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１

Let 0 < p ≤ 1 andHp(R) be the real Hardy space, that is, the space of the bound-
ary distributions f(x) = �F (x) of the real parts �F (z) of functions F (z) in the
Hardy space Hp(R2

+) = {F (z); analytic inR2
+ and ‖F‖Hp(R2

+) = supt>0(
∫∞
−∞ |F (x+

it)|pdx)1/p < ∞} on the upper half plane R
2
+ = {z = x+ it ; t > 0}, with the norm

‖f‖Hp = ‖F‖Hp(R2
+). Then, the Fourier transform f̂ of f ∈ Hp(R) is a continuous

function and satisfies the inequality∫ ∞

−∞
|f̂(ξ)|p|ξ|p−2 dξ ≤ C‖f‖pHp ,

which is well-known as Hardy’s inequality for Hp(R) (cf. [7, Corollary 7.23], [21,
p.128] ).

The aim of this paper is to establish an analogue of this inequality for the gen-
eralized Mehler transform.

The generalized Mehler transform is defined as follows. Let m be a real number
such that m ≤ 1/2, and define

Km(x, y) = km(x)(sinh y)1/2Pm
−1/2+ix(cosh y),

where

(1) km(x) =

∣∣∣∣Γ(1/2−m− ix)

Γ(−ix)

∣∣∣∣ ,
and Pm

−1/2+ix(z) is the Legendre function of order m and degree −1/2 + ix, which

is given by using the hypergeometric function as follows:

Pm
−1/2+ix(z) =

1

Γ(1−m)

(
z + 1

z − 1

)m/2

F (1/2− ix, 1/2 + ix; 1−m; 1/2− z/2).

Hardy-type inequalities for the generalized
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1. Introduction and Results

Yuichi KANJIN and Kunio SATO

Abstract

We establish Hardy-type inequalities for the generalized Mehler
transform on the real Hardy space Hp, 0 < p < 1.
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The following transforms

Gm(f ; y) =

∫ ∞

0

f(x)Km(x, y) dx,

Hm(g;x) =

∫ ∞

0

g(y)Km(x, y) dy.

are called the generalized Mehler transform. We remark that if f, g ∈ L1[0,∞),
then the values Gm(f ; y),Hm(g;x) exist for every x, y > 0 since |Km(x, y)| ≤
C, x > 0, y > 0,m ≤ 1/2 (cf. [20]). Let us call Gm and Hm the G-type transform
of order m and the H-type transform of order m, respectively. It is known that
K1/2(x, y) =

√
2/π cosxy and K−1/2(x, y) =

√
2/π sinxy. Thus the H-type and

G-type transforms of order 1/2 are the cosine transform and, those transforms of
order −1/2 are the sine transform. The above classical Hardy inequality leads to
the following inequalities∫ ∞

0

|G±1/2(f, y)|pyp−2 dy ≤ C‖f‖pHp(R),∫ ∞

0

|H±1/2(f, y)|pyp−2 dy ≤ C‖f‖pHp ,

where f ∈ Hp(R) with supp f ⊂ [0,∞) and 0 < p ≤ 1.
In this paper, we shall investigate Hardy-type inequalities for the G-type and

H-type transforms of arbitrary order m < 1/2 on the space

Hp[0,∞) = { f ∈ Hp(R) : supp f ⊂ [0,∞) }, 0 < p ≤ 1,

and obtain the following:

Theorem 1. (i) Let −m+ 1/2 > 0 and 0 < p ≤ 1. Then, there exists a constant
C such that ∫ ∞

1

|Gm(f ; y)|pyp−2 dy ≤ C‖f‖Hp[0,∞), f ∈ Hp[0,∞).

(ii) Let −m+ 1/2 > 0 and 0 < p ≤ 1. Suppose that [1/p] ≤ [−m+ 1/2]. Then,
there there exists a constant C such that∫ 1

0

|Gm(f ; y)|pyp−2 dy ≤ C‖f‖Hp[0,∞), f ∈ Hp[0,∞).

Theorem 2. (i) Let −m + 1/2 > 0 and 0 < p ≤ 1. Suppose that 1/p − 1 <
−m+ 1/2. Then, there exists a constant C such that∫ ∞

1

|Hm(g;x)|pxp−2 dx ≤ C‖g‖Hp[0,∞), g ∈ Hp[0,∞).

If −m + 1/2 = 1, 2, 3, . . . , then the above inequality holds for every p with 0 <
p ≤ 1.

(ii) Let −m + 1/2 > 0 and 1/2 < p ≤ 1. Suppose that 1/p − 1 < −m + 1/2.
Then, there there exists a constant C such that∫ 1

0

|Hm(g;x)|pxp−2 dx ≤ C‖g‖Hp[0,∞), g ∈ Hp[0,∞).
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Collorary 1. Let 1/2 < p ≤ 1 and −m + 1/2 = 1, 2, 3, . . . . Then, there exist
constants C such that∫ ∞

0

|Gm(f ; y)|pyp−2 dy ≤ C‖f‖Hp[0,∞), f ∈ Hp[0,∞),

and ∫ ∞

0

|Hm(g;x)|pxp−2 dy ≤ C‖g‖Hp[0,∞), g ∈ Hp[0,∞).

There are several results related to Hardy’s inequality. A Hardy-type inequality
for the Hankel transform is in [11], and the inequalities for Hermite and Laguerre
expansions are in [10] and [12]. Hardy’s inequality associated with the n − 1 di-
mensional unit sphere in R

n, n ≥ 3 is in [4], and the ones for higher-dimensional
Hermite and special Hermite expansions are in [18]. Some other inequalities of
Hardy-type will be found in Colzani and Travaglini [5], Thangavelu [22], Betancor
and Rodŕıguez-Mesa [2], Guadalupe and Kolyada [8], Kanjin and Sato [13], Sato
[19], Balasubramanian and Radha [1].

We give some facts about the generalized Mehler transform. The usual general-
ized Meheler transform pair is the following:

g(u) =

∫ ∞

0

f(x)Pm
−1/2+ix(u) dx,

f(x) = π−1x sinhπx Γ(1/2−m+ ix)Γ(1/2−m− ix)

·
∫ ∞

1

g(u)Pm
−1/2+ix(u) dx.

Conditions for the inversion of this pair will be found, for example, in [15]. Accord-
ing to [20], we reformulate this pair. We note that

k2m(x) = π−1x sinhπx Γ(1/2−m+ ix)Γ(1/2−m− ix),

and then we have

g(cosh y)(sinh y)1/2 =

∫ ∞

0

f(x)

km(x)
Km(x, y) dx,

f(x)

km(x)
=

∫ ∞

0

g(cosh y)(sinh y)1/2Km(x, y) dy.

Rewriting g(cosh y)(sinh y)1/2 and f(x)/km(x) with g(y) and f(x), again, we have
H-type and G-type transforms.

The generalized Mehler transform is a special case of the Jacobi transform. We

follow the notations of Koornwinder [14]. Let φ
(α,β)
λ (t) be the Jacobi functions:

φ
(α,β)
λ (t) = F

(
(α+ β + 1− iλ)/2, (α+ β + 1 + iλ)/2;α+ 1; sinh2 t

)
.

Put

Δα,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1.

The Jacobi transform of a function f is defined by

f̂(λ) =

∫ ∞

0

f(t)φ
(α,β)
λ (t)Δα,β(t) dt.

Let G be a connected noncompact semisimple Lie group with finite center, and
fix a maximal compact subgroup K. Associated to G there are constants p, q =
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0, 1, 2, . . . determined by the geometry of the symmetric space G/K such that
n = dim(G/K) = p+ q + 1. Let

α =
p+ q − 1

2
=

n− 2

2
, β =

q − 1

2
,

that is,

p = 2(α− β), q = 2β + 1, n = 2α+ 2.

Then the Jacobi functions φ
(α,β)
λ (t) and the Jacobi transform appear as the spherical

functions and the spherical transform on G/K. The Plancherel theorem for the
Jacobi transform is as follows:∫ ∞

0

|f(t)|2Δα,β(t) dt =
1

2π

∫ ∞

0

|f̂(λ)|2|c(λ)|−2 dλ

if α > −1 and α± β + 1 ≥ 0. Here,

c(λ) =
2ρ−iλΓ(α+ 1)Γ(iλ)

Γ
(
(iλ+ ρ)/2

)
Γ
(
(iλ+ α− β + 1)/2

) , ρ = α+ β + 1.

There are relations between the generalized Mehler transform and the Jacobi trans-
form. Let

α = β = −m, x = λ/2, y = 2t.

Then we have the following.

Δα,β(t) = (2 sinh y)−2m+1,

φ
(α,β)
λ (t) = 2−mΓ(−m+ 1)(sinh y)mPm

−1/2+ix(cosh y),

f̂(λ) =
2−2mΓ(−m+ 1)

km(x)
Hm(g;x), g(y) = 2−m(sinh y)−m+1/2f(y/2),

|c(λ)|−2 =
24mπ

Γ(−m+ 1)2
k2m(x).

In this case, the Plancherel theorem is as follows: If m ≤ 1/2, then∫ ∞

0

|g(y)|2 dy =

∫ ∞

0

|Hm(g;x)|2 dx, g ∈ L2((0,∞), dy),

and ∫ ∞

0

|f(x)|2 dy =

∫ ∞

0

|Gm(f ; y)|2 dy, f ∈ L2((0,∞), dx).

A main tool for the proof of the theorems is the atomic decomposition charac-
terization of the real Hardy spaces. Let 0 < p ≤ 1 and

N = [1/p]− 1

where the notation [x] means that the greatest integer not exceeding x. An Hp

atom is a real valued function a(x) on R so that (i) a(x) is supported in an in-
terval [c, c + h], (ii) |a(x)| ≤ h−1/p a.e. x, and (iii)

∫
R
a(x)xk dx = 0 for all

k = 0, 1, 2, · · · , N . The elements f ∈ Hp[0,∞) are characterized as follows:
f ∈ Hp(R) and suppf ⊂ [0,∞) if and only if f =

∑∞
j=0 λjaj , where every aj

is an Hp atom with supp aj ⊂ [0,∞) and
∑∞

j=0 |λj |p < ∞. Moreover, the norm

‖f‖Hp[0,∞) is equivalent to inf(
∑∞

j=0 |λj |p)1/p, the infimum being taken over all such

decompositions, and the series
∑∞

j=0 λjaj converges in Hp norm, consequently, also

in the sense of tempered distributions. For this characterization, we refer to [17].
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The case p = 1 is in [7, III.7]. Related results are in [21, III.5.22], [3], [6], [9] and
[16].

Because of the above characterization, we will be able to deduce the theorems
from estimation of higher derivatives of the kernel Km(x, y). The estimation will
be stated in the following section, and the proof of the theorems will be give in the
section 4.

2. Main Estimates

For the proof of the theorems, we need to know about asymptotic behavior of
the higher order derivatives ∂jKm(x, y)/∂xj and ∂jKm(x, y)/∂yj , j = 0, 1, 2, . . .
in variables x and y. Schindler [20] has obtained precise asymptotic formulas of
Km(x, y) and the first order derivatives ∂Km(x, y)/∂x and ∂Km(x, y)/∂y. These
formulas are enough to obtain our theorems in the case p = 1. We would like to
consider Hardy-type inequalities for all p with 0 < p ≤ 1. This forces us to estimate
the higher order derivatives. Our main estimates are the following Lemma 1 and
Lemma 2 in which the letter C means positive constants independent of x and y
not necessarily the same at each occurrence.

Lemma 1. Let −m + 1/2 > 0, and put M = [−m + 1/2]. Then the following
inequalities hold:
For 0 < x < 1, 0 < y < 1 :

(2)

∣∣∣∣ ∂j

∂xj
Km(x, y)

∣∣∣∣ ≤ Cy−m+1/2, j = 0, 1, 2, . . . .

For 0 < x < 1, 1 ≤ y :

(3)

∣∣∣∣ ∂j

∂xj
Km(x, y)

∣∣∣∣ ≤ Cyj , j = 0, 1, 2, . . . .

For 1 ≤ x, 1 ≤ y :

(4)

∣∣∣∣ ∂j

∂xj
Km(x, y)

∣∣∣∣ ≤ Cyj , j = 0, 1, 2, . . . .

For 1 ≤ x, 0 < y < 1 :

(5)

∣∣∣∣ ∂j

∂xj
Km(x, y)

∣∣∣∣ ≤ C ·
{
yj , j = 0, 1, 2, . . . ,M,

y−m+1/2, j = M + 1, . . . .

Lemma 2. Let −m + 1/2 > 0, and put M = [−m + 1/2], δ = −m + 1/2 − M .
Then the followig inequalities hold:
For 0 < x < 1, 0 < y < 1 :∣∣∣∣ ∂j

∂yj
Km(x, y)

∣∣∣∣ ≤ Cx, j = 0, 1, 2, . . . ,M,(6) ∣∣∣∣ ∂M

∂yM
Km(x, y)− ∂M

∂yM
Km(x, ξ)

∣∣∣∣ ≤ Cx|y − ξ|δ, 0 < ξ < 1.(7)

For 0 < x < 1, 1 ≤ y :

(8)

∣∣∣∣ ∂j

∂yj
Km(x, y)

∣∣∣∣ ≤ Cx, j = 1, 2, 3, . . . .
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For 1 ≤ x, 1 ≤ y :

(9)

∣∣∣∣ ∂j

∂yj
Km(x, y)

∣∣∣∣ ≤ Cxj , j = 0, 1, 2, . . . .

For 1 ≤ x, 0 < y < 1 :

Km(x, y) = k̃m(x)(xy)1/2J−m(xy) + Em(x, y),(10)

|k̃m(x)| ≤ C,

∣∣∣∣ ∂j

∂yj
Em(x, y)

∣∣∣∣ ≤ Cxj , 0 ≤ j < −m+ 3/2,

and if −m+ 1/2 = 1, 2, 3, . . . , then

(11)

∣∣∣∣ ∂j

∂yj
Km(x, y)

∣∣∣∣ ≤ Cxj , j = 0, 1, 2, . . . .

The above estimates are obtained by reexamining and refining the arguments
that Schindler [20] used to get the asymptotic formulas forKm(x, y), ∂Km(x, y)/∂x
and ∂Km(x, y)/∂y. The work is routine, but a little hard. The details are omitted
in this paper.

3. The generalized mehler transform for Hp with 0 < p ≤ 1

Let 0 < p ≤ 1 and −m + 1/2 > 0. We shall discuss defining the transforms
Gm(f ; y) and Hm(f ;x) of f ∈ Hp[0,∞). We use the fact that an element of the
Lipschitz space Λ1/p−1(R) defines a continuous linear functional of Hp(R) (cf. [7,
III.5]).

Fix y > 0. We take a function κm
y in x such that

κm
y ∈ Λ1/p−1(R), κm

y (x) = Km(x, y), x > 0,

and the transform Gm(f ; y) of f ∈ Hp[0,∞) (⊂ Hp(R)) is defined by

Gm(f ; y) =< κm
y , f >, y > 0,

where the existence of such a function κm
y will be discussed below. Then for an

atom a ∈ Hp[0,∞), we have

Gm(a; y) =< κm
y , a >=

∫ ∞

0

a(x)Km(x, y) dx,

and for the atomic decomposition f =
∑∞

j=0 λjaj(x) of f ∈ Hp[0,∞),

Gm(f ; y) =

∞∑
j=0

λj < κm
y , aj >=

∞∑
j=0

λjGm(aj ; y).

We see that the transform Gm(f ; y) is independent of the choice of an extension
κm
y ∈ Λ1/p−1(R). In the same way, for fix x > 0, we take a function κm

x in y such
that

κm
x ∈ Λ1/p−1(R), κm

x (y) = Km(x, y), y > 0,

and the transform Hm(f ;x) of f ∈ Hp[0,∞) is defined by

Hm(f ;x) =< κm
x , f >, x > 0,

where we shall show that it is possible to take a function κm
x . Then for an atom

a ∈ Hp[0,∞), we have

Hm(a;x) =< κm
x , a >=

∫ ∞

0

a(y)Km(x, y) dy,
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and for the atomic decomposition f =
∑∞

j=0 λjaj(y) of f ∈ Hp[0,∞),

Hm(f ;x) =

∞∑
j=0

λj < κm
x , aj >=

∞∑
j=0

λjHm(aj ;x).

The transformHm(f ; y) is independent of the choice of an extension κm
x ∈ Λ1/p−1(R)

Let us discuss the existence of extensions κm
y and κm

x . Fix a positive y. We
examine the kernel

Km(x, y) =km(x)(sinh y)1/2Pm
−1/2+ix(cosh y)

=km(x)
1

Γ(1−m)

(cosh y + 1)m

(sinh y)m−1/2

· F (1/2− ix, 1/2 + ix; 1−m; (1− cosh y)/2)

as a function in x. We note here that for fixed z in the plane C cut along [1,∞],
the hyper geometric function F (α, β; γ; z) is an entire function of α and β, and a
meromorphic function of γ, with simple poles at the points γ = 0,−1,−2, . . . . Thus
we see that the function (sinh y)1/2Pm

−1/2+ix(cosh y) is an entire function in x. The

function km(x) satisfies

km(x) =

∣∣∣∣ (1− ix)(−ix)Γ(1/2−m− ix)

Γ(2− ix)

∣∣∣∣
= |(1− ix)(−ix)|

∣∣∣∣Γ(1/2−m− ix)

Γ(2− ix)

∣∣∣∣
= x

√
x2 + 1

∣∣∣∣Γ(1/2−m− ix)

Γ(2− ix)

∣∣∣∣ , x > 0.

Since Γ(1/2−m−ix)/Γ(2−ix) is a holomorphic function with no zeros in |x| < 3/2,
it follows that |Γ(1/2−m−ix)/Γ(2−ix)| ∈ C∞(−3/2, 3/2)．By these considerations,
we can take κm

y ∈ C∞(R) such that

κm
y (x) =

{
Km(x, y), x > 0,

0, x < −η,

where η is a positive constant. By Lemma 1, we see that κm
y ∈ Λρ(R) for every

ρ > 0.
Fix a positive x. By the properties of the hyper geometric functions, we see that

there exists a function hx(y) ∈ C∞(R) such that

(sinh y)1/2Pm
−1/2+ix(cosh y) = (sinh y)−m+1/2hx(y), y > 0,

and then for a positive constant η > 0 there exists a function pmx such that

pmx (y) =

{
(sinh y)−m+1/2hx(y), y > −η,

0, y ≤ −2η,

and pmx ∈ C∞(R \ {0}) if −m+ 1/2 	= 0, 1, 2, . . . , and pmx ∈ C∞(R) if −m+ 1/2 =
0, 1, 2, . . . . By Lemma 2, we see that∣∣∣∣ ∂j

∂yj
(sinh y)1/2Pm

−1/2+ix(cosh y)

∣∣∣∣ ≤ Cj,m(x), y > 0, j = 0, 1, 2, . . . .
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Thus we have that for −m+ 1/2 = 1, 2, 3, . . . ,∣∣∣∣ ∂j

dyj
pmx (y)

∣∣∣∣ ≤ C ′
j,m(x), −∞ < y < ∞, j = 0, 1, 2, . . . ,

and that κm
x ∈ Λρ(R) for every ρ > 0, where

κm
x (y) = km(x)pmx (y), −∞ < y < ∞.

Here, Cj,m(x), C ′
j,m(x) are constants independent of y and depending on m, j and

x. In the case −m+ 1/2 	= 1, 2, 3, . . . , we see that

(12)

∣∣∣∣ ∂j

dyj
pmx (y)

∣∣∣∣ ≤
{
C ′

j,m(x), −η < y < η, j = 0, 1, 2, . . . ,M,

C ′′
j,m(x), η ≤ |y|, j = 0, 1, 2, . . . ,

where M = [−m+ 1/2]. Put δ = −m+ 1/2−M > 0. Then it is easy to see that

(13)

∣∣∣∣ ∂M

dyM
pmx (y)− ∂M

dyM
pmx (y′)

∣∣∣∣ ≤ C|y − y′|δ, y, y′ ∈ (−η, η).

The inequalities (12) and (13) lead to κm
x ∈ Λρ(R) for every ρ with 0 < ρ ≤

−m+ 1/2.
Summarizing the above discussion, we have the following.

Lemma 3. (i) Let 0 < p ≤ 1 and −m + 1/2 > 0. Then, the G-transform Gm is
well-defined on Hp[0,∞).

(ii− 1) Let 0 < p ≤ 1 and suppose 1/p− 1 ≤ −m+ 1/2. Then, the H-transform
Hm is well-defined on Hp[0,∞).

(ii− 2) If −m + 1/2 = 0, 1, 2, . . . , then the H-transform Hm is well-defined on
Hp[0,∞) for every p with 0 < p ≤ 1.

4. Proofs of Theorems

We shall turn to proofs of the theorems. Let f ∈ Hp[0,∞), 0 < p ≤ 1.
Then we have f =

∑∞
j=0 λjaj , where every aj is an Hp atom with supp aj ⊂

[0,∞) and
∑∞

j=0 |λj |p < ∞. Moreover, the norm ‖f‖Hp[0,∞) is equivalent to

inf(
∑∞

j=0 |λj |p)1/p, the infimum being taken over all such decompositions. Because
of the decomposition, to prove the theorems it is enough to show that for Hp-atoms
a with supp a ⊂ [0,∞),

(14)

∫ B

A

|Gm(a; y)|pyp−2 dy ≤ C1,

∫ B

A

|Hm(a;x)|pxp−2 dx ≤ C2

with constants C1 and C2 independent of atoms a under the conditions we need
for p and m, where (A,B) = (0, 1) or (A,B) = (1,∞). For the continuity of the
transforms leads to

(15) Gm(f ; y) =

∞∑
j=0

λjGm(aj ; y), Hm(f ;x) =

∞∑
j=0

λjHm(aj ;x),
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and if (14) holds, then we have that∫ B

A

|Gm(f ; y)|pyp−2 dy ≤
∞∑
j=0

|λj |p
∫ B

A

|Gm(aj ; y)|pyp−2 dy

≤ C1

∞∑
j=0

|λj |p ≤ C ′
1‖f‖pHp ,

and
∫ B

A
|Hm(f ; y)|pyp−2 dy ≤ C ′

2‖f‖pHp , where C ′
1 and C ′

2 are constants independent
of f ∈ Hp[0,∞).

Proof of Theorem 1 (i). Let 0 < p ≤ 1 and −m+1/2 > 0. Let a be an Hp-atom
with the support interval [c′−h, c′] ⊂ [0,∞). We put N = [1/p]−1. The vanishing
mean property of atoms leads to

(16) |Gm(a; y)| ≤
∫ c′

c′−h

|a(x)|
∣∣∣∣ ∂N+1

∂xN+1
Km(c1, y)

∣∣∣∣ |x− c′|N+1 dx,

where c′ − h < x < c1 < c′. We are supposing y ≥ 1 and so by Lemma 2, (8) and
(9) we have

|Gm(a; y)| ≤ C

∫ c′

c′−h

|a(x)|yN+1|x− c′|N+1 dx

≤ C ′yλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1,(17)

where C and C ′ are constants independent of a and y. The last inequality follows
from the following small lemma which will be given for later convenience, and three
more simple lemmas will be also stated here.

Lemma 4. 　 Let a be an Hp-atom with the support interval [c, c + h] ⊂ [0,∞).
Let λ > 0. Then the following inequality holds:∫ ∞

0

|a(x)|(y|x− c′|)λ dx ≤ yλ‖a‖1+
−2p
2−p (λ+1/2)

2 ,

where c′ is an arbitrary point with c ≤ c′ ≤ c+ h.

Proof. It follows from ‖a‖2 ≤ h−1/p+1/2, that is, h ≤ ‖a‖−2p/(2−p)
2 that

∫ ∞

0

|a(x)|(y|x− c′|)λ dx ≤ yλ‖a‖2
(∫ c+h

c

|x− c′|2λ dx
)1/2

≤ yλ‖a‖2hλ+1/2 ≤ yλ‖a‖1+
−2p
2−p (λ+1/2)

2 .

�

Lemma 5. Let 0 < p ≤ 1. Then for an arbitrary λ with 1/p − 1 < λ and any
a ∈ L2[0,∞), ∫ R

0

(
yλ‖a‖1+

−2p
2−p (λ+1/2)

2

)p

yp−2 dy =
1

p(λ+ 1)− 1
,

where R satisfies

(18) ‖a‖p2R−(2−p)/2 = 1.
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Proof. It follows that∫ R

0

(
yλ‖a‖1+

−2p
2−p (λ+1/2)

2

)p

yp−2 dy = ‖a‖p(1+
−2p
2−p (λ+1/2))

2

∫ R

0

yp(λ+1)−2 dy

=
1

p(λ+ 1)− 1
‖a‖p(1+

−2p
2−p (λ+1/2))

2 Rp(λ+1)−1

=
1

p(λ+ 1)− 1

{
‖a‖p2R{p(λ+1)−1}/(1+−2p

2−p (λ+1/2))
}1+−2p

2−p (λ+1/2)

=
1

p(λ+ 1)− 1
.

Here, we used the fact that the power to the last R is equal to −(2− p)/2. �

Lemma 6. Let 0 < p ≤ 1 and −m + 1/2 > 0. Then for any a ∈ L2[0,∞) and a
constant R satisfying (18),∫ ∞

R

|Gm(a; y)|pyp−2 dy ≤ 1,

∫ ∞

R

|Hm(x)|pxp−2 dy ≤ 1.

Proof. By Plancherel’s theorem, we have that∫ ∞

R

|Gm(a; y)|pyp−2 dy ≤
(∫ ∞

R

|Gm(a; y)|2 dy
)p/2 (∫ ∞

R

y−2 dy

)(2−p)/2

≤ ‖a‖p2R−(2−p)/2 = 1.

In the same way, we have the H-transform case. �

Lemma 7. Let I(x), J(x) be nonnegative functions on (0,∞).
(i) If I(x) ≤ J(x) for 0 < x < 1, then the inequality∫ 1

0

I(x) dx ≤
∫ R

0

J(x) dx+

∫ ∞

R

I(x) dx

holds for every R > 0.
(ii) If I(x) ≤ J(x) for 1 ≤ x, then the inequality∫ ∞

1

I(x) dx ≤
∫ R

0

J(x) dx+

∫ ∞

R

I(x) dx

holds for every R > 0.

We go back to the proof. By (17) and Lemma 7, we have that for every R > 0,∫ ∞

1

|Gm(a; y)|pyp−2 dy ≤
∫ R

0

(
C ′yλ‖a‖1+

−2p
2−p (λ+1/2)

2

)p

yp−2 dy

+

∫ ∞

R

|Gm(a; y)|pyp−2 dy.

Taking R with (18), we have by Lemma 5 and Lemma 6 that∫ ∞

1

|Gm(a; y)|pyp−2 dy ≤ C,

where C is a constant independent of a. Here, we need the condition

1/p− 1 < λ = N + 1 = [1/p],

and it is trivially satisfied. This completes the proof of Theorem 1 (i).
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Proof of Theorem 1 (ii). Let 0 < p ≤ 1 and −m + 1/2 > 0. In the same way
as the above, we have (16). Now we are dealing with the case 0 < y < 1, and our
assumption is that N + 1 ≤ M = [−m+ 1/2]. Thus by the estimates (2) and (5),
we have (17) for 0 < y < 1. It follows from Lemma 7 that∫ 1

0

|Gm(a; y)|pyp−2 dy ≤
∫ R

0

(
C ′yλ‖a‖1+

−2p
2−p (λ+1/2)

2

)p

yp−2 dy+

∫ ∞

R

|Gm(a; y)|pyp−2 dy,

and taking R with (18), by Lemma 5 and 6 we have∫ 1

0

|Gm(a; y)|pyp−2 dy ≤ C,

where C is a constant independent of a. The condition 1/p− 1 < N + 1 = [1/p] is
automatically satisfied.

Proof of Theorem 2 (i). Let 0 < p ≤ 1 and −m + 1/2 > 0, and put N =
[1/p] − 1, M = [−m + 1/2]. We divide a matter into two cases N + 1 ≤ M and
M < N + 1.

Let us deal with the case N + 1 ≤ M . Let a be an Hp-atom with the support
interval [c− h, c](⊂ [0,∞)). We first suppose that c− h < 1 < c. By the vanishing
mean property of atoms, we have that

|Hm(a;x)| ≤
∫ c

c−h

|a(y)|
∣∣∣∣ ∂N+1

∂yN+1
Km(x, c2)

∣∣∣∣ |y − 1|N+1 dy

=

{∫ 1

c−h

+

∫ c

1

}
|a(y)|

∣∣∣∣ ∂N+1

∂yN+1
Km(x, c2)

∣∣∣∣ |y − 1|N+1 dy

= J1(x) + J2(x), say,

where c− h < y < c2 < 1 or 1 < c2 < y < c. We are now treating the case 1 ≤ x.
It follows from Lemma 2 (9) and Lemma 4 that

(19) J2(x) ≤ C

∫ c

1

|a(y)|(x|y − 1|)N+1 dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1,

where C is independent of x and a. For J1(x), since N + 1 ≤ M , Lemma 2 (10)
with j = N + 1 leads to

J1(x) ≤C1

∫ 1

c−h

|a(y)|
∣∣∣∣∣ ∂N+1

∂yN+1
{(xy)1/2J−m(xy)}

∣∣∣∣
y=c2

∣∣∣∣∣ |y − 1|N+1 dy

+ C2

∫ 1

c−h

|a(y)|(x|y − 1|)N+1 dy = C1J10(x) + C2J11(x), say,

and J11(x) ≤ xλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1, where C1 and C2 are independent of
x and a. For the term J10(x), by using the estimate

sup
t>0

∣∣∣∣ ∂j

∂tj
t1/2Jα(t)

∣∣∣∣ < ∞, j = 0, 1, 2, . . . , [α+ 1/2], α ≥ −1/2

([11, Lemma 1, (8)]), we have that

J10(x) ≤ C

∫ 1

c−h

|a(y)|(x|y − 1|)N+1 dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1,
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where C is independent of x and a. Therefore we have

(20) |Hm(a;x)| ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1, 1 ≤ x

with a constant C independent of x and a for an Hp-atom a with the support
interval [c− h, c] satisfying c− h < 1 < c. For the case 1 ≤ c− h, we also have the
above estimate (20) in the same way as the argument for J2(x), and for the case
c ≤ 1, we have (20) in the same way as the argument for J1(x). Lemma 7 leads to∫ ∞

1

|Hm(a;x)|pxp−2 dx ≤
∫ R

0

(
Cxλ‖a‖1+

−2p
2−p (λ+1/2)

2

)p

xp−2 dx

+

∫ ∞

R

|Hm(a;x)|pxp−2 dx, λ = N + 1

for any R > 0 and every Hp-atom a with the support interval contained in [0,∞).
Noting 1/p − 1 < λ and taking R with (18), we have by Lemma 5 and Lemma 6
that

(21)

∫ ∞

1

|Hm(a;x)|pxp−2 dx ≤ C, N + 1 ≤ M

with a constant C independent of a.
Next we treat the case M < N + 1. We first examine the case −m + 1/2 =

1, 2, 3, . . . . Because of (9) and (11), we have by the vanishing mean properties and
Lemma 4 that

|Hm(a;x)| ≤
∫ c

c−h

|a(y)|
∣∣∣∣ ∂N+1

∂yN+1
Km(x, c2)

∣∣∣∣ |y − c|N+1 dy

≤
∫ c

c−h

|a(y)|(x|y − c|)N+1 dy ≤ xλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1,

where c−h < y < c2 < c and a is an Hp-atom with the support interval [c−h, c](⊂
[0,∞)). In the same way as the above argument, we have

(22)

∫ ∞

1

|Hm(a;x)|pxp−2 dx ≤ C, M < N + 1, −m+ 1/2 = 1, 2, 3, . . . ,

where C is independent of a.
Let us consider the case −m + 1/2 	= 1, 2, 3, . . . . In this case we suppose that

1/p − 1 < −m + 1/2. Since M < N + 1, it follows that −m + 1/2 < N + 1. By
the assumption 1/p− 1 < −m+ 1/2, we have N < −m+ 1/2. Thus, in this case,
N < −m+ 1/2 < N + 1 and M = N hold. Let a be an Hp-atom with the support
interval [c − h, c](⊂ [0,∞)). We first deal with the case c − h < 1 < c. We have
that

Hm(a;x) =

∫ c

c−h

a(y)

(
∂MKm

∂yM
(x, ξ)− ∂MKm

∂yM
(x, 1)

)
(y − 1)M dy,

and that

|Hm(a;x)| ≤
{∫ 1

c−h

+

∫ c

1

}
|a(y)|

∣∣∣∣∂MKm

∂yM
(x, ξ)− ∂MKm

∂yM
(x, 1)

∣∣∣∣ |y − 1|M dy

= J3(x) + J4(x), say,

where c− h < y < ξ < 1 or 1 < ξ < y < c. Since M = N , it follows that

J4(x) =

∫ c

1

|a(y)|
∣∣∣∣∂N+1Km

∂yN+1
(x, ξ′)

∣∣∣∣ |y − 1|N+1 dy, 1 < ξ′ < y < c.
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We are now dealing with the case 1 ≤ x. By Lemma 2 (9), we have that

J4(x) ≤ C

∫ c

1

|a(y)|(x|y − 1|)N+1 dy

with a constant C independent of x and a, and by Lemma 4 that

J4(x) ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1.

For J3(x), it follows from Lemma 2 (10) that

J3(x) ≤ C1

∫ 1

c−h

|a(y)|
∣∣∣∣∣ ∂M

∂yM
{(xy)1/2J−m(xy)}

∣∣∣∣
y=ξ

− ∂M

∂yM
{(xy)1/2J−m(xy)}

∣∣∣∣
y=1

∣∣∣∣∣ |y − 1|M dy

+ C2

∫ 1

c−h

|a(y)|
∣∣∣∣∂M+1Em

∂yM+1
(x, ξ′)

∣∣∣∣ |y − 1|M+1 dy

= C1J30(x) + C2J31(x), say,

where C1 and C2 are independent of x and a. Since M = N , it follows from Lemma
4 that

J31(x) ≤ C

∫ 1

c−h

|a(y)|(x|y − 1|)N+1 dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1

with a constant C independent x and a. By using the estimate [11, Lemma 1, (9)],
we have∣∣∣∣∣ ∂M

∂yM
{(xy)1/2J−m(xy)}

∣∣∣∣
y=ξ

− ∂M

∂yM
{(xy)1/2J−m(xy)}

∣∣∣∣
y=1

∣∣∣∣∣
≤ CxM |xξ − x|−m+1/2−M ,

where c− h < y < ξ < 1 and C is independent of x. Thus it follows Lemma 4 that

J30(x) ≤ C

∫ 1

c−h

|a(y)|(x|y−1|)−m+1/2 dy ≤ Cxλ′‖a‖1+
−2p
2−p (λ

′+1/2)

2 , λ′ = −m+1/2

with a constant C independent of x and a. Thus for an Hp-atom a with the support
interval [c− h, c] satisfying c− h < 1 < c we have

|Hm(a;x)| ≤ C1x
λ′‖a‖1+

−2p
2−p (λ

′+1/2)

2 + C2x
λ‖a‖1+

−2p
2−p (λ+1/2)

2 ,(23)

λ = N + 1, λ′ = −m+ 1/2, 1 ≤ x

with constants C1 and C2 independent of x and a. For the case 1 ≤ c−h, we make
the same argument for J4(x), and have

|Hm(a;x)| ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = N + 1, 1 ≤ x.

For the case c ≤ 1, the same argument for J3(x) leads to

|Hm(a;x)| ≤ Cxλ′‖a‖1+
−2p
2−p (λ

′+1/2)

2 , λ = −m+ 1/2, 1 ≤ x.
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Therefore for any atoms we have (23). It follows that for every R > 0,∫ ∞

1

|Hm(a;x)|pxp−2 dx ≤
∫ R

0

(
C1x

λ′‖a‖1+
−2p
2−p (λ

′+1/2)

2

)p

xp−2 dx

+

∫ R

0

(
C2x

λ‖a‖1+
−2p
2−p (λ+1/2)

2

)p

xp−2 dx

+

∫ ∞

R

|Hm(a;x)|pxp−2 dx, λ = N + 1, λ′ = −m+ 1/2.

Taking R with (18) and noting 1/p−1 < λ(= N+1 = [1/p]) and 1/p−1 < −m+1/2,
we have by Lemma 5 and Lemma 6 that∫ ∞

1

|Hm(a;x)|pxp−2 dx ≤ C,(24)

M < N + 1, 1/p− 1 < −m+ 1/2 	= 1, 2, 3, . . .

with a constant C independent of a. The inequalities (21), (22) and (24) complete
the proof of Theorem 2 (i).

Proof of Theorem 2 (ii). Assume that −m + 1/2 > 0 and 1/2 < p ≤ 1. It is
clear that N = [1/p] − 1 = 0. Let a be an Hp-atom with the support interval
[c− h, c](⊂ [0,∞)).

We treat the case c− h < 1 < c, first. Noting that

Hm(a;x) =

∫ c

c−h

a(y)(Km(x, y)−Km(x, 1)) dy,

we have

|Hm(a;x)| ≤
∫ c

c−h

|a(y)||Km(x, y)−Km(x, 1)| dy

=

{∫ 1

c−h

+

∫ c

1

}
|a(y)||Km(x, y)−Km(x, 1)| dy

= J5(x) + J6(x), say.

We are now supposing that 0 < x < 1. For J6(x), it follows from Lemma 2 (8) and
Lemma 4 that

J6(x) =

∫ c

1

|a(y)||Km(x, y)−Km(x, 1)| dy =

∫ c

1

|a(y)|
∣∣∣∣∂Km

∂y
(x, ξ)

∣∣∣∣ |y − 1| dy

≤ C

∫ c

1

|a(y)|(x|y − 1|) dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = 1,

where 1 < ξ < y < c and C is independent of x and a. For J5(x), we divide a
matter into two cases M = [−m + 1/2] = 0 and M ≥ 1. Let M ≥ 1. Because of
Lemma 2 (6), the same argument for J6(x) leads to

J5(x) =

∫ 1

c−h

|a(y)||Km(x, y)−Km(x, 1)| dy

=

∫ 1

c−h

|a(y)|
∣∣∣∣∂Km

∂y
(x, ξ)

∣∣∣∣ |y − 1| dy

≤ C

∫ 1

c−h

|a(y)|(x|y − 1|) dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = 1.
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We next deal with the case M = 0. We remark 0 < −m+ 1/2 < 1. It follows from
Lemma 2 (7) and Lemma 4 that

J5(x) =

∫ 1

c−h

|a(y)||Km(x, y)−Km(x, 1)| dy =

∫ 1

c−h

|a(y)| x|y − 1|δ dy

≤ C

∫ 1

c−h

|a(y)|(x|y − 1|)δ dy ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = −m+ 1/2.

We used that x < xδ (0 < x < 1) since 1 > δ = −m + 1/2 −M = −m + 1/2 > 0.
Thus for an Hp-atom a with the support interval [c− h, c] satisfying c− h < 1 < c
we have

|Hm(a;x)| ≤ C1x
λ′‖a‖1+

−2p
2−p (λ

′+1/2)

2 + C2x
λ‖a‖1+

−2p
2−p (λ+1/2)

2 ,(25)

λ = 1, λ′ = −m+ 1/2, 0 < x < 1

with constants C1 and C2 independent of x and a.
For the case 1 ≤ c− h, by the same argument for J6(x) we have

|Hm(a;x)| ≤ Cxλ‖a‖1+
−2p
2−p (λ+1/2)

2 , λ = 1, 0 < x < 1

with a constant C independent of x and a. For the case c ≤ 1, in a similar way
of the argument for J5(x) we have (25). Therefore we have (25) for any atom．It
follows from Lemma 7 that for every R > 0,∫ 1

0

|Hm(a;x)|pxp−2 dx

≤
∫ R

0

(
C1x

λ′‖a‖1+
−2p
2−p (λ

′+1/2)

2

)p

xp−2 dx+

∫ R

0

(
C2x

λ‖a‖1+
−2p
2−p (λ+1/2)

2

)p

xp−2 dx

+

∫ ∞

R

|Hm(a;x)|pxp−2 dx, λ = 1, λ′ = −m+ 1/2.

We take R as it satisfies (18). Noting that 1/p − 1 < −m + 1/2 and 1/p − 1 < 1,
we have by Lemma 5 and Lemma 6 that∫ 1

0

|Hm(a;x)|pxp−2 dx ≤ C

with a constant C independent a, which completes the proof of Theorem 2 (ii), and
the proofs of the theorems complete.
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