Bull. of Yamagata Univ., Nat. Sci., Vol.15, No.4, Feb. 2004

Locally Conformal Almost Cosymplectic Manifolds Endowed with a Skew-Symmetric Killing Vector Field

Koji MATSUMOTO[†], Adela MIHAI[‡] and Dorotea NAITZA^{††} (Received, March 04, 2003)

Abstract

We study a locally conformal almost cosymplectic manifold M which carries a horizontal skew-symmetric Killing vector field X. Such X defines a relative conformal cosymplectic transformation of the conformal cosymplectic 2-form Ω of M and the square of its length is both an isoparametric function and an eigenfunction of the Laplacian.

Math. Subject Classification 2000: 53D15, 53C15.

Keywords: Locally conformal almost cosymplectic manifolds, skewsymmetric Killing vector field, infinitesimal concircular transformation, relative conformal cosymplectic transformation.

1 Preliminaries

Let (M, g) be an oriented *n*-dimensional Riemannian C^{∞} -manifold and ∇ be the covariant differential operator with respect to the metric tensor g. Let ΓTM be the set of sections of the tangent bundle and $\flat : TM \to T^*M$ and $\natural = \flat^{-1}$ the classical musical isomorphisms defined by g. We denote by $A^q(M, TM)$ the set of all vector valued q-forms, $q < \dim M$.

 $^{^\}dagger \mathrm{Department}$ of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan.

e-mail address: ej192@kdw.kj.yamagata-u.ac.jp

[‡]Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania.

e-mail address: adela@geometry.math.unibuc.ro

^{††}Istituto di Matematica, Facolta di Economia, Via dei Verdi 75, 98122 Messina, Italia. e-mail address: dorothe4@inwind.it

A vector field U is said to be *exterior concurrent* if it satisfies

(1.1)
$$\nabla^2 U = \alpha \wedge dp \in A^2(M, TM), \quad \alpha \in \Lambda^1(M, TM),$$

where $\alpha = \lambda U^{\flat}$ for a certain $\lambda \in \Lambda^0$ and it is called a *concurrence form* ([MRV], [PRV], [R2]).

In (1.1), α is called the *concurrence form* and is defined by

$$\alpha = \lambda U^{\flat}, \quad \lambda \in \Lambda^0 M.$$

A function $f: M \to \mathbf{R}$ is *isoparametric* if $\|\nabla f\|$ and $div(\nabla f)$ are functions of f([W]).

Let $\mathcal{O} = \{e_A \mid A = 1, ..., n\}$ be a local field of orthonormal frame over Mand let $\mathcal{O}^* = \{\omega^A\}$ be its associated coframe. Then the soldering form dp is expressed by $dp = \omega \otimes e$. Also, the Cartan's structure equations written in indexless manner are

(1.2)
$$\nabla e = \theta \otimes e_{\gamma}$$

(1.3)
$$d\omega = -\theta \wedge \omega,$$

(1.4)
$$d\theta = -\theta \wedge \theta + \Theta.$$

In the above equations, θ (resp. Θ) are the *local connection forms* in the tangent bundle TM (resp. the *curvature forms* on M).

A (2m + 1)-dimensional locally conformal almost cosymplectic manifold M with structure $(\phi, \Omega, \xi, \eta, g)$ is defined by

$$d\Omega = 2\omega \wedge \Omega, \quad \eta = \omega \wedge \eta,$$

for certain 1-form ω , where ϕ is an endomorphism of the tangent bundle TM of square -1, Ω is the structure 2-form, which is called a *locally conformal* almost cosymplectic 2-form, Ω a conformal cosymplectic 2-form of rank 2m, ξ the Reeb vector field and η the Reeb covector field.

It is known that the 1-form ω from the above equation is a closed 1-form which is called the *characteristic form* associated with the locally conformal almost cosymplectic structure ([MMR]).

In addition, if M is endowed with a quasi-Sasakian structure defined by a field ϕ of endomorphism of its tangent space and ω satisfies $\omega = -\eta$, then M is called an *almost cosymplectic* -1-manifold. Let D_p^{\top} (resp. D_p^{\perp}) be a set of all tangent vectors at p which are orthogonal to (resp. proportional to) ξ_p . Then we may split the tangent space T_pM of M at $p \in M$ as $T_pM = D_p^{\top} \oplus D_p^{\perp}$. Locally Conformal Almost Cosymplectic Manifolds Endowed with a Skew-Symmetric Killing Vector Field

We can construct the distribution $D: p \to D_p^{\top} = \{X; \eta_p(X_p) = 0\}$, called the *horizontal distribution* and the distribution $D^{\perp}: p \to D_p^{\perp} = \{\xi_p\}$, called the *vertical distribution*.

In almost cosymplectic -1-manifold M, one has the following (see, for instance, [MMR], [OR])

(1.5)
$$d\Omega = -2\eta \wedge \Omega, \quad \Omega(Z, Z') = g(\phi Z, Z'),$$

(1.6)
$$(\nabla_{Z'}\phi)Z = \eta(Z)\phi Z' + g(\phi Z, Z')\xi,$$

(1.7)
$$\nabla \xi = -dp + \eta \otimes \xi,$$

$$(1.8) d\eta = 0$$

A vector field X is called a *horizontal skew-symmetric Killing vector field* with generatives ξ if it satisfies

(1.9)
$$\nabla X = \xi \wedge X, \quad \eta(X) = 0.$$

Then we have

Lemma 1. Let X be a horizontal skew-symmetric Killing vector field. If we put $2l = ||X||^2$, then we have the following properties:

i) 2l is an isoparametric function,

ii) grad 2l defines an infinitesimal concircular transformation and iii) l is an eigenfunction of the Laplacian Δ .

Also, we have

Lemma 2. The above vector field X satisfies the following

$$\nabla^3 X = 2(X^\flat \wedge \eta) \wedge dp,$$

i.e., by definition, X is a 2-exterior concurrent vector field, and

$$d(\mathcal{L}_X\Omega) = -2\eta \wedge \mathcal{L}_X\Omega,$$

i.e., by definition, X defines a relative almost cosymplectic transformation of Ω ($\mathcal{L}_X \Omega$ is exterior recurrent with -2η as recurrence form).

Proofs of the above lemmas will be given in the next section.

2 Main Result

We assume in this paper that a vector field X is a skew-symmetric Killing vector field having the Reeb vector field ξ as generative ([R2]), i.e.,

(2.1)
$$\nabla X = \xi \wedge X,$$

or, equivalently,

(2.2)
$$\nabla X = X^{\flat} \otimes \xi - \eta \otimes X.$$

Let $\mathcal{O} = \{e_A \mid A = 1, \dots, 2m + 1\}$ be a local field of orthonormal frame over M and let $\mathcal{O}^* = \{\omega^A\}$ be its associated coframe and we assume that $e_{2m+1} = \xi$ and $\omega^{2n+1} = \eta$.

We assume that X is a horizontal vector field $(\eta(X) = 0)$. Then the vector field X is written as

(2.3)
$$X^{\flat} = \sum_{a=1}^{2m} X^a \omega^a$$

and

(2.4)
$$\nabla X = (dX^a + X^b \theta^a_b) \otimes e_a + X^{\flat} \otimes \xi, \quad a, b = 1, \dots, 2m.$$

Hence, by (2.2), one obtains by a standard calculation

(2.5)
$$dX^a + X^b \theta^a_b = X^a \eta$$

and setting

(2.6)
$$2l = ||X||^2$$

one derives from (2.5)

$$(2.7) dl = -2l\eta,$$

which is concordance with (1.8). Next, from (2.7), one has grad $l = -2l\xi$, which imply

(2.8)
$$||grad l||^2 = 4l^2,$$

and

$$(2.9) div(grad l) = 4ml,$$

Locally Conformal Almost Cosymplectic Manifolds Endowed with a Skew-Symmetric Killing Vector Field

which say that the length 2l of the vector field X is an isoparametric function. In addition, one has

(2.10)
$$g(\nabla_Z \ grad \ l, Z') = 2lg(Z, Z')$$

for any $Z, Z' \in \Gamma TM$. This means, by definition, that grad l defines an *infinitesimal concircular transformation* of a vector field Z ([MRV]).

In the same order of ideas, one gets

$$(2.11) \qquad \qquad \Delta l = 4ml,$$

i.e., l is eigenfunction of the Laplacian Δ .

In this way, Lemma 1 has been proved.

Next, since ∇ acts inductively, one derives

(2.12)
$$\nabla^2 X = X^{\flat} \wedge dp - 2(\eta \wedge X^{\flat}) \otimes \xi.$$

This means that the distinguished vector field X is a quasi-exterior concurrent vector field.

Further, one has

(2.13)
$$\nabla(\nabla^2 X) = \nabla^3 X = 2(X^{\flat} \wedge \eta) \wedge dp,$$

i.e., by definition, X is a 2-exterior concurrent vector field ([MRV]).

Finally, regarding the conformal cosymplectic form Ω , we define β

(2.14)
$$\beta = i_X \Omega = \sum_{a=1}^n (X^a \omega^{a^*} - X^{a^*} \omega^a).$$

Then, since

(2.15)
$$\mathcal{L}_X \Omega = d(i_X \Omega) + 2\eta \wedge i_X \Omega,$$

one may write

(2.16)
$$\mathcal{L}_X \Omega = d\beta + 2\eta \wedge \beta,$$

and, by exterior differentiation, one derives

(2.17)
$$d(\mathcal{L}_X\Omega) = -2\eta \wedge \mathcal{L}_X\Omega.$$

Then, the relation (2.17) affirms that the distinguished vector field X defines a relative conformal cosymplectic transformation of Ω (see [R1]).

In this way, Lemma 2 has been proved.

Summing up, and making use of Lemmas 1 and 2, we proved the following.

Theorem. Let $M(\phi, \Omega, \xi, \eta, g)$ be a (2m + 1)-dimensional locally conformal almost cosymplectic C^{∞} -manifold, with Reeb vector field ξ . Then, if Mcarries a horizontal vector field X such that X is a skew-symmetric Killing vector field, one has the properties:

i) $2l = ||X||^2$ is an isoparametric function; moreover, grad l is an infinitesimal concircular transformation and l is an eigenfunction of the Laplacian Δ ;

ii) X is a closed vector field which is 2-exterior concurrent, i.e.,

$$\nabla^3 X = 2(X^{\flat} \wedge \eta) \wedge dp;$$

iii) X defines a relative conformal cosymplectic transformation of Ω , i.e.

$$d(\mathcal{L}_X\Omega) = -2\eta \wedge \mathcal{L}_X\Omega.$$

Acknowledgements. The authors wish to express their hearty thanks to the referee's valuabla advices and are very obliged to Prof. Dr. Radu Rosca for useful discussions and valuable advices.

Remark. This paper was written while the second author visited Yamagata University, supported by a JSPS postdoctoral fellowship.

References

- [D] J. Dieudonné, Treatise of Analysis, vol. 4, Academic Press, New York (1974).
- [MMR] K. Matsumoto, I. Mihai and R. Rosca, A certain locally conformal almost cosymplectic manifold and its submanifolds, Tensor, N.S. 51 (1992), 91-102.
- [MOR] I. Mihai, A. Oiagă and R. Rosca, Lorenzian Kenmotsu manifolds having two skew-symmetric conformal vector fields, Bull. Math. Soc. Sci. Roumanie (N.S.) 42 (90) (1999), 237-251.
- [MRV] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, 2, PADGE, KU Leuven, KU Brussel.

Locally Conformal Almost Cosymplectic Manifolds Endowed with a Skew-Symmetric Killing Vector Field

- [NO] D. Naitza and A. Oiagă, On φ-skew symmetric conformal vector fields, Publ. Math. Debrecen, 59 (2001), 379-387.
- [OR] Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39 (1991), 3-4.
- [PRV] M. Petrovic, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on a Riemannian manifold, Soochow J. Math., 15 (1989), 179-187.
- [R1] R. Rosca, Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian structure, Libertas Math., (Univ. Arlington, Texas) 6 (1986), 167-174.
- [R2] R. Rosca, On exterior concurrent skew symmetric Killing vector fields, Rend. Sem. Mat. Messina 2 (1993), 131-145.
- [W] A. West, *Isoparametric systems*, Geometry and Topology of Submanifolds, 222-230, World Scientific, River Edge, U.S.A. (1989).