
Bull. of Yamagata Univ., Nat. Sci., Vol.15, No.4, Feb. 2004

Locally Conformal Almost Cosymplectic
Manifolds Endowed with a Skew-Symmetric

Killing Vector Field

Koji MATSUMOTO†, Adela MIHAI‡ and Dorotea NAITZA††

(Received, March 04, 2003)

Abstract

We study a locally conformal almost cosymplectic manifold M
which carries a horizontal skew-symmetric Killing vector fieldX. Such
X defines a relative conformal cosymplectic transformation of the con-
formal cosymplectic 2-form Ω ofM and the square of its length is both
an isoparametric function and an eigenfunction of the Laplacian.
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1 Preliminaries

Let (M, g) be an oriented n-dimensional Riemannian C∞-manifold and
∇ be the covariant differential operator with respect to the metric tensor g.
Let ΓTM be the set of sections of the tangent bundle and � : TM → T ∗M
and � = �−1 the classical musical isomorphisms defined by g. We denote by
Aq(M,TM) the set of all vector valued q-forms, q < dimM.
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A vector field U is said to be exterior concurrent if it satisfies

(1.1) ∇2U = α ∧ dp ∈ A2(M,TM), α ∈ Λ1(M,TM),

where α = λU � for a certain λ ∈ Λ0 and it is called a concurrence form
([MRV], [PRV], [R2]).

In (1.1), α is called the concurrence form and is defined by

α = λU �, λ ∈ Λ0M.

A function f : M → R is isoparametric if �∇f� and div(∇f) are func-
tions of f ([W]).

Let O = {eA |A = 1, . . . , n} be a local field of orthonormal frame over M
and let O∗ = {ωA} be its associated coframe. Then the soldering form dp is
expressed by dp = ω ⊗ e. Also, the Cartan’s structure equations written in
indexless manner are

(1.2) ∇e = θ ⊗ e,

(1.3) dω = −θ ∧ ω,

(1.4) dθ = −θ ∧ θ +Θ.

In the above equations, θ (resp. Θ) are the local connection forms in the
tangent bundle TM (resp. the curvature forms on M).

A (2m + 1)-dimensional locally conformal almost cosymplectic manifold
M with structure (φ,Ω, ξ, η, g) is defined by

dΩ = 2ω ∧ Ω, η = ω ∧ η,

for certain 1-form ω, where φ is an endomorphism of the tangent bundle TM
of square −1, Ω is the structure 2-form, which is called a locally conformal
almost cosymplectic 2-form, Ω a conformal cosymplectic 2-form of rank 2m,
ξ the Reeb vector field and η the Reeb covector field.

It is known that the 1-form ω from the above equation is a closed 1-form
which is called the characteristic form associated with the locally conformal
almost cosymplectic structure ([MMR]).

In addition, if M is endowed with a quasi-Sasakian structure defined by
a field φ of endomorphism of its tangent space and ω satisfies ω = −η, then
M is called an almost cosymplectic −1-manifold. Let D�

p (resp. D
⊥
p ) be a set

of all tangent vectors at p which are orthogonal to (resp. proportional to) ξp.
Then we may split the tangent space TpM ofM at p ∈ M as TpM = D�

p ⊕D⊥
p .
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We can construct the distribution D : p → D�
p = {X ; ηp(Xp) = 0}, called

the horizontal distribution and the distribution D⊥ : p → D⊥
p = {ξp}, called

the vertical distribution.
In almost cosymplectic −1-manifold M , one has the following (see, for

instance, [MMR], [OR])

(1.5) dΩ = −2η ∧ Ω, Ω(Z,Z �) = g(φZ,Z �),

(1.6) (∇Z�φ)Z = η(Z)φZ � + g(φZ,Z �)ξ,

(1.7) ∇ξ = −dp+ η ⊗ ξ,

(1.8) dη = 0.

A vector field X is called a horizontal skew-symmetric Killing vector field
with generatives ξ if it satisfies

(1.9) ∇X = ξ ∧X, η(X) = 0.

Then we have

Lemma 1. Let X be a horizontal skew-symmetric Killing vector field. If
we put 2l = �X�2, then we have the following properties:

i) 2l is an isoparametric function,
ii) grad 2l defines an infinitesimal concircular transformation and
iii) l is an eigenfunction of the Laplacian ∆.

Also, we have

Lemma 2. The above vector field X satisfies the following

∇3X = 2(X � ∧ η) ∧ dp,

i.e., by definition, X is a 2-exterior concurrent vector field, and

d(LXΩ) = −2η ∧ LXΩ,

i.e., by definition, X defines a relative almost cosymplectic transformation of
Ω (LXΩ is exterior recurrent with −2η as recurrence form).

Proofs of the above lemmas will be given in the next section.
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2 Main Result

We assume in this paper that a vector field X is a skew-symmetric Killing
vector field having the Reeb vector field ξ as generative ([R2]), i.e.,

(2.1) ∇X = ξ ∧X,

or, equivalently,

(2.2) ∇X = X� ⊗ ξ − η ⊗X.

Let O = {eA |A = 1, . . . , 2m + 1} be a local field of orthonormal frame
over M and let O∗ = {ωA} be its associated coframe and we assume that
e2m+1 = ξ and ω2n+1 = η.

We assume that X is a horizontal vector field (η(X) = 0). Then the
vector field X is written as

(2.3) X� =
2m�

a=1

Xaωa

and

(2.4) ∇X = (dXa +Xbθa
b )⊗ ea +X� ⊗ ξ, a, b = 1, . . . , 2m.

Hence, by (2.2), one obtains by a standard calculation

(2.5) dXa +Xbθa
b = Xaη

and setting

(2.6) 2l = �X�2 ,

one derives from (2.5)

(2.7) dl = −2lη,

which is concordance with (1.8). Next, from (2.7), one has grad l = −2lξ,
which imply

(2.8) �grad l�2 = 4l2,

and

(2.9) div(grad l) = 4ml,
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which say that the length 2l of the vector fieldX is an isoparametric function.
In addition, one has

(2.10) g(∇Z grad l, Z �) = 2lg(Z,Z �)

for any Z,Z � ∈ ΓTM . This means, by definition, that grad l defines an
infinitesimal concircular transformation of a vector field Z ([MRV]).

In the same order of ideas, one gets

(2.11) ∆l = 4ml,

i.e., l is eigenfunction of the Laplacian ∆.

In this way, Lemma 1 has been proved.

Next, since ∇ acts inductively, one derives

(2.12) ∇2X = X� ∧ dp− 2(η ∧X�)⊗ ξ.

This means that the distinguished vector field X is a quasi-exterior con-
current vector field.

Further, one has

(2.13) ∇(∇2X) = ∇3X = 2(X � ∧ η) ∧ dp,

i.e., by definition, X is a 2-exterior concurrent vector field ([MRV]).
Finally, regarding the conformal cosymplectic form Ω, we define β

(2.14) β = iXΩ =
n�

a=1

(Xaωa∗ −Xa∗
ωa).

Then, since

(2.15) LXΩ = d(iXΩ) + 2η ∧ iXΩ,

one may write

(2.16) LXΩ = dβ + 2η ∧ β,

and, by exterior differentiation, one derives

(2.17) d(LXΩ) = −2η ∧ LXΩ.

Then, the relation (2.17) affirms that the distinguished vector field X
defines a relative conformal cosymplectic transformation of Ω (see [R1]).
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In this way, Lemma 2 has been proved.

Summing up, and making use of Lemmas 1 and 2, we proved the following.

Theorem. Let M(φ,Ω, ξ, η, g) be a (2m+ 1)-dimensional locally confor-
mal almost cosymplectic C∞-manifold, with Reeb vector field ξ. Then, if M
carries a horizontal vector field X such that X is a skew-symmetric Killing
vector field, one has the properties:

i) 2l = ||X||2 is an isoparametric function; moreover, grad l is an in-
finitesimal concircular transformation and l is an eigenfunction of the Lapla-
cian ∆;

ii) X is a closed vector field which is 2-exterior concurrent, i.e.,

∇3X = 2(X � ∧ η) ∧ dp;

iii) X defines a relative conformal cosymplectic transformation of Ω, i.e.

d(LXΩ) = −2η ∧ LXΩ.
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