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ABSTRACT
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 Apoptosis is implicated in neonatal brain injury among various forms of cell death. 

Here we show that over-expression of heat shock protein (Hsp) 70, an anti-apoptotic 

protein, protects the neonatal brain from hypoxic/ischemic (H/I) injury and the 

pathways involved in the protection. In our study, postnatal day 7 (P7) transgenic mice 

over-expressing rat Hsp70 (Tg) and their wild type littermates (Wt) underwent 

unilateral common carotid artery ligation followed by 30 min exposure to 8% O2. 

Significant neuroprotection was observed in Tg versus Wt mice on P12, correlating with 

high level of constitutive but not inducible Hsp70 in the Tg. Western blot analysis 

showed that translocation of cytochrome c, but not apoptosis-inducing factor (AIF), 

from mitochondria into cytosol was significantly reduced in Tg 24 hrs after H/I 

compared to Wt mice. Reduced caspase-9 cleavage was also observed in Hsp70 Tg mice 

compared to Wt littermates 24 hrs after H/I. Co-immunoprecipitation detected more 

Hsp70 bound to Apaf-1 and AIF in Tg than Wt mice 24 hrs after H/I, inversely 

correlating with the amount of nuclear but not cytosolic AIF translocation. 

 In conclusion, Hsp70 could suppress the activation of caspase-9 by reducing 

cytochrome c release via mitochondria and directly interacting with Apaf-1 in the 

apoptotic pathway during neonatal H/I injury. Also interaction between Hsp70 and AIF 

might have reduced downstream events leading to cell death, including the reduction of 

nuclear AIF translocation in the neonatal brains of Hsp70 Tg mice after H/I. We hope 

that those findings may help identify new potential targets for anti-ischemic therapy.
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INTRODUCTION

 Brain damage by anoxia and/or reduced 

cerebral blood flow in the prenatal and 

perinatal period affects central nervous system 

development and leads to neurological morbidi-

ty, including epilepsy, cerebral palsy, and 

mental retardation later in life 40),43). Clinical 

and  experimental  studies  revealed  that 

outocomes and mortality after acute brain 

injury are age dependent, with more severe 

responses in infants than in adults 2),6),18),23). 

Such differences in responses to injury may be 

explained, in part, by differential susceptibility 

to apoptosis 5),13),28).

　Apoptosis is thought to be one of the 

contributors to secondary neuronal loss due to 

cerebral ischemia, including neonatal hypoxic / 

ischemic  (H/I)  injury,  and  many  other 

 acute  and  chronic  neurodegenerative  pro-

cesses 4),7),11),21),24),30),43),  even  though  neuronal 

apoptosis plays an essential role during normal 

development in many brain regions 15),16),24),25).

　One of the well characterized morphological 

features  of  apoptosis  is  caused  by  the 

activation of caspases. In the intrinsic pathway 

of apoptosis resulting from alterations at the 

level of the mitochondria and activation of the 

apoptosome,  mitochondrial  cytochrome  c 

release into cytosol initiates caspase cascade 

activation19),20),38) (Fig.1). After being released 

into cytosol, cytochrome c binds to apoptotic 

protease activating factor-1 (Apaf-1) in the 

presence of ATP/dATP, promoting the oligo-

merization of Apaf-1 itself. Concurrently or 

subsequently, this complex recruits procaspase-

9, forming the complex called apoptosome 3),19). 

The apoptosome assembly allows procaspase-9 

to be autoactivated, and this is followed by the 
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　Fig. 1. 
Intrinsic pathway of apoptosis. Cytochrome c released from mitochondria promotes assembly of the 
apoptosome. Binding of cytochrome c to Apaf-1 promotes oligomerization of the latter and recruitment 
of caspase-9 into a multimeric Apaf-1-caspase-9 complex that results in csapase-9, -3 activation. Active 
caspase-3 induces the apoptosis.
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recruitment and activation of procaspase-3. 

Mature caspase-9 remains bound to the 

apoptosome which recruits and activates 

executioner caspases such as caspase-3 and-7 1). 

Caspase-3 cleaves the inhibitor of caspase-

activated deoxyribonuclease and activates 

DNase, leading to DNA fragmentation37). A 

caspase-independent apoptotic pathway has 

also been identified in experimental models of 

stroke 8),9),27),29),45), including the activation of 

apoptosis-inducing factor (AIF). Like cyto-

chrome c, AIF is normally confined to the 

mitochondrial intermembrane and translocates 

into the nucleus following the induction of 

apoptosis. Nuclear import of AIF triggers 

caspase-independent nuclear changes, includ-

ing large-scale (~50kd) DNA fragmentation 

and peripheral chromatin condensation.

 Heat shock protein (Hsp) 70 joins Bcl-2 

family members and the IAP to form natural 

cellular inhibitors of caspases. Hsp70 has been 

shown  to  provide  neuroprotection  from 

cerebral ischemia both in animal models 

of stroke12),31),39),44) and in cell culture mod-

els14),17),22),26),34). Hsp70 is also known to act as a 

molecular chaperone protein that antagonizes 

apoptosis10).  Recent  studies  have  revealed 

anti-apoptotic effect of Hsp70 in vitro, 

inhibiting the chromatin condensation in a 

caspase-independent apoptotic pathway by 

binding to apoptosis-inducing factor (AIF)32), 

and preventing the formation of the apopto-

some by blocking the activation of caspase-9 

due to binding Apaf-1 3),35).

 Despite recent advances, the anti-apoptotic 

mechanism of Hsp70 in vivo is still not 

completely understood, particularly in the 

neonatal CNS. This review will show our 

experimental results using Hsp70 overexpres-

sion transgenic neonatal mice with H/I injury 

model and focus on our recently identified cell-

protective antiapoptotic functions of Hsp70.

Overexpression of Hsp70 reduced brain 

injury and apoptotic pathway after H/I 

injury on neonatal mice

 Hsp70 overexpression transgenic neonatal 

mice were used with unilateral common 

carotid artery occlusion following exposure to 

8% oxgen for 30min on postnatal day 7 (P7), 

which called Rice-Vannucci model 33).

　　　

Hsp70 reduces H/I induced brain injury

 Brain injury was determined in H&E stained 

sections by using a 0-24 brain damage scoring 

system described previously 36) on 5 days after 

H/I (Fig. 2A). The brain damage score was 

significantly lower in Hsp70 Tg as compared 

with Wt mice at both 5 d and 14 d after H/I 

insult (p<0.001); The median brain damage 

scores on P12 and P21 were 7 (n=39) and 8 

(n=15) in Hsp70 Tg versus 21 (n=32) and 22 

(n=18) in Wt mice, respectively (Fig. 2B).

Hsp70 overexpression reduces cytosolic 

cytochrome c without affecting Apaf-1 

and procaspase-9 expression

 To investigate if overexpression of Hsp70 

has an effect on the formation of apoptosome 

after H/I in neonatal mice brain, differential 

fractionation and western blots were per-

formed on lysates of the cytosol and the 

mithochondria from 34 of Hsp70 Tg and 30 of 

Wt mice at 6, 12, 24 and 48 hr after H/I 

compared with na換ve mice.

 Cytochrome c translocation from mitochon-

dria to cytosol occurred as early as 6 hr after 

H/I in both Hsp70 Tg and Wt mice (Fig. 3A). 

More cytosolic cytochrome c was detected in 

Wt mice in a time-dependent manner after H/I, 
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　Fig. 2. 
(A) Representative photographs of coronal sections, with hematoxylin and eosin staining, after 
hypoxic/ischemic (H/I) injury in Hsp70 Tg mice and Wt mice. (B) Reduced brain damage in Hsp70 Tg 
mice as compared with Wt mice 5 days after H/I injury. Significantly less brain damage was detected in 
Hsp70 Tg than in Wt mice after H/I insult (****; p<0.001).

whereas substantially smaller increase in 

cytosolic  cytochrome  c  translocation  was 

observed in Hsp70 Tg mice at 12, 24 and 48 hr 

after H/I. In Wt mice, significantly more 

cytochrome c expression in cytosol was seen 24 

and 48 hr after H/I compared with control 

(p<0.05). Significant difference in the level of 

cytosolic cytochrome c was also seen at 24 hr 

after H/I between Hsp70 Tg and Wt mice 

(p<0.05).

　Expression of Apaf-1 did not change at any 

given time after H/I during our investigation in 

the brain extracts of either Hsp70 or Wt mice 

(Fig. 3B). These results suggest that the 

expression of Apaf-1 is constant in neonatal 

mice brains during normal condition as well as 

after H/I.

　There was a trend that the level of 

procaspase-9 expression was decreasing after 

H/I in a time dependent manner, but the 

change was not significant (Fig. 3C). There was 

also no significant difference in the level of 

caspase-9 between Hsp70 Tg and Wt mice at 

any given time points.

Reduction of caspase-9 cleavage in Hsp70 

Tg after H/I

　To determine how the changes in the protein 

components of apoptosome affected further 

down stream apoptotic events, we investigated 

the cleavage status of caspase-9 using western 

blot analysis from 6 to 48 hr after H/I. In the 

western blots, robust expression of cleaved 

caspase-9 was seen in Wt mice after H/I (Fig. 

4A&B). The expression of cleaved caspase-9 

peaked at 24 hr after H/I and then decreased 

again at 48 hr in Wt mice. There was a 

significantly difference in the amount of 

cleaved caspase-9 at 24 hr after H/I compared 

with control in the Wt mice (p<0.05), in 

contrast to the gentle increase seen in Hsp70 

Tg. Significantly less cleaved caspase-9 was 

observed at 24 hr after H/I between Hsp70 Tg 

and Wt mice (p<0.05).



　Fig. 3. 
(A) Significant increase in cytochrome c translocation from mitochondria to cytosol in Wt mice 24 and 
48 hr after H/I compared to control (†: p<0.05). Significantly reduced cytochrome c translocation to 
cytosol was observed in Hsp70 Tg mice as compared with Wt mice at 24 hr after H/I, (*: p<0.05). 
(B) The expression of Apaf-1 in cytosolic fraction was not affected by H/I at any time point in both 
Hsp70 Tg and Wt mice. (C) The expression of procaspase-9 in cytosolic fraction was gradually 
decreased in a time-dependent manner, but not significantly, after H/I in both Hsp70 Tg and Wt mice. 
β-action was used as an internal control for cytosolic protein concentration.
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Increased binding of hsp70 and Apaf-1

　Co-immunoprecipitation was performed to 

investigate the physical interaction between 

Hsp70 and Apaf-1 after H/I insult by using 

cytosolic  lysates  from  the  injured  and 

uninjured hemispheres of both Hsp70 Tg and 

Wt mice (n=6 each). Co-immunoprecipitation 

using an antibody against Apaf-1 brought 

down significantly more Hsp70 protein from 

the injured hemispheres of Hsp70Tg than Wt 

mice at 24 hr after H/I (p<0.05) (Fig. 5). There 

was also more Hsp70 bound to Apaf-1 in the 

injured than uninjured hemispheres in both 

the Tg and Wt mice (data not shown).

 

AIF translocation into the cytosol

　AIF translocation to the cytosol began as 

early as 6 hr after H/I with significant amount 

of AIF found in the cytosol in both genotypes. 

The amount of AIF in the cytosol was 

significantly increased at 12 and 24 hr after H/I 

in both Tg and Wt mice as compared to the 

uninjured controls (Fig. 6A). There was no 

significant  difference  in  the  amount  of 
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　Fig. 5. 
Relative OD of Hsp70/Apaf-1 showing significantly more Hsp70/Apaf-1 was detected in Hsp70 Tg as 
compared with Wt mice (*; p<0.05). OD, optical density.

cytosolic AIF between the 2 genotypes at any 

time point investigated. These results suggest 

that over-expression of Hsp70 does not affect 

AIF translocation from mitochondria into 

cytosol.

Increased binding of Hsp70 and AIF

　Co-immunoprecipitation was performed to 

investigate the physical interaction between 

Hsp70 and AIF after H/I insult by using whole 

cell lysates from the injured and uninjured 

hemispheres of both Hsp70 Tg (n=5) and Wt 

(n=4) mice. Immunoprecipitation using an 

antibody against AIF brought down signifi-

cantly more Hsp70 protein from the injured 

hemispheres of Tg than Wt mice at 24 hr after 

H/I (p<0.05) (Fig. 6B). There was also more 

Hsp70 bound to AIF in the injured than 

uninjured hemispheres in both the Tg and Wt 

mice (data not shown).

　Fig. 4. 
(A) In Wt mice, significantly increased caspase-9 cleavage was observed at 24 hr after H/I compared 
with control (†; p<0.05). Significantly educed cleavage of caspase-9 was seen in Hsp70 Tg as compared 
with Wt mice 24 hr after H/I (*; p<0.05). (B) Significantly reduced numbers of caspase-9-positive cells 
in cortex, striatum, hippocampus and CA1 region of Wt mice compared with Hsp70 Tg mice 24 hr after 
hypoxic/ischemic injury. Scale bars are 50μm.
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Reduction of AIF nuclear translocation in 

Hsp70 Tg mice

　To determine whether interaction between 

AIF and Hsp70 affected further down stream 

apoptotic events, lysates from cytosolic and 

nuclear fractions of 5 Tg and 11 Wt mice were 

used in Western blotting. Significantly less AIF 

was detected in the nuclear extracts from the 

injured hemispheres of Tg than Wt mice 

(P<0.05) (Fig. 6C).

　This review has outlined some of our recent data 

　Fig. 6. 
(A) Significant translocation into the cytosol was observed 12 and 24 hr after H/I in both Hsp70 Tg and 
Wt mice as compared to control (*: p<0.05, **p<0.01). However, the amount of cytosolic AIF did not 
differ significantly between Hsp70 Tg and Wt mice at these three time points. (B) Increased binding of 
apoptosis inducing factor (AIF) with Hsp70 in Hsp70 Tg mice at 24 hr after H/I injury. Representative 
Western blots probed with Hsp70 and AIF as indicated from immunoprecipitated lysates with an 
antibody against AIF in injured brains of Hsp70 Tg and Wt mice at 24 hr after H/I. Little or no Hsp70 
was detected in the immuno pull-down from brain lysates of naive Wt control mice (C). Significantly 
more Hsp70/AIF was detected in Hsp70 Tg as compared with Wt mice (*: p<0.05). AIF signals did not 
differ among control, Hsp70 Tg and Wt mice. (C) Reduced AIF nuclear translocation in the Hsp70 Tg 
mice at 24 hr after H/I insult. Western blots detected significantly less AIF translocation into nuclear 
fraction in Hsp70 Tg as compared with Wt mice (*: p<0.05) at 24 hr after H/I. Little or no AIF was 
detected in the nuclear fraction of brain lysates from naive Wt control mice (C). Histone H1 was used 
as an internal control for nuclear protein concentration.
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elucidating specific ways in which Hsp70 could 

protect neonatal brain against H/I injury. Hsp70 is 

one  of  antiapoptotic proteins, which could  reduce 

 translocation  of  apopotosiselated proteins and 

reflect one of several different protein-protein 

interactions. Overexpression of Hsp70 has been 

shown to protect both in animal and cell models of 

cerebral ischemia so far. How it exerts these 

protective effects remains to be elucidated. 

Because brain damage induces a complex array of 

gene expression related to glutamate exicitotoxici-

ty, oxidative  stress,  and  apoptotic  cascade, 

multiple neuroprotective effects of Hsp70 can be 

postulated. Additional studies using molecular 

techniques are needed to clarify this issue. We 

hope that understanding those underlying mecha-

nisms  may  identify  specific  cell-destructive 

changes which contribute to brain cell loss in 

ischemia and help identify new potential targets 

for anti-ischemic therapy.
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