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Abstract

It is known that the five non-isomorphic quasi-symmetric 2-(31, 7, 7)
designs lead to non-isomorphic strongly regular graphs with param-
eters (155, 42, 17, 9). We will show that there exist no isomorphisms
among these graphs and the block graphs of the Steiner triple sys-
tems STS(31) except the isomorphism between the block graphs of
the point-plane design and the point-line design of PG(4, 2).

1 Introduction

A t-(v, k, λ) design is a pair (X,B), where X is a set of “points” of cardi-
nality v, and B is a collection of k-element subsets of X called “blocks”, with
the property that any t points are contained in precisely λ blocks. An inter-
section number is the number of points contained in two blocks. A 2-design
is called quasi-symmetric if the intersection number of the design takes just
two values. A graph consists of a finite set V of “vertices” together with a set
E of “edges”, where an edge is a subset of a vertex set of cardinality 2. Two
graphs (V,E), (V �, E�) are isomorphic if there is a bijection φ : V → V � such
that (v, w) ∈ E if and only if (φ(v), φ(w)) ∈ E �. An automorphism of a graph
is an isomorphism from the graph to itself. The set of all automorphisms of
a graph forms a group and it is called the automorphism group. A strongly
regular graph with parameters (n, k, λ, µ) is a graph with n vertices in which
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the number of common neighbors of x and y is k, λ or µ according as x and
y are equal, adjacent or non-adjacent respectively.

Let D = (X,B) be a quasi-symmetric design with the intersection num-
bers λ1, λ2 (λ1 < λ2). The block graph of D is a graph whose vertices are the
blocks of D and whose edges are the pairs (Y, Z) of blocks with |Y ∩Z| = λ2.
Then it is known that the block graph is strongly regular (cf. [2, Theorem
5.3], [5, Theorem 37.7]).

Tonchev [8] showed that there are exactly five non-isomorphic quasi-
symmetric 2-(31, 7, 7) designs. Five strongly regular graphs with parame-
ters (155, 42, 17, 9) are obtained from the five designs. Then Stoichev [7]
proved that the five graphs are non-isomorphic by comparing the automor-
phism groups. On the other hand, strongly regular graphs with the same
parameters are also obtained from the Steiner triple systems STS(31). It is
known that if v ≥ 15, non-isomorphic Steiner triple systems STS(v) lead to
non-isomorphic strongly regular graphs [1]. In this paper, we consider the
cliques of maximum size in the five graphs obtained from the quasi-symmetric
designs by using Magma. We will give an alternative proof of Theorem in
Stoichev [7], and further we will prove the following theorem:

Theorem 1. There exist no isomorphisms among the block graphs from the
quasi-symmetric 2-(31, 7, 7) designs and the Steiner triple systems STS(31)
except the isomorphism between the block graphs of the point-plane design
and the point-line design of PG(4, 2).

2 Quasi-symmetric designs and strongly reg-

ular graphs

We begin this section with Tonchev’s result [8]. Conway and Pless [3]
showed that there exist exactly five inequivalent binary extremal doubly-
even self-dual [32, 16, 8] codes. We denote these codes by C1, C2, C3, C4 and
C5, whose components are q32, r32, 2g16, 8f4 and 16f2, respectively [3, Table
III]. The codewords of weight 8 in Ci form a 3-(32, 8, 7) design Di by the
Assmus–Mattson theorem [2, Theorem 14.11]. As a derived design of Di, a
quasi-symmetric 2-(31, 7, 7) design D�

i is obtained. Its intersection numbers
are 1 and 3. In addition, all derived designs of Di are isomorphic since the
automorphism group of Di acts transitively on the points. It is shown in [8]
that the five quasi-symmetric 2-(31, 7, 7) design D�

i (i = 1, 2, . . . , 5) obtained
from Di are non-isomorphic.

Let Gi be the block graph of D�
i (i = 1, 2, . . . , 5). The following theorem

is proved by Stoichev [7].
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Theorem 2. The five graphs G1, G2, G3, G4, G5 are non-isomorphic.

We will give an alternative proof of the theorem. The generator matrix
of the code Ci is obtained from Sloane [6]. We set the generator matrix in
Magma as follows:

m := KMatrixSpace(GF(2),16,32) ! [1,1,0,0,...];

The code “c” is defined from the generator matrix “m” by using the command
“c:= LinearCode(m);”. All codewords of weight 8 in “c” are obtained by
using the command “Words(c,8)”. The design Di is obtained by the com-
mand “Design” and furthermore, the derived design D�

i is obtained by the
command “Contraction”. By the following program, the graph Gi is con-
structed from the generator matrix of the code Ci as in the previous section.
In the program, we denote G1, G2, G3, G4, G5 by G1, G2, G3, G4, G5, and the
generator matrices of C1, C2, C3, C4, C5 by M1, M2, M3, M4, M5, respectively.

SRGFromCode := function(m);

c := LinearCode(m);

d := Design<3,32 | {Support(w) : w in Words(c,8) }>;

d2 := Contraction(d,Point(d,32));

b := BlockSet(d2);

v := #b;

e := {};

for i in [1..v-1] do

for j in [i+1..v] do

if #(b.i meet b.j) eq 3 then

e := e join {{i,j}};

end if;

end for;

end for;

g := Graph<v | e>;

return g;

end function;

G1 := SRGFromCode(M1);

G2 := SRGFromCode(M2);

G3 := SRGFromCode(M3);
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G4 := SRGFromCode(M4);

G5 := SRGFromCode(M5);

Table 1. Results

graph maximum size of cliques � of cliques
G1 7 2015
G2 15 31
G3 15 1
G4 10 21
G5 10 2

We will consider the sizes and the numbers of maximum cliques of G1,
G2, G3, G4, G5. Here a clique is an induced complete subgraph. We can
use the command “MaximumClique” to compute the maximum size of the
cliques of the graphs. Moreover we can compute the numbers of the cliques
of maximum size by using command “AllCliques(G,n)”, where G is a graph
and n is a size of clique. For example,

> #MaximumClique(G1);

7

> #AllCliques(G1,7);

2015

The sizes and numbers of maximum cliques of graphs are invariants under
isomorphisms of graphs. So the results in Table 1 prove Theorem 2.

3 Steiner triple systems and strongly regular

graphs

A 2-(v, 3, 1) design D is called a Steiner triple system and is denoted by
STS(v). It is known that there is an STS(v) if and only if v ≡ 1, 3 (mod 6).
The total number of blocks is equal to v(v − 1)/6 and the number of blocks
containing a point is equal to (v− 1)/2. Also, D is a quasi-symmetric design
with the intersection numbers 0 and 1. It follows from [5, Theorem 37.7]
that the block graph of an STS(v) (v > 7) is a strongly regular graph with

parameters (v(v−1)
6

, 3v−9
2
, v+3
2
, 9). Hence the block graph of an STS(31) has

parameters (155, 42, 17, 9) which are equal to those of the strongly regular
graph obtained from a quasi-symmetric 2-(31, 7, 7) design. In general, the
following theorem is known [1].
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Theorem 3. Let D (resp. D�) be an STS(v) and Γ (resp. Γ�) be a strongly

regular graph with parameters (v(v−1)
6

, 3v−9
2
, v+3
2
, 9) obtained from D (resp.

D�) as the block graph.
(1) If v ≥ 19, then Γ has exactly v maximal cliques of maximum size v−1

2
.

(2) If v ≥ 15 and D is non-isomorphic to D�, then Γ is non-isomorphic
to Γ�.

By Theorem 3(1), if v = 31, the number of the maximal cliques of maxi-
mum size of Γ is equal to that of the graph G2 in Table 1. The four graphs
G1, G3, G4, G5 can not be obtained from an STS(31). We will give an ex-
ample of STS(31) whose block graph is isomorphic to G2. We note that
there are at least 6 × 1016 non-isomorphic STS(31) (cf. [4]). Let V be an
(n+1)-dimensional vector space over the q-element field Fq. We consider the
projective geometry PG(n, q) consisting of the set of all vector subspaces of
V . In the case n = 4 and q = 2, the points and planes of PG(4, 2) form a
quasi-symmetric 2-(31, 7, 7) design and the points and lines of PG(4, 2) form
a Steiner triple system STS(31). Here, the following proposition is known
[2, Exercise 5 of Chapter 5].

Proposition 4. For n > 2, the points and (n− 2)-flats of PG(n, q) form a
quasi-symmetric design, whose block graph is isomorphic to the block graph
of the point-line design of PG(n, q).

By this proposition, the block graph G2 of the quasi-symmetric 2-(31, 7, 7)
design D�

2 is isomorphic to the block graph of the point-line design STS(31)
of PG(4, 2). By Theorem 3(2), this is the only one isomorphism among the
block graphs of the quasi-symmetric 2-(31, 7, 7) designs and the block graphs
of Steiner triple systems STS(31).
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粒子ビームを用いたシャワー型検出器の
性能評価

吉田浩司∗

（平成 16年 7月 15日 受理）

Abstract

The performance of a lead/scintillator sandwich-type detector with
a wave length shifter fiber readout has been tested by using 0.4–2.0
GeV/c electrons and pions. It has been fabricated as a prototype
counter for the KEK E391a experiment. For electrons the prototype
counter provides a very linear response to the incident energy. The
energy resolution is obtained to be σ/E (%) = 5.10± 0.03/�E (GeV)
⊕ 0.00 ± 0.26. A light yield of 5.75± 0.03 photoelectrons/MeV is
obtained for the incident energy of γ rays. It corresponds to a light
yield of 19.6± 0.1 photoelectrons/MeV for the energy deposit in a
plastic scitillator. These values ensure the detection inefficiency of
10−4 for photon veto counters of the E391a experiment.

1 序論

KEK E391a実験のために，Wave Length Shifter (WLS) Fiberを集光系
に採用したサンドイッチ型電磁シャワーカロリメーターを試作し，π，eなど
の粒子ビームを用いて性能評価実験をおこなった。本論文ではその実験結果
について報告する。

KEK E391a実験は，K0
L → π0νν̄ 反応の存在を探索し，K崩壊における

その反応の分岐比を測定しようとするものである [1][2]。標準理論により予想
されている分岐比は 10−11程度と大変小さいものであるが [3][4]，一方で理論
計算による不定性も数%程度と大変小さいと考えられている [5][6]。したがっ
て，この反応の分岐比測定は，CKM行列要素の ImVtdに関して大変クリー
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