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Summary 

Two different isolation methods, the dilution colony-counting method (colony-isolation) and 

enrichment culture, were used to isolate sulfate-reducing bacteria (SRBs) from estuarine sediment in 

Japan. Lactate was used as an electron donor for colony-isolation, and lactate or propionate was used 

for enrichment culture. All isolates were classified into six different phylogenetic groups according to 

the 16S rRNA gene-based analysis. The closest relatives of the colony-isolates (12 strains) were 

species in the genera of Desulfobacterium, Desulfofrigus, Desulfovibrio and Desulfomicrobium. The 

closest known relative of the lactate-enrichment isolates was Desulfovibrio acrylicus and that of the 

propionate-enrichment isolates was Desulfobulbus mediterraneus. All isolates were 

incompletely-oxidizing SRBs. Overall patterns of utilization of electron donors and acceptors, as well 

as fermentative substrates, differed depending on the affiliation of the strain. Furthermore, even if 

several strains used the same substrate, the growth rates were often significantly different depending 

on the strain. It was strongly suggested that various species of SRBs should coexist in the sediment by 

competing for common substrates as well as taking priority in favorable or specific substrates for each 

species and the community of SRBs should be able to oxidize almost all major intermediates of 

anaerobic decomposition of organic matter such as lower fatty acids, alcohols and H2 as well as amino 

acids. Thus, it was indicated by the phylogenetic and physiological analyses of the isolates that the 
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SRBs community composed of diverse lineages of bacteria living in anoxic estuarine sediment should 

be able to virtually play an extensive role in carbon cycle as well as sulfur cycle on the earth.  

 

 

Key words: Deltaproteobacteria; Desulfopila; Desulfobulbus; Desulfofrigus; Desulfomicrobium; 

Desulfovibrio; estuarine sediment; 16S rRNA gene; sulfate-reducing bacteria 

 

Introduction 

Sulfate-reducing microorganisms, which commonly reduce oxidized sulfur compounds to sulfide as 

a functional group, include phylogenetically diverse bacterial species as well as some archaeal species 

(Castro et al., 2000; Rabus et al., 2000). Recently, various novel sulfate-reducing bacteria (SRBs) 

have been isolated from a wide range of anoxic environments such as marine sediments (Bale et al., 

1997; Boyle et al., 1999; Isaksen and Teske, 1996; Jeanthon et al., 2002; Knoblauch et al., 1999a; 

Rabus et al., 1993; Sass et al., 2002; Sievert and Kuever, 2000; Sun et al., 2000; Sun et al., 2001; Van 

der Maarel et al., 1996), deep subterranean groundwater (Motamedi and Pedersen 1998), oil fields 

(Beeder et al., 1995; Lien et al., 1998; Miranda-Tello et al., 2003), hot springs (Mori et al., 2003) and 

rice field soil (Ouattara et al., 1999). 

 SRBs are capable of utilizing various compounds such as H2, fatty acids, alcohols, amino acids and 
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sugars, as well as aliphatic and aromatic hydrocarbons as electron donors (Hansen, 1993; Rabus et al., 

2000). Some SRBs can reduce Fe(III), nitrate and halogenated compounds as the sole electron 

acceptor (Boyle et al., 1999; Dannenberg et al., 1992; Holmes et al., 2004; Rabus et al., 2000; Sun et 

al., 2000; Sun et al., 2001). In addition, it is known that many SRBs can oxidize some substrates such 

as pyruvate and fumarate, even in the absence of available electron acceptors (Hansen, 1993; Rabus et 

al., 2000). Thus, SRBs play extensive roles in the environment. Since sulfate is present at rather high 

concentrations in marine environments, it has been reported that SRBs are responsible for up to 50% 

of the organic carbon mineralization in marine sediments (Jørgensen, 1982; Sørensen et al., 1981) and 

thus play an important role in carbon and sulfur cycles on the earth. 

 Many studies on the diversity of SRBs in natural environments have been performed using 

cultivation-independent molecular techniques based on PCR amplification of the 16S rRNA gene or 

dissimilatory sulfite reductase gene (Devereux and Mundfrom, 1994; Dhillon et al., 2003; Hines et al., 

1999; Joulian et al., 2001; Minz et al., 1999; Purdy et al., 2001; Purdy et al., 2002; Voordouw et al., 

1996; Wagner et al., 1998). These studies have revealed that phylogenetically diverse un-cultivated 

SRBs are present in natural ecosystems. It may be possible to estimate the physiological features of a 

microbe from its sequence by comparing it with sequences of the closest known relatives. However, if 

the sequence similarity with the closest relatives is lower than that at the species level, the physiology 

of the closest known relatives does not necessarily indicate that of un-cultivated microbes recovered 
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by the molecular techniques.  

In this study, we isolated SRBs from estuarine sediment in Japan using different methods in order 

to isolate SRBs as diverse as possible from the sediment. The bacteria were isolated by (i) the 

anaerobic roll tube method and picking up colonies of SRBs that appeared after the dilution 

colony-counting technique with lactate as an electron donor, and (ii) enrichment cultures with lactate 

or propionate. Phylogenetic affiliations of the isolates were determined by 16S rRNA gene sequences, 

and their phenotypic features were determined in detail to compare and infer the ecological roles of 

each group of isolates as well as to understand the functional structure of the SRBs community.  

 

Matherials and Methods 

Source of organisms. Sediment cores were collected with a core sampler (5 cm in diameter) from 

sediment at a water depth of 2 m in the Niida River estuary of Sakata Harbor, which is located on the 

Sea of Japan side (38o 54.5′ N, 139o 50.6′ E) of Japan. The sediment cores were obtained from 

sediment depths of 6 cm and 10 cm on the 24th of June 1999 and the 12th of November 2000, 

respectively. 

Media and cultivation. Two basal media (seawater medium and defined medium) were used in this 

study. The seawater medium contained (per liter of seawater): 0.5 g of KH2PO4, 0.3 g of NH4Cl, 0.1 g 

of yeast extract, 1 mg of resazurin-Na, 10 ml of the trace element solution (per liter: 10 ml of 25% 
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(vol/vol) HCl, 1.5 g of FeCl2∙4H2O, 0.19 g of CoCl2∙6H2O, 0.1 g of MnCl2∙4H2O, 0.07 g of ZnCl2, 

0.062 g of H3BO3, 0.036 g of Na2MoO4∙2H2O, 0.024 g of NiCl2∙6H2O and 0.017 g of CuCl2∙2H2O) 

and 0.5 g of L-cysteine∙HCl∙H2O, as well as an appropriate electron donor. 

The pH was adjusted to 7.2-7.4 with 1 N NaOH. Agar (Difco) (1.5%, wt/vol) was added to the 

medium and used for the anaerobic roll tube method and maintenance of isolates in slant cultures. For 

colony counts, 0.1 g of thioglycollate-Na, 0.1 g of ascorbic acid and 0.025 g of Na2S2O4 were added 

(per liter) as reducing agents in place of L-cysteine∙HCl∙H2O. To detect sulfide production by colonies 

of SRBs, the medium was supplemented with Fe(NH4)2(SO4)2∙6H2O (0.28 g per liter) as an Fe 

compound.  

The defined medium contained (per liter): 0.5 g of KH2PO4, 1.0 g of NH4Cl, 1.0 g of Na2SO4, 2.0 g 

of MgSO4∙7H2O, 0.1 g of CaCl2∙2H2O, 0.5 g of yeast extract, 1 mg of resazurin-Na, 10 ml of the trace 

element solution, 15 or 30 g of NaCl (depending on the optimum NaCl concentration for growth of 

each strain) and 0.5 g of L-cysteine∙HCl∙H2O. The pH was adjusted to 7.2-7.4 with 1 N NaOH 

(Nakamoto et al., 1996; Ueki et al., 1980; Widdel and Bak, 1992). The defined medium was used for 

the general physiological characterization of isolates. Each electron donor was added at a final 

concentration of 20 mM. Cultivation and transfer of the isolates were performed under an O2-free N2 

(100%) atmosphere. All isolates were cultivated at 30oC, unless otherwise stated. 

Isolation. The sediment sample collected in November 2000 was used to determine viable colony 
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counts of SRBs by the anaerobic roll tube method with lactate as the sole electron donor (Hungate, 

1966). The sediment sample was diluted by consecutive 10-fold dilutions with anoxic seawater. The 

anoxic seawater was prepared by bubbling seawater collected from the sampling site with O2-free N2 

gas. The diluted (10-3-10-6) samples (0.2 ml) were inoculated into the seawater agar medium (10 ml) 

containing 20 mM of sodium lactate.  

The sediment sample collected in June 1999 was used for enrichment cultures of SRBs. The 

sediment sample was diluted as described above, and the diluted (10-3-10-6) samples (0.2 ml) were 

inoculated into the seawater liquid medium containing 20 mM of sodium lactate or sodium propionate. 

Cultures showing sulfate-reduction by formation of black precipitate in the medium were transferred 

to fresh medium containing the same electron donor. After two to four subcultures in the same manner, 

SRBs were isolated using the anaerobic roll tube method with the respective electron donor.  

Purified isolates were finally obtained after several purification procedures through colony isolation 

by the anaerobic roll tube method. The purity of the isolates was checked by observation of cell 

morphology by microscopy and appearance of colonies on slant cultures. 

Phenotypic characterization of isolates. The Gram-reaction and cellular morphology were 

confirmed by light microscopy. The motility of the cells was examined by phase-contrast microscopy. 

Growth of the isolates under the aerobic condition was examined in the presence of the electron donor 

using the basal defined medium without L-cysteine∙HCl∙H2O and resazurin-Na. Oxidase and catalase 
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activities of cells were tested as described previously (Akasaka et al., 2003).  

Effects of NaCl concentration and pH on growth of the isolates were examined using the basal 

defined medium. Effects of temperature on growth were examined in the seawater medium with 

lactate as an electron donor except for strain Pro1, which was grown in the basal defined medium with 

3.0% (wt/vol) NaCl containing propionate. Growth of the isolates was monitored by measurement of 

optical density at 660 nm with a spectrophotometer (HITACHI U-1000, Katsuta, Japan).  

Utilization of electron donors by the isolates was determined using the defined medium containing 

each compound at a final concentration of 20 mM. H2 utilization was determined in the presence of 

acetate (5 mM) with H2 in the atmosphere. Utilization of electron acceptors was determined with a 

sulfate-free medium, which contained the same concentrations of chloride in place of sulfate in the 

defined medium. Sodium sulfite (3 mM), sodium thiosulfate (15 mM) or sodium fumarate (20 mM) 

was added to the sulfate-free medium as possible electron acceptors. Fermentative utilization of 

pyruvate, lactate, fumarate or malate (20 mM) was also determined using the sulfate-free medium. 

Fatty acids and amino acids were used in the form of a sodium salt and added to the medium from 

sterilized stock solutions. Utilization of each electron donor or acceptor was determined by comparing 

the growth in the presence or absence of each compound as well as measurement of the concentration 

in the medium after cultivation. 

Analytical methods. Volatile fatty acids and alcohols were analyzed with a gas chromatograph 
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(Hitachi G-5000 or 263-30, Katsuta, Japan), as described previously (Ueki et al., 1986). Non-volatile 

fatty acids and formate were analyzed with a high-performance liquid chromatograph (Shimadzu 

LC-10AD, Kyoto, Japan), as described previously by (Akasaka et al., 2003). Sulfate, sulfite and 

thiosulfate were analyzed with an ion chromatograph (Dionex 2000i, Dionex), as described previously 

(Nakamoto et al., 1996). 

16S rRNA gene sequencing and phylogenetic analysis. 16S rRNA genes of the isolates were 

amplified by polymerase chain reaction (PCR) from DNA extracted from the cells of isolates, and the 

PCR amplifications were purified and sequenced, as described previously (Akasaka et al., 2003). 

Multiple alignments of the sequences and references obtained from the GenBank database with the 

BLAST program (Altschul et al., 1997) were performed, and a phylogenetic tree was constructed with 

the neighbor-joining method (Saitou and Nei, 1987) and bootstrap resampling analysis for 1000 

replicates was performed to estimate the confidence of tree topology, using the Clustal W program 

(Felsenstein, 1985; Thompson et al., 1994). All gaps and unidentified base positions in the alignment 

were excluded before calculation. 

Nucleotide sequence accession numbers. Accession numbers of the sequences determined in this 

study are AB110538-AB110550 and AB232360-232362. 

 

Results 
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Isolation of SRBs from estuarine sediment 

Culturable SRBs in the estuarine sediment in Sakata Harbor were enumerated by the dilution 

colony-counting technique using the anaerobic roll tube method with lactate as an electron donor on 

the 12th November 2000 and SRBs in the sediment sample were enumerated at 2.5-4.9 x 105 CFU 

(colony-forming units) (cm3 of sediment sample)-1. Black colonies showing production of iron sulfide 

were picked up at random from the roll tubes and twelve pure cultures of isolates (strains MSL53, 

MSL65, MSL71, MSL79, MSL80, MSL86, MSL92, MSL93, MSL94, MSL95, MSL97 and MSL98) 

were finally obtained. Strains MSL53 and MSL86 were isolates from roll tubes inoculated with 0.2 ml 

samples of 10-5 and 10-4 dilutions, respectively, and others were isolates from 10-3 dilutions. These 

isolates were designated colony-isolates.  

Strains MSL10 and MSL15 were isolated using the enrichment culture with lactate as an electron 

donor. Strains Pro1 and Pro16 were isolated from the enrichment culture using propionate as an 

electron donor. These isolates were designated lactate- or propionate-enrichment isolates, respectively. 

We also performed enrichment cultures of SRBs with acetate or butyrate as an electron donor. 

Although enrichment cultures showing sulfate reduction in the presence of these electron donors were 

obtained, respectively, we did not succeed in isolating pure cultures from them.  

 

Phylogeny of isolates 
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Based on the 16S rRNA gene-based phylogenetic analysis, all sixteen isolates were affiliated with 

the Deltaproteobacteria class (Fig. 1). The isolates were classified into the following six distinct 

phylogenetic groups (four groups of colony-isolates and two of enrichment-isolates). 

The closest known species of strains MSL53 and MSL86, based on the 16S rRNA gene sequences, 

was ‘Desulfobacterium catecholicum’ with sequence similarities of 94.5% and 94.4%, respectively. 

The closest known relative of strain MSL71 was Desulfofrigus fragile with a sequence similarity of 

93.9%, and that of strains MSL79 and MSL80 was Desulfovibrio dechloracetivorans with 95.8% and 

94.7% similarities, respectively. Seven isolates (MSL65, MSL92, MSL93, MSL94, MSL95, MSL97 

and MSL98) were classified into a group with Desulfomicrobium norvegicum as the closest known 

species with sequence similarities of 98.0-99.8%. 

Both lactate-enrichment isolates (strains MSL10 and MSL15) were placed near Desulfovibrio 

acrylicus with 98.4% and 99.1% similarities, respectively. The closest known relative of the 

propionate-enrichment isolates (strains Pro1 and Pro16) was Desulfobulbus mediterraneus with 

95.2% and 94.8% similarities, respectively. 

 

Phenotypic characteristics of isolates 

All isolates grew and reduced sulfate in both the seawater and defined media in the presence of 

electron donors. Since all isolates oxidized each electron donor to mainly acetate, as described below, 
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they were all classified as incomplete-type SRBs.  

Six representative isolates (MSL86, MSL71, MSL79, MSL92, MSL10 and Pro1) of each 

phylogenetic group were selected and characterized phenotypically as follows.  

(i) Cell morphology. All strains had Gram-negative and motile cells. Cells of strains MSL86 and 

Pro1 were rods with slightly different sizes. Cells of strains MSL71, MSL79 and MSL92 were curved 

rods, and those of strain MSL10 were rods or slightly curved rods (Fig. 2). Cells of all isolates except 

strain MSL10 were catalase-negative, and all were oxidase-negative (Table 1). 

 (ii) Growth conditions. All strains grew in the presence of NaCl up to 5.0-7.0% (wt/vol). The 

optimum NaCl concentration of all the colony-isolates was 1.0% or 2.0% (wt/vol), and three of them 

(MSL86, MSL79 and MSL92) grew even in the absence of NaCl in the defined medium. Both 

enrichment-isolates (MSL10 and Pro1) required NaCl in the medium for growth, and their optimum 

NaCl concentration (3.0%, wt/vol) was higher than those of the colony-isolates.  

All strains were mesophilic, and the optimum temperature for growth was 35oC except strain 

MSL71 (30oC). The pH optimum of the strains was in the range of pH 6.3-6.7 except strain MSL86, 

which had the optimum pH of 7.5-7.6. The growth rate of strain MSL10 at each optimum growth 

condition (0.287-0.524 h-1) were the highest compared with those of any other isolates (Table 1). 

 (iii) Utilization of electron donors. Table 2 shows utilization of electron donors and compounds 

produced by sulfate-reduction as well as the growth rate in the presence of each electron donor. 
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Three strains (MSL86, MSL71 and MSL10) grew even in the absence of electron donors added to 

the medium and reduced sulfate with concomitant production of acetate, suggesting that yeast extract 

or L-cysteine∙HCl∙H2O added to the medium was used as an electron donor. 

All strains including the propionate-enrichment isolate Pro1 utilized lactate. For all strains, lactate 

oxidation, sulfate reduction and acetate production proceeded at approximately 2:1:2, which was 

almost identical to the theoretical ratio. It appeared that lactate was the preferable electron donor to 

support high growth rates (0.085-0.232 h-1) for all strains except strain MSL92. Pyruvate was also 

used by all strains and high growth rates were also obtained for strains MSL71, MSL10 and Pro1. The 

theoretical stoichiometric ratio of pyruvate oxidation, sulfate reduction, and acetate production was 

4:1:4, and the ratios were roughly consistent with the value for all isolates except strain MSL86. 

Formate and ethanol were also used by all strains. 

Fumarate was utilized by all strains except strain MSL71, but the amount of sulfate reduced and 

compounds produced were rather different depending on the strains. Strain MSL79 produced acetate, 

while other strains produced succinate (MSL86, MSL92 and MSL10) or malate (strain Pro1) in 

addition to acetate. Malate was utilized by all strains except strain MSL86, and the amounts of sulfate 

reduced and compounds produced were also different according to the strains in a similar way as that 

of fumarate. In the presence of malate, strains MSL71, MSL79 and MSL92 formed acetate, while 

strains MSL10 and Pro1 produced succinate and small amounts of fumarate as well as acetate, 
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respectively. 

Strains MSL79, MSL92, MSL10 and Pro1 used significant amounts of propanol and butanol, while 

strains MSL86 and MSL71 used these compounds only slightly, if at all. Propanol and butanol were 

oxidized to their corresponding carboxylic acids according to the approximately theoretical 

oxidation-reduction balance (2:1:2, respectively) for each strain. Glycerol was utilized by all strains 

except strain MSL79, and it supported rather high growth rates of strains MSL71 (0.157 h-1) and 

MSL10 (0.150 h-1). None of colony-isolates used amino acids, while both enrichment-isolates, strains 

MSL10 and Pro1, used amino acids. For strain MSL10, almost the highest growth rates were obtained 

with alanine (0.234 h-1) and serine (0.202 h-1) among the electron donors used. All isolates except 

strain MSL86 used H2, and based on the growth rates, it was one of the best electron donors for strains 

MSL79 (0.159 h-1) and MSL92 (0.245 h-1). 

Propionate (strain Pro1), butyrate (strain MSL71), succinate (strain MSL79) and serine (strain 

MSL10) were each utilized by only one strain. None of the strains used acetate, methanol, glycine, 

aspartate or glutamate. 

 (iv) Utilization of electron acceptors. Utilization of electron acceptors by the strains was examined 

in the presence of lactate (all strains except strain Pro1) or propionate (strain Pro1) as an electron 

donor. All strains utilized thiosulfate in addition to sulfate as an electron acceptor, and all 

colony-isolates reduced sulfite (Table 3). All strains oxidized the electron donors to acetate with these 
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electron acceptors. In the presence of fumarate as an electron acceptor, strains MSL92 and MSL10 

produced acetate and succinate, while strain MSL86 produced acetate, propionate and succinate (data 

not shown). Sulfate supported the highest growth rates for most of the strains except for MSL92. 

 (v) Fermentative utilization of substrates in the absence of electron acceptors. Pyruvate was used by 

all strains in the absence of electron acceptors. From pyruvate, strains MSL79, MSL92 and MSL10 

produced acetate, while strains MSL86 and Pro1 produced propionate and strain MSL71 produced 

butyrate in addition to acetate (Table 4). 

Strains MSL86, MSL79, MSL92 and MSL10 used fumarate in the absence of electron acceptors. 

Of the four strains, three (MSL86, MSL92 and MSL10) formed acetate and succinate, and strain 

MSL79 formed acetate, malate and succinate. From malate, strains MSL92 and MSL10 produced 

acetate and succinate, and strain MSL79 formed small amounts of acetate, fumarate and succinate. 

Strain Pro1 utilized lactate in the absence of electron acceptors and produced acetate and propionate. 

 

Discussion 

We isolated more than twenty strains from the same lactate-enrichment culture as that used for 

isolation of strains MSL10 and MSL15, and the 16S rRNA gene-based phylogenetic analyses of these 

strains confirmed that all isolates were closely related to D. acrylicus (Van der Maarel et al., 1996) 

with sequence similarities of higher than 98.0% (data not shown). The result suggested that the 
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lactate-enrichment culture had enriched exclusively one phylogenetic group of SRBs. The growth rate 

of strain MSL10, the representative lactate-enrichment isolate, in the defined medium containing 

3.0% (wt/vol) NaCl was the highest among the isolates examined, and thus, it was strongly suggested 

that the high growth rate in the seawater medium used for the enrichment culture resulted in the 

predominance of the group.  

It has been reported that SRBs related to Desulfovibrio species were often enriched in cultures 

using lactate as an electron donor (Postgate, 1984). The result obtained in this study was consistent 

with this. Although the growth rate of the propionate-enrichment isolate, strain Pro1, in the presence 

of lactate was rather high, it was still lower than that of strain MSL10. Thus, the 

propionate-enrichment isolates, as well as other species of lactate-utilizing SRBs present in the 

sediment, might have been out-competed during the enrichment procedure, and thus, the 

propionate-utilizing strains were successfully isolated only by using propionate, which was not used 

by the lactate-enrichment isolates, as an electron donor. 

The optimum NaCl concentrations of known marine SRBs are generally in the range of 1.0-3.0% 

(wt/vol) (Bale et al., 1997; Boyle et al., 1999; Isaksen and Teske, 1996; Jeanthon et al., 2002; 

Knoblauch et al., 1999a; Kuever et al., 2005; Sass et al., 2002; Sievert and Kuever, 2000; Sun et al., 

2000; Sun et al., 2001; Van der Maarel et al., 1996). The optimum NaCl concentrations of all of our 

isolates were also in this range. Although some colony-isolates grew even in the absence of added 
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NaCl, both enrichment-isolates, MSL10 and Pro1, essentially required the addition of NaCl to the 

defined medium. The results suggested that the enrichment procedure selected SRBs adapted to a 

relatively higher NaCl concentration. Since the NaCl concentration in the sampling site of this study 

may be affected by flowing freshwater from the river, the environment might provide a variety of 

niches for microbes in relation to the salt concentration. 

Various SRB species have been isolated using positive cultures of the most-probable-number 

counts from their environments (Castro et al., 2002; Knoblauch et al., 1999b; Muβmann et al., 2005; 

Sass et al., 2004; Sievert and Kuever, 2000). In our study, the colony-isolation method resulted in 

isolation of a rather phylogenetically wide range of SRBs even using only one kind of medium. Thus, 

more diverse SRBs might be isolated by the colony-isolation method using some other media different 

in composition (electron donors, NaCl concentrations and other components) under various culture 

conditions including lower temperatures. All our isolates were incompletely-oxidizing SRBs, and we 

could not isolate any completely-oxidizing SRBs. It has been reported that Desulfobacter species, a 

group of the completely-oxidizing SRBs, are one of the dominant SRBs in estuarine sediments of 

Japan based on hybridization analysis for the 16S rRNA gene (Purdy et al., 2001; Purdy et al., 2002). 

Although we could enrich acetate-oxidizing SRBs from the same sediment sample used in this study, 

we did not succeed in isolating pure cultures of SRBs from the enrichment by the colony isolation 

using the anaerobic roll tube method. Thus, the isolating procedure from the enrichment cultures 
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should be improved to obtain pure cultures of completely-oxidizing SRBs. 

Various products such as fatty acids (e.g., formate, acetate, propionate, butyrate, lactate, pyruvate, 

succinate, malate and fumarate), alcohols, amino acids and H2 are formed by diverse fermentative 

bacteria in anoxic environments as intermediates of anaerobic decomposition of organic matter. In this 

study, we examined utilization of these compounds of the isolates to know their ecological roles and 

to understand the functional structure of the SRBs community in the estuarine sediment. The results 

indicated that the ranges of electron donors, as well as electron acceptors, used were different 

depending on the affiliation of the isolate, and growth rates under a certain condition were also 

significantly different. All strains tested used lactate, pyruvate and ethanol, which have been reported 

probably usable by most SRBs (Hansen, 1993; Holt et al., 1994; Kuever et al., 2005; Rabus et al., 

2000). Out of these common electron donors, lactate and pyruvate generally supported rapid growth 

of most of the isolates, indicating that these compounds are suitable electron donors for many of the 

SRBs in the sediment. Formate was also used by all strains. H2 was also used by all strains except 

MSL86; however, the growth rate of each strain was usually lower than that with lactate, except for 

strain MSL92, which had a significantly high growth rate with H2. Furthermore, some substrates such 

as propionate, glycerol, alanine and serine supported high growth rates of some strains. Although 

propionate and butyrate are the most important intermediates of anaerobic decomposition of organic 

matter and SRBs are known to take significant roles in oxidation of these compounds in various 
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environments (Sørensen et al., 1981; Ueki et al., 1986), a relatively few species of SRBs have been 

described to oxidize these fatty acids (Kuever et al., 2005). In fact, only one strain out of our six 

representatives isolates utilized propionate (strain Pro1) and butyrate (strain MSL71), respectively. 

Succinate, also an important product of some fermentative bacteria, was also utilized by only one 

strain (MSL79). By the isolation of these strains, however, it is distinctly shown that SRBs as one of 

microbial communities composed of various species relating to our isolates are able to oxidize all the 

major intermediates of anaerobic decomposition of organic matter including some amino acids and 

glycerol. Although acetate-oxidizing pure cultures are not included in our collection, it is certain that 

acetate is also oxidized by some species of SRBs in the estuarine sediment, since acetate was oxidized 

depending on sulfate reduction in the enrichment culture inoculated with the same sediment sample as 

described above.  

Since growth rates of the isolates were determined by using batch cultures in the presence of excess 

amounts of substrates in this study, they might not necessarily reflect growth properties of the isolates 

in their natural habitats. However, the results obtained strongly indicated that various species of SRBs 

as a physiological group of microbes should coexist in the environment by competing for common 

substrates as well as taking priority in preferred or specific substrates for each species. This should 

allow a wide range of functions to the overall community of SRBs in the estuarine sediment.   

It is known that fumarate serves as both an electron donor and acceptor as well as a fermentable 
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substrate for SRBs. Malate performs similarly. When fumarate or malate was used as an electron 

donor for the isolates, the main product was acetate, although some isolates (strains MSL86, MSL92 

and MSL10) produced succinate in addition to acetate. Almost all strains using fumarate or malate as 

an electron donor could also grow with these substrates even in the absence of electron acceptors. 

Strain MSL92 produced acetate and succinate from fumarate or malate in the absence of electron 

acceptors, while strain MSL86 produced propionate in addition to acetate and succinate using 

fumarate as an electron acceptor. Thus, the roles of fumarate and malate in relation to sulfate 

reduction are rather complex, and the physiology of fumarate and malate utilization by SRBs should 

be examined more definitively. 

Determining the physiological characteristics of representative isolates demonstrated that most of 

the isolates had distinct features from those of known related species. Based on the additional 

physiological and chemotaxonomic characterization of strain MSL86, we proposed a novel genus and 

species Desulfopila aestuarii gen. nov., sp. nov., to accommodate the strain (the type strain = MSL86T 

= JCM 14042T = DSM 18488T) (Suzuki et al., in press a). Furthermore, strain Pro1 was affiliated with 

the genus Desulfobulbus depending on the comprehensive characterizations and we proposed a novel 

species Desulfobulbus japonicus for the strain (the type strain = Pro1T = JCM 14043T = DSM 18378T) 

(Suzuki et al., in press b). For other strains having distinct features from the closest relatives (such as 

strains MSL71 and MSL79), further physiological and chemotaxonomic characterizations for the 
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description of these strains are now in progress. The results obtained in this study, however, indicated 

that even if the similarity of the 16S rRNA gene sequence to the closest relative is rather high (e.g., 

MSL92 and MSL10), some physiological features of the isolates are often significantly different from 

those of the closest relatives. For instance, strain MSL92 had several different properties of those of 

the closest relative, D. norvegicum (Sharak Genthner et al., 1994; Sharak Genthner et al., 1997), 

especially in relation to fumarate utilization. In addition, strain MSL10 has catalase activity, while the 

closest relative, D. acrylicus, does not, and the former does not use succinate as an electron donor, 

while the latter use (Van der Maarel et al., 1996). Presence of these physiological diversities among 

closely related microbial groups should be taken into consideration to understand the ecological 

function of each microbial group. 

It has been shown that diverse SRBs are present in natural environments including marine 

sediments by using cultivation-independent molecular techniques (Devereux and Mundfrom, 1994; 

Dhillon et al., 2003; Joulian et al., 2001; Minz et al., 1999; Purdy et al., 2001; Purdy et al., 2002; 

Voordouw et al., 1996; Wagner et al., 1998). In this study, we could really isolate phylogenetically 

diverse SRBs including novel lineages from an estuarine sediment using different isolation methods. 

Furthermore, we showed a physiological diversity of SRBs present in the sediment by determining 

various growth characteristics of the isolates. It was shown from the investigations that each lineage 

of the SRBs in the estuarine sediment occupies a specific niche in the community according to the 
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differences in the range of substrate utilization as well as in the priority to each substrate and the 

SRBs as an essential physiological group in the anaerobic microbial community in the sediment have 

extensive functions in the decomposition of organic matter as well as in the sulfur cycle. 
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Legends for figures 
 
Fig. 1.  
Phylogenetic relationships between isolates and closely related organisms based on 16S rRNA 
gene sequences. Bootstrap values shown are based on analysis of 1000 replicates. The scale bar 
represents an estimated difference of 2% in nucleotide sequence positions. As the outgroup, 
Escherichia coli was used. 
 
Fig. 2.  
Phase-contrast photomicrographs of isolates. 
A, MSL86; B, MSL71; C, MSL79; D, MSL92; E, MSL10; F, Pro1 
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Table 1. Phenotypic properties of isolates of sulfate-reducing bacteria.

MSL86 MSL71 MSL79 MSL92 MSL10 Pro1

Morphology rods curved rods curved rods curved rods curved rods rods

Cell size (μm)

  Length 1.9-3.8 1.6-3.4 1.8-2.3 1.8-2.8 1.7-2.5 1.4-2.9

  Width 0.7-1.2 0.8-0.9 0.7-1.0 0.7-1.0 0.4-0.7 0.8-1.6

Motility + + + + + +

Gram-staining - - - - - -

Catalase - - - - + -

Oxidase - - - - - -

NaCl (%, wt/vol)

   optimum/range 1.0/0-5.0 2.0/1.0-6.5 2.0/0-6.5 1.0/0-5.0 3.0/1.0-6.5 3.0/1.0-7.0

   growth rate (h-1) at optimuma

   0.137 0.206 0.207 0.178 0.306 0.149

Temperature(℃)

   optimum/range 35/10-40 30/10-35 35/10-40 35/15-40 35/10-45 35/15-35

   growth rate (h-1) at optimumb

0.189 0.196 0.243 0.138 0.524 0.080

pH

   optimum/range 7.5/6.3-8.5 6.3/5.6-8.5 6.5/5.6-8.5 6.5/5.6-8.5 6.5/5.7-8.4 6.7/6.1-7.5

   growth rate (h-1) at optimuma , c

0.175 0.167 0.186 0.149 0.287 0.073
a  Determined at 30oC.
b  The seawater medium was used for all strains except for strain Pro1. For strain Pro1, the basal defined medium

   containing 3.0% (wt/vol) NaCl was used. 
c  The basal defined medium containg 1.5% (wt/vol) NaCl was used for all strains execpt for strains MSL10 and Pro1.

   For strains MSL10 and Pro1, the basal defined medium containing 3.0% (wt/vol) NaCl was used.



Table 2. Utilization of substrates as electron donors and compounds produced by isolates through sulfate-reduction.

Strain Substratesa Substrates consumed Sulfate reduced Growth rate (h-1)

(mmol/l) (mmol/l) Acetate Others

MSL86 No addition   n.d. 2.34 2.09 - 0.097

Formate 18.8 2.31 - - 0.094

Pyruvate 22.0 4.52 5.89 － 0.108

Lactate 15.1 5.80 15.4 － 0.085

Fumarate 18.6 6.28 8.28    Succinate (2.92) 0.094

Ethanol 13.2 5.06 15.7 － 0.087

Glycerol n.d. 7.26 11.9 － 0.091

MSL71 No addition n.d. 0.76 2.75 － 0.091

Formate 15.0 1.71 1.82 － 0.058

Butyrate 18.8 10.8 34.6 － 0.081

Pyruvate 22.0 4.65 17.7 － 0.197

Lactate 18.5 10.7 21.3 － 0.175

Malate 17.4 6.09 15.3 － 0.098

Ethanol 4.04 3.17 6.39 － 0.104

Glycerol n.d. 8.69 17.7 － 0.157

H2 n.d. 1.56 1.08 － 0.111

MSL79 No addition n.d. － 1.02 － n.d.

Formate 21.1 4.18 － － 0.100

Pyruvate 22.0 4.06 19.8 － 0.082

Lactate 18.5 10.6 21.7 － 0.171

Fumarate 19.7 9.82 16.3 － 0.120

Malate 17.4 6.74 15.7 － 0.121

Succinate 21.1 12.6 20.7 － 0.052

Ethanol 19.6 9.80 19.7 － 0.096

Propanol 16.0 9.38 －      Propionate (19.4) 0.101

Butanol 10.3 6.98 －   Butyrate (12.9) 0.075

H2 n.d. 8.63 － － 0.159

MSL92 No addition n.d. － 0.74 － n.d.

Formate 21.1 5.46 － － 0.063

Pyruvate 22.0 4.86 17.9 － 0.115

Lactate 18.5 10.6 20.9 － 0.130

Fumarate 17.0 3.00 9.69   Succinate (4.80) 0.023

Malate 17.4 7.09 15.6 － 0.053

Ethanol 22.4 10.0 18.7 － 0.076

Propanol 16.0 9.20 －      Propionate (17.9) 0.074

Butanol 8.63 4.40 －   Butyrate (6.79) 0.078

Glycerol n.d. 2.55 1.82 － 0.018

H2 n.d. 9.30 － － 0.245

MSL10 No addition n.d. 1.80 4.60 － 0.150

Formate 21.9 5.40 1.40 － 0.078

Pyruvate 13.7 2.83 10.8 － 0.166

Lactate 19.0 10.4 22.0 － 0.232

Fumarate 21.3 2.70 9.10     Succinate (11.1) 0.077

Malate 19.3 4.60 11.2    Succinate (11.6) 0.101

Ethanol 20.1 10.7 19.8 － 0.081

Propanol 5.70 3.50 －     Propionate (7.70) 0.087

Butanol 8.40 4.10 －  Butyrate (8.70) 0.081

Glycerol n.d. 2.33 3.40 － 0.150

Alanine n.d. 5.49 7.28 － 0.234

Serine n.d. 6.95 16.1 － 0.202

H2 5.50 2.80 － － 0.091

Pro1 No addition n.d. 0.92 0.82 － n.d.

Formate 16.3 7.11 － － 0.120

Propionate 18.9 12.9 16.6 － 0.147

Pyruvate 19.3 5.30 18.5 － 0.168

Lactate 22.3 12.9 21.5 － 0.173

Fumarate 12.7 4.00 6.30 Malate (6.19) 0.031

Malate 5.20 2.45 5.83     Fumarate (1.28) 0.018

Ethanol 18.2 13.4 25.1 － 0.106

Propanol 21.7 8.80 －      Propionate (19.2) 0.088

Butanol 15.5 6.63 －  Butyrate (13.2) 0.044

Glycerol n.d. 15.0 13.0 － 0.071

Alanine n.d. 13.2 14.1      Propionate (1.10) 0.063

H2 n.d. 8.04 － － 0.074

a Substrates tested as electron donors were formate, acetate, propionate, butyrate, pyruvate, lactate, fumarate, malate, succinate,

   methanol, ethanol, propanol, butanol, glycerol, glycine, alanine, serine, aspartate, glutamate and H2. Electron donors tested

   but not utilized were not shown. All strains were negative for utilization of acetate, methaol, glycine, aspartate, and glutamate 

   as an electron donor.

n.d., Not determined.

－, Not detected.

Compounds produced (mmol/l)



Table 3. Utilization of electron acceptors by isolates of sulfate-reducing bacteria.

Strain Sulfate Sulfite Thiosulfate Fumarate

MSL86  + (0.085)a + (0.052) + (0.038) + (0.096)

MSL71 + (0.175) + (0.160) + (0.080) －

MSL79 + (0.171) + (0.145) + (0.136) －

MSL92 + (0.130) + (0.130) + (0.132) + (0.119)

MSL10 + (0.232) － + (0.160) + (0.197)

Pro1 + (0.147) － + (0.068) －

a  Lactate (20 mM) was used for all strains except for strain Pro1 as an electron donor.

   Propionate (20 mM) was used  for strain Pro1.Values in parentheses indicate growth rate (h-1).
+, Utilized; －, not utilized.



Table 4. Utilization of substrates in the absence of electron acceptors by isolates of sulfate-reducing bacteria.

Strain Substratesa Substrates consumed Growth rate (h-1)

(mmol/l) Acetate Others

MSL86 Pyruvate 10.4 7.79 Propionate (2.30) 0.018

Fumarate 13.0 9.52 Succinate (6.98) 0.075

MSL71 Pyruvate 18.8 18.2 Butyrate(1.79) 0.107

Malate 5.14 4.00 － 0.033

MSL79 Pyruvate 6.95 7.50 － 0.057

Fumarate 18.2 4.64 Malate (4.24), Succinate (6.80) 0.057

Malate 7.57 1.47 Fumarate (1.78), Succinate (2.00) 0.034

MSL92 Pyruvate 11.1 9.44 － 0.098

Fumarate 18.6 6.03 Succinate (10.0) 0.015

Malate 19.8 5.92 Succinate (18.7) 0.013

MSL10 Pyruvate 10.8 8.11 － 0.221

Fumarate 17.8 6.76 Succinate (11.1) 0.112

Malate 19.3 8.29 Succinate (12.5) 0.199

Pro1 Pyruvate 5.62 3.28 Propionate (1.08) 0.048

Lactate 5.69 2.73 Propionate (3.57) 0.040
a  Substrates tested were pyruvate, lactate, fumarate and malate. Substrates tested but not utilized were not shown.

－, Not detected.

Compounds produced (mmol/l)
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