

The Alfvén speed defines the unit of velocity,1/2¯v p B/ (4pr )0A

and the Alfvén time the unit of time. No backgroundt p L/vA A

uniform magnetic field is assumed. The MHD equations are

�v
r � v · �v p �∇p � J � B( )

�t

1 12� ∇ v � ∇∇ · v , (1)( )R 3

�B 1 2p � � (v � B) � ∇ B, (2)
�t Rm

where and are the kinetic and magneticR p v L/n R p v L/mmA A

Reynolds numbers, withn the viscosity andm the magnetic
diffusivity; is the current density. Continuity equa-J p � � B
tion for r and an equation of state complete the system. We
assume a nearly incompressible regime with Mach number 0.25
and treat the pressure as polytropic, .5/3p ∼ r

We consider a decaying simulation from an initial state with
kinetic and magnetic energy per unit mass2 2Av S p AB S p 1
(in units of ). The fluctuations initially populate an annulus2vA

in Fourierk-space such that , with constant amplitude1 ≤ k ≤ 4
and random phases. We take . We employ aR p R p 1000m

pseudospectral code (Ghosh, Hossain, & Matthaeus 1993),
which has been parallelized to run in a computer cluster using
a scalable parallel fast Fourier transform (Dmitruk et al. 2001).
The resolution is 2563 Fourier modes, which guarantees that
the dissipation scales are fully resolved for the moderate Rey-
nolds numbers considered. After 2tA times, a fully turbulent
state with a broad range of scales has been developed. The
magnetic field for the particle motion is directly obtained from
the numerical solution, while the electric fieldE is obtained
through Ohm’s law,

1
E p �v � B � J. (3)

Rm

The electric field is expressed in units of (c is the speed¯v B/cA

of light) and is the result of the induced part due to the plasma
motion plus a formally small resistive term that is important
in current sheet regions. Visualizations (front-side planes of the
simulation box) of the magnetic field and the electric fieldFBF

are shown in Figure 1. The electric field is a much moreFEF
intermittent quantity with high values observed in a less space-
filling distribution. Both fields show a broad range of length
scales present and a high degree of complexity. The energy
spectrum of the MHD fields (not shown) is consistent with a

3 The value ofL is of the same order as the energy containing scale or the
magnetic field correlation length, which is approximately constant throughout
the short time evolution of the system. This gives physical meaning to the
chosen unit length.

Kolmogorov 5/3 power law. This turbulent state of the system
that is achieved after two eddy turnover times is used as an
external field for pushing the test particles.

The nonrelativistic equations of motion for the charged par-
ticles in the fields are

du dx
p a(u � B � E), p u, (4)

dt dt

with , where is the nominal gyro-¯a p Q t Q p q B/m ci A i i i

frequency (with and the particle charge and mass). Weq mi i

use the same units as in the MHD equations with the particle
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Fig. 2.—Trajectories of 100 test particles (out of 50,000) from the simulation,
with colors indicating the particles’ speed.

Fig. 3.—Particle energy distribution for different values of aftera p Q ti A

an interval .Dt p 0.5tA

Fig. 4.—Maximum (squares on the solid line) and mean energy (triangles
on the solid line) of the particles for different values of aftera p Q ti A

. Squares and triangles over the dotted lines show the maximumDt p 0.5tA

and mean energy obtained from particle simulations considering only the ohmic
part of the electric field. The dashed lines correspond to the energy estimates
as explained in the text.

velocityu in Alfvén speed units. The dimensionless quantity,vA

, relates the turbulent field scales with the particlea p Q ti A

motion scales. In general, ; that is, the turbulent time-a k 1
scales are much slower than the typical gyroperiods of particles.
We consider 50,000 particles and values of , 103, 104,2a p 10
and 105. The particles are moved using a Runge-Kutta fourth-
order time integration method, with an adaptive time step cal-
culation. The code is parallelized by sending particles to each
processor to solve the trajectory during an intervalDt p

starting from in the MHD solution. The values0.5t t p 2tA A

of the magnetic and electric field at each particle position are
obtained by linear interpolation in space from the grid of the
MHD simulation. We start from an initial monoenergetic par-
ticle population, with speed and random (isotropi-d u d p vA

cally distributed) direction, and their positions are randomly
distributed in the simulation box of size . Since we consider2pL
homogeneous MHD turbulence, the electric and magnetic fields
are periodically replicated in space, so the values can be readily
obtained if a particle leaves the initial region. However, the
distance traveled by the particles during the time of the sim-
ulation (of the order of the turbulent correlation timescale) is
less or aboutL (see Fig. 2 for a sample of particle trajectories),
which means that they are not repeatedly subject to the same
field values. Trajectories of the particles (for a case with

) are shown in Figure 2, where 100 particles have been4a p 10
selected for the plot. The colors in the trajectories correspond
to the particle speed. It can be seen that some particles are not
highly accelerated at all, while others reach speeds much higher
than the plasma characteristic speed . It is also seen, onvA

comparison with the turbulent fields (Fig. 1), that each particle
encounters or moves only through a single region where the
fields vary appreciably; that is, particles do not sample many
regions of turbulent field activity in the box during the simu-
lation. That situation will not hold on longer timescales, where

a description based on diffusion might be appropriate. It is not
the aim of this Letter to investigate such issues, but we mention
in passing theoretical antecedents that consider a Fokker-Planck
description (Hall & Sturrock 1967; Achatz, Steinacker, &
Schlickeiser 1991; Schlickeiser & Miller 1998).

We compute the particle energy (per unit mass) distribution
, where . This is shown in Figure 3 for different2dN/de e p u

values of , after an interval . For the small-a p Q t Dt p 0.5ti A A

est case, the distribution is a power law≈e�2 at high2a p 10
energies, but asa is increased a flatter power law≈e�0.6

emerges. A high-energy tail remains≈e�2 but shifted to in-
creasingly higher energies. Maximum and mean energy
achieved by the particles for different values ofa is shown in
Figure 4. An approximate linear behavior is seen.4

4 It should be cautioned that the calculation was not made for relativistic particles,
so values cannot be extrapolated here to high values of compared toc.VA
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In order to get insight of whether the results are controlled
by the ohmic part of the electric field (the term in eq. [3],J/Rm

which contains the parallel component to the local magnetic field)
or by the induced part , which is strictly perpendicular�v � B
to B, we performed an additional set of test particle simulations,
in which the induced electric field is (artificially) put to 0. The
results for the maximum and mean energy of those runs are
shown by the squares and triangles over the dotted lines in Fig-
ure 4. It is clear that the ohmic part alone cannot give the proper
answer for the maximum and mean energy and the contribution
from the induced electric field is relevant, especially for the
maximum energies, which are off by more than an order of
magnitude in the “ohmic-only” case.

We propose two physically motivated mechanisms to esti-
mate, in order of magnitude, the mean and maximum energy
scalings. For the mean energy, we assume that the particle
encounters a region where the electric field is coherent over
some correlation length. In this case, the perpendicular field
acts only to “confine” the motion in those regions, but the
energy increase comes from the parallel field. We integrate the
change of speed equation to obtain (initial speed2du /dt p 2aEk

is assumed small compared to the speed change) 2e p u ∼
, where the coherence time is given by the motion2 2 2a E t tk ∗ ∗

along a parallel correlation length, . The energy is1 2l ∼ aE tk k ∗2

then , which is linear ina. This is analogous to thee ∼ 2aE lk k

mechanism in two-dimensional turbulent reconnection given
by Matthaeus et al. (1984) and Ambrosiano et al. (1988). For
the maximum energy a complementary mechanism is proposed
here. The role of the perpendicular field is more important in
this case (see Fig. 4). In particular, if a particle enters a re-
connection site, the action of the plasma inflow at both sidesv
of the reconnection zone and the local main fieldB produces
a perpendicular electric field that reverses signE p �v � B
across the reconnection zone (where a net currentJ parallel to
B is sustained, the current being given by of the fluc-� � b
tuationsb, the reconnecting part of the field). A particle orbiting
aroundB will receive kicks by this reversing electric field, thus
increasing the particle energy in a resonant way. Integrating
the change of speed equation produced by the2du /dt p 2auE
successive kicks over an interval , which is given by thet∗
motion along a parallel correlation length , we obtainlk

(we assume that the parallel extent of the2e ∼ a2l E /Emax k k

reconnection site is ). A crucial distinction with respect tolk

the mean energy is that the fieldE here refers to the main
perpendicular part in the reconnection zone. If we useE ∼k

and , wherea, b are small numerical factorsaE l ∼ bLk

( in our case), we obtain , which is lineara, b ≈ 0.1 e ∼ 2aELmax

in a. The mechanism described is idealized and may be more
complex in a turbulent state; however, acceleration by a more
general nonuniform perpendicular electric field may proceed
in essentially the same way. In that case, particles orbiting
aroundB receive kicks (although not exactly resonant) by the
nonuniform perpendicular electric field that gives a net accel-
eration. Nonuniform magnetic fields may also play a role
through mirroring effects on the parallel motion. In Figure 4
(dashed lines) we show the estimated scalings for the mean
and maximum energies. The mean energy estimate ignores the
effect of the high-energy particles given by the induced electric
field, so the values lie actually closer to the ohmic-only
computation. The maximum energy can be rewritten as

, with a typical plasma speed inm/s, B in T,e (eV) ∼ vBL vmax

andL in m. It is interesting that this is consistent with the scaling
observed in the Swarthmore Spheromak laboratory reconnection
experiment (Brown et al. 2002) and a wide range of space and
astrophysical systems (Makishima 1999).

In summary, our results show that three-dimensional MHD
turbulence can efficiently accelerate particles in relatively short
times, with velocities reaching many times the plasma char-
acteristic (Alfvén) speed and extended power laws in the dis-
tribution of energies. Linear scaling laws of mean and maxi-
mum energy with the nominal gyrofrequency and the electric
field are obtained, as well as an estimate based on encounters
with regions of coherent electric fields over typical correlation
lengths and nonuniform perpendicular electric fields in recon-
nection sites. Although additional effects would be needed to
apply this basic study to particular applications, it provides a
building block for understanding energetic particles in astro-
physical, space, and laboratory situations.

Research supported by NASA NAG5-7164, NSF ATM-
0105254, ATM-9977692, and DOE FG02-98ER54490. Runs
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