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The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains BST, BST-B, 

BST-C, BSYT and BSY-C are AB303302, AB303303, AB303304, AB303305 and AB303306, respectively. 

The GenBank/EMBL/DDBJ accession number for the dissimilatory sulfite-reductase β-subunit gene 

sequence of strain BSYT is AB490775. 

 

ABSTRACT 

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (BSYT) isolated from an anaerobic 

municipal sewage sludge digester was characterized phenotypically and phylogenetically. Cells were 

Gram-negative, motile with a polar flagellum, non-spore-forming, curved rods. Cells had desulfoviridin 

and c-type cytochrome. Catalase and oxidase activities were not detected. The optimum NaCl 

concentration for growth was 0.5% (w/v). The optimum temperature was 35oC and the optimum pH was 
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7.1. Strain BSYT utilized butyrate, 2-methylbutyrate, valerate, pyruvate, lactate, ethanol, 1-propanol, 

butanol and H2 as electron donors for sulfate reduction.  The strain grew lithoautotrophically with H2/CO2 

under the sulfate-reducing condition. Most organic electron donors were incompletely oxidized to mainly 

acetate, while 2-methylbutyrate and valerate were oxidized to equivalent amounts of acetate and 

propionate, respectively. Strain BSYT utilized thiosulfate as an electron acceptor, and grew with pyruvate 

in the absence of electron acceptors. The genomic DNA G+C content was 63.3 mol% and menaquinone 

MK-6(H2) was the major respiratory quinone. Major cellular fatty acids were C14:0, C16:0, C16:1ω7 and 

C18:1ω7. Phylogenetic analyses based on the 16S rRNA gene and dissimilatory sulfite-reductase β-subunit 

gene sequences assigned the strain to the genus Desulfovibrio in the family Desulfovibrionaceae within 

the class Deltaproteobacteria. The closest described relative based on the 16S rRNA gene sequences was 

Desulfovibrio putealis (sequence similarity of 95.3%). On the basis of significant differences in the 16S 

rRNA gene sequences and the phenotypic characteristics between strain BSYT and each of the closely 

related species, Desulfovibrio butyratiphilus sp. nov. was proposed. The type strain is BSYT (= JCM 

15519T = DSM 21556T). 

 

MAIN TEXT 

Butyrate is an important intermediate in anaerobic degradation of organic matter in various anaerobic 

ecosystems. Because the oxidation of butyrate is usually thermodynamically unfavorable under anaerobic 

conditions, it is generally degraded by syntrophic interactions between H2-producing acetogenic bacteria 

and H2-utilizing methanogens in methanogenic conditions (Stams, 1994; Schink, 1997; Sekiguchi et al, 
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2000; Zhang et al., 2004). However, in the presence of sulfate as an electron acceptor, some 

sulfate-reducing bacterial species oxidize butyrate either completely to CO2 or incompletely to acetate 

(Rabus et al., 2000). These sulfate-reducing bacterial species belong to the families Desulfobacteraceae 

(Cravo-Laureau et al., 2004; Kuever et al., 2005; Balk et al., 2008; Suzuki et al., 2008), 

Desulfohalobiaceae (Belyakova et al., 2006) and Syntrophobacteraceae (Beeder et al., 1995; Sievert & 

Kuever, 2000; Tanaka et al., 2000) in the class Deltaproteobacteria or the genus Desulfotomaculum in the 

phylum Firmicutes (Daumas et al., 1988; Tasaki et al., 1991; Fardeau et al., 1995; Kuever et al., 1999; 

Vandieken et al., 2006). 

 

In this study, we isolated five sulfate-reducing bacterial strains (BSYT, BSY-C, BST, BST-B and BST-C) 

from two anaerobic municipal sewage sludge digesters through enrichment cultures. All strains reduced 

sulfate with butyrate as an electron donor and were closely related to species in the genus Desulfovibrio 

based on the 16S rRNA gene sequence analysis. Strain BSYT was selected as a representative strain and 

further characterized comprehensively. Butyrate-oxidizing Desulfovibrio species have not yet been 

reported, and the differences in phylogenetic and phenotypic characteristics between strain BSYT and 

related Desulfovibrio species supported the proposal of a novel species of Desulfovibrio with strain BSYT 

as the type strain. 

 

Samples obtained from two anaerobic digesters treating municipal sewage sludge (Yokohama and 

Tsuruoka in Japan) were used for isolation of the strains. The sewage sludge samples were inoculated (0.5 
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ml each) into defined liquid medium (9.5 ml) containing 20 mM of sodium butyrate as described below 

under the flow of O2-free gas (N2/CO2 = 95%/5%), respectively. Cultures (0.1 ml) showing sulfate 

reduction were transferred to the same fresh medium (10 ml). After several subcultures, sulfate-reducing 

bacteria were isolated from the cultures using the anaerobic roll tube method (Hungate, 1966). Black 

colonies that appeared in the agar were picked and a total of five isolates (strains BSYT and BSY-C from 

Yokohama and the other three strains from Tsuruoka) were finally obtained after purification procedures. 

All strains displayed high similarities (about 99-100%) of 16S rRNA gene sequences and showed almost 

the same phenotypic characteristics including utilization of both electron donors and acceptors as shown 

below. Thus, strain BSYT was selected for further characterization. 

 

The following defined medium was used for the enrichment culture, isolation and the general 

physiological characterization of the strains, (l-1): 0.5 g KH2PO4, 1.0 g NH4Cl, 2.5 g MgSO4∙7H2O, 0.1 g 

CaCl2∙2H2O, 1 mg sodium resazurin, 10 ml of trace element solution (Widdel et al., 1983), 1.0 g NaCl and 

0.5 g L-cysteine∙HCl∙H 2O with appropriate electron donors (Ueki et al., 1980; Widdel & Bak, 1992). The 

pH was adjusted to 7.4-7.5 with 1 N NaOH. The agar (Difco) (1.5%, w/v) medium with sodium butyrate 

(20 mM) was used for the anaerobic roll tube method for isolation as well as slant cultures for 

maintenance of the isolates. Cultivation and transfer of the enrichment cultures and the isolates were 

carried out under an O2-free N2/CO2 (95%/5%) atmosphere. Cultivation temperature was 30ºC, unless 

stated otherwise. 
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The Gram reaction and cellular morphology were confirmed by light microscopy. The motility of cells 

was examined by phase-contrast microscopy. Flagella-staining was carried out according to Blenden & 

Goldberg (1965). Physiological tests were performed according to the methods as described previously 

(Suzuki et al., 2007a, b, c). Utilization of electron donors by the isolates was determined using the defined 

medium containing each compound at a final concentration of 20 mM. H2 utilization as an electron donor 

was determined in the presence or absence of acetate (5 mM) as an organic carbon source under H2/CO2 

(90%/10%) atmosphere. Utilization of electron acceptors other than sulfate was determined with a 

sulfate-free medium containing the same concentrations of chloride in place of sulfate in the defined 

medium (Suzuki et al., 2007a, b, c). Substrates utilization in the absence of electron acceptors was 

determined in the sulfate-free medium (Suzuki et al., 2007a, b, c). Fatty acids and amino acids were used 

in the form of sodium salts and added to the medium from sterilized stock solutions. Utilization of each 

electron donor or acceptor was determined by comparing the growth in the presence or absence of each 

compound as well as measurement of the concentration in the medium after cultivation. The growth was 

monitored by direct measurement of the optical density at 660 nm (O.D.660) of the culture tubes with a 

spectrophotometer. 

 

Volatile fatty acids, non-volatile fatty acids, alcohols, gases, sulfate, sulfite, thiosulfate and nitrate were 

analyzed as described previously (Akasaka et al., 2003a; Nakamoto et al., 1996; Ueki et al., 1986). The 

presence of desulfoviridin in cells was determined according to the method of Postgate (1959). The 

presence and the type of cytochrome were determined by measuring an air-oxidized/dithionite-reduced 
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difference spectrum of cell-free extract with a spectrophotometer (HITACHI U-2010). Genomic DNA 

extracted according to the method as described by Akasaka et al. (2003b) was digested with P1 nuclease 

by using a YAMASA GC kit (Yamasa Shoyu) and its G+C content was measured by HPLC (HITACHI 

L-7400) equipped with a µBondapak C18 column (3.9 × 300 mm; Waters). Isoprenoid quinones were 

extracted as described by Komagata & Suzuki (1987) and analyzed by using a mass spectrometer 

(JMS-SX102A; JEOL). Whole-cell fatty acids were converted to methyl esters according to the method of 

Miller (1982). Methyl esters of CFAs were analyzed with a gas-chromatograph (Hewlett-Packard Hp6890 

or Hitachi G-3000) equipped with a HP Ultra 2 column. CFAs were identified by equivalent chain-length 

(ECL) (Miyagawa et al., 1979; Ueki & Suto, 1979) according to the protocol of TechnoSuruga Co., Ltd 

(Shimidu, Japan) based on the MIDI microbial identification system (Microbial ID) of Moore (Moore et 

al., 1994). 

 

Extraction of DNA and PCR-amplification of 16S rRNA gene of the strains were carried out according to 

the method described by Akasaka et al. (2003b). The PCR-amplified 16S rRNA gene using a primer set, 

27f and 1492r, was sequenced by using a Thermo Sequenase Primer Cycle Sequencing kit (Amersham 

Biosciences) and a model of 4000L DNA sequencer (Li-COR). Multiple alignments of the sequence with 

reference sequences in GenBank/EMBL/DDBJ were performed with the BLAST program (Altschul et al., 

1997). A phylogenetic tree was constructed with the neighbour-joining method (Saitou & Nei, 1987) by 

using the CLUSTAL W program (Thompson et al., 1994) as well as the maximum likelihood program 

(DNAML) of the PHYLIP 3.66 package (Felsenstein, 2006). All gaps and unidentified base positions in 
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the alignments were excluded before assemblages. 

 

A partial sequence of the gene encoding α and β-subunits of dissimilatory sulfite-reductase (DSR) was 

amplified by using a primer set, P94-F and P93-R (Karkhoff-Schweizer et al., 1995), with DNA extracted 

from the cells of the strain. The PCR product was cloned using the pGEM-T Easy vector (Promega) and 

recovered from each colony by PCR with primers T7W and SP6W (as a primer set for the pGEM-T Easy 

vector sequence flanking the insertion) (Watanabe et al., 2000). The partial sequence of the gene encoding 

the β-subunit of DSR within the PCR product was sequenced, and the phylogenetic analysis was 

performed according to the method as described above for the 16S rRNA gene. We also tried to amplify 

the DSR gene sequence with a primer set, DSR1F/DSR4R (Wagner et al., 1998), however, we did not 

succeed. 

 

Cells of strain BSYT were Gram-negative, relatively large curved rods with rounded ends, 0.8-0.9 µm 

wide and 2.4-5.6 µm long. Cells usually occurred singly and spore formation was not observed (Fig. 1). 

Cells were motile by a single polar flagellum. Strain BSYT made grayish and thin colonies on agar slant 

medium. The strain did not grow aerobically. Desulfoviridin was detected in cell extract. A difference 

absorption spectrum of dithionite-reduced minus air-oxidized cell extract showed peaks at 418 and 553 

nm, which indicated the presence of c-type cytochrome in the cells. Catalase and oxidase activities were 

not detected. 
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Strain BSYT did not grow in the absence of added electron donors and required carbonate or bicarbonate 

for growth in the defined medium. Table 1 shows consumption of electron donors and compounds 

produced by sulfate reduction as well as the growth rate with each electron donor. In the presence of 

sulfate as an electron acceptor, strain BSYT utilized butyrate, 2-methylbutyrate, valerate, pyruvate, lactate, 

ethanol, 1-propanol, butanol and H2. The strain weakly grew lithoautotrophically with H2/CO2 in the 

absence of acetate under the sulfate-reducing condition. 

 

Butyrate, pyruvate, lactate, ethanol and butanol were oxidized to acetate, while almost equivalent amounts 

of acetate and propionate were produced during anaerobic growth with 2-methylbutyrate and valerate. 

When the time courses of consumption of the latter two electron donors were examined, the same amounts 

of acetate and propionate were simultaneously accumulated in the medium along with the decrease in the 

concentration of each electron donor as well as sulfate. 1-Propanol was oxidized to propionate. Thus, the 

strain had an incomplete type of oxidation of organic substrates. The stoichiometric ratio of butyrate 

oxidation (butyrate oxidized : sulfate reduced : acetate produced) was about 2 : 1 : 4. The ratios for 

2-methylbutyrate and valerate (2-methylbutyrate or valerate : sulfate : acetate : propionate) were about 2 : 

1 : 2 : 2, respectively. These ratios were almost consistent with the theoretical values for incomplete 

oxidation of the substrates through the pathway of β-oxidation, respectively. When the cells of strain 

BSYT were cultivated with butanol as an electron donor, acetate was detected as a major product 

(butanol : sulfate : acetate = 1 : 1 : 2). In the time course of sulfate reduction with butanol, a small amount 

of butyrate was produced after sulfate was almost exhausted. When the strain was cultivated with H2/CO2 
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+ acetate, a trace amount of butyrate was also detected. 

 

The strain grew with butyrate as the most preferable electron donor without a significant lag period after 

inoculation of cells to the medium. In contrast, rather long lag periods were observed for growth with 

2-methylbutyrate (5-6 days after inoculation) and valerate (7-8 days). The lag periods were not 

significantly shortened even after successive subcultures in the medium containing the same electron 

donors. After beginning of growth as observed by the increase in turbidity of the culture, however, the 

strain grew rapidly at almost the same growth rates as that with butyrate. 

 

No growth was observed with the following electron donors for sulfate reduction: formate, acetate, 

propionate, isobutyrate, isovalerate, caprylate, crotonate, fumarate, malate, succinate, methanol, 

2-propanol, glycerol, glycine, L-alanine, L-serine, L-aspartate, L-glutamate, D-glucose, D-fructose and 

yeast extract (0.05%, w/v). 

 

Strain BSYT utilized thiosulfate as an electron acceptor with butyrate as an electron donor. The growth 

rate was almost the same as that with sulfate. The stoichiometric ratio (butyrate : thiosulfate : acetate) was 

about 2 : 1 : 4. The strain did not use sulfite, nitrate and fumarate as electron acceptors. In the absence of 

electron acceptors, pyruvate supported weak growth of strain BSYT. The strain produced acetate (0.9 

mmol l-1), butyrate (1.4 mmol l-1), CO2 (1.4 mmol l-1) and a trace amount of H2 by pyruvate oxidation (1.4 

mmol l-1). The strain did not oxidize butyrate, lactate, fumarate and malate in the absence of electron 
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acceptors. 

 

In the presence of butyrate as an electron donor, NaCl concentration range for growth was 0-2.0% (w/v) 

with an optimum at 0.5% (w/v), temperature range for growth was 25-40ºC with an optimum at 35ºC and 

pH range for growth was 6.2-8.0 with an optimum at 7.1. 

 

The G+C content of genomic DNA of strain BSYT was 63.3 mol%. The major respiratory quinone of the 

strain was menaquinone MK-6(H2). The strain had C18:1ω7 (32.1%), C16:1ω7 (25.5%), C14:0 (24.1%) and 

C16:0 (10.2%) as major CFAs, while C12:0, C15:0, C18:0, C16:1ω5, C18:1ω9, C18:1ω5, iso-C12:0, anteiso-C15:0, 

C16:0 2-OH, C14:0 dimethylacetal, C16:0 dimethylacetal, C17:0 cyclopropane and C19 cyclopropane were 

detected as minor or trace compounds. 

 

Almost full-length of 16S rRNA gene sequence (1450 bp) was determined for strain BSYT. Based on the 

16S rRNA gene phylogenetic analysis, the strain was affiliated with the class Deltaproteobacteria and 

related to the members of the genus Desulfovibrio in the family Desulfovibrionaceae (Fig. 2). The most 

closely related sequence of the strain on the database was “Uncultured delta proteobacterium clone 

MBNTA bac-1” with sequence similarity of 95.4%. The closest described species of strain BSYT was 

Desulfovibrio putealis with sequence similarity of 95.3%. The next closely related species were 

Desulfovibrio sulfodismutans and Desulfovibrio carbinolicus with much lower sequence similarities 

(90.6% and 90.5%), respectively. Together with the strains (BSY-C, BST, BST-B and BST-C) which were 
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isolated in this study, strain BSYT formed a distinct cluster within the Desulfovibrio clade (Fig. 2). Strain 

BSYT was distantly related to the type species of the genus Desulfovibrio, Desulfovibrio desulfuricans, 

with sequence similarity of 86.7%. 

 

The partial sequence (730 bp) of β-subunit of DSR gene of strain BSYT was determined. Based on the 

phylogenetic analysis of the DSR gene sequence, the most closely related sequence of the strain on the 

database was “Uncultured sulfate-reducing bacterium clone GranDSR12” with sequence similarity of 

83.5%. The most closely related described species to strain BSYT were Desulfovibrio alkalitolerans and 

Desulfovibrio aminophilus with sequence similarity of 73.4% each. Thus, on the basis of the DSR gene 

phylogenetic analysis, strain BSYT was also closely related to the species in the genus Desulfovibrio. The 

similarity of the DSR gene sequence of BSYT to that of D. carbinolicus was 66.7%. The sequences of D. 

putealis and D. sulfodismutans were not available. 

 

The strain shared major characteristics with Desulfovibrio species such as morphology, presences of 

c-type cytochrome and desulfoviridin as a sulfite-reductase, incomplete oxidation of electron donors and 

the mesophilic property (Kuever et al., 2005). Strain BSYT contained MK-6(H2), which is known as one 

of major menaquinones in Desulfovibrio species (Collins & Widdel, 1986). In spite of these common 

features, strain BSYT had a significantly different property for utilization of electron donors from the 

known Desulfovibrio species, since no Desulfovibrio species are known to utilize butyrate, 

2-methylbutyrate and valerate as electron donors for sulfate reduction. As shown above, some 
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sulfate-reducing bacterial species belonging to the families Desulfobacteraceae and 

Syntrophobacteraceae utilize butyrate as well as longer chain fatty acids (Beeder et al., 1995; Sievert & 

Kuever, 2000; Tanaka et al., 2000; Cravo-Laureau et al., 2004; Kuever et al., 2005; Balk et al., 2008), 

however, 2-methylbutyrate is utilized by only a few sulfate-reducing bacterial species belonging to the 

genera Desulfobacterium, Desulfococcus, Desulfonema and Desulfosarcina (Kuever et al., 2005). Since 

sulfate-reducing bacterial strains with the same properties as strain BSYT were enriched and isolated from 

the two digesters distantly located each other, it seems that the bacterial groups are widely distributed in 

anaerobic municipal sewage sludge digesters. 

 

Physiological characteristics of strain BSYT were compared with those of three related species, D. 

putealis, D. sulfodismutans and D. carbinolicus (Table 2). In addition to butyrate, 2-methylbutyrate and 

valerate, the range of electron donor utilization (such as formate, fumarate, malate, succinate and 

propanol) of strain BSYT is not consistent with any of these relatives. Strain BSYT utilizes neither sulfite 

nor fumarate as electron acceptors, but the three relatives utilize at least one of them. In the absence of 

electron acceptors, strain BSYT as well as D. sulfodismutans does not utilize fumarate and malate, but D. 

putealis and D. carbinolicus utilize both. 

 

The CFAs profile of strain BSYT is compared with those of relatives, D. sulfodismutans and D. 

carbinolicus (Table 3). The CFAs composition of D. putealis has not been reported. Most species in the 

genus Desulfovibrio have branched-chain fatty acids such as iso-C15:0, anteiso-C15:0, iso-C17:0 or iso-C17:1 
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as major or dominant CFAs (Ueki & Suto, 1979; Kohring et al., 1994; Vainshtein et al., 1992). D. 

sulfodismutans and D. carbinolicus also have branched-chain fatty acids (anteiso-C15:0, iso-C16:0 or 

anteiso-C17:0) as major CFAs. In contrast, branched chain fatty acids were only trace compounds in the 

CFAs of strain BSYT and major CFAs of strain BSYT were even and straight chain fatty acids. The G+C 

content of strain BSYT was almost the same with those of D. sulfodismutans and D. carbinolicus (Table 

2). 

 

Thus, in addition to the differences of 16S rRNA gene and β-subunit of DSR gene sequences, the 

characteristics of strain BSYT were significantly different from the known Desulfovibrio species 

especially with respect to the utilization of electron donors and CFAs profiles. Thus, the strain should be 

classified as a novel species in the genus Desulfovibrio. We propose strain BSYT as the type strain of 

Desulfovibrio butyratiphilus sp. nov.. 

 

Description of Desulfovibrio butyratiphilus sp. nov. 

Desulfovibrio butyratiphilus (bu.ty.ra.ti′phi.lus. N.L. n. butyras -atis butyrate; N.L. masc. adj. philus 

from Gr. adj. philos, friendly to, loving; N.L. masc. adj. butyratiphilus butyrate-loving). 

Cells are relatively large curved rods, 0.8-0.9 µm wide and 2.4-5.6 µm long. Strictly anaerobic. 

Gram-negative. Motile by a single polar flagellum. Non-spore-forming. Colonies are grayish and thin, and 

spread on agar slants. Contains desulfoviridin and cytochrome of the c-type. Catalase and oxidase 

activities are absent. Requires carbonate or bicarbonate in the growth medium. The NaCl concentration 
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range for growth is 0-2.0% (w/v) with an optimum at 0.5% (w/v). The temperature range for growth is 

25-40oC with an optimum at 35oC. The pH range for growth is 6.2-8.0 with an optimum at 7.1. Utilizes 

butyrate, 2-methylbutyrate, valerate, pyruvate, lactate, 1-propanol, butanol and H2 as electron donors for 

sulfate reduction. Almost all organic electron donors are incompletely oxidized to acetate, while 

2-methylbutyrate and valerate are oxidized to both acetate and propionate. Weak lithoautotrophic growth 

with H2/CO2. Does not grow with formate, acetate, propionate, isobutyrate, isovalerate, caprylate, 

crotonate, fumarate, malate, succinate, methanol, 2-propanol, glycerol, glycine, L-alanine, L-serine, 

L-aspartate, L-glutamate, D-glucose, D-fructose and yeast extract under sulfate-reducing conditions. 

Sulfate and thiosulfate serve as electron acceptors, but not sulfite, nitrate and fumarate. Pyruvate supports 

weak growth in the absence of electron acceptors, but not butyrate, lactate, fumarate and malate. The 

genomic DNA G+C content is 63.3 mol%. The major respiratory quinone is menaquinone MK-6(H2). 

Major cellular fatty acids are C14:0, C16:0, C16:1ω7 and C18:1ω7. The type strain is strain BSYT (= JCM 

15519T = DSM 21556T), which was isolated from an anaerobic sewage sludge digester in Yokohama, 

Japan. Reference strain BST (= JCM 15520) was isolated from a digester in Tsuruoka, Japan. 
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LEGENDS FOR FIGURES 

Fig. 1. 

A phase-contrast photomicrograph of cells of strain BSYT grown anaerbically in the defined medium. Bar, 

10 µm. 

 

Fig. 2. 

Neighbour-joining tree, based on the 16S rRNA gene sequences, showing the phylogenetic relationship of 

strain BSYT and related species in the order Desulfovibrionales. Bootstrap values (expressed as 

percentages of 1000 replications) above 50% are shown at branch nodes. Bar, 2% estimated difference in 

nucleotide sequence position. Desulfohalobium retbaense DSM 5692T was used as the outgroup. The tree 

topology evaluated by the maximum-likelihood method was almost the same as that obtained with the 

neighbour-joining method. 
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Table 1. Utilization of substrates as electron donors and compounds produced by strain BSYT by sulfate-reduction.

Electron donorsa Electron donors consumed Sulfate reduced Specific growth rate

(mmol l-1) (mmol l-1) Acetate Others (h-1)

Compounds produced (mmol l-1)

No addition n.d. n.d. 0.2 - n.d.

Butyrate 20.0 9.3 41.2 - 0.058

2 Methylbutyrate 16 3 8 7 16 7 Propionate (16 3) 0 0532-Methylbutyrate 16.3 8.7 16.7 Propionate (16.3) 0.053

Valerate 15.7 7.1 16.4 Propionate (15.6) 0.050

Pyruvate 7.8 2.3 10.4 - 0.013

Lactate 4.6 2.2 4.5 - 0.013

Ethanol 17.9 7.9 19.6 - 0.025

1-Propanol 18.3 7.6 - Propionate (16.7) 0.025

Butanol 8.3 8.5 15.4 Butyrate (1.6) 0.031

H2/CO2 + acetate n.d. 9.4 - Butyrate (0.3) 0.063

H2/CO2 n.d. 3.5 - - 0.012

a Substrates tested as electron donors were formate, acetate, propionate, butyrate, isobutyrate, 2-methylbutyrate, valerate, isovalerate,

   caprylate, crotonate, pyruvate, lactate, fumarate, malate, succinate, methanol, ethanol, 1-propanol, 2-propanol, butanol, glycerol, glycine, 

   L-alanine, L-serine, L-aspartate, L-glutamate, D-glucose, D-fructose, H2/CO2 + acetate and H2/CO2. Electron donors tested but not utilized were not shown.

   -, not detected; n.d., not determined.



Table 2. Characteristics of strain BSYT and related Desulfovibrio  species.

Strains: 1, BSYT; 2, Desulfovibrio putealis  B7-43T (Basso et al ., 2005); 3, Desulfovibrio sulfodismutans  ThAc01T (Bak & Pfennig, 1987);

4, Desulfovibrio carbinolicus  EDK82T (Nanninga & Gottschal, 1995).

+, used; -, not used.

1 2 3 4

Source Anaerobic municipal sewage
sludge Deep subsurface water Anoxic freshwater mud Anaerobic purification plant

Cell shape Curved rods Vibrio Curved rods Rods

Motility Motile Motile Motile Non-motile

Utilization of electron donors

   Formate - - - +

   Butyrate + - - -

   Fumarate - + - +

   Malate - + - +

   Succinate - - - +

   Propanol + - + +

Utilization of electron acceptors

   Sulfite - + + +

   Fumarate - + - -

Utilization of substrates in the absence of electron acceptors

   Pyruvate + + - +

   Fumarate - + - +

   Malate - + - +

G+C content (%) 63.3 57.8 64.1 65.0



Table 3. Cellular fatty acid composition (%) of strain BSYT and related Desulfovibrio  species.

Strains: 1, BSYT; 2, Desulfovibrio sulfodismutans  ThAc01T (Vainshtein et al ., 1992);

3, Desulfovibrio carbinolicus  EDK82T (Vainshtein et al ., 1992).

-, not detected.

Fatty acids 1 2 3

Saturated straight-chain:

C14:0 24.1 1.3 0.8

C16:0 10.2 10.6 6.6

Unsaturated straight-chain:

C16:1ω 7 25.5 3.4 1.0

C18:1ω 7 32.1 0.8 -

Saturated branched-chain:

iso-C15:0 - 3.2 3.0

anteiso-C15:0 0.1 30.5 54.3

iso-C16:0 - 10.7 1.2

iso-C17:0 - 2.6 1.3

anteiso-C17:0 - 2.4 16.6

Unsaturated branched-chain:

iso-C16:1 - 2.8 0.7

iso-C17:1 - 2.9 2.5

anteiso-C17:1 - 1.8 5.7
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