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Some maximal balls in quasi-Fuchsian once
punctured torus space∗
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Abstract

In this article we exhibit some balls lying in the quasi-Fuchsian
space of once punctured tori, which are maximal in the class of balls
with the same centers. The centers of our maximal balls lie on the
slice determined by the trace equation y = x̄.

1 Introduction and statement of the results

Let A and B be loxodromic elements of PSL(2, C) and let x, y and z
be the traces of A, B and AB, respectively. Let G = �A,B� be the group
generated by A and B. We have an interest in the case where G is discrete
and the following Markoff equation holds:

(1.1) x2 + y2 + z2 = xyz.

Let A0 =
� √

2+1 0
0

√
2−1

�
and B0 =

� √
2 1
1

√
2

�
. Then trace(A0) =

√
8,

trace(B0) =
√
8 and trace(A0B0) = 4 and they satisfy (1.1). Identifying

matrices with Möbius transformations, it is well known that G0 = �A0, B0�
is a Fuchsian group of the first kind and Ω(G0)/G0 is a pair of once punctured
tori, where Ω(G0) denotes the region of discontinuity of G0. For each quasi-
Fuchsian group G = �A,B� such that Ω(G)/G is a pair of once punctured
tori, there is a quasiconformal mapping f of the extended plane C ∪ {∞}
such that A = fA0f

−1 and B = fB0f
−1. Hence G is a quasiconformal

deformation of G0. The set of all such quasi-Fuchsian groups is called a
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quasi-Fuchsian space of once punctured tori and denoted by QF . By the
Bers stability of quasi-Fuchsian groups ([2],[4]), QF is an open subset of C

2

([3],[7]). One would like to know what figure does QF present and how large
ball can sit in QF . In this article we investigate the last problem on the
special slice determined by trace equation y = x̄. First of all we shall prove
the following.

Theorem 1.1. Let G = �A,B� be a non-elementary subgroup of
PSL(2, C) generated by A and B. Let x = trace(A), y = trace(B) and
z = trace(AB) and suppose that they satisfy (1.1). Let γ be a real number
greater than 10. If the inequality

(1.2) |x − γ|2 + |y − γ|2 < 2

holds, then G ∈ QF .

The trace triple (x, y, z) is a parameter for G = �A,B�. It is well known
and easy to show that if (γ + i, γ − i, z) is a parameter for G = �A,B�, then
G is not quasi-Fuchsian. Hence we have the following.

Theorem 1.2. Let γ > 10 and let B(γ, γ; r) be an open ball in C
2 with

center (γ, γ) and radius r. If r ≤ √
2 and (x, y) ∈ B(γ, γ; r) then G = �A,B�

with a parameter (x, y, z) lies in QF . In other words, B(γ, γ;
√
2) is maximal

in the class of balls with the center (γ, γ) such that each group corresponding
to any point in B(γ, γ; r) lies in QF .

Remark. The third entry z in the parameter (γ, γ, z) is any of the solutions
for the equation z2 − γ2z + 2γ2 = 0 and the pair (x, y) of the first and the
second entries is a local parameter in C

2. See Remark in Section 3.

The following is shown in [6].

Theorem 1.3 ([6]). Let G = �A,B� be a non-elementary subgroup of
PSL(2, C) generated by A and B. Let x = trace(A), y = trace(B) and
z = trace(AB) and suppose that they satisfy (1.1). If y = x̄ and G ∈ QF ,
then −1 < Im x < 1.

Though it is an easy matter, we extend Theorem 1.2 to the slice deter-
mined by y = x̄.

Theorem 1.4. Let G = �A,B� be in QF and assume y = x̄, Re x > 10.
Then B(x, x̄;

√
2(1− |Im x|)) is maximal in the class of balls with the center

(x, x̄) such that each group corresponding to any point in B(x, x̄; r) lies in
QF .

The outline of this article is as follows. In Section 2, assuming Theorem
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1.2 holds, we prove Theorem 1.4. Our proof of Theorem 1.1 consists of a lot
of computations and needs six sections. In Section 3 we make a normalization
and derive some equalities. In Section 4 we derive some inequalities which
come from the inequality (1.2). Then we check (3.1) of Theorem 3.1 ([5])
in Section 3, which describes a sufficient condition for a group to be quasi-
Fuchsian, for n = 0, n = ±1, n = ±2 and |n| ≥ 3 in Sections 5, 6, 7 and 8,
respectively. These complete the proof of Theorem 1.1 and that of Theorem
1.2. We refer to [1] for discrete groups.

2 Proof of Theorem 1.4.

Assuming Theorem 1.2 holds, we can prove Theorem 1.4. Theorem 1.2
says that it suffices to show

(2.1) B(x, x̄;
√
2(1− |Im x|) ⊂ B(Re x,Re x;

√
2).

Assume (u, v) ∈ B(x, x̄;
√
2(1 − |Im x|)). Then we have by the triangle

inequality
�
|u − Re x|2 + |v − Re x|2
≤

�
|u − x|2 + |v − x̄|2 +

�
|x − Re x|2 + |x̄ − Re x|2

<
√
2(1− |Im x|) +

√
2|Im x|

=
√
2.

Hence we have (2.1). Clearly, either

(x+ i(1−|Im x|), x̄− i(1−|Im x|)) or (x− i(1−|Im x|), x̄+ i(1−|Im x|))
is a boundary point of B(x, x̄;

√
2(1−|Im x|) and equals (Re x+ i,Re x− i).

Therefore, the group corresponding to the parameter (Re x + i,Re x − i, z)
is not quasi-Fuchsian. Thus we have shown Theorem 1.4.

3 Normalization

In this and consequent sections we shall prove Theorem 1.1. To do this
we shall make use the following.

Theorem 3.1 ([5]). Let A =
�

α 0
0 β

�
and B =

�
a b
c d

�
, bc �= 0, be lox-

odromic elements of PSL(2, C) such that ABA−1B−1 is parabolic and let
G = �A,B�. If, for each integer n, the inequality

(3.1)
|αna|+ |βnd|
|αna+ βnd| <

|α|+ |β|
|α − β|
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holds, then G ∈ QF .

Let A,B and γ be as in Theorem 1.1. By the symmetry of (1.1) we may
assume

Re x ≤ Re y.

This is used in the argument in Section 6 essentially. Conditions γ > 10 and
(1.2) imply that A and B are loxodromic. In order to make use of Theorem
3.1, we normalize A and B as follows:

A =

�
α 0
0 β

�
, αβ = 1, |α| = 1 and B =

�
a b
c d

�
, bc �= 0.

Then

(3.2) α + β = x, a+ d = y, αa+ βd = z.

Markoff equation (1.1) implies that

ad =

�
α + β

α − β

�2

.

Let

x = x1 + ix2 and y = y1 + iy2,

where x1, x2, y1 and y2 are real numbers. By (1.2) we see that x1, y1 > 8 and
|x2|, |y2| < 2. Solving the equation α + 1/α = x with the condition |α| > 1,
we obtain

(3.3) α =
1

2
(x1 +X1 + i(x2 +X2)) and β =

1

2
(x1 − X1 + i(x2 − X2)),

where

X1 =

�
x2
1 − x2

2 − 4 +
�
(x2

1 − x2
2 − 4)2 + 4x2

1x
2
2

2
,

(3.4)

X2 = sgn(x2)

�
−(x2

1 − x2
2 − 4) +

�
(x2

1 − x2
2 − 4)2 + 4x2

1x
2
2

2

and sgn(x2) = 1 if x2 ≥ 0 otherwise sgn(x2) = −1. We put

(3.5) X = α − β.
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It is easy to see that

(3.6) X = X1 + iX2, X2 = x2 − 4 and ad =
x2

X2

and that

(3.7) α =
x+X

2
and β =

x − X

2
.

Next, we shall determine a and d. Solving the equations

a+ d = y and ad =
x2

X2

we have

a, d =
1

2

�
y ±

�
x2y2 − 4(x2 + y2)

X

�
.

We write
x2y2 − 4(x2 + y2) = p+ iq,

where
p = (x2

1 − x2
2 − 4)(y21 − y22 − 4)− 4x1x2y1y2 − 16 and

(3.8)
q = 2((x2

1 − x2
2 − 4)y1y2 + (y21 − y22 − 4)x1x2).

Then we put

(3.9) l =

�
p+

�
p2 + q2

2
, m = sgn(q)

�
−p+

�
p2 + q2

2
and

k = l + im.

Note that

(3.10) k2 = x2y2 − 4(x2 + y2).

If the third parameter of (γ, γ, z) is z = (γ2 +
�

γ4 − 8γ2)/2, then

(3.11) a =
1

2

�
y +

k

X

�
and d =

1

2

�
y − k

X

�
,

and if z = (γ2 −
�

γ4 − 8γ2)/2, then

a =
1

2

�
y − k

X

�
and d =

1

2

�
y +

k

X

�
.
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These choices depend on the representation of G in which it is either �A,B�
or �A,B−1�. Since �A,B� = �A,B−1� as groups, we may assume (3.11) holds.
Remark. By (1.1) we see that |z|2 − |x||y||z| + |x|2 + |y|2 ≥ 0 so that

either

|z| ≥ |x||y| +�|x|2|y|2 − 4(|x|2 + |y|2)
2

or

|z| ≤ |x||y| − �|x|2|y|2 − 4(|x|2 + |y|2)
2

.

In the case |x − γ|2 + |y − γ|2 < 2 and γ > 10, it is easy to see that either
|z| > 32 or |z| < 8. Hence the first two parameters in (x, y, z) determine
G uniquely so that the pair (x, y) is a local parameter for G in the ball
B(γ, γ, z;

√
2).

For later use we derive some equalities. By (3.10) we have

(3.12) |k|4 = |x|4|y|4 − 4(|x|4(y2 + ȳ2) + |y|4(x2 + x̄2)) + 16|x2 + y2|2.

By (3.7) and (3.11) we have

(3.13) |α|2 + |β|2 = |x|2 + |X|2
2

and |a|2 + |d|2 = |y|2|X|2 + |k|2
2|X|2 .

Lemma 3.2.

|α|2|a|2 + |β|2|d|2

=
(|x|2 + |X|2)|xy + k|2 − 4(x2 + x̄2 − 4)|y|2 − 4(xȳk + x̄yk̄)

8|X|2

and

|β|2|a|2 + |α|2|d|2

=
(|x|2 + |X|2)|xy − k|2 − 4(x2 + x̄2 − 4)|y|2 + 4(xȳk + x̄yk̄)

8|X|2 .

Proof. By (3.7) and (3.11) we have

|α|2|a|2 + |β|2|d|2

=
(|x|2 + |X|2)(|y|2|X|2 + |k|2) + (xX̄ + x̄X)(yXk̄ + ȳX̄k)

8|X|2 .
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Since |X|4 = |x2 − 4|2 = |x|4 − 4(x2 + x̄2 − 4), we have
(|x|2 + |X|2)|y|2|X|2 = (|x|2 + |X|2)|xy|2 − 4(x2 + x̄2 − 4)|y|2.

We also caluculate and obtain

(xX̄ + x̄X)(yXk̄ + ȳX̄k) = (|x|2 + |X|2)(xyk̄ + x̄ȳk)− 4(xȳk + x̄yk̄).

Hence the first equality holds. The proof of the second is similar. �

4 Inequalities

In this section we collect some inequalities which are derived from (1.2).
Writing (1.2) as

(4.1) (x1 − γ)2 + x2
2 + (y1 − γ)2 + y22 < 2 (γ > 10),

we have

(4.2) x1 > 8, y1 > 8, x2
2 < 2 and y22 < 2.

By (4.2) we have

(4.3) x2
1 > |x|2 − 2 and y21 > |y|2 − 2.

By the inequalities 2|x2y2| ≤ x2
2 + y22 and

(4.4) x2
2 + y22 < 2

we have

(4.5) |x2|+ |y2| < 2.

Lemma 4.1. (1) ||x| − |y|| < 2, ||x| − y1| < 2, |x1 − |y|| < 2 and |x1−
y1| < 2.

(2) |x|2 < 2y21 ≤ 2|y|2 and |y|2 < 2x2
1 ≤ 2|x|2.

Proof. Since

2 > |x − γ|2 + |y − γ|2 = 2
�

γ − x1 + y1
2

�2

− (x1 + y1)
2

2
+ |x|2 + |y|2

≥ 2
�

γ − x1 + y1
2

�2

+
(|x| − |y|)2

2
,
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we obtain the first inequality of (1). As the special cases of the first we have
the rest of (1). By (1) and (4.2) we have

|x|2 < (y1 + 2)
2 = 2y21 − y1(y1 − 4) + 4 < 2y21 ≤ 2|y|2.

Similarly we have |y|2 < 2x2
1 ≤ 2|x|2. Hence we have (2). �

Lemma 4.2. |x1y2 − x2y1| < x1 + y1.

Proof. Since |x1y2 − x2y1| ≤ |y2|x1 + |x2|y1, it suffices to show

(4.6) 0 < (1− |y2|)x1 + (1− |x2|)y1.

There are three cases. If |x2| ≤ 1 and |y2| ≤ 1, then we see by (4.5) that (4.6)
holds. Assume that |x2| > 1, so that |y2| < 1 by (4.5). From the equality

(x1 − γ)2 + (y1 − γ)2 = 2

�
γ − x1 + y1

2

�2

+
(x1 − y1)

2

2
,

we have
(x1 − y1)

2

2
≤ (x1 − γ)2 + (y1 − γ)2.

Hence by (4.1) we have

x2
2 < 2− y22 −

(x1 − y1)
2

2
.

Therefore, to show (4.6), it suffices to show |x2|y1 < y1 + (1− |y2|)x1 or
�
2− y22 −

(x1 − y1)
2

2

�
y21 < ((1− |y2|)x1 + y1)

2.

This inequality is equivalent to

0 < (y21 + 2(1− |y2|)2)x2
1 − 2(y21 − 2(1− |y2|))x1y1 + (y

2
1 − 2(1− |y2|2))y21.

Since

(y21 − 2(1− |y2|))2 − (y21 + 2(1− |y2|)2)(y21 − 2(1− |y2|2))

= −4(1− |y2|)2(|y|2 − 2) < 0,

we have the desired inequality. Proof for the last case |y2| > 1 is the same.
�

Lemma 4.3. |k|2 < |x|2|y|2.
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Proof. In view of (3.12), it suffices to show

2|x2 + y2|2 < |x|4(y21 − y22) + |y|4(x2
1 − x2

2).

Since |x2 + y2|2 ≤ 2(|x|4 + |y|4), it suffices to show

0 < |x|4(y21 − y22 − 4) + |y|4(x2
1 − x2

2 − 4).

By (4.2) we see that this inequality holds. �

Lemma 4.4. |X|2 < |x|2.
Proof. By (3.6) and (4.2) we have

|X|4 = |x|4 − 8(x2
1 − x2

2 − 2) < |x|4. �

Lemma 4.5. |m| < l.

Proof. In view of (3.9), it sufficies to show p > 0. We note that (4.4)
implies |x2y2| < 1. By (3.8), (4.2) and 2x1y1 ≤ x2

1 + y21 we have

p = (x2
1−x2

2−4)(y21−y22−4)−4x1x2y1y2−16 > (x2
1−6)(y21−6)−4x1y1−16

≥ x2
1y

2
1 − 8(x2

1 + y21) + 20 = (x
2
1 − 8)(y21 − 8)− 44 > 0.

Thus we have our lemma. �

5 Case n = 0

We shall begin on the proof of Theorem 1.1. To do this it suffices to show
that (3.1) holds for each integer n. We begin with the case n = 0. We make
use the notations below in Sections 5 ∼ 8. We put

(5.1) L(n) =
|αna|+ |βnd|
|αna+ βnd| and R =

|α|+ |β|
|α − β| .

Then (3.1) is written as

L(n) < R or L(n)2 < R2.

By (3.5) and (3.13) we have

(5.2) R2 =
|x|2 + |X|2 + 4

2|X|2 .
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By (3.2), (3.6) and (3.13) we have

(5.3) L(0)2 =

� |a|+ |d|
|a+ d|

�2

=
|a|2 + |d|2 + 2|ad|

|y|2 =
|y|2|X|2 + |k|2 + 4|x|2

2|y|2|X|2 .

Hence the inequality L(0)2 < R2 is equivalent to

(5.4) |k|2 < |x|2|y|2 − 4|x|2 + 4|y|2.
Squaring both sides of (5.4) and making use of the equality (3.12), a calcu-
lation shows that, in order to show (5.4), it suffices to show

x2
1|y|4 − y22|x|4 − |xȳ + x̄y|2 > 0.

By (4.2) and Lemma 4.1 we have

x2
1|y|4 − y22|x|4 − |xȳ + x̄y|2 > 64|y|4 − 2|x|4 − 4|x|2|y|2

= 2(16|y|4 − |x|4) + 4|y|2(8|y|2 − |x|2) > 0.

Thus we have shown that (3.1) holds for n = 0.

6 Cases n = ±1.
We shall first show the following.

Proposition 6.1. Inequalities L(1) < R and L(−1) < R are equivalent
to

(6.1) |x|2|y|2 + 4(|x|2 + |y|2) < |2x1y + k|2

and

(6.2) |x|2|y|2 + 4(|x|2 + |y|2) < |2x1y − k|2,
respectively.

Proof. Making use of the equalities

αa+ βd =
1

2
(xy + k), ad =

x2

X2

and Lemma 3.2, straightforword calculations give us the following equalities:

R2 =
(|x|2 + |X|2 + 4)|xy + k|2

8|X|2|αa+ βd|2 ,
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L(1)2

=
(|x|2 + |X|2)|xy + k|2 − 4((x2 + x̄2)|y|2 + x̄yk̄ + xȳk) + 16(|x|2 + |y|2)

8|X|2|αa+ βd|2

and

R2 − L(1)2 =
|x|2|y|2 − 4(|x|2 + |y|2) + |y|2(x2 + x̄2) + 2x1(yk̄ + ȳk) + |k|2

2|X|2|αa+ βd|2

=
|2x1y + k|2 − |x|2|y|2 − 4(|x|2 + |y|2)

2|X|2|αa+ βd|2 .

Hence we see that L(1) < R is equivalent to (6.1). Noting βa+αd = 1
2
(xy−k),

similar calculations give us the proof for the case L(−1) < R. �

By (3.9), Lemma 4.5 and (4.2) we have

yk̄ + ȳk = 2(y1l + y2m) > 2(y1 −
√
2)l > 0.

Hence we have

(6.3) yk̄ + ȳk > 0.

This inequality implies that |2x1y − k|2 < |2x1y + k|2. Hence we have
Proposition 6.2. If the inequality L(−1) < R holds, then also holds

L(1) < R .

We shall show L(−1) < R by a sequence of lemmas. For compactness of
description we shall use the following notation.

I = |x|2|y|2 + 4(|x|2 + |y|2).

Lemma 6.3. Inequality (6.2) is equivalent to

(6.4) 4x1|xȳ − x̄y| < I − |k|2.
Proof. Inequality (6.2) is rewritten as follows:

(6.5) 2x1(yk̄ + ȳk) < 4x2
1|y|2 − (I − |k|2).

By (4.2), (4.3) and (2) of Lemma 4.1, we have

4x2
1|y|2 − (I − |k|2) > 4x2

1|y|2 − |x|2|y|2 − 4(|x|2 + |y|2)
> 4(|x|2 − 2)|y|2 − |x|2|y|2 − 12|y|2 = (3|x|2 − 20)|y|2 > 0.
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Hence by (6.3) we may square both sides of (6.5) and obtain

(6.6) 4x2
1{(yk̄ + ȳk)2 − 4x2

1|y|4 + 2|y|2(I − |k|2)} < (I − |k|2)2.
By (3.10) we have

(yk̄ + ȳk)2 = 2(x2
1 − x2

2)|y|4 − 4(x2ȳ2 + x̄2y2)− 8|y|4 + 2|y|2|k|2.
Then a calculation shows that

(yk̄ + ȳk)2 − 4x2
1|y|4 + 2|y|2(I − |k|2) = 4|xȳ − x̄y|2.

Inserting this equalty into (6.6), we have

(4x1|xȳ − x̄y|)2 < (I − |k|2)2,
which is equivalent to (6.4). �

Lemma 6.4. Inequality (6.4) is equivalent to

(6.6). x1|x1y2 − x2y1|I − 4(x2
1 + 1)|x1y2 − x2y1|2 < y21|x|4 + x2

1|y|4.

Proof. Inequality (6.4) is written as

|k|2 < I − 4x1|xȳ − x̄y|.
It is easy to see that I − 4x1|xȳ − x̄y| > 0. Squaring both sides of the above
inequality, we have by (3.12)

|x|4|y|4 − 4(|x|4(y2 + ȳ2) + |y|4(x2 + x̄2)) + 16|x2 + y2|2

< I2 − 16x1|x1y2 − x2y1|I + 64x2
1|x1y2 − x2y1|2.

It is not difficult to see that this inequality is equivalent to (6.6). �

Lemma 6.5.

x1|x1y2−x2y1|I−4(x2
1+1)|x1y2−x2y1|2 < x1(x1+y1)I−4(x2

1+1)(x1+y1)
2.

Proof. Inequality of the lemma is written as

(6.7) 0 < (x1+ y1− |x1y2− x2y1|)(x1I − 4(x2
1+1)(x1+ y1+ |x1y2− x2y1|)).

By Lemma 4.2 we have

0 < x1 + y1 − |x1y2 − x2y1|.
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By (4.2) and Lemma 4.1 we have

4(x2
1 + 1)(x1 + y1 + |x1y2 − x2y1|) < 32x3

1 < x1|x|2|y|2 < x1I.

Hence inequality (6.7) holds. �

By Lemmas 6.4 and 6.5 we have the following.

Lemma 6.6. If the inequality

(6.8) x1(x1 + y1)I − 4(x2
1 + 1)(x1 + y1)

2 < y21|x|4 + x2
1|y|4

holds, then (6.6) holds.

By our normalization in Section 3 there are two cases.

Lemma 6.7. If x1 = y1, then (6.8) holds.

Proof. In this case (6.8) reduces to

0 < (|x|2 − |y|2)2 + 8(2x2
1 + 2− (|x|2 + |y|2)).

Inequality (4.4) implies

|x|2 + |y|2 = 2x2
1 + x2

2 + y22 < 2x2
1 + 2. �

Lemma 6.8. If x1 < y1, then

(6.9) 0 < −2x2
1(|x|2|y|2 + 4(|x|2 + x2

1 + y22)) + 16(x
2
1 + 1)x

2
1 + x2

1|x|4 + x2
1|y|4

< −x1(x1 + y1)I + 4(x
2
1 + 1)(x1 + y1)

2 + y21|x|4 + x2
1|y|4,

so that (6.8) holds.

Proof. Since

x1(x1+y1)I−2x2
1(|x|2|y|2+4(|x|2+x2

1+y22)) = x1(y1−x1)(I+8x1(y1+x1)),

the second inequality of (6.9) is written as

x1(y1 − x1)(I + 8x1(y1 + x1)) < (y21 − x2
1)|x|4 + 4(x2

1 + 1)(3x1 + y1)(y1 − x1).

Hence, to show the second inequality of (6.9), it suffices to show

(6.10) x1(|x|2|y|2 + 4|x|2 + 4|y|2 + 8x1(y1 + x1))

< (x1 + y1)|x|4 + 4(x2
1 + 1)(3x1 + y1).
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By (1) of Lemma 4.1, (4.2) and (4.4) we have |x|2 < x2
1+2, |y| < x1+2, y1 <

x1 + 2 so that

x1(|x|2|y|2 + 4|x|2 + 4|y|2 + 8x1(y1 + x1)) < x5
1 + 4x

4
1 + 30x

3
1 + 40x

2
1 + 36x1.

We also have

(x1 + y1)|x|4 + 4(x2
1 + 1)(3x1 + y1) > 2x5

1 + 16x
3
1 + 16x1.

Since x1 > 8,

2x5
1 + 16x

3
1 + 16x1 − (x5

1 + 4x
4
1 + 30x

3
1 + 40x

2
1 + 36x1)

= x1(x
4
1 − 4x3

1 − 14x2
1 − 40x1 − 20) > 0,

so that (6.10) holds. Thus we have shown the second inequality. To show
the first inequality of (6.9), it suffices to show

2(|x|2|y|2 + 4(|x|2 + x2
1 + y22)) < |x|4 + |y|4 + 16(x2

1 + 1).

This inequality is equivalent to

0 < (|x|2 − |y|2)2 + 8(2− x2
2 − y22).

Inequality (4.4) implies that this holds. Hence we have the first inequality.
�

Thus we have shown that (6.8) holds for each cases so that (3.1) holds
for n = ±1.

7 Case n = ±2.
We shall first show the following.

Proposition 7.1. Inequalities L(2) < R and L(−2) < R are equivalent
to

(7.1) −2x1(x1(xyk̄ + x̄ȳk)− 2(yk̄ + ȳk))

< 2x2
1(|x|2|y|2 − 4|y|2 + |k|2) + |x|2|y|2 + 4|y|2 − |k|2 − 4|x|2

and

(7.2) 2x1(x1(xyk̄ + x̄ȳk)− 2(yk̄ + ȳk))

< 2x2
1(|x|2|y|2 − 4|y|2 + |k|2) + |x|2|y|2 + 4|y|2 − |k|2 − 4|x|2,
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respectively.

Proof. Recall that L(2)2 =
(|α2a|+ |β2d|)2
|α2a+ β2d|2 and R2 =

|x|2 + |X|2 + 4
2|X|2 .

Making use of the equality

α2a+ β2d = (α+ β)(αa+ βd)− (a+ d) =
x(xy + k)− 2y

2
,

we have

(7.3) |α2a+ β2d|2 = |x|2|xy + k|2 − 2(x2 + x̄2)|y|2 − 2(xȳk + x̄yk̄) + 4|y|2
4

.

Making use of (3.13), (7.3), Lemma 3.2 and

(|x|2 + |X|2)2 = 2(|x|2 + |X|2)|x|2 − 4(x2 + x̄2) + 16,

one computes and obtains

(|α|2 + |β|2)(|α|2|a|2 + |β|2|d|2)
=

1

8|X|2{(|x|
2 + |X|2)(|x|2|xy + k|2 − 2(x2 + x̄2)|y|2 − 2(xȳk + x̄yk̄)

+ 4|y|2) + 4|y|2(|x|2 + |X|2)− 2(x2 + x̄2 − 4)|xy + k|2}
=
(|x|2 + |X|2)|α2a+ β2d|2

2|X|2

+
2|y|2(|x|2 + |X|2)− (x2 + x̄2 − 4)|xy + k|2

4|X|2 .

Hence we obtain

(|α2a|+ |β2d|)2
= (|α|2 + |β|2)(|α|2|a|2 + |β|2|d|2)− (|a|2 + |d|2) + 2|ad|
=
(|x|2 + |X|2)|α2a+ β2d|2

2|X|2

+
2|x|2|y|2 + 8|x|2 − 2|k|2 − (x2 + x̄2 − 4)|xy + k|2

4|X|2

=

�
R2 − 2

|X|2
�
|α2a+ β2d|2

+
|x|2|y|2 + 4|x|2 − |k|2 − (x2

1 − x2
2 − 2)|xy + k|2

2|X|2 .

Therefore we see that inequality L(2)2 < R2 is equivalent to

|x|2|y|2 + 4|x|2 − |k|2 − (x2
1 − x2

2 − 2)|xy + k|2 < 4|α2a+ β2d|2.
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Inserting the right hand side of (7.3) into this, it is not hard to see that the
above inequality is equivalent to (7.1). We obtain (7.2) similarly. �

By Lemma 4.5 and (4.2) we have

yk̄ + ȳk = 2(y1l + y2m) > 2(y1l − 2|m|) > 2l(y1 − 2) > 2l(x1 − 4)

and

|yk̄ − ȳk| = 2|y1m+ y2l| < 2(y1|m|+ 2l) < 2l(y1 + 2) < 2l(x1 + 4).

Hence

x1(xyk̄ + x̄ȳk)− 2(yk̄ + ȳk) = (x2
1 − 2)(yk̄ + ȳk) + ix1x2(yk̄ − ȳk)

≥ (x2
1 − 2)(yk̄ + ȳk)− x1|x2||yk̄ − ȳk|

> (x2
1 − 2)2l(x1 − 4)− 2x12l(x1 + 4)

= 2l(x3
1 − 6x2

1 − 10x1 + 8) > 0.

Because of x1 > 8, the last inequality holds. Hence we have

(7.4) x1(xyk̄ + x̄ȳk)− 2(yk̄ + ȳk) > 0.

By Proposition 7.1 and (7.4) we have the following.

Proposition 7.2. If inequality L(−2) < R holds, then also holds L(2) <
R.

Next we shall show L(−2) < R. Our tactics is to change (7.2) to another.
The square of the right hand side of (7.2) is greater than

4x4
1(|x|2|y|2 − 4|y|2 + |k|2)2
+ 4x2

1(|x|2|y|2 − 4|y|2 + |k|2)(|x|2|y|2 + 4|y|2 − |k|2 − 4|x|2)

and that of the left hand side of (7.2) is equal to

4x2
1(x

2
1(xyk̄ + x̄ȳk)2 − 4x1(xyk̄ + x̄ȳk)(yk̄ + ȳk) + 4(yk̄ + ȳk)2).

Hence, in order to show (7.2), it suffices to show

(7.5) x2
1(xyk̄ + x̄ȳk)2 − 4ix1x2(yk̄ − ȳk)(yk̄ + ȳk)− 4(x2

1 − 1)(yk̄ + ȳk)2

< x2
1(|x|2|y|2−4|y|2+|k|2)2+(|x|2|y|2−4|y|2+|k|2)(|x|2|y|2+4|y|2−|k|2−4|x|2).
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Calculations show that

(xyk̄ + x̄ȳk)2 = (|x|2|y|2 + |k|2)2 − 16|x2 + y2|2,
(yk̄ + ȳk)2 = |y|4(x2 + x̄2 − 8) + 4(|x|4 + |y|4 − |x2 + y2|2) + 2|y|2|k|2

and

(yk̄ − ȳk)(yk̄ + ȳk) = −4i(|y|4x1x2 + 4(x
2
1 − x2

2)y1y2 − 4(y21 − y22)x1x2).

Then (7.5) is written as

0 < x2
1(16|x2+ y2|2− 8|y|2(|x|2|y|2+ |k|2)+ 16|y|4)
+16x1x2(|y|4x1x2 + 4(x

2
1 − x2

2)y1y2 − 4(y21 − y22)x1x2)

+4(x2
1 − 1)(|y|4(x2 + x̄2 − 8) + 4(|x|4 + |y|4 − |x2 + y2|2) + 2|y|2|k|2)

+(|x|4|y|4 − 16|y|4 + 8|y|2|k|2 − |k|4)− 4|x|2(|x|2|y|2 − 4|y|2 + |k|2)
or

0 < 16x2
1|x|4 + 64x1x2((x

2
1 − x2

2)y1y2 − (y21 − y22)x1x2)− 4|y|4(x2 + x̄2)

+|x|4|y|4 + 16|x2 + y2|2 − |k|4 − 4|x|2(|x|2|y|2 + |k|2 + 4|x|2 − 4|y|2).
By (3.12) we reduce this to

(7.6) −16x1x2((x
2
1 − x2

2)y1y2 − (y21 − y22)x1x2)

< 4x2
1|x|4 − |x|2(|x|2|y|2 + |k|2) + |x|4(y2 + ȳ2)− 4|x|4 + 4|x|2|y|2.

Therefore, in order to show (7.2), it suffices to show (7.6). Since, by (4.4),
|x2y2| ≤ (x2

2 + y22)/2 < 1, we have

16x1y1|x2y2|(x21 − x2
2) < 16|x|3y1 < |x|4(y21 − y22 − 4) =

|x|4(y2 + ȳ2)

2
− 4|x|4.

We also have by (4.2)

16x2
1x

2
2(y

2
1 − y22) < 32|x|2(y21 − y22) <

|x|4(y2 + ȳ2)

2
.

Hence, in order to show (7.6), it suffices to show

0 < 4x2
1|x|4 − |x|2(|x|2|y|2 + |k|2) + 4|x|2|y|2.

By Lemmas 4.3 and 4.1 we have

4x2
1|x|4 − |x|2(|x|2|y|2 + |k|2) + 4|x|2|y|2 > 4x2

1|x|4 − 2|x|4|y|2
= 2|x|4(2x2

1 − |y|2) > 0.

Hence (7.6) holds. Therefore, we have shown that (7.2) holds so that we have
L(−2) < R.
Thus we have shown that (3.1) holds for n = ±2.
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8 Case |n| ≥ 3
We assume |n| ≥ 3 and put

A(n) = |α|2n|a|2 + |β|2n|d|2 and f(t) =
2t(t+ 1)

t − 1 (t = |ad| > 1).

Proposition 8.1. If f(|ad|) < A(n), then L(n) < R.

Proof. Since

L(n)2 =
|α|2n|a|2 + 2|ad|+ |β|2n|d|2

|αna+ βnd|2 ≤ A(n) + 2|ad|
A(n)− 2|ad| .

and R2 ≥ |x|2/|X|2 = |ad|, in order to show L(n) < R, it suffices to show

A(n) + 2|ad|
A(n)− 2|ad| < |ad|.

It is easy to see that this is equivalent to f(|ad|) < A(n). �

Recall that γ > 10. We shall show the following two inequalities.

(8.1) f(t) ≤ (γ +
√
2)2((γ +

√
2)2 − 2)

(γ +
√
2)2 − 4 .

(8.2) A(n) >

(γ +
√
2)8

�
γ +

√
2−

�
(γ +

√
2)2 − 4

�2

32((γ +
√
2)2 − 4) .

Lemma 8.2.
(γ +

√
2)2

(γ +
√
2)2 − 4 < |ad| < (γ −√

2)2

(γ −√
2)2 − 4 .

Proof. We put g(w) = 1− 4/w2. Then g(w) is a holomorphic function
in the closed disc D = {w ∈ C||w − γ| ≤ √

2} and does not take the value 0
in D. Hence by the maximal principle of holomorphic functions we have

max
|w−γ|<√

2
|g(w)| < max

|w−γ|=√
2
|g(w)| = 1− 4

(γ +
√
2)2

and

min
|w−γ|<√

2
|g(w)| > min

|w−γ|=√
2
|g(w)| = 1− 4

(γ −√
2)2

.
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Since |ad| = |x2/(x2 − 4)| = 1/|g(x)|, we have the desired inequalities. �

We put

(γ +
√
2)2

(γ +
√
2)2 − 4 = t1 and

(γ −√
2)2

(γ −√
2)2 − 4 = t2.

It is easy to see that 1 < t1 < t2 < 2 and that f(t) is a decreasing function
in the interval (t1, t2). Hence we have

f(t) ≤ f(t1) =
(γ +

√
2)2((γ +

√
2)2 − 2)

(γ +
√
2)2 − 4 .

This is (8.1). Next, we shall show (8.2). We need two more lemmas.

Lemma 8.3. |α| > γ +
√
2√

2
.

Proof. Since |α|+ |β| ≥ |x| > γ −√
2 by (4.1), we have

|α|2 − (γ −
√
2)|α| + 1 > 0.

Since |α| > 1, this inequality implies

|α| >
γ −√

2 +
�
(γ −√

2)2 − 4
2

.

Now, it is easy to see that

γ −√
2 +

�
(γ −√

2)2 − 4
2

>
γ +

√
2√

2
.

Hence the desired inequality holds. �

Lemma 8.4. |a|2, |d|2 >

(γ +
√
2)2

�
γ +

√
2−

�
(γ +

√
2)2 − 4

�2

4((γ +
√
2)2 − 4) .

Proof. From the inequality |y − γ| < √
2 we have

|d| < γ +
√
2 + |a|.
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Hence by Lemma 8.2 we have

(γ +
√
2)2

(γ +
√
2)2 − 4 < |ad| < (γ +

√
2)|a|+ |a|2,

from which we have the inequality for |a|2 easily. The proof for |d|2 is similar.
�

If n ≥ 3 then
A(n) > |α|2n|a|2 ≥ |α|6|a|2

and if n ≤ −3 then
A(n) > |β|2n|d|2 ≥ |α|6|d|2.

Hence, by Lemmas 8.3 and 8.4, we obtain (8.2).
By (8.1) and (8.2) we see that, to show f(|ad|) < A(n), it suffices to show

((γ +
√
2)2 − 2) <

(γ +
√
2)6

�
γ +

√
2−

�
(γ +

√
2)2 − 4

�2

32

or

(8.3) 2((γ +
√
2)2 − 2)

�
γ +

√
2 +

�
(γ +

√
2)2 − 4

�2

< (γ +
√
2)6.

Since

2((γ +
√
2)2 − 2)

�
γ +

√
2 +

�
(γ +

√
2)2 − 4

�2

< 8(γ +
√
2)4

and 8 < (γ +
√
2)2, we see that (8.3) hold. Hence we have f(|ad|) < A(n).

Thus by Proposition 8.1 we see that (3.1) holds for the case |n| ≥ 3.
Therefore, we have checked (3.1) for all integers n, so that by Theorem 3.1

we have completed the proof of Theorem 1.1. Hence we have also completed
the proof of Theorem 1.2.
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