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Abstract 

  

This document discusses the design, analysis, manufacturing and testing of the One-Ride 

human powered vehicle which was entered into the 2015 ASME West Coast HPVC 

Competition. The goal of the vehicle is to entice people to switch from gas powered vehicles to 

the One-Ride for trips of up to 20 miles round trip. The One-Ride design features fully adjustable 

seating and steering positions and was designed to fit anyone between the heights of 5’2” and 

6’4” comfortably. The seat is adjusted using metal sliders, manufactured in the SCU machine 

shop, which fit into brackets attached to the frame. The bike features telescopic steering which is 

adjusted by the loosening and tightening of collar clamps. To increase the strength and safety of 

the frame, the welding and heat treatment were contracted to industry professionals. The frame 

was welded by Chavez Welding and heat treated by Byington Steel Treating. Deformation in the 

seat frame during heat treatment prevented full adjustability of the seat, however was secured in 

its middle position for testing. The wheelbase of the bike is 73.33 in and has an overall height of 

50.77 in.  .  Slop in the steering caused instability at low speeds, which prevented the bike from 

being ridden in the ASME HPVC Competition.  Design solutions to both of these problems have 

been identified. At the completion of senior design, the manufacturing is still ongoing. 

  

  

  

 

  

 

 



ii 
 

Acknowledgements 

The One-Ride human powered vehicle team would like to extend its gratitude and 

appreciation to all those who helped make this project possible. Starting with Santa Clara 

University and the Santa Clara University School of Engineering for their support throughout the 

entire process, and Dr. Drazen Fabris and Dr. Calvin Tszeng who served as advisors to the team 

and were extremely helpful and insightful to the team through each stage of the project. We 

would also like to acknowledge Dr. Timothy Hight and Dr. Scott Abrahamson who gave much 

of their time to helping identify and incorporate solutions to certain problems and customer 

needs into our design. The team would also like to thank Mr. Don MacCubbin, the Santa Clara 

University machine shop manager, and Chavez Welding who assisted the team in building and 

manufacturing the bicycle. Finally the team would like to thank the family and friends who have 

supported the members over the last four years at Santa Clara. Without their support this 

endeavor would not have been realized.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

TABLE OF CONTENTS 

Abstract ......................................................................................................................i 

Acknowledgements ....................................................................................................ii 

Chapter 1: Introduction ..........................................................................................1 

1.1   Background and Motivation ..............................................................................1 

1.2   Literature Review...............................................................................................2   

1.3   Problem Statement .............................................................................................4 

1.4   ASME HPV Competition Requirements ...........................................................4 

1.5   Bike Dimensions ................................................................................................7 

Chapter 2: System Level Considerations ...............................................................9 

2.1   Requirements .....................................................................................................9 

2.2   Customer Interviews ..........................................................................................9 

 2.2.1 Potential Customer Surveys………………………………………...…9 

  2.2.2 Interviews……………………………………………………………...10 

2.3   Customer Needs .................................................................................................10 

2.4   Engineering Standards and Ethical Constraints .................................................11 

 2.4.1 Economical…………………………………………………………….11 

 2.4.2 Environmental Impact…………………………………………………12 

 2.4.3 Manufacturing Impact…………………………………………………13  

2.5   Functional Analysis ...........................................................................................14 

2.6   Design Sketch ....................................................................................................17 

2.7   Project Management ..........................................................................................20 

         2.7.1   Timeline………………………………………………………………20  

         2.7.2   Cost and Budget………………………………………………………21   

         2.7.3   Team Management……………………………………………………22 

         2.7.4   Risks and Mitigations………………………………………………...23 

2.8   Sustainability......................................................................................................25 

2.9   Ethical Impact  ...................................................................................................26 

2.10   Health and Safety .............................................................................................28 

Chapter 3: Detailed Design and Analysis ..............................................................30 

 3.1   Frame ................................................................................................................30  



iv 
 

             3.1.1   Background ........................................................................................30 

             3.1.2   Frame Design .....................................................................................31  

             3.1.3   Frame Analysis ..................................................................................33 

 3.1.4  Frame Manufacturing ……………………………………………….39 

 3.2   Innovation .........................................................................................................40  

             3.2.1   Innovation Background ......................................................................40 

             3.2.2   Innovation Design ..............................................................................40 

             3.2.3   Innovation Manufacturing .................................................................44 

3.3   Drivetrain ...........................................................................................................48 

             3.3.1   Drivetrain Background.......................................................................48 

             3.3.2   Drivetrain Analysis ............................................................................49 

             3.3.3   Drivetrain Design ...............................................................................49 

3.4   Aerodynamics ....................................................................................................51 

            3.4.1   Aerodynamic Background ..................................................................51 

3.4.2   Aerodynamic Design ..........................................................................52 

3.4.3   Aerodynamic Analysis ........................................................................53 

3.5   Safety .................................................................................................................56 

3.5.1   Safety Background ..............................................................................56 

3.5.2   Safety Design ......................................................................................56 

3.5.3   Safety Analysis ...................................................................................56 

3.6  Challenges, Problems, and Solutions ..................................................................58 

Chapter 4: System Integration ...............................................................................62 

4.1  System Integration and Test................................................................................62 

4.2  Experimental Protocol and Results .....................................................................62 

Chapter 5: Cost Analysis and Business Plan .........................................................64 

5.1  Cost Analysis ......................................................................................................64 

5.2 Business Plan .......................................................................................................64 

Chapter 6: Arts ........................................................................................................73 

Chapter 7: Conclusion .............................................................................................74 

Bibliography .............................................................................................................75 

Appendix A: Finite Element Analysis Figures ......................................................77 



v 
 

Appendix B: Detailed Calculations ........................................................................78 

Appendix C: Responses to Customer Survey and Individual Interviews ...........83 

Appendix D: Decision Matrix .................................................................................87 

Appendix E: Hardware Drawings ..........................................................................88 

Appendix F: Senior Design Conference Powerpoint Slides .................................121 



vi 
 

List of Figures 

          Page 

Figure 1.4.1 ASME HPVC roll cafe requirements for competing vehicles ...........................6 

Figure 1.5.1 Final Design of the One-Ride Human Powered Vehicle...................................8 

Figure 2.5.1 Functional decomposition of all four major vehicle components .....................15 

Figure 2.5.2 Input and output diagram of all major rider interfaces that the rider is capable of 

controlling. These features include steering, braking, shifting, and pedaling .......................16 

Figure 2.6.1 Preliminary sketch of the human powered vehicle ............................................17 

Figure 2.6.2 System sketch of the lowering mechanism part of the frame ............................18 

Figure 2.6.3 3D model of whole vehicle................................................................................19 

Figure 2.7.1.1 Timeline of project .........................................................................................21 

Figure 3.1.2.1 Seat mockup with and without user ................................................................31 

Figure 3.1.2.2 CAD rendering of the main vehicle frame .....................................................32 

Figure 3.1.3.3 FEA of 600lb load acting on the seat position ...............................................35 

Figure 3.1.3.4 FEA of 250lb load on main tube  ...................................................................36 

Figure 3.1.3.5 FEA of 600lb top load on rollbar ...................................................................37 

Figure 3.1.3.6 FEA of 300lb side load on rollbar  .................................................................38 

Figure 3.1.4.1 Fully welded frame from Chavez Welding ....................................................39 

Figure 3.2.2.1 Movement of seat ...........................................................................................40 

Figure 3.2.2.2 Movement of steering wheel ..........................................................................41 

Figure 3.2.2.3 Steering wheel and collar clamp.....................................................................42 

Figure 3.2.2.4 Steering column with U-joint assembly  ........................................................43 

Figure 3.2.2.5 Housing tube mounting bracket......................................................................44  

Figure 3.2.3.1 Right side seat adjustment rail system  ..........................................................45 

Figure 3.2.3.2 Pinned right seating bracket ...........................................................................46 

Figure 3.2.3.3 Seat slider rail for seat position adjustment  ...................................................46 

Figure 3.2.3.4 Housing tube and U-joint connection .............................................................47 

Figure 3.2.3.5 Drive shaft to steering tube collar clamp and pin connection  .......................48 

Figure 3.3.3.1 Front Portion of gears in the gear train ...........................................................50 

Figure 3.3.3.2 Rear gear train setup .......................................................................................51 

Figure 3.3.3.3 Rear derailleur  ...............................................................................................52 



vii 
 

Figure 3.4.2.1 CAD model of person riding One-Ride design with fairing attached ............53 

Figure 3.4.3.1 Analysis of fairing using Star CCM+ Program  .............................................53 

Figure 3.4.3.2 Analysis of fairing used by 2013 SCU HPV Team ........................................54 

Figure 3.4.3.3 Star CCM+ analysis if rider and frame ..........................................................55 

Figure 3.5.3.1 Roll bar testing set up for side load and top load ...........................................57 

Figure 3.6.1 Bending of seat frame after heat treating ..........................................................59 

Figure 3.6.2 Misalignment of rear wheel due to axle warping ..............................................60 

Figure 3.6.3 Filed down rear axle ..........................................................................................60 

Figure 3.6.4 Balance wheel design and expected placement .................................................61 

Figure A.1 Analysis of entire frame with 600 lb load on seat ...............................................77 

Figure B.1 Drivetrain calculations .........................................................................................79  

Figure B.2 Reaction forces at wheel locations .......................................................................80 

Figure B.3 Braking and weight transfer calculations .............................................................81 

Figure B.4 Center of mass position for nearest and farthest seat positions ...........................82 

Figure C.1 Response from survey on various human powered vehicles used .......................83 

Figure D.1 Selection Matrix for different bike designs .........................................................87 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Tables 

                                                                                                                     Page 

Table 2.4.1.1 Height range for current bikes on the market ..................................................12 

Table 2.7.2.1 Budget Breakdown ..........................................................................................22 

Table 3.1.2.1 Material properties for commonly used frame design materials .....................33 

Table 3.1.3.1 Material Properties of 6061 T-6 Aluminum ....................................................33 

Table 3.1.3.2 Main Tube finite element analysis results  ......................................................36 

Table 3.1.3.3 Rollbar top load finite element analysis results ...............................................37 

Table 3.1.3.4 Rollbar side load finite element analysis results ..............................................38 

Table 3.5.3.1 Rollbar Finite Element Analysis results  .........................................................57 

Table 3.5.3.2 Rollbar strength test results..............................................................................58 

Table 4.2.1 Experimental Protocol and expected results .......................................................62 

Table 5.2.1 Initial start up costs .............................................................................................68 

Table 5.2.2 Raw material costs to produce one bike .............................................................69 

Table 5.2.3 Company total costs for 10 years ........................................................................70 

Table 6.1 Reference of drawings done by each team member  .............................................73 

Table C.1 Customer needs based on age groups....................................................................84 

Table C.2 Question and answer from Prof. Scott Abrahamson .............................................85 

Table C.3 Question and answer from Joshua Muir, a professional bike frame builder .........86 

 

 

 

 

 

 



1 
 

1. Introduction 

1.1: Background and Motivation 

Team One-Ride consists of five senior mechanical engineering students who have the 

motivation to exercise their engineering knowledge and apply that knowledge to help combat 

rising greenhouse emissions and to lower the number of vehicles on the road. Currently, 

worldwide, there are a growing number of automotive vehicles being purchased. China and India 

have increased the number of vehicles being purchased in their respective countries, and these 

two countries combined have a population over 2.5 billion people. If the current rate of 

purchases continues, these countries will surpass the United States in the number of vehicles 

purchased annually. In 2013, Asia accounted for 30 percent of vehicles purchased1. Because of 

this increase, the amount of greenhouse gases released by these vehicles will also increase, 

contributing to the ever growing problem of climate change. The team would like to help 

diminish the number of vehicles purchased by providing an efficient, affordable, and 

environmentally friendly alternative in the form of an innovative Human Powered Vehicle. Our 

goal is to design an efficient, innovative, safe, and environmentally friendly bicycle that can be 

marketed to a global audience. It would serve as a replacement for automotive vehicles on trips 

that are twenty miles or less round trip. 

Our design is based off the Groundhugger XR22, which is a two wheel recumbent bicycle 

with over-seat steering. With major focuses on speed, comfort, and safety, our bike features a 

protective roll bar, aerodynamic fairing, comfortable seating position and storage bins for 

everyday items such as groceries or backpacks. The bicycle is constructed out of Aluminum 

6061 T6 due to its high strength to weight ratio and strong resistance to corrosion.  A unique 

innovation in our design is a completely adjustable seat and steering column. When choosing to 

buy a bicycle, people are always trying different sizes to make sure their feet reach the pedals 

and their hands can reach the handle-bars. With our design, any sized person will be able to use 

our bike. By simply adjusting the seat and steering column, a rider will be able to customize his 

or her riding position to a comfortable setting. The design was entered into the ASME West 

                                                
1 Gomes, C., “Global Auto Report,”  Scotiabank, May 7, 2015 

http://www.scotiabank.com/gls/en/index.html#about 

 

2 Riley, R., “Ground Hugger XR2,” Robert Q. Riley Enterprises, November 1, 2014   

http://www.scotiabank.com/gls/en/index.html#about
http://www.scotiabank.com/gls/en/index.html#about
http://www.scotiabank.com/gls/en/index.html#about
https://owl.english.purdue.edu/owl/resource/717/05/
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Coast HPV Competition where we competed against several other schools from all over the 

nation. 

 

 1.2 Review of Literature 

Structure Properties of a Frame for Human Powered Vehicles 

This journal is about frame design of a human powered vehicle3. The frame is the most 

important part of the HPV, therefore proper design and analysis is very crucial. This report goes 

over the research, design and analysis of a 3 wheel tricycle frame. While our design has 2 

wheels, this journal was helpful in deciding what kind of analysis to perform on our frame. The 

analysis of different materials used in current bike frames was beneficial in our choosing of the 

frame material for the One-Ride design. This source was found through the library database. 

  

Pegasus Human-Powered Vehicle 

This is the design report of last year’s Santa Clara HPVC team4. Everything from early 

design sketches to their final product is in this report. They built a three wheel tadpole style bike 

that had both Ackermann and tilt steering, and raced it in the ASME West Coast Competition we 

planned to do in April. Their report contains budget information, local welders who helped 

assemble their bike, as well as grants that they received to help fund their project. This source is 

very important to our team because it not only has local companies we can contact to get 

information and services from, but it allowed us to further improve our design this year. By 

studying their report and design we can see what the problems and failures their design 

encountered. When designing our prototype we have kept those problems in the back of our 

minds and made sure not to repeat them again this year. The report also helped in the early stages 

of the project by giving us a rough estimate of what the budget will be and how long it will take 

to complete the entire project. A copy of the report was obtained through the mechanical 

engineering office at Santa Clara University. 

 

                                                
3 Alexandru, R., Maniu1, D.,  “Structure Properties Of A Frame For Human Powered Vehicles.” 

Academic Journal Of Manufacturing Engineering 11.2 (2013): 12-17 .Applied Science & Technology 

Source. Web. 21 Oct. 2014 

 
4  Porter, D., Chester, P., Stephens, P., Flores, L., Jones, I.,  Nakamura, R.,  “Santa Clara University 

Human Powered Vehicle 2013-2014.” Bachelor’s Thesis, Santa Clara University, 2014. 
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On the Design of a Recumbent Bicycle with a Perspective on Handling Qualities 

This journal article discusses different handling qualities of recumbent style bicycles5. 

The authors designed a new steering system and compared it with already proven handling 

methods for recumbent bicycles. They built a prototype with their new steering system and road 

tested it to see if their new handling system would be successful in real life situations. This 

article is important to our project because one of the main concerns with a two wheel recumbent 

bicycle is steering and handling. Being able to control our bike around tight turns and in between 

obstacles requires excellent steering and handling. Since this journal compares the new design 

created by the authors with already proven designs, we are able to use that information and 

decide on a steering system that we know will work well. This source was found on the ASME 

database.  

  

A Study on the Efficiency of Bicycle Hub Gears 

In this journal article the authors measured efficiency of several new generation bicycle 

hub gears6. They used a 1 HP motor to drive a crankshaft which was connected to a flywheel, 

and measured the torque and speed of the motor and flywheel. The authors plotted the efficiency 

with both power and speed, which allowed them to analyze the relationship between torque, 

speed, and efficiency. This article was useful to our research since we needed a gear train to 

power our bicycle. By studying the results in this article we decided on the gear train 

combination that has the greatest efficiency. 

We can also compare the data in this analysis with any data that is obtained ourselves 

after the bike is rideable. This article was also found through the ASME database. 

  

 

 

 

                                                
5 Schwab, A. L., Kooijman, J. D. G. and Nieuwendijk, J. “On the Design of a Recumbent Bicycle with a 

Perspective on Handling Qualities” ASME 2012 International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference 12 Aug 2012: 303-308 

 
6 Casteel, E. A., and Archibald, M., “A Study on the Efficiency of Bicycle Hub Gears.” ASME 2013 

International Mechanical Engineering Congress and Exposition 13. Transportation Systems (2013): n. 

pag. Web 
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Celeritas 

This source is a design report for the HPV Celeritas7 from Rose Hulman Institute of 

Technology. The main difference from Santa Clara’s report is the type of human powered 

vehicle they designed. They designed a fully-faired semi recumbent bicycle. Similarly to Santa 

Clara’s thesis, this report has all the calculations, budget, drawings and analysis that were used to 

design and manufacture their prototype. The reason this thesis was helpful is because their final 

design is similar to what our team produced. They have a two wheel recumbent style bike and 

while their design was fully faired, (ours is partially faired), their prototype is more similar to 

what we designed than Santa Clara’s three wheel tadpole design. By studying their report our 

team gained more information on what makes a good two wheel recumbent bike. We also 

studied what went wrong with their design. Since we produced a similar style prototype, 

knowing what problems they encountered helped our team avoid similar mistakes. The report 

was found on the Rose Hulman HPV Team website. 

 

1.3 Problem Statement 

 Greenhouse gas emissions and traffic congestion are two ongoing worldwide problems.  

The goal of our design is to help reduce carbon dioxide emissions and traffic congestion by 

providing a fast, safe, and aesthetically pleasing recumbent bicycle that can be used as a practical 

alternative to automobiles for short to mid-range trips (10-25 miles).  It was desired to find ways 

to entice people to use human powered vehicles by concentrating on many of the popular 

features in cars, such as comfort, speed, and safety and incorporating these parameters in our 

design.  

 

1.4 ASME HPV Competition Requirements 

In order to gauge our vehicle’s performance, we participated in the 2015 ASME West 

Coast Human Powered Vehicle Challenge. The team participated in the design innovation 

contest however, due to problems with the U-joint and low speed stability, we had to forfeit the 

speed and endurance competitions. The challenge took place from April 24, 2015 through April 

                                                
7 Robertson, D., Woolfenden P., Coons, H., Burns, S., Skorina, M.,  Celeritas. Thesis. Rose Hulman 

Institute of Technology, 2013. N.p.: n.p., n.d. Print.  

 



5 
 

26, 2015 at Santa Clara University, the Hellyer Velodrome, and Santa Clara County Fairgrounds 

respectively and was split up into four specific sections: 

 

 

The Design Event 

-Design report detailing design, analysis, and testing submitted in advance of the 

competition 

-Design presentation and safety and static presentation 

The Speed Event 

-Time trials were conducted at the Santa Clara velodrome 

-A one lap run 

The Innovation Event 

-A presentation to the ASME judges that showcased our unique innovation incorporated 

into the design of the vehicle 

The Endurance Event 

-A two and a half-hour race with various obstacles in which we completed as many 

1.3km laps as possible 

Mandatory Safety Requirements 

All quoted text in this section comes directly from the Rules for the 2014 Human Powered 

Vehicle Challenge (https://community.asme.org/hpvc/m/default.aspx). 

 

General 

● “The safety of participants, spectators, and the general public will override 

all other considerations during the competition.” 

Performance Safety Requirements 

● Vehicle “can come to a stop from a speed of 25 km/hr in a distance of 6.0 

m.” 

● Vehicle “can turn within an 8.0 m radius.” 

●  Vehicle “can demonstrate stability by traveling for 30 m in a straight line 

at a speed of 5 to 8 km/hr” 

Rollover Protection System 

https://community.asme.org/hpvc/m/default.aspx
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Figure 1.4.1 ASME HPVC roll cage requirements for competing vehicles8-Reproduced with 

permission 

 

●  “Top Load: A load of 2670 N per driver/stoker shall be applied to the top of the 

roll bar(s), directed downward and aft (towards the rear of the vehicle) at an angle 

of 12° from the vertical, and the reactant force must be applied to the roll bar 

attachment point and not the bottom of the roll bar (unless the bottom is the 

attachment point). Note that there may be one roll bar for the driver and another 

roll bar for the stoker which will result in each RPS having an applied load of 

2670 N, or the driver and stoker can both be protected by a single roll bar which 

will result in the RPS having an applied load of 5340 N.” 

● “Side Load: A load of 1330 N per driver/stoker shall be applied horizontally to 

the side of the roll bar at shoulder height, and the reactant force must be applied to 

the roll bar attachment point and not the other side of the roll bar. Note that there may be one roll 

bar for the driver and another roll bar for the stoker which will result in each RPS having an 

applied load of 1330 N, or the driver and stoker. 

 
                                                
8 Hilgenberg, W., “Rules for the 2015 Human Powered Vehicle Challenge”. Rev 2. ASME. 2015. Print.   
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1.5 Bike Dimensions 

Figure 1.5.1 shows the overall dimensions of the One-Ride bike design. The tallest and 

widest portion of the bike was the roll bar. The width is 27.5 in and the height is 50.77 in 

(measure from the ground to top of roll bar). The wheelbase is 73.33 in and the overall length of 

the bike is 96.58 in.   



8 
 

   Figure 1.5.1 Final Design of the One-Ride Human Powered Vehicle. Dimensions are given in inches.



9 
 

2. System Level Considerations 

2.1 Requirements 

 In order for the HPV to be a successful commuter vehicle, there are certain requirements 

that the design needed to meet. These requirements were set by both the ASME HPVC judges as 

well as the One-Ride team based on goals the team wanted to accomplish.  

 

Maximum Speed 

-Up to 35 mph on flat smooth ground  

Allowable Rider Height 

-Any within the height range of 5’2” and 6’4” can fit and ride the bike comfortably 

Roll bar Protection System  

-Can sustain a top load of 600 lbs and a side load of 300 lbs without failing or visible 

deformation   

Additional Requirements 

-2 wheel recumbent style 

-Single Rider 

-Fully adjustable seating and steering position   

 

2.2 Customer Interviews 

 To help determine what the team goals should be for the design, several interviews and 

surveys were conducted. The information gathered from these interviews and surveys not only 

showed us what people like in current bicycles already on the market, but also provided ideas 

that people have on ways in which current human powered vehicles can be improved.  

 

2.2.1 Potential Customer Surveys 

 When identifying potential customers for the design, our team realized we are surrounded 

by a college campus filled with students who ride human powered vehicles such as scooters, 

bicycles, and longboards, etc., every day. Using surveymonkey.com, we created a questionnaire 

and posted it to social networking sites such as Facebook to gain feedback about student’s use of 

human powered vehicles. The survey, whose questions and responses can be found in Appendix 

C, yielded strong results with over 70 participants taking the survey.  
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2.2.2 Interviews 

 Along with the responses gathered from fellow students, we were able to get personal 

interviews with two individuals who have been around bikes for many years and who would be 

able to give us some good information from their many years experience in the bicycle world. 

The first was Santa Clara professor Scott Abrahamson. Prof. Abrahamson has been riding bikes 

for over 20 years and has had much experience with different kinds of bikes. He was able to give 

insight from a strictly customer point of view. From his interview we were able to gain insight 

into what a “hardcore” cyclist looks for in a bike and what aspects of our design will be most 

important to ensure it will be something a seasoned rider like Prof. Abrahamson would want to 

buy.  

 The second personal interview was with Joshua Muir, a long time bicycle manufacturer. 

Not only is Joshua a priority customer like Prof. Abrahamson, but he is also a professional in the 

bicycle frame business. Because of his profession, the interview with Joshua focused more on the 

manufacturing and actual designing of a bicycle. From his interview, we were able to find out, in 

detail, what companies do when designing a new product, and we were able to compare this side 

by side with what customers look for in a bike.    

 The questions and responses to each of the interviews can be found in Appendix C.  

 

2.3 Customer Needs 

Based off of the information gathered regarding customer needs from different age 

groups, it was clear that each age group has different preferences for their ideal human powered 

vehicle.  Most users preferred a bike with some type of gear system for adjustable speed, 

regardless of their age.  They typically use their human powered vehicle for short trips of less 

than 10 miles because of its speed limitations and safety concerns. Most user responses focused 

on the health and financial aspects of HPVs as a main motivation for their use.  The low cost of 

maintenance compared to other forms of transportation is a key selling point for these vehicles. 

Many customers found it essential to have an effective storage unit that accommodates all 

sizes of belongings ranging from cellphones, groceries, or other large items.  In addition to 

storage needs, other main concerns included a theft protection and security system on the bike.  

While bicycle locks are available, wired locks can be easily broken and aren’t as effective as 

traditional car theft systems. The main improvement that generally all consumers suggested was 
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speed and ease of ride.  For many, commuting to work or school with a human powered vehicle 

would take too long and therefore they choose either public transportation or an automobile to 

get to work.  The public survey suggested that if these human powered vehicles had higher 

speed, longer ranges, and were easier to ride up hills, they would consider using this form of 

transportation more regularly.  One of the biggest concerns with increasing the speed of the 

vehicle is safety.  Crashing a human powered vehicle at near car speeds is much more dangerous 

than in a car, and thus an emphasis on safety would be essential for any high speed recumbent 

bicycle. The importance of customer needs in order of priority was safety, speed, ease of ride, 

storage capacity and theft protection 

 Users on the older end of the age bracket were also concerned with the comfort of the 

ride. Recumbents typically feature back support with a reclined seating position allowing for 

more area to support the rider’s body weight. This allows for a less stressful seating position 

which is optimal for long distance rides. The seat also must be designed to accommodate all 

body shapes and sizes. 

In conclusion, this small study determined that our human powered vehicle should be 

highly focused on speed, comfort of ride, and storage, while still maintaining safety. In order for 

this vehicle to be successful in the market, it must have a lower price that is affordable to the 

everyday non-enthusiast user. We believe that the practicality of existing HPVs must be 

improved to bring success in the market. These results allowed us to tailor our design goals and 

features to what the end user desires. With the survey and interview information we were able to 

prioritize and understand what features should be focused on for our design. 

 

2.4 Engineering Standards and Ethical Constraints 

2.4.1 Economical 

 Most recumbent bicycles on the market today cost between $200 and $10,000 depending 

on the quality of the bike. One goal of our team was to keep the cost of the bike low but still 

keep the quality of the bike high so that people would enjoy using it every day as they ride it to 

work, school, or the store.  

 While we are designing our bike to be at the lower end of this price range, a bike rider 

could still save over $5,000 dollars by switching to our design. The reason is the height range 

that our bike can support compared to the height range other bikes can. As seen from the chart 
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below, current bikes can only support a 3in height range. Assuming a bike costs $1,000, an avid 

bike rider would spend $6,000 over the time he or she grew from 5’0” to 6’0”. The One-Ride 

bike is designed to support a rider for over a foot of growth. Even if the bike costs $1,000 

dollars, the rider would save $5,000 because he or she would not have to purchase a new bike 

every time he or she grew 3 inches.   

 

          Table 2.4.1.1 Height range of current bikes on the market9  

 

  

The One-Ride design is also good for families. Instead of having to purchase several 

bikes for each member of the family because everyone needs a different size, they only need to 

purchase one or two bikes. By simply adjusting the seat and steering wheel to the desired 

position, an entire family only needs one bike for each of them to comfortably ride.  

 

2.4.2 Environmental Impact 

Human Powered Vehicles have the opportunity to greatly impact the environment. 

According to a census taken in 2012, only about 0.61% of the commuting public bike to work10. 

                                                
9 "Bike Shop | South Lake Tahoe | South Shore Bikes." South Shore Bikes. N.p., n.d. Web. 09 June 2015. 

 
10 “Commute Statistics,” National Household Travel Survey, US Department of Transportation, Bureau 

of Transportation Statistics, January 1st 2014, http://www.statisticbrain.com/commute-statistics/  

http://www.statisticbrain.com/commute-statistics/
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While this number is climbing (only 0.56% commuted in 2011) it is still extremely small. By 

designing a bike that is comfortable and easy to ride, the One-Ride team hopes to increase this 

number, which would help reduce the amount of pollution left by cars, not only by driving them, 

but also from manufacturing them. 

Automobile transportation is most inefficient when operated in congested areas with high 

traffic and frequent stops.  Short trips are one of the biggest producers of greenhouse gasses 

because engines are constantly running at various rpms; thus consuming more gas. The One-Ride 

Human Powered Vehicle was designed so that it can be used in metropolitan areas for short to 

intermediate distances.  A study by the National Geographic found that 80 percent of carbon 

monoxide emissions and up to 30 percent of U.S. carbon dioxide emissions are produced from 

automobiles.  The same article found that individuals who biked 5 miles a day could reduce their 

household emissions by up to six percent11.  While individually this number is somewhat 

insignificant, as a nation, over 900 million gallons of fuel could potentially be saved.  This in 

turn would reduce carbon dioxide emissions between 6 million to 14.2 million tons per year. 

 

2.4.3 Manufacturing Impact 

Currently, bikes have a rider height range of about 3 inches. Once a rider grows out of 

this range it is recommended that he or she get a new bike with a bigger frame so he/she can 

continue to ride at the optimum position that produces the maximum power output with minimal 

energy input. For avid bike riders who continually buy new frames when they outgrow their 

current one, the cost can get extremely expensive. Manufacturing companies also spend a lot of 

money producing the frames as each size frame needs specific components to match the specific 

size. Ordering this wide range of parts and building jigs for welding and heat treating can raise 

manufacturing costs, which in turn raises the selling price.  

The production of automobiles also creates subsequent consequences on infrastructure, 

waste, and manufacturing that can ultimately be limited with increased bicycle usage. Cars 

require sophisticated infrastructure ranging from parking spots, private roads, to public 

highways. However, if people begin to ride bicycles for short trips, maintenance costs for 

roadways will decrease. In fact, anywhere from 80 to 90 percent of the U.S. infrastructure can 

                                                                                                                                                       
 
11 "Buying Guide - Bike Environmental Impact - National Geographic's Green Guide." National 

Geographic. N.p., n.d. Web. 04 June 2015. 
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currently be used for bicycle routes. With the One-Ride HPV, one frame can accommodate over 

a foot height range of riders so that users will not have to replace the bicycle as frequently. In 

addition, the overall vehicle weight is roughly 30 pounds which requires significantly less 

material to produce than a car. Bicycles also are more reliable than cars because they require less 

maintenance due to fewer moving parts.  

 

2.5 Functional Analysis 

The One-Ride project has been broken into four major components: 

-Steering 

•The vehicle has a unique steering system with a car-like steering wheel and steering 

column that interfaces the front fork 

-Frame 

•The frame is built in a fashion that the rider is safely secured and the center of gravity is 

as low as possible in order to be stable. 

-Drivetrain 

 •The drivetrain is designed to maximize the speed of the vehicle 

-Fairing 

•The fairing is built to minimize drag in order to increase the top speed of the vehicle and 

protect the rider from the elements 

 

Each of the major subsystems can be broken down into smaller subsystems that were 

designed individually and then brought together into one whole system. During the research and 

design phase of the project, it was realized that the way a user controls and interacts with the 

vehicle is very important in the design of the four sub systems. The four main ways the user 

interacts with the vehicle can be seen in the input-output diagram in Figure 2.5.2 below.  
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Figure 2.5.1: Functional decomposition of all four major vehicle components 

 

The user interacts with the vehicle in a variety ways. One of the most important aspects 

of the design was the steering of the vehicle. Throughout the design process, the highest priority 

was placed on creating a vehicle that was simple to operate with responsive handling. The figure 

below shows how a user would interact with the vehicle and what output would result.  
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Figure 2.5.2 Input and output diagram of all major rider interfaces that the rider is 

capable of controlling. These features include steering, braking, shifting, and pedaling 

 

 

 

Input

User presses on the 
brake handles 

User presses on the 
gear shifter

User maneuvers 
steering wheel

User presses feet 
against pedals in a 

circular motion

System

The brake cable is 
pulled, 

consequently the 
brake pads squeeze 

together on the 
brake disk

The derailleur 
changes gear to 
either a lower or 

higher gear

Steering column 
translates motion 

through a double u-
joint to the front 
fork, turning the 

vehicle

The chain transmits 
foot power to the 

rear wheel

Output

The wheel stops 
rotating which 

causes the vehicle 
to stop moving

Vehicle RPM 
increases/decrease 

accordingly

Vehicle moves in the 
desired direction

Vehicle moves 
forward at a speed 

proportional to 
power input
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2.6 Design Sketch 

 When starting the initial design research of the vehicle, there was a wide variety of 

different frame styles to choose from. It was decided to go with a two wheeled recumbent style 

frame in order to achieve a high speed and stability at that high speed. A further explanation of 

the frame design and analysis can be found in Section 3. In order to satisfy the innovation part of 

the ASME competition, a lowering innovation for the bicycle was designed. The lowering 

innovation would lower the frame to the ground, allowing the user to park the vehicle in an 

upright position, making it easy to load and unload any cargo. This innovation would also 

provide added security to the vehicle by rendering the vehicle inoperable. This would prevent 

anyone from stealing the bike when it was lowered.   

 

 

Figure 2.6.1: Preliminary sketch of the Human Powered Vehicle. The bike was designed to 

lower just below the roll bar (function can be seen in Figure 2.6.2) for easy entry and exit as 

well as loading and unloading of cargo.  
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Figure 2.6.2: System sketch of the lowering mechanism part of the frame. The top sketch is a top 

view of the main section of the bike. The front wheel (not shown) would be on the right side of 

the page. The bottom two sketches show the two positions for the lowering innovation. The 

middle sketch is when the bike is in the riding position and the bottom sketch is when the bike is 

in the loading position.  

  

The lowering innovation would have been enabled by a pinned connection, that when 

opened would allow the rear wheel links to move freely of the main frame. Consequently, the 

frame would be able to move towards the ground and be parked in an upright position. The pins 

would have been spring loaded, to keep them set in the rear links at all times, until a cable would 

pull on them, actuated by the user, to allow the rear links to move freely. These pins would have 

had a lock on them, so that they could be locked in the lowered position, preventing them from 

going back into the riding position.  

 After a week of attempting to design the lowering innovation in Solidworks, it was 

determined that there would be too many moving parts to allow for a feasible, strong frame. The 

pins would have seen a significant amount of stress, and it was determined that the pinned 

connection would have encountered many problems with getting stuck in one position or the 

other. After much consideration, this lowering innovation idea was scrapped and an adjustable 

steering and seating system was designed.  

 An adjustable steering and seating system was designed to address the constraints of a 

normal bike frame. It was determined from various research that one bike frame can generally 
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only accommodate a height range of about 3 inches for maximum comfort and power exertion. 

Meaning for one specific bicycle frame, it might only be recommended that users who are 5’-10” 

to 6’-1” should use that one frame. This is a rather limited range, so it was desired to create a 

frame that could accommodate a wider range of heights. The goal was to create a frame that 

would be comfortable for users who were 5’2” to 6’4” tall. 

 In order to accomplish this goal, an adjustable seat was designed to be able move forward 

and backward relative to the fixed pedals. In this fashion, the user could find the best seating 

position that would allow for maximum comfort and power exertion. Next, once the user was 

seated comfortably, he or she would be able to adjust a steering wheel, similar to a car’s, 

forward, backward, up and down. In this manner, the user’s legs and arms would be in the most 

comfortable position. A more in depth explanation of the innovation can be found in Section 3.2. 

 Another goal of the design was to achieve a top speed of 35 miles per hour. In order to 

achieve this goal, an aerodynamic fairing was added to the front of the vehicle. This fairing, in 

combination with the two wheeled designed, would cut down on aerodynamic drag, 

consequently allowing the user to reach a higher top speed. The overall design, including the 

adjustable seating, steering, and aerodynamic fairing, can be seen in the Figure 2.6.3 below.  

 

Figure 2.6.3: 3D Model of the whole vehicle 
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2.7 Project Management 

2.7.1 Timeline 

 Figure 2.7.1.1 shows a timeline of the One-Ride project. The project began in late 

September 2014 with research on current bikes and how these bikes are manufactured. The 

research included customer surveys and interviews as well as studying current bikes on the 

market and the bikes designed by previous HPVC teams at Santa Clara University. In late 

October the One-Ride team began drafting funding proposals in order to gain money for 

foreseeable bike costs, including things such as tires, gears, chains, materials, and welding. From 

these proposals we received over $4,000 from several groups, including the SCU engineering 

undergrad program, Roelandts family, and local ASME/IEEE/IEEE VTS chapters. In late 

November we focused more on the design of the bike. Using the Solidworks program, a 3-D 

model of the One-Ride design was created. Then using Abaqus, a finite element analysis 

program, the 3-D model was tested to ensure the design met the safety and strength constraints 

set by the team and ASME HPVC competition judges. The analysis was completed in late 

February, which allowed for manufacturing to start in early March.  

 Chavez welding and manufacturing, a local welding company, was contacted to produce 

to produce our frame. This portion of the project took longer than expected, which unfortunately 

resulted in the assembly and testing of the bike to begin in early April. During assembly and 

testing, the team discovered some major problems with the bike that were not found in the 

analysis. Due to these issues the bike was not ridable for the ASME HPVC design competition. 

The team has found solutions to these problems and moving forward will assist next year’s team 

in implementation if they wish to improve upon the One-Ride design.   
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Figure 2.7.1.1 Timeline of Project  

 

2.7.2 Cost and Budget 

 Recumbent bicycles that are currently on the market range anywhere from $1,500 to 

upwards of $10,000. This retail price however doesn’t take into account all the design changes 

and excess money that was put into completing the final design. The One-Ride team began the 

year with funding proposals and strived to collect as much money as possible to allow for design 

modifications, outsource of labor, and for components. While some of the parts were machined 

in-house at the Santa Clara University Mechanical Engineering Shop, Chavez welding 

manufactured the majority of the Aluminum 6061 T6 frame. The total available budget was 

$4,460 and of this, $4,390 was used. Table 2.7.2 details the cost to design and produce (1) One-

Ride vehicle.  
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Table 2.7.2.1 Budget Breakdown 

Category Price 

Aluminum 6061 T6 $600 

Chavez Welding $1500 

Heat Treatment $325 

ASME HPVC Registration $450 

Initial Design Documents $100 

Wheels/Tires $250 

Bolts/Nuts $100 

Testing Equipment $65 

Seating $75 

Helicoil Threading $100 

Gearing/Derailleur $150 

Gear Cassettes $100 

Steering Components $350 

Brakes $75 

Cables/Gear Shifters $150 

Total $4,390 

 

 

2.7.3 Team Management 

 The One-Ride team worked extremely well together. With a five member team it can 

often be difficult to get things done if different team members are on different pages. This was 

not the case with this year’s team. Everyone had similar ideas and any conflicts were diffused 

quickly and easily with both parties agreeing with the solution. Having a larger team also made it 

easier to split up tasks and positions. Everyone on the team had particular skills that allowed him 

to take the lead on certain aspect of the projects. C.J. Toy was the team manager. He was in 

charge of setting meetings, turning in documents and making sure deadlines were met. Alex 
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Fisher was in charge of design. Coming into the project with the most experience working with 

Solidworks he was put in charge of final CAD designs and putting together the final model. 

Brendan Taylor was in charge of running the FEA once the final model was put together. Alex 

Sahyoun took the lead on the physical testing of the frame. He did the research on the best way 

to test the frame and made sure all the necessary equipment was around when it was time to test 

the frame. Geoff Schmelzer was in charge of the budget and finances. He monitored our budget, 

and made sure we had enough finances to complete the entire project within what was originally 

projected. He also performed a cost analysis of what it would cost if we took the bike into the 

market.  

 

2.7.4 Risks and Mitigations 

 There is a large amount of risk that came along with designing the One-Ride human 

powered vehicle. The biggest risk is rider safety. As the designer of the bike, our team wanted to 

make sure that the rider was as safe as possible when seated in the bike. When looking at the 

design there are several areas where the bike could be considered a safety hazard. These areas 

and how they were addressed are described below.  

 

Rotating Mechanical Parts 

There are several rotating mechanical parts, such as the gears, steering wheel, and tires on 

the bicycle that have the possibility of pinching or catching the rider. In order to address these 

issues the position of the gear assemblies and chain were chosen for optimum bike performance 

while also keeping most of the assemblies and chain path a safe distance away from the rider.  

The steering column of the bike is in a housing tube as well, protecting the rider from 

getting caught when turning the steering wheel. The wheels are located at the ends of the bicycle 

with the rider sitting in the middle. Therefore when the rider is operating the bicycle he is not at 

risk of getting caught in the spinning wheels. 

 

Bike Tip-Over and Frame Strength 

In order to keep the rider safe during a tip-over, a seatbelt and roll bar were installed on 

the bicycle. The seat belt is a 4 point harness that comes over the shoulders and wraps around the 

waist of the rider. The seat belt keeps the rider secured during a tip-over and prevents the bike 
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from falling on top of them. The rider will also be wearing a helmet any time he or she is sitting 

on the bike.   

The roll bar surrounds the rider on the sides and above the head and is made of 6061 T6 

aluminum tubing. In order to make sure our roll bar would not fail during a tip-over, several tests 

were run in Abaqus to simulate different tip-over scenarios with varying loads on the roll-bar. 

Based on these results, the thickness of the aluminum tubing was adjusted to ensure there was a 

factor of safety of at least 2 for the roll bar. 

Similar tests were performed for the entire frame of the bicycle to ensure the frame would 

support the weight of a rider without failing. Last year’s model was also examined for weak 

points such as warped tubing or cracks in the welds. If problems were found we made sure our 

design was adjusted in similar areas to make the bike stronger. One example is the connection 

between the bottom tube and cross tube. Cracks in the weld were observed on last year’s design 

so gussets were added this year to the same area to increase the strength and prevent cracking.  

 Physical tests were also performed on the final frame after it was heat treated. Using a 

come-along, straps and a tension gage the frame strength was tested to the required amount 

(600lb top load and 300lb side load) set by the ASME HPVC competition. More details about 

the experiment and the results of the test can be found in Chapter 3.5.3: Safety Analysis.  

 

Bike Visibility 

To address the hazard of low visibility, our design includes reflectors and flags that will 

increase the visibility during both day and night riding. Since the bike is very low to the ground 

the flags are tall enough where they will be in the line of sight of someone driving a car. The 

reflectors are placed on the front and rear of the bicycle to so any lights from a car or street lamp 

will reflect off and alert nearby vehicles of the rider’s presence. 

 

Testing Bike Rideability  

To ensure all safety precautions were followed each time the bike was tested, a pre-ride 

checklist was gone through. The checklist is shown below.  

o   Advisor is present 

o   Riding area is safe (no threat of cars, pedestrians etc.) 

o   Campus Safety is notified and has approved riding area 
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o   Bike is checked for any cracks in welding or bends in tubes 

o   Rider is equipped with helmet and proper attire (no baggy clothes, close-toed shoes) 

o   Seat Belt is fastened properly 

 

2.8 Sustainability 

 A successful and conscious engineer must not only make a functional design, but must 

also consider its sustainability, or environmental impact. Since one of the main motivations of 

the One-Ride HPV was to help reduce emissions and lower fuel consumption used by 

commuters, it would have been pointless to create the One-Ride HPV if the design was not 

sustainable to manufacture. The One-Ride HPV design features materials that are not hazardous 

to the environment to manufacture. Not only is the One-Ride design environmentally friendly to 

manufacture, it could potentially play a huge role in reducing overall C02 emissions and fuel 

consumption from commuters. Since 68% of Americans commute 15 miles or less, an HPV 

would be a perfect alternative to many of those commuters since the commute is relatively short.  

 Since the One-Ride design solely relies on human power to propel itself the rider could 

be considered an engine. Like all other engines, efficiency is one of the top priorities. Efficiency 

was kept in mind throughout the entire One-Ride design and was one of the main reasons the 

design was made with only two wheels. This allows for a reduced frontal area and therefore 

reduced drag through the air. This allows for less energy to be used in order to maintain a certain 

speed meaning the rider can go that much further. The One-Ride design features a wide range of 

gear ratios allowing for minimal pedaling force at speed. 

 Another main objective of the One-Ride HPV design was to reduce the need for multiple 

sized bikes. Since the One-Ride features an innovative seat and steering adjustment, the frame 

can fit any rider between 5’2” and 6’4”. Since most bike frames only have a height range of 

about three inches, the One-Ride allows for the rider size adjustability of 6 bike frames in one. 

This means that the user does not have to constantly buy new bike frames to accommodate a 

rider size change such as a child slowly growing. This is another way in which the One-Ride 

HPV is designed to be environmentally friendly.  

 With environmental harm becoming an increasingly significant topic in today’s world, 

the One-Ride HPV offers a way for the individual to do his or her part in helping the world they 



26 
 

live in. The One-Ride HPV causes no environmental harm to ride and virtually no harm to 

manufacture when compared to an automobile.  

 

2.9 Ethical Impact 

         Engineers are constantly faced with challenges that they must overcome. Some of these 

challenges are easier than others while some require more thought and perseverance. We also 

have a duty to make sure that what we make is safe and reliable which provides the most 

challenge when faced with a project. When human safety is added to the goals, the project 

becomes much harder to achieve through normal means. Instead of having to only worry about 

the integrity of the project, we must also be concerned about the safety of the user. As we 

worked on the HPV, we realized that compromises had to be made in the performance part of our 

project to ensure that safety was also covered. However, these sacrifices were necessary as they 

are an integral part of what it means to be an ethical engineer. There are many other factors that 

we must consider, including sustainability, cost, and societal impact. Health and safety is 

paramount for being an ethical engineer and is a consideration that should not be overlooked 

when designing any project. 

 

Health and Safety 

 Since our project involves individuals directly using our product we had to make sure that 

if any accidents occurred that the person would be safe and remain unharmed. Part of the ASME 

Ethical code requires us to act in manner that is conducive to the health and safety of the public. 

If we were to not hold that ethical standard to the highest degree then we would have failed as 

engineers. That is why when building the HPV we placed restrictions for what we considered 

acceptable as well as the restrictions that ASME had placed for us. In our design to ensure that 

the rider was safe and not in any danger during an accident a minimum factor of safety of 2 was 

used. This factor of safety ensured that if any extra force was experienced the frame would not 

fail. We also implemented a roll bar protection system as required by the ASME design 

competition. This part of the requirements had set guidelines requiring a 600 lb force to act upon 

the top of the roll bar and a 300 lb force to act on the sides of the roll bar. During these loads the 

frame was not allowed to deform no more than 2 inches on the top and 1.5 inches on the sides. 

This guideline influenced us to change part of our design by strengthening the main tube of the 
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frame. Over all the ASME ethical code as well as the stringent design requirement inevitably 

altered our design. 

 

Sustainability 

        Another area of focus was how sustainable our HPV would be as environmental impact 

due to manufacturing is a growing concern for companies today. Our frame, while not 

biodegradable or made from recycled materials, is made of aluminum which can be recycled. 

This part of the project has some flexibility, but ultimately due to aluminum’s strength to weight 

ratio it was selected as the primary part of our frame. Our design also pushes to cut down on the 

number of bicycles needed in a household due to the innovative adjustable seating and steering 

that we designed. A typical bicycle has about a 3 inch growth limit, such that when a rider 

purchases a bicycle he has about 3 inches of growth that can occur before a new bicycle is 

needed. With our HPV, design a foot of growth can be accommodated, thus allowing for less 

bicycles being purchased and less material being used. 

 

Environmental, Public Health and Cost 

        Today fossil fuels are still the main source of energy that people use for transportation. 

Whether it is a car or public transportation, some form of fossil fuel is being burned. This does 

not benefit the planet or the public health at large as carbon dioxide emissions continue to rise. 

With our HPV we hope to push people into using a HPV so that they not only can save money on 

gas but help by taking vehicles off the road and reducing emissions as well. Another benefit of 

using a HPV is the health improvement of the user. Since we, as engineers, have to use our skills 

for the betterment of society, pushing people to not only save the planet but also improve their 

own health provides a positive goal for both the user and the user’s environment. Ideally this 

would push people to use their HPV for short distance trips rather than using a car and, if at all 

possible, eliminate purchasing a car altogether. Current Green technologies are accelerating even 

faster, but are hampered by one aspect, the technology is expensive. Currently the most popular 

electric vehicle on the market is the Tesla Model S. The Tesla Model S has a MSRP of 70,000 

dollars, not an insignificant amount of money for someone to consider without a long term 

budget. Battery technology is only getting better, but until it becomes cheaper those type of 

options are available only to financially secure individuals. By using the HPV model a person 
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could afford to not only benefit the planet, but benefit from cutting the cost of having a car 

altogether. We planned on making an affordable HPV that was in the price range of about 1000 

to 2000 dollars. We determined that this was a competitive range when compared to current HPV 

on the market.     

 

Impact 

        With these design considerations in mind we made various improvements on our design. 

As mentioned earlier, the main frame was bumped from 1/8 inch wall thickness to 3/16 inch. 

This was to ensure that the frame would not bend during operation and would provide a solid 

base for the rest of the HPV to build upon. In the roll bar testing we found that the roll bar only 

deflected no more than 1 mm when under the 600 lb load and only 2 mm when under the 300 lb 

side load. Those tests will be discussed later on in section 3.1.2 in a little more detail. As for the 

look and feel of the bike since our bicycle was to have a roll bar system and we moved to a 

recumbent style frame the roll bar was placed such that the rider would have good overhead 

protection and was seated under the roll bar in all seating positions. Since we were mainly 

focused on the safety of the rider most of the frame is centered on the user as a whole. Our 

innovation, as well, was to increase the overall comfort of the rider. By improving the comfort 

we can improve the travel distance as the rider will have more back support allowing for stronger 

pedaling power.   

  

2.10 Health and Safety 

         During the design of the One-Ride HPV there were many safety concerns that needed to 

be addressed by both the ASME competition standards and for general safety of the rider. Since 

the goal is to provide a healthy alternative for short distance travel, the design must also ensure 

that the trip is not a dangerous one for the rider. 

         

Design Safety 

         The safety goals of this project were clear, design a HPV that would protect the rider 

from rollovers as well as be safe to operate. Much of the design was based around the ASME 

HPV standards such that a roll bar was integrated into the frame of the HPV to provide excellent 

protection should the rider experience a roll over. The main focus was the limits set by the 
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ASME rules which required a roll bar to withstand a 600 lb load acting 12 degrees from the top 

without deforming more than 2 inches, and a side load of 300 lbs without deforming more than 

1.5 inches. These considerations formed the backbone of our safety concerns as well as ensuring 

a minimum Factor of Safety of 2 on all parts of the frame. 

 

Material Selection 

        There were many considerations for the material that was to be used to make the frame. 

Since safety was a major concern a stronger material was favored, however weight was also an 

issue as we desired a lighter frame for speed in the competition. This led us to consider three 

options carbon fiber, steel or aluminum. In the end we decided to use Aluminum 6061-T6 as it 

has both the strength and the weight that we desired. This type of aluminum is also widely used 

in the commercial bike market, thus confirming a decision to move forward with the design. 

There were issues with this material that we later discovered, but that will be covered later on. 

 

Manufacturing 

        All parts of the frame were checked beforehand by a machinist to ensure that the parts 

could be made not only successfully but safely as well. Parts of the frame also needed to be 

welded as well which was done by an industry professional to ensure that it was done correctly 

and safely. For in house manufacturing, all parts were made under the supervision of a machine 

shop manager and were made by experienced members of the team.      
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3 Detailed Design and Analysis 

 When designing the HPV, priority was placed on implementing an innovative steering 

system, a protective roll cage, an efficient drivetrain system, and an aerodynamic fairing. It was 

decided to fabricate the frame from Aluminum 6061 T6, because it would reduce the weight of 

the frame when compared to high strength steel. The design featured an adjustable steering 

system with a steering wheel interfaced to the front fork with a double u-joint. The vehicle 

utilized 2 sets of gear and 2 derailleurs to create 14 possible gearing combinations. A standard 

rim brake was used for the front wheel, while a disc brake was used for the rear wheel. It was 

planned to use the aerodynamic fairing from the previous year’s design, but due to unforeseen 

design issues, the fairing could not be mounted. The seat was fabricated from plywood with 

foam cushioning and storage compartments were located in the rear of the frame. 

 

3.1 Frame  

3.1.1 Background 

 In a recumbent-style vehicle, the rider can operate the vehicle at a reclined angle which 

allows the center of gravity to be closer to the surface of the ground and creates a more 

comfortable riding position when compared to a traditional bicycle. When starting the initial 

design process for the frame, two different type of frame designs were considered. The first was 

a three wheel tadpole design and the second was a two wheeled design based off the 

groundhugger frame12. It was decided to go with the two wheeled design because a high top 

speed was desired. The two wheeled design offers great stability at high speeds, although it does 

sacrifice stability at low speeds. The three wheeled design is quite stable at low speeds, but at 

high speeds, this stability is sacrificed. This stability is sacrificed because at high speeds, the user 

cannot properly during, allowing the possibility for a roll over. See the decision matrix in 

Appendix D for more information. The goal was to design a lightweight (under 10 lb) frame that 

could hold the weight of the rider plus cargo (~250 lbs) while maintaining stiffness so that the 

majority of the pedal force is transferred into linear motion. The design of our vehicle is detailed 

below.  

 

 

                                                
12 Robert Riley “Ground Hugger XR2,” Robert Q. Riley Enterprises, November 1, 2014 



31 
 

3.1.2 Frame Design 

 The center of gravity of the vehicle was designed to be as low as possible in order to 

increase stability and decrease the aerodynamic drag. Reducing aerodynamic drag is key for the 

vehicle to be able to achieve a top speed of 35mph. When testing last year’s design, it was 

noticed that the seating position was not comfortable for all of the team members. The issue was 

addressed by creating a more upright, adjustable seating position that will be later explained. 

With a more upright seating position, the cross-sectional area of the user and vehicle is 

increased, consequently increasing aerodynamic drag. This posed a problem because it was 

desired to cut down the aerodynamic drag. It was decided for this reason, and others, to go with 

the two wheel design because it would cut down the cross sectional area of the vehicle in front 

by almost half. After this decision, the next step in the process was determining the proper size 

of the frame based of the various sizes of our group members. A seat mockup with pedals was 

created and tested out by all of the group members, upon which measurements were made for 

each member. A picture of the mockup with and without a user can be seen in Figure 3.1.2.1. 

 

              

 

 

 

 

 

 

 

Figure 3.1.2.1 Seat Mockup with and without user 

  

Once the measurements of the various team members were taken, a frame was designed 

in Solidworks that could accommodate the range of users with a roll bar. This roll bar was made 

big enough so that even the largest rider’s head would be covered and protected in the event of a 

roll over.  

 The frame design has two framestays and two wheelstays extending down from the roll 

bar to the rear axle of the wheel. This creates a triangulated geometry that keeps the rear wheel 
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rigid. Stiffness in the frame is key when designing a performance vehicle, because sway in the 

vehicle arrests forwards motion. A 3D view of the frame CAD model is shown below in Figure 

3.1.2.2. 

 

 

Figure 3.1.2.2 CAD rendering of the main vehicle frame  

 

Material Choice    

 While the shape and geometry is critical for the performance of the vehicle, it is also 

extremely important to choose the appropriate material. When deciding on what material to use 

to manufacture the vehicle, there were four criteria: strength to weight ratio, cost, 

manufacturability, and repairability (in order of importance). Next, research on various materials 

including carbon steel, aluminum, titanium, and carbon fiber was carried out.  

 Chromoly steel is one of the most common materials bicycles are manufactured from 

because it is cheap, has a good strength to weight ratio, and is easy to manufacture. On the 

opposite end of the spectrum, titanium has a fantastic strength to weight ratio, is very expensive, 

and difficult to manufacture. Carbon fiber also has a great strength to weight ratio, but is 

extremely difficult to manufacture, and very hard to repair. This was ruled out because of the 

manufacturing difficulties. Finally, there is aluminum which has a great strength to weight ratio, 

is easy to manufacture, and is reasonably priced.  
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 Upon further research, it was determined that Aluminum 6061-T6 would be the best 

material to meet the needs of design. It is lightweight and strong, with properties that allow it to 

be easily TIG welded unlike some different aluminum alloys. Table 3.1.1 compares the various 

properties of the different metals considered in the design process.  

 

Table 3.1.2.1 Material properties for commonly used frame design materials13 

Material Elastic Modulus (ksi) Yield Stress (psi) Density (lb/in3) 

Aluminum 6061 T6 10,000 40,000 0.0975 

Chromoly 4130 Steel 29,700 63,100 0.284 

Titanium Ti-6Al-4V 

(Grade 5) 

15,000 128,000 0.16 

 

Even though the aluminum has the lowest yield stress and elastic modulus, it is also the 

lightest out of all the metals. This allows the aluminum to be made into larger diameter and 

thicker tubes (which increases stiffness) while maintaining a lower weight than steel and much 

less cost than titanium. 

 

3.1.3 Frame Analysis 

As mentioned earlier the frame needed to be able to hold the weight of the rider and we 

also wanted to make sure that the frame would perform well while under an overstress situation. 

The material properties of Aluminum 6061-T6 are seen here in Table 3.1.3.1. 

 

Table 3.1.3.1 Material Properties of 6061 T-6 Aluminum 

Yield Strength 40000 psi 

Poisson’s Ratio 0.33 

Modulus of Elasticity 10000 ksi 

Density 0.0975 lb/in^3 

 

                                                
13 "ASM." ASM. N.p., n.d. Web. 30 May 2015. <http://asm.matweb.com/>. 
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Using ABAQUS CAE to run finite element analysis, and Solidworks to generate the, 

model the frame was generated and put under the various loads that we believed the HPV would 

experience as well as the ASME design requirements for the roll bar testing. 

Some parameters that were used to generate the finite element model were as follows: 

 

Overall Parameters  

·         Sections were solid and homogenous throughout 

·         The tetrahedral mesh algorithm 

·         All parts are mated such that welds are not included in analysis 

·         All parts are the same material 

·         Point loads were made rather than surface loads 

·         Holes and mounting points were included in the analysis 

·         Some parts were over stressed to ensure a good factor safety   

 

Some parts of the frame were overstressed, by factor of three, from what we believed to be 

the normal operating range as an assurance that the frame would be able to withstand the regular 

loading of the frame. 

 

Static Load Testing 

        For the first set of tests the full frame was placed into the Abaqus program and subjected 

to a 600 lb load acting on the seat position of the bicycle. This can be seen in Figure 3.1.3.3.  

For this test we assumed the following: 

 

Complete Frame Parameters  

·         Frame was completely static (fixed in x,y,z) 

·         Frame was subjected to a total force of 600 lbs. across the seat 

·         Overstress was used to ensure factor of safety 

 

From our results we concluded that the frame would have the max point of stress on the 

underside of the frame, which was to be expected. The frame also had a high factor safety, but 

due to either modeling errors or program behavior this factor of safety could not be counted on to 

be true. This was due to the fact that the program was giving a fact or safety of 4000. To ensure 

that the frame was still viable, the parts were tested individually.  
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Figure 3.1.3.3 FEA of 600lb load acting on the seat position. The color table shows the stress 

levels which range from 54.06 psi (blue) to 159.7 psi (red). The maximum stress, which occurs at 

the triangular gussets was 159.7 psi. The red crosses represent the areas where the bike model 

was fixed. In this simulation the fixed points are where the frame meets the tires.  

 

The main tube was tested to ensure that the heart of the frame could withstand the load of 

the rider. The main tube was made to 3/16 inch, wall thickness, aluminum tubing. 

The assumptions for this part of the frame were as follows: 

Main Tube Parameters  

·         Tube was fixed at both ends to simulate being welded to the frame 

·         Load of 250 lbs. was applied to the seat position on  the main tube 

 

The max stress was found to be once again on the underside of the tube and the max 

stress was calculated to be 10208 psi (see Figure 3.1.3.4). The yield strength of the material is 

40000 psi. This effectively gave a factor of safety of 3.89 and minimal deformation, about 

.00135 inches. This fell well within our goal of a factor of safety of 2 and demonstrated an 

excellent base frame strength. There was concern over stress concentrations near the opening for 

the pedals, but this test demonstrates that it would not compromise the frame integrity. 
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Figure 3.1.3.4 FEA of main tube 250 lb load. The red crosses represent the fixed points of the 

beam. The results can be seen results Table 3.1.3.2 

 

Table 3.1.3.2 Main Tube Finite Element Analysis results 

Max Stress Factor Safety Max Deformation 

10208 psi 3.89 .00135 in 

 

The roll bars were a primary focus of design as they had strict regulation that had to be 

adhered to in order for the HPV to be enterable in the design competition. Part of the ASME 

standards requires that the roll bar system must experience not more than 2 inches of 

deformation from a top load of 600 lbs and no more than 1.5 inches of deformation on the sides 

from a 300 lb load. These parameters were the driving factor in our roll bar design and testing.    

For the top load test (Figure 3.1.3.5) the roll bar was under these constraints: 

 

Roll Bar Parameters  

·         Fixed at the bottom to simulate a weld to the frame 

·         Subjected to a 600 lb point load on the top of the roll bar 
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Figure 3.1.3.5 FEA of 600 lb top load on rollbar. The red crosses represent the fixed portions of 

the roll bar. The results can be seen in Table 3.1.3.3 

        

 The roll bar performed beyond the requirements having a max stress of 13060 psi and a 

resulting factor of safety of 3.06 (Table 3.1.3.3). The frame was also predicted to deform .0093 

inches, which was far below the ASME allowed limit.  

 

Table 3.1.3.3 Rollbar top load Finite Element Analysis Results  

Max Stress Factor Safety Max Deformation 

13060 psi 3.06 .0093 in 

 

 

The side loading was subjected to the same parameters albeit with only 300 lb side load 

and being fixed on the side to simulate a rollover (Figure 3.1.3.6). The side frame analysis also 

included the cross bar as it too would provide strength to the roll bar. 
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Figure 3.1.3.6 FEA of 300lb side load on rollbar. The red crosses represent where the model 

was fixed. The results can be seen in figure 3.1.3.4.   

 

The side load test performed with in the design constraints giving a max stress of 9110 

psi and a factor of safety of 4.39 and a predicted deformation of close to zero, 2.944E-4 inches. 

With these test completed we felt that the design was sufficient enough to begin manufacturing 

the frame. 

 

Table 3.1.3.4 Rollbar Side load Finite Element Analysis Results 

Max Stress Factor Safety Max Deformation 

9110 psi 4.39 2.944E-4 in 
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3.1.4 Frame Manufacturing 

 Once everything was theoretically tested in ABAQUS CAE, the CAD model of the frame 

was sent off to Chavez Welding to be manufactured. The manufacturing was done off site, rather 

than on campus, because Santa Clara University did not have the proper welding equipment to 

do aluminum TIG welding. As previously mentioned, the time it took to manufacture the frame 

took much more time than expected and delayed assembly. In order to manufacture the frame, 

Chavez Welding used a CNC machine to manufacture some of the more complicated parts and a 

tube bending to create the shape of the roll ball. A picture of the fully welded frame after being 

manufactured can be seen below in Figure 3.1.4.1.   

 

 

Figure 3.1.4.1 Fully welded frame from Chavez Welding 

 

 Everything went according to plan except for some issues with the seat innovation, which 

will be explained in the Challenges, Problems, and Solutions section of this thesis. These 

problems arose from the heat treating process in order to regain the strength lost in the welding 

process.   
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3.2 Innovation 

3.2.1 Innovation Background 

As previously stated, to satisfy the innovation requirement of the HPV competition, it 

was decided to create an adjustable seating and steering system to accommodate various sized 

riders. This innovation would decrease theoretical manufacturing costs of the vehicle because 

one bicycle would work for a large population of people, eliminating the need to create various 

sized frames to fit a range of different sized people. Additionally, the system utilizes a steering 

wheel that is operated much the same as a car’s steering wheel. It allows the user to be 

comfortable while riding the vehicle by allowing them to place their arms in an ideal driving 

position.  

 

3.2.2 Innovation Design 

The first part of the innovation is the adjustable seating position. Since the pedals are in a 

fixed position, an adjustable seat was designed to allow people with various sized legs to all 

reach the pedals. There are five different seating positions, each one inch apart from one another. 

As seen in Figure 3.2.2.1 below, the arrows indicate the direction in which the seat can move 

forward and backward within the mounts on the frame. The other part of the innovation is the 

adjustable position of the steering wheel.  

 

Figure 3.2.2.1 Movement of Seat. The frame can move both forwards and backwards and 

indicated by the arrows to adjust for different size riders. 
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 The adjustable steering wheel can move both vertically and horizontally to accommodate 

various size riders and works in tandem with the adjustable seat positions. The steering wheel 

can be adjusted within the steering column to allow for horizontal positioning. A collar clamp 

around the steering column creates compression around the moving tube to create enough 

friction to prevent movement of the steering wheel, once the ideal position has been found. The 

same adjustment system is used for adjusting the height of the steering wheel. To ensure that 

rotational motion always was transferred to the steering column a safety pin was placed through 

both the steering column and steering wheel. The movement in the vertical and horizontal 

position can be seen in Figure 3.2.2.2 below.   

 

 

Figure 3.2.2.2 Movement of Steering Wheel. The telescopic steering wheel can be moved 

closer or farther away from the rider based on his or her desired position. It can also be moved 

up or down based on rider height.. 

 

The adjustability is made possible by a slit in the steering column and the collar clamp 

that creates the clamping forces necessary to transfer steering forces. The steering column is 

housed in a tube that allows for the adjustment of height and also provides protection from 

rotating parts. The steering column is able to move within this housing tube because of nylon 
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bushings between the two parts. The collar clamp and bushing can be seen in Figure 3.2.2.3 

below. 

 

Figure 3.2.2.3 Steering Wheel and Collar Clam. By loosening and tightening the collar 

clamp the steering wheel can be adjusted in and out based on the riders preferred position.  

In order to transfer the steering motion from the steering wheel down to the front wheel, 

the steering wheel is attached to a steering column, which is welded to a u-joint, which is welded 

to the front fork. This u-joint not only transfers the steering forces, but it also allows for the 

various height positions of the steering wheel. With all of the various adjustments of the seat and 

the steering column, a wide range of users will be able to ride the vehicle comfortably. This u-

joint assembly can be seen in Figure 3.2.2.4 
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Figure 3.2.2.4 Steering Column with U-Joint Assembly. The U-joint connects the front 

fork to the steering column which is connected to the steering wheel (not shown).  

  

The assembly above shows how the steering column operates with the front fork. The 

housing tube not only acts as the tube to guide the steering column, it also provides some safety 

for the rider. The housing tube extends over the u-joint to prevent anything from getting caught 

in the rotating u-joint. In order to mount this housing tube to the main tube, a mounting bracket 

was needed.  

The mounting bracket was designed so that the housing tube could adjust for the various 

heights and be removable to easily service the bike. The bracket can be seen below with an 

innovative locking system to prevent the column from accidentally dislodging itself. 
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Figure 3.2.2.5 Housing tube mounting bracket 

In the figure above, it can be seen that there are threaded rods welded to the housing tube, 

which can move in and out of the cut outs in the mounting bracket. In order to ensure that the 

housing tube would not accidentally dislodge from the cut outs, a locking feature was designed 

using a tabbed washer, mating slit in the bracket, and a nut. The mating slit in the bracket 

matches the size of the tab on the washer so that when it is assembled, the tab fits securely in the 

slit, preventing the housing tube from rising out of the cut out. 

3.2.3 Innovation Manufacturing 

 After finishing the overall design and Finite Element Analysis, it was time to start 

building the HPV. The One-Ride design involves multiple moving parts to allow for user 

adjustability.  
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Figure 3.2.3.1 Right side seat adjustment rail system. These parts were manufactured at Santa 

Clara University and sent to Chavez welding to be welded to the rest of the frame 

 

To prevent the added adjustability from creating play in the seating, a precise fit was 

required, so the three seat adjustment rails were machined using a mill. All three rail systems 

were made of the same aluminum 6061-T6 alloy used in the rest of the frame. After machining 

of the rails was completed, each of the individual adjustment holes were tested with the pin to 

ensure fitment for all rail positions. The rail system shown in figure 3.2.3.1 is for the two top 

mount seat adjustment rails, figure 3.2.3.2, shown below, shows the assembled and pinned top 

rail seat adjustment. 

A similar system to the one above was used for the lower seat adjustment rail positioned 

under the seat. The length of the lower slider rail was increased to ensure safety and rigidity 

since it is experiencing much more of the rider’s weight. The lower slider rail can be seen in 

figure 3.2.3.3. 

After completing the manufacturing for the seat adjustment system, the drive shaft and 

housing tube were then machined for our steering system. The housing tube was made with the 

same aluminum 6061-T6 alloy used in the rest of the frame, and featured a cutout for the double 

u-joint to pass through to insure clearance for any amount of turning. This cutout was done using 

the mill, along with the mounting hole located just over the cutout. The assembled housing tube 

showing the cutaway and mounting hole can be seen in the figure below. 
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Figure 3.2.3.2 Pinned right seating bracket 

 

 

 

Figure 3.2.3.3 Seat slider rail for seat position adjustment. This piece was manufactured at 

Santa Clara University and sent to Chavez welding to be welded to the rest of the frame 
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Figure 3.2.3.4 Housing tube and u-joint connection 

  

After manufacturing the housing tube there was a large gap between the mounting 

bracket and the housing tube. In order to fill this gap, 6 washers were used that prevented 

virtually any steering play once compressed by the two brackets during assembly. After 

completing the manufacturing of the housing tube, manufacturing began for the steering drive 

shaft. Instead of the typical aluminum 6061-T6 alloy used throughout the rest of the bike, 

Chromoly 4130 steel was used instead to ensure weldability to the u-joint connection. The drive 

shaft featured four slits cut using a vertical band saw to allow for the drive shaft to crush around 

the steering tube using a collar clamp. The drive shaft connection to the steering tube can be seen 

below. 

The collar clamp alone did not provide enough clamping force to fully translate the 

steering motion from the steering wheel to the drive shaft. In order to remedy this issue a hole 

was milled through the drive shaft and inner steering tube to allow for a pin to be fitted (Figure 

3.2.3.5). This added safety pin allowed for virtually no play to be seen between the steering 

inputs to the drive shaft.  
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Figure 3.2.3.5 Drive shaft to steering tube collar clamp and pin connection 

  

 After completing as much of the in-house manufacturing as possible the rest of the frame 

and adjustment parts we had made were welded by Chavez Welding. After receiving the welded 

frame it was already known that much of the strength had been lost due to the loss or lowering of 

the temper rating. In order to regain this lost strength the frame was sent to Byington Steel 

Treating. Due to time and budget constraints a full jig could not be made to prevent warping of 

the frame. This warping led to numerous problems, which is discussed in Section 3.6 Challenges, 

Problems, and Solutions of the thesis. 

 

3.3 Drivetrain 

3.3.1 Drivetrain Background 

 One of the three main goals of the One-Ride team was speed. In order to achieve high top 

speeds, the drivetrain design was crucial.  Even though it is very important to the team’s design 
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goals, the drivetrain design was one of the last systems developed because other subsystems, 

such as the frame and steering system, had larger impacts on the bicycle’s overall functionability. 

It was determined early that a multiple gearing system would be needed to achieve higher rpm at 

the rear wheel. To do this, the rider would transfer mechanical energy through a large front gear 

and this would be transferred to a smaller second gear. This smaller second gear would be 

connected to a larger gear located on the opposite side of the frame through a bottom bracket. 

From the bottom bracket, the gearing would reach a seven speed cassette that would transfer the 

remaining power to the rear wheel. Since a two-wheeled design is subject to tipping when 

starting from rest, it was imperative that the drivetrain allowed for an easy transition from rest. It 

was desired to achieve a high top speed of 35mph which meant that friction and drag needed to 

be mitigated. 

3.3.2 Drivetrain Analysis 

 In order to calculate the optimal gearing for the One-Ride HPV, several assumptions 

needed to be made. It was assumed that an average rider pedals at a speed of 80 RPM at the 

crank with a 150 pound force. Microsoft Excel was used to find the optimal gearing ratios by 

calculating the revolutions per minute of the rear wheel.  From here, the revolutions per minute 

of the rear wheel was converted into miles per hour. For all cases, an 80 RPM speed at the crank 

was assumed. All of the detailed calculations can be seen in Appendix A. 

We achieved the highest rpm when using a 54 tooth front gear.  This gear was then 

connected to a 32 tooth bracket gear, which in turn was connected to a 54 tooth gear via a bottom 

bracket.  To achieve a high top speed, the chain would need to be connected to a small tooth gear 

at the cassette so that angular momentum is conserved.  To achieve a high top speed, the rider 

would need to have the bicycle on an eleven tooth gear located on the cassette.  Through the 

calculations, the bicycle rear wheel would reach a speed of 51.25 mph.  Even though this well 

exceeds our 35 mph goal, it doesn’t take into account the losses due to the weight of the bicycle, 

rolling resistance of the tires, and aerodynamic drag.   

 

3.3.3 Drivetrain Design 

Once the proper gearing setup was determined through basic analysis, the gear train was 

implemented on the bicycle. The basic setup of the gear train can be seen in the picture below, 
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where the pedaling gears move back to a set of gears that increases the gear ratio, which 

ultimately moves back to the rear wheel. In the gear train, there is also a follower that was 

implemented to increase the tension in the lower part of the chain. This was necessary to prevent 

the chain from catching on something and also to give better pedal feel for the user. 

 

 

Figure 3.3.3.1 Front portion of gears in the gear train 

This extra set of gears was implemented into the system to reach a much higher top 

speed. A more detailed view of this part of the gear train, where it transition through the bottom 

bracket, to the other side of the bicycle, back to the rear wheel can be seen below.     
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Figure 3.3.3.2 Rear gear train setup  

On the other side of the bike, with the larger gear, a derailleur was set up so that the user 

could choose gears at the position of the bike as well as at the rear wheel. A custom mount was 

fabricated to hold the derailleur in place and can be seen in Figure 3.3.3.3. 

3.4 Aerodynamic Design 

In order to decrease the drag of the One-Ride design the team decided to attach a fairing 

to the front end of the bicycle. This would reduce wind resistance and the overall drag 

coefficient. After looking at the fairing used in the 2014 HPV Team, Pegasus HPV, it was 

determined that the same fairing could be used in the One-Ride design. 

 

3.4.1 Aerodynamic Background 

The fairing was designed to be used as a both a shield for wind and to improve the overall 

aerodynamics of the HPV. The faring used this year was a recycle of the previous year’s faring. 

All of the analysis was done using the previous year’s faring. 
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Figure 3.3.3.3 Rear Derailleur 

3.4.2 Aerodynamic Design 

The design was focused on reducing the drag on the HPV which in turn would allow for 

higher top speed which was a focus of our design. The fairing that was used was from the 

previous year’s HPV as such many of the dimensions and shape were the same as last years 

design. One hope was to incorporate a full fairing, but due to budget constraints and time this 

was not achievable. The faring used for the design was a LEXAN polycarbonate faring that had 

the dimensions of 17 inches wide by 40 inches long with a depth of blow of 9 inches. 
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Figure 3.4.2.1 CAD model of person riding One-Ride design with fairing attached 

 

3.4.3 Aerodynamic Analysis 

For the testing of the fairings we used a CFD program known as STAR CCM+ which 

gave the fluid flow lines used for analysis. The first fairing test was a general model modeled in 

Solidworks to get a general idea of the how the air will flow over the fairing at 30 mph.  

 
Figure 3.4.3.1 Analysis of a generic fairing using Star CCM+ Program. The velocity 

ranges from 0.1662 m/s (blue arrows) to 16.34 m/s (red arrows).  
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For these tests the fairings were subjected to a 30 mph wind speed coming head on to the 

fairing. The next faring was the previous year faring. 

 

 
Figure 3.4.3.2 Analysis of fairing used by 2013 SCU HPV Team. The range goes from 

07.367 m/s (blue arrows) to 18.283 m/s (red arrows).  

 

These tests were conducted to see how the fairings would behave in the expected wind 

conditions. This orientation was chosen to simulate a head wind of 30 mph. These tests did not 

yield values for the coefficient of drag and thus the only known value were the previous year’s 

data points. The main reason no values were found was due to inexperience with the Star CCM+ 

software, because of this no data points could be found  

The next test demonstrated the fairing while it was attached to the frame. Here is the fluid 

flow when the fairing is attached the frame (Figure 3.4.3.3). Due to time constraints the fairing 

was not attached to the frame on the actual bike. For the aerodynamic analysis the following 

steps were taken to solve for the drag coefficient. Using Star CCM+ the model was imported 

from Solidworks. From there a box was created to represent the wind tunnel that the model 

would be placed into for analysis. 
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Figure 3.4.3.3 Star CCM+ analysis of rider and frame. The range of wind speed goes from 

0.86025 m/s (blue arrows) to 124.05 (red arrows).  

 

The box was then split up by different parts making the front and rear of the box to make 

the inlet and outlet of the tunnel. Form here the model was meshed by using the in program 

meshing tools. The mesh continua system was set up like so: Surface Wrapper, Prism Layer 

Mesher, Polyhedral Mesher and Surface Remesher. This was used to create the physical model to 

represent the physical system. The physics continua was set like so: Laminar Flow, Coupled 

Energy, Ideal Gas, Coupled Flow, Steady, Gas, Gradients and Three Dimension. With the 

physics system in place this established the parameters for the model. The wind velocity used 

was 30 mph to simulate the HPV moving through the air. The system was designed to stop after 

100 iterations and give a force coefficient report from the surface of the fairing. Unfortunately 

due to lack of experience with Star CCM+, no force coefficients could be found. Due to an error 

in the program, the drag coefficient could not be calculated accurately. As a result it was 

considered to use last year data. 
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3.5 Safety 

3.5.1 Safety Background 

 Safety is one of the main goals of the One-Ride team. We want the users of our bike to 

feel and be as safe as possible while they are riding a One-Ride bicycle. To make the bike as safe 

as possible it was fitted with a roll bar and 4 point safety harness. The roll bar encloses the rider 

on the sides and above his or her head.  

 

3.5.2 Safety Design 

The roll bar, which is made of a 6061-T6 aluminum with an outer diameter of 1.5 in is ⅛ 

in thick and is designed to support a top load of 600 lbs and a side load of 150 lbs. The height of 

the rollbar is 42in tall and it 24.5in wide. These dimensions were chosen based on what the 

expected height of the tallest rider would be. Since the bike is designed to allow someone who is 

6’4” to fit comfortably the rollbar was designed to be taller than that in order for the user’s head 

to fit underneath the roll bar while they are wearing a helmet. The loads were set by the ASME 

HPVC competition and also required that the top deflection be less than 2 in and the side 

deflection be less than 1.5 in when the loads are applied.  

 

3.5.3 Safety Analysis 

To ensure that the roll bar design was up to the ASME HPVC competition standards the 

design was tested in the finite element program Abaqus. In table 3.5.1 are the results of finite 

element analysis. As seen in the table, the roll bar passed the tests and was strong enough to 

support the loads required by the competition. With a factor of safety of over 3.0 the maximum 

deflection that was observed to be less than 0.01 for both the top and side loads. The test results 

for the finite element analysis can be found in Appendix A. 
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Table 3.5.3.1 Rollbar Finite Element Analysis Results 

 Load Amount 

(lbs) 

Max Stress (psi) Max 

Deformation 

(in) 

Factor of Safety 

Top Load 600 13060 0.0093 3.06 

Side Load 300 9110 2.944*10-4 4.39 

 

After it was determined through the finite element analysis that our roll bar was strong 

enough to support the required loads given by the ASME HPVC competition, the designs were 

sent to be manufactured and heat treated off site. When the frame was completed and returned, 

the roll bar was tested to ensure the FEA results were accurate and that actual frame was as 

strong as originally anticipated.  

In order to test the frame strength, straps were attached in tandem with a come-along and 

tension gauge and the entire assembly was wrapped around the frame as seen in Figure 3.5.3.1.  

 

 

Figure 3.5.3.1 Rollbar testing set up for side load (left) and top load (right) 

 

The come-along was then tightened until the readout on the tension gauge was at the 

desired load. Once the desired load was reached, a PVC pipe was fit snug between the frame. 

The load was then released and the deflection was measured based on the difference between the 

PVC pipe and the unloaded frame. Table 3.5.3.2 shows the results from the frame tests.  
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Table 3.5.3.2 Rollbar strength test results 

 

The physical testing proved that the frame was strong enough to hold the required loads 

set by the ASME HPVC competition. In each test the load was well over the minimum amount 

required and the deflection never exceeded 0.09 in.  

 

3.6 Challenges, Problems, and Solutions 

The One Ride team faced most of its challenges during the assembly and testing stage of 

the project. The first set of problems arose when the frame was heat treated. After the frame was 

welded the strength of the aluminum was severely diminished, dropping the hardness from T-6 

to T-1. To return the aluminum to its T-6 status the frame was heat treated. During the heat 

treating, the seat frame was warped and bent. This caused the sliders to become non-parallel 

(Figure 3.6.1). This prevented them from moving to the maximum and minimum positions that 

the seat was designed to move to. In order to test the design, the sliders were secured into the 

middle position (where they were when the frame was heat treated) and not moved for the rest of 

testing.  

The bending of the frame could have been avoided by manufacturing a steel jig that the 

frame could have been placed in immediately following the heat treatment process. This would 

have removed any deformities that would occur and kept the sliders parallel, which would have 

allowed the seat frame to reach its maximum and minimum positions. However, due to time and 

budget constraints, a jig was not manufactured for this project.    
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Figure 3.6.1 Bending of Seat Frame after heating treating. The bend prevented full 

adjustability in the seat. For the rest of testing and assembly the seat was fixed in its middle 

position.    

 

Another problem that occurred because of heating treating was misalignment of the rear 

axle of the bike. As seen in figure 3.6.2, the rear wheel was pointing 3 degrees off the centerline 

of the bike. When riding, this would have caused balance and control issues as the rear wheel 

would naturally want to pull the bike to the right.  

This issue was solved by filing back the hole on the left rear axle mount ½ in (Figure 

3.6.3). Filing the axle mount re-aligned the rear wheel and allowed it to point in the same 

direction as the rest of the bike.  

Another problem that was discovered during the testing of the bike was that there was a 

significant amount of free play or slop in the u-joint that was chosen to connect the driveshaft to 

the front fork of the bicycle. Because of the slop there was ±5 degrees of freedom in the front 

wheel while steering wheel was not phased. This made the bike difficult to ride because, when 

the test rider was shifting his weight to stay balanced, the front wheel would constantly be 

moving back and forth uncontrollably.  
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 Figure 3.6.2 Misalignment of the rear wheel due to axle warping. The wheel was 

pointing about 3 degrees off center as shown by the red lines. The line on the right shows the 

original direction of the wheel and the left shows the direction the wheel needed to point.  

 

 

Figure 3.6.3 The rear axle mount was filed backwards ½ in. This allowed the rear wheel 

to point in the same direction as the rest of the bike.   

 

In order to fix this problem, a new “no slop” u-joint had to be ordered. By replacing the 

current u-joint with the new one, the play in the front wheel will no longer occur and the rider 

will be able to have a much easier time remaining in control of the bike and the front wheel.  

 Another major problem with the bike was stability at low speeds. During ride 

testing it was impossible to get up to a ridable speed without someone else pushing the bike. This 

is a problem with any two wheel bicycle, however due to the reclined rider position and u-joint 

slop, it made the One-Ride bike impossible to ride.  
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To address the low speed stability issue, a balance wheel has been designed to act as 

support when the bike is at lower speeds. The balance wheel is a beach cruiser bike kickstand 

with a wheel attached to the end of it and will be attached to the bottom of the cross bar of the 

frame (Figure 3.6.4). A handlebar that will be designed later will allow for the rider to lift the 

balance wheel and make it parallel with the bike. By moving the wheel into the lifted position, 

the bike still retains the ability to lean when it goes around turns. Once the rider begins to slow 

the bike down, he can use the handlebar to move the wheel back into the down position so he can 

balance at the lower speeds. There will be two balance wheels, one on each side of the bike, so if 

the user over adjusts on one side he will be supported by the second wheel.  

 

 

 Figure 3.6.4 Balance wheel design (left) and expected placement(right). The wheel is 

only shown on one side but after tests are done on wheel strength, another wheel will be added 

to the other side to prevent over adjustment and tip over.   
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4 System Integration  

4.1 System Integration and Test 

 Since many parts of the One-Ride design involved complex motion or tight clearances 

many subsystems had to be tested prior to assembly or manufacturing. One of these subsystems 

was the steering to fork connection involving the u-joint. By using PVC piping, plywood, and 

mounting hardware, a mockup of the steering shaft to u-joint connection was made. A ½ in 

swivel from a toolbox was used to simulate the u-joint. The mock-up yielded excellent results 

and confirmed that the One-Ride steering and adjustable height would indeed work.  

 The next mockup was made to determine seating angles and distance of components 

relative to the rider. This was accomplished by having multiple potential users sit with their back 

to the wall and their feet elevated on a ladder, all of which was adjusted until the user felt most 

comfortable. Different sized people were used to determine the optimal distance and angle 

ranges to maximize comfort. 

 

4.2 Experimental Protocol and Results 

Table 4.2.1 shows experiments and the expected results for top speed, acceleration, 

endurance and deceleration. Because of the problems with the u-joint and balance at low speeds 

the tests have not been performed yet.  

 

Table 4.2.1 Experimental Protocol and Expected Results 

Acceleration 25 ft in 10 sec 

Top Speed 35 mph 

Endurance 25 miles in 2.5 hr 

Deceleration 15 to 0 mph in 8 ft 

  

Each of these tests can be done on the Santa Clara campus using only cones and a stop 

watch. Some tests such, as top speed and endurance were planned to be tested in the ASME 

HPVC competition. However, because the bike was not ridable during the time of the 

competition, the tests were not able to be completed. Once the new u-joint and balance wheel are 

installed and the bike is ridable, the tests will be performed to see if our desired results can be 

reached. To test the top speed, two cones will be set up 15 ft away each other. After gaining 
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maximum speed, the rider will pass through the cones. A timer will start when the front tire 

passes the first cone and will stop once the front tire passes the second cone. Using the equation 

                    𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
                                                 (1) 

the top speed of the bike can be determined.  

 To test the acceleration the cones will be placed 25 ft apart. Starting from the first cone at 

0 mph a timer will begin and the rider will accelerate through the second cone. With the equation  

                              𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 2 ∗
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒2
                                    (2)     

The acceleration of the bike can be calculated.  

To test the braking force, two cones will be set up 8 ft apart. The rider will get the bike up 

to 15 mph using a speedometer and drive by the cones. When the first wheel passes the first cone 

the rider will apply the brakes. If the bike fully stops before the front tire passes the second cone 

the bike has the required stopping force. If not, then the brakes must be adjusted and the test will 

be redone until it stops within the cones.     
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5 Cost Analysis and Business Plan 

5.1 Cost Analysis 

 Engineering projects are limited by the amount of money that is available.  Whether it is 

the design of a bicycle or the design of an aircraft, we live in a world that is dictated by money. 

For our project, the team received roughly $4,500 dollars from the Santa Clara University 

Undergraduate Engineering Grant, the Roelandts Grant, and ASME IEEE/IEEE VTS. When 

designing any product, more funds are needed to allow for all of the design modifications and 

changes that go into producing a full prototype. 

The cost to produce a One-Ride bicycle was broken down into subcategories, which 

included raw materials, manufacturing, competition fees, and change orders.  Chavez Welding 

purchased and welded all of the Aluminum 6061-T6 material for a total of $2,100. While the 

seating brackets and mounting brackets were manufactured in-house, we contracted Chavez 

Welding to manufacture the majority of the frame due to limited shop capabilities. The 

aerodynamic fairing was reused and mounted from the 2013-2014 HPV Pegasus team which 

saved upwards of $500. All other components such as bolts, washers, wheels, tires, ect., were 

purchased for roughly $1,350. We also purchased initial design documents supplied by the 

Groundhugger XR2 for $100 to begin our preliminary design of the One-Ride. A second, larger 

U-Joint was purchased for an additional $150 which is an example of one of the many change 

orders we incurred. In total, the team used all of the funding available and also invested a small 

amount of personal money.   

 

5.2 Business Plan 

 The business plan is a simulation of the One-Ride Team’s proposal to investors if we 

were to start a company that built and sold One-Ride HPVs.  The business plan contains 

background information on the design, initial startup costs for machines, rental space etc., 

everyday costs such as bike components, and salaries, final sale price of one bike, and a ten year 

plan that shows the profit the company would make.  

 

Abstract 

         Through research from customer interviews and surveys, five mechanical engineers 

developed a two-wheeled recumbent bicycle that incorporates customer preferences in a human 
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powered vehicle. Amongst these are a fully adjustable seating and steering system that allows 

riders from 5’2” to 6’4” to commute to destinations of under 20 miles in a safe, comfortable, and 

fast manner. With a retail price of $2,644, this proposed business plan details the strategy to 

bring this recumbent bicycle to market in a time when traffic congestion and carbon dioxide 

emissions are at an all-time high.    

 

Introduction 

         As more and more recumbent bicycles enter the market, it becomes increasingly difficult 

for consumers to choose one bicycle over another. It is difficult to distinguish one company over 

another unless there are distinct differences between bicycles that the rider notices and prefers. 

The goal of the One-Ride HPV team was to find a way to entice potential clients into choosing 

our design. Through an innovative adjustable seating and steering system that provides comfort 

and adaptability between riders, we aim to satisfy customers by providing a durable and long-

lasting bicycle that can replace short to medium range trips that are less than 20 miles. Through 

customer interviews, we have narrowed customer’s interests into three main categories. Through 

speed, safety, and comfort designs, we have successfully completed the design of an aesthetically 

pleasing and safe bicycle that will hopefully draw the attention of consumers. By creating a 

thorough and detailed business plan, we can market the bicycle to the public in an efficient way 

so that it will eventually reduce greenhouse gas emissions, traffic congestion, and will provide 

added health benefits to a growing population. 

  

Goals 

● Sell one bicycle per day 

● Manufacture 7 bicycles/week 

● 10 year investment 

● Reach a market share of 5% in the recumbent market 

● Reach a 50% return on investment 

  

Objectives 

● Expand manufacturing through capital investments and detailed marketing plans 

● Optimize the marginal product of labor of One-Ride employees 
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● Provide high quality bicycles and high customer satisfaction 

  

Product Description 

         The One-Ride HPV is a practical alternative to a car by providing many of the customer 

preferences of an automobile and incorporating these preferences in our two-wheeled recumbent 

bicycle. Through customer research, the One-Ride team found that there were three main 

features in automobiles that they preferred. Amongst these were speed, safety, and comfort. The 

One-Ride HPV features a two-wheeled design to achieve high top speeds by decreasing frontal 

area and allowing for improved handling compared to most current three-wheeled designs. An 

adjustable seating and steering system addresses one of the main customer complaints about 

bicycles, comfort.  Through a protective roll cage bar and a four-point harness safety belt, our 

design has proven to be safe with minimal deflection when external loads are applied.   

By implementing a one-size fits all bicycle that allows for riders from 5’2” to 6’4” to 

operate the vehicle, manufacturing costs will be reduced since less frames will have to be 

produced. It will allow riders to commute comfortably 20 miles round trip/day and with the 

increasing population, our product could potentially grow worldwide. The company will start as 

a small-scale manufacturer due to limitations in finances and limited market power. As 

popularity of One-Ride vehicles increases, we will be able to expand our factory to produce more 

bicycles and potentially sell these vehicles worldwide. While there are several other recumbent 

bicycle companies in the market, our primary competitors will be those who also produce two-

wheeled recumbents.  Amongst these are companies such as EasyRacers and SunsBicycles. Both 

companies have multiple two-wheeled recumbent models and One-Ride will need to offer 

similar options in order to stay competitive with the market. Low end models start anywhere 

from $1,500 and go to upwards of $7,000. In order to entice consumers to purchase our product, 

we must be somewhere within this range.    

Currently, 2% of all bicycles are recumbent style. There were 18.7 million bicycles sold 

in 2012, which means that 374,000 were recumbent.14 In order to achieve a 5% market share of 

recumbent bicycles, One-Ride would have to sell 18,700 bicycles/year. If one bicycle is sold per 

                                                
14  "Industry Overview 2013." - National Bicycle Dealers Association. Web. 25 May 2015. 

<http://nbda.com/articles/industry-overview-2013-pg34.htm>.    
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day, we will achieve .1% of the market share in the first year, and will have to expand our 

manufacturing to achieve a 5% market share. 

  

Potential Markets 

         When designing the One-Ride HPV, the target audience was originally intended for 

families with different sized members, some of which would still be growing. The One-Ride 

HPV allows for these families to have one bicycle that both a child and an adult can ride by 

simply adjusting the seat and steering positions. As the design process continued, the One-Ride 

HPV became much more feasible as a daily commuter. 

    

Sales and Marketing Strategies 

         In order to have a successful business, a company must have a strong sales and marketing 

team. Consumers will only buy a One-Ride bicycle if there is awareness and publicity around our 

product. In order for consumers to learn about the benefits of a One-Ride vehicle, advertising 

tools such as websites and brand recognition must be created. The first step in a marketing 

strategy is to get our product online. Upon completion of our website, we will consult with large 

search engines such as Google and Yahoo so that when people type in specific keywords related 

to our bicycle, they will see our website through the search engine they are using. While we will 

have to pay for these features, it is necessary to do so because the Internet is one of the best ways 

to spread awareness quickly. In addition, we will use other advertising techniques to draw 

attention to our bicycle through postings in local newspaper ads and magazines. 

         Our company will be called One-Ride because the name is simple and short, but also 

because it conveys our intended message. By having a one-size fits all frame that is comfortable, 

safe and fast, families of all different sizes can share the same bicycle. There will be no need to 

own multiple sized frames unless the family intends on going on family bike rides. 

  

Manufacturing Plans 

         In order to produce 7 bicycles per workweek, the One-Ride team would have to open a 

small scale manufacturing shop locally in Santa Clara, California. One of the largest investments 

will be the capital investment of a CNC, lathe, heat-treating equipment and additional tools. We 

have estimated the total sunk cost to be $500,000 in equipment. In addition, we face other fixed 
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costs such as a shop lease, insurance and taxes. The table below represents the initial start-up 

cost breakdown.  

 

Table 5.2.1 Initial Start-Up Costs 

Category Price ($) 

Capital Investment 500,000 

Lease/Yr 25,000 

Wages/Yr 235,000 

Insurance and Taxes/Yr 25,000 

Inflation/Yr 1,260 

  

We have broken the labor down into six main groups, manufacturing of parts, welding 

and heat annealing, product assembly, testing, sales and advertising, and finance. In order to 

fulfill these labor needs, six machinists will be hired at $20/hour according to research found 

through the Bureau of Labor Statistics.15 Two workers will manufacture parts using a CNC, 

Lathe, and other tools. Two workers will weld and heat-anneal the bicycles and the final two 

workers will assemble. The five design engineers will do all testing, sales, marketing, and 

finance to ensure build quality and company success. The longest areas of the manufacturing 

process will be manufacturing of parts and the welding process; however, the assembly process 

should go relatively quickly assuming all of the parts have the correct tolerances. By having an 

assembly-line manufacturing shop, we aim to produce at least one bicycle/day. 

          

Product Cost and Price 

         Table 2 shows the breakdown for the raw materials needed to produce (1) One-Ride 

vehicle. These prices were the costs we endured to build our bicycle, however, once we expand 

we will be able to get some of the parts for cheaper through wholesale distributors. 

                                                
15  "51-4041 Machinists." U.S. Bureau of Labor Statistics. U.S. Bureau of Labor Statistics. Web. 25 May 

2015. <http://www.bls.gov/oes/current/oes514041.htm>. 
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Table 5.2.2 Raw Material costs to Produce one Bike 

Category Price ($) 

Aluminum 6061-T6 600 

Wheels/Tires 200 

Brakes 100 

Bolts 100 

Seating 100 

Gearing 250 

Fairing 150 

  

The total cost in raw materials was roughly $1,500. The overhead costs includes the wages of our 

six machinist, utilities, lease, insurance and taxes, and the cost of five design engineers. As will 

be discussed in the financial plan, $600,000 will be borrowed in bank loans to pay for the capital 

investment and some of the start-up costs. Table 3 details the total costs we will endure over a 

10-year period and accounts for inflation at a yearly rate of 0.84%. 
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Table 5.2.3 Total Cost For 10 Years 

Year Material Cost Per 

Frame  ($) 

Material Cost/Yr ($) Overhead/Yr ($) Loan Payments/Yr ($) 

1 1,500 540,000 300,000 79,935 

2 1,513 544,594 302,520 79,935 

3 1,526 549,187 305,040 79,935 

4 1,538 553,781 307,560 79,935 

5 1,551 558,374 310,080 79,935 

6 1,564 562,968 312,600 79,935 

7 1,577 567,562 315,120 79,935 

8 1,589 572,155 317,640 79,935 

9 1,602 576,749 320,160 79,935 

10 1,615 581,342 322,680 79,935 

          

    5,606,712 3,113,400 799,348 

        9,519,460 

   

In order to earn zero accounting profit, the profit not taking into account implicit costs, a 

One-Ride HPV must retail for $2,644. If the five design engineers each earn a salary of 

$100,000, the bicycle must retail for $4,033. However, the product price could decrease if we are 

able to expand and sell more than one bicycle/day by using Internet advertising. The cost to 

produce (1) One-Ride HPV of $2,644 doesn’t take into account paying any wages to the five 

design engineers. Other two-wheeled recumbent bicycles, such as those featured on 

easyracers.com, retail for anywhere from $1,995 to $6,595. We are well within an acceptable 
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price range for current recumbent bicycles that are on the market and we believe by having a 

fully adjustable design that features comfort and speed, it can be considered a top of the line 

recumbent bicycle.  

  

Warranties and Service 

         Both customer satisfaction and build quality are paramount to the One-Ride team. 

Warranties regarding the bicycle would extend to the entire bike, except normal wear parts such 

as brakes, tires, etc. The rest of the warranties would be categorized by part. For example, the 

frame would be warranted for 8 years unless damaged by abuse or abnormal use. The One-Ride 

team wants to ensure the ultimate build quality, especially in regards to the frame. If the frame 

fails due to poor workmanship or materials, the frame will be replaced under warranty. Buyers 

would also have the option of purchasing a lifetime warranty plan for the frame covering the 

whole lifespan of the original buyer. 

The mechanical components of the bike such as the brake system, derailleur, wheels, 

head tube, chain, and other mechanical components would be warranted for 1 year. Warranty 

times are subject to change when the HPV is used for commercial use. In this case the frame is 

only warranted for 2 years and the mechanical components would only be warranted for 120 

days from the date of purchase. The limited warranty would not cover cosmetic blemishes, 

improper maintenance or assembly, and damage caused by misuse or an accident. 

In terms of bicycle service, the One-Ride team would pay for shipping and repairs if the 

component that failed is covered under warranty. Larger components such as the frame would 

require a third party to inspect the frame in case the One-Ride team could not inspect the frame 

in person. If the frame is irreparable and is still warranted, the One-Ride team would pay for 

shipping and replace the customer’s frame free of cost. The use of a third party would allow for 

the One-Ride team to be able to issue repairs for a customer that is too far for shipping to be a 

cost-effective solution. 

  

Financial Plan 

         Due to the large capital investment of the CNC, lathe, and heat-treating equipment, we 

have decided to take out a $600,000 bank loan at an interest rate of 6%.  We have estimated that 

the start-up equipment is roughly $500,000. The total cost to sell roughly 3,600 bicycles over a 



72 
 

10-year period is $9,519,460. In order to break even, a One-Ride HPV must retail for $2,644. To 

achieve a 50% return on investment, the retail price is $3,966.44, which is well within an 

acceptable price. While it may take a little time to get advertising and our business up to speed, 

the extra $100,000 in the bank loan will cover wages and other expenses until we are able to 

begin selling our product. It is estimated that after a couple months of production, we will have 

enough inventory to begin selling bicycles online and through various advertisements. If sales 

exceed expectations, then we will move equipment and personnel to a larger factory where more 

bicycles can be manufactured and then sold. 
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6 Arts 

As part of satisfying the SCU Core Arts & Humanities requirements, members of this 

team have all contributed original drawings, sketches, and/or CAD models and drawings to this 

project. Below are listed a sampling of at least one such artifact, and a reference to it, for each of 

the team members 

 

Table 6.1 Reference of drawings done by each team member 

Team Member Description Location 

Alex Fisher Preliminary sketch of human 

powered vehicle 

Figure 2.6.1 

Alex Sahyoun CAD Model Dwg Fr-08, pg 106 

Geoff Schmelzer CAD Model Dwg ST-07, pg 91 

Brendan Taylor FEA of Frame Appendix A 

C.J. Toy CAD Model Dwg SE-01, pg 96 
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7 Conclusion 

 The goal of the One-Ride human powered vehicle team was to create a human powered 

vehicle that would entice people to switch from cars to bicycles for round trips of 20 miles or 

less. With the switch from cars to human powered vehicles there would be a drastic decrease of 

greenhouse emissions and other pollutions. After surveys and interviews to gain a better 

understanding of what customers look for in a bicycle, the goals of safety, speed, and comfort 

were found to be most important for the design. In order to satisfy these goals, the team designed 

a two wheel recumbent style bicycle that has fully adjustable seating and steering positions. 

Using the computer programs Solidworks and Abaqus, along with the help of local welders and 

heat treating companies, the bike was designed, tested and assembled. In order to validate the 

design it was planned to be entered into the ASME HPVC West Coast Competition. However 

during assembly and testing it was discovered that there were two major problems with the 

design that prevented the team from entering the design in the competition. The first problem 

was slop in the u-joint. The front wheel would turn about 3 degrees and this motion would not be 

felt in the steering wheel. This made it extremely difficult to balance on the bike and made it 

very unstable at higher speeds. The second problem was balance at low speeds. The user had 

trouble getting up to a balanceable speed without assistance from another person holding the 

bike. Solutions to both of these problems have been found and are currently being worked on and 

added to the bike. To fix the slop in the u-joint a new no slop u-joint will replace the current one. 

To solve the balance issue, a balance wheel was designed to prevent the bike from tipping over at 

low speeds. This wheel will be able to be rotated to parallel with the bike so that, at higher 

speeds, the bike still has the ability to lean. Once the solutions are fully designed and 

implemented the bike will be re-tested and evaluated for rideability.   
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Appendix A: Finite Element Analysis Figures 

 

Figure A.1 Analysis of entire frame with 600 lb load on seat 
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Appendix B: Detailed Calculations 

The drive train calculations were done by assuming constant angular momentum with no 

energy losses. The diameters of different sized tooth gears was found so that the radius could be 

used in the relation wr=constant.  An Excel spreadsheet was used to vary the combinations of 

gear sizes, and the angular momentum of the front gear was found by assuming the rider pedals 

with a 150 pound force at a speed of 80 revolutions per minute. The revolutions per minute of 

the rear wheel was then found and converted to miles per hour. 
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Figure B.1 Drivetrain Calculations 
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Figure B.2 Reaction Forces at wheel locations 
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Figure B.3 Braking and Weight Transfer Calculations 
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Figure B.4 Center of mass position for nearest and farthest seat positions 
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Appendix C: Responses to Customer Survey and Individual Interviews 

Online Survey Questions and Responses 

 

Customer: General Public                                       Survey Type:  Online Questionnaire                                          

                                                                            Survey Dates: Oct. 23, 2014-Oct. 26, 2014 

Question 1: What is your age? 

Of the 75 people surveyed, 44 were 18-21 years of age, 18 were 22-27, 3 were 28-31, 4 were 32-40, and 

only 6 were over 40. 

 

Question 2: Male or female?   

62 people or 79.49% of the total people surveyed were male, where as just 20.51% or 16 people were 

female 

 

Question 3: Which human powered vehicles do you use? 

 
Figure C.1: Response from survey on various human powered vehicles used 

 

Question 4 (Open ended responses): Where do you take your human powered vehicle? 

 This was an opened ended question and therefore received a wide array of answers.  The most 

common responses were to work, school, the store, and on bike trails. More specifically users in large 

cities typically used HPVs. 

 

Question 5 (Open ended responses): How far do you ride your human powered vehicle? 

 Most people who responded to this question  said they take their HPV  for trips between 0 and 5 

miles typically to school or to the grocery store. The next most common answer was between 10 and 20 

miles.  

 

Question 6: Why do you use your HPV 

Around 10% used HPVs since they dont have a car, less than 5% used HPVs to better the environment, 

around 35% used HPVs for their convenience and the remainder chose “Other”. Responses in the “Other” 

category included, to save money on gas, and for recreational use or exercise.  
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Question 7 (Open ended responses): What items do you have with you when you ride your HPV? 

 The responses to this question were all fairly similar. cell phones, laptops, groceries, and 

backpacks were amongst the most popular answers. 

 

Question 8 (Open ended responses): What do you like most about your HPV? 

 Convenient to ride, good exercise, and fun to do were amongst the most popular answers. Some 

mentioned the non-existent cost of gas and relatively low maintenance cost compared to a car. Responses 

stated that the increased sense of speed make the ride more engaging and entertaining. 

 

Question 9 (Open ended responses): What would you change about your human powered vehicle? 

 This question received a wide variety of responses. Some examples are theft protection, extra 

power when climbing hills, rider comfort, speed, want it to be multi-terrain and also want it to have some 

sort of a human-hybrid electric power. Some responses mentioned that they wanted something to set their 

HPV apart from the others.  

 

Table C.1: Customer Needs based on age groups 

Age 

Bracket 

Customer Needs 

18-25 The younger audiences portrayed a desire to have a faster and lighter HPV. They 

generally enjoyed the existing sense of speed of HPVs but wanted them to be more 

capable. Many wanted some sort of motorized hybrid included in the HPV design. 

Portability and ease of storage was also a desirable addition to HPVs since many users 

were using them to get to class or work. 

25-30 The 25-30 bracket, like the 18-25 bracket, also wanted some sort of motorized hybrid 

to be incorporated into HPV design. However this age group had more desire to be 

able to overcome more types of terrain and obstacles with HPVs. Some customer 

requests were also focused on providing a more comfortable ride for the user. 

>30 Like the 25-30 bracket, the >30 bracket also called for a more comfortable and 

effortless ride. This bracket, unlike the others, also requested an improvement in 

existing HPV safety and durability. 
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Table C.2: Question and Answer from Prof. Scott Abrahamson 

Question/Prompt Customer Answer Interpreted Need 

How often and 

where do you ride 

-I ride for pleasure now. It started by riding to work 

with a coworker for health then turned into a 

passion 

-I was riding about 3000 miles per year 

-At the peak of my riding career I was riding up to 

7500 miles per year 

-User has fun while riding 

bike 

-Frame still in rideable 

shape after several 

thousand miles of use 

Items brought along 

while riding 

-I rode with a laptop, change of clothes, lunch -The bike can store 

numerous items of 

different size 

Sought out qualities 

when buying a bike 

-The frame should be light but stiff. 

-It should be stable without being sluggish 

-It should have lots of trail 

-Bike frame is made of a 

light but strong material 

-Tire placed in correct 

position in relation to rest 

of frame 

Thoughts on a 

recumbent style 

bike 

-It has low visibility in traffic 

-Can be hard to get power when climbing hills. 

-Cars have to see them on the road 

-Rider is positioned in 

bike for maximum 

visibility 

-Drive train has maximum 

efficiency, especially in 

low gear 

-Contains bright colored 

flags and lights, mirrors 

Additional 

Thoughts 

-A rider has lots of things to pay attention to, debris, 

both parked and moving cars, other cyclists etc. so 

good handling, visibility and stability are key. 

-Easy to maneuver 

through turns and 

obstacles on roads 

-Simple overall use so 

rider is not distracted and 

can stay focused on the 

road 
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Table C.3: Question and Answer from Joshua Muir, a professional bike frame builder 

Question/Prompt Customer Answer Interpreted Need 

What is the average 

price of a custom 

bicycle? 

For a custom frame and full assembly, it 

generally costs around 5000 dollars. 

The design of the bike needs 

to be much cheaper than 5000 

dollars in order that it is 

accessible for any person to 

buy 

What material do you 

use to build frame? 

Steel, because it is cheap and easy to use. It 

is better for small scale designs. Larger 

companies use aluminum because custom 

extrusions can be made and it is lighter. 

Determine whether to use 

aluminum, steel, or other 

material, based on cost, 

strength, and weight. 

What is the most 

common 

change/upgrade to a 

bike? 

People often want to change the size of tire 

they have on their wheel for different 

terrains. Often the clearance is not there for 

people to change to the appropriate tire. 

Clearance for a variety of tire 

sizes in the frame design. 

When building a custom 

frame, do you consider 

the possible 

aerodynamic effects it 

might have? 

No, I do not, because I build normal bike 

frames, but if I were building a recumbent 

bike, I would really consider the effects of 

a fairing at low and  high speeds. 

Need a low profile design that 

a fairing could be used on to 

decrease aerodynamic drag. 

When building a 

complete bike, what is 

your main concern? 

Integration of all components, including 

cargo areas, lights, gearing, and brakes, so 

that it all performs well together. 

Need to integrate a useful 

cargo area and all other 

necessary components in a 

efficient and useful manner. 
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Appendix D: Decision Matrix  

 
Figure D.1: Selection Matrix for different bike designs. Baseline is two wheel recumbent style 
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Appendix E: Hardware Drawings 
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