Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-10-2016

RSL Rover

Patrick Barone
Santa Clara University

Giovanni Briggs
Santa Clara University

Aaron Burns
Santa Clara University

Hesham Naja

Santa Clara University

Zoe Demertzis
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/idp senior

b Part of the Computer Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation

Barone, Patrick; Briggs, Giovanni; Burns, Aaron; Naja, Hesham; and Demertzis, Zoe, "RSL Rover" (2016). Interdisciplinary Design
Senior Theses. Paper 24.

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior/24?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY

Departments of Computer Engineering and Mechanical Engineering

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY

Patrick Barone, Giovanni Briggs, Aaron Burns,
Zoe Demertzis, Hesham Naja

ENTITLED

RSL ROVER

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE
IN

COMPUTER SCIENCE AND ENGINEERING
MECHANICAL ENGINEERING

2l

Thesis Advisor date

SN édé 7/1¢

Department Chair (Comput‘e'r Engineﬁ'ing)

— {]

SN o]y 4
VAV =N LXK - /20T

D'epartﬁnent Chair (Mechanical Engineering) date

RSL ROVER

By

Patrick Barone, Giovanni Briggs, Aaron Burns,
Zoe Demertzis, Hesham Naja

SENIOR DESIGN PROJECT REPORT

Submitted to
the Departments of Computer Science and Engineering and Mechanical Engineering

of
SANTA CLARA UNIVERSITY
in Partial Fulfillment of the Requirements

for the degree of
Bachelor of Science in Computer Science and Engineering and Mechanical Engineering

Santa Clara, California

Spring 2016

RSL Rover

Patrick Barone, Giovanni Briggs, Aaron Burns,
Hesham Naja, Zoe Demertzis

Departments of Computer and Mechanical Engineering
Santa Clara University
2016

ABSTRACT

The goal of this project was to design and implement an unmanned
vehicle that can assess the air quality and general state of a post-fire
environment. To do this, we equipped Santa Clara University’s Po-
laris 6x6 Ranger with appropriate sensors and cameras to determine
how safe the environment is for humans to enter. We also used GPS
and laser scans to generate a 3D map that operators can use to de-
fine certain zones as particularly dangerous. Finally, we incorporated
partially-autonomous sensing capabilities that will allow the operator
to easily drive the vehicle. The result was a rugged, advanced, and
intuitive vehicle that can be used to protect fire responders from any
lingering hazards during the investigation of a post-fire environment.
This vehicle is accompanied by a powerful operating system and local-
ization techniques that will allow any future research groups to help
this vehicle evolve into a fully autonomous system.

il

Contents

2.2 Key Requirements|
[2.3 System Level Sketch and Use Cases|

[2.4 Functional Analysis|o 0.

[2.5 Benchmarking Results]

[2.6 System Level Issues, Trade-oft Analysig
[2.6.1 LIDAR Physical Configuration|

[2.6.2 Sensor Physical Configuration|

[2.7 System Level Architecturel

2.8 Team and Project Management|

Subsystem: Environmental Sensing]

[3.1 Air Quality Assessment|.

[3.1.1 Payload Requirements|

[3.1.2 Component Selection|

BI3 PCBDGSIEN . . o o oo oo

Subsystem: Sensor Housing|

(4.1 Need for Housing|

v

N O W NN =

Qo

10
12
14
17
17
18
19
20

23
23
23
24
26
28
29

30

(4.3 Initial Design|
4.4 CFD Analysis and Iterative Workl
(4.5 Fmal Design|.o oo

[> Subsystem: Operator Control and User Interface)

[>.1 User-Intertace Design|

[5.3 Improving the ROS Control Center|
[5.3.1 Rendering the LIDAR Pomnt Cloud

6 Subsystem: Communications|

[T Subsystem: Power|

I8 Subsystem: Localization/Mapping]
B 1 Sensors|.

(10 System Integration Testing and Results|

[10.1 Range Requirement lesting|

[10.2 Latency Requirement Verification|
[10.3 GPS Testing

[10.4 Localization and Mapping Testing|.

[10.5 Environmental Sensor Package Testingl

38
38
39
41
43
44

46

48

49
49
52
23
55
56

58

(10.6 Blind-spot Testing]

(11 Costing Analysis|

[12.2 Goals and Objectives| L.
(12.3 Description|

(12.5 Competition|

[12.6 Sales and Marketing Strategy|
[12.7 Manufacturing Plan|.

(14 Summary and Conclusions|

[Appendix A Design Requirement Flowdown|

[References|

[Appendix B Market Survey|

[Appendix C Tradeoftf Analysis|

vi

68

69
69
69
70
71
72
75
76
77
79
30

81
81
81
82
83
83

85

[Appendix D Budget|

[Appendix E Gantt Chart|

[Appendix F' Power Budget|

[Appendix G Drawings|

[Appendix H Code|

[Appendix I Safety Protocol

[Appendix J Conference Slides|

vil

List of Figures

(1.1 Polaris 6x6 Ranger| 3
[l.2 Fire Investigation Flowchart [?]| 4
2.1 Use Case Scenario Illustrationl 11
[2.2 Software Component Block Diagram| 12
2.3 Mech/Elen Component Block Diagram| 13
[2.4 Argo J5 Mobility Plattorm| 14
[2.5 Northrop Grumman’s Andros F6| 15
[2.6 Northrop Grumman’s Remotec Wheelbarrow Mk9| 15
27 Elmco UAVEESDN. .« . o vovo oo 16
2.8 Sensefly’'s UAV EBee| o000 16
2.9 LIDAR Types| 17
[2.10 Sample Sensor Types| 19
[2.11 System Layout Architecture| 19
[3.1 MQ-Series gas sensor| e 24
[3.2 Sharp air particulate sensor with air flow| 25
[3.3 Air quality PCB schematic/ 26
[3.4 Printed circuit board layout| 0. 27
[3.5 Logitech c615 cameral 28
[3.6 Example of OpenCV People Detection Application| 29
[4.1 For the gas sensors to work, air must flow over the sensor| 32

4.2 For the air particulate sensor to work, air must flow through the sensor| 32

4.3 The solid designed for the initial CFD analysis that shows the initial |

design| 33
4.4 CFD streamline analysis for our first design| 34
4.5 CFD streamline analysis for our second design| 35
4.6 CFD streamline analysis for our final design| 36

viii

4.7 "The final sensor housing design equipped with our sensors, mounted to

the vehiclelo 37
[6.1 Communication Subsystem|. 46
[8.4 Novatel ProPak-LB GPS System| o1
8.5 RSL Rover LIDAR Sensors|. 52
[10.3 3D wvisualization of vehicle during mapping activity| 63
[12.1 The RSL Rover monitoring air quality around a controlled burn in |

Californial 71
[12.2 Argo J5 Mobility Platform| 73
(12.3 Northrop Grumman’s Andros F6| 73
[12.4 Northrop Grumman’s Remotec Wheelbarrow Mk9| 74
M25 Elimco UAV-ESQU . . .« o o o oot e e e 75
[12.6 Sensefly’'s UAV EBee|o o000 75
[12.7 Excel table showing Team RSL Rover’s estimated financial plan and |

return of ivestment] L. 80
[A.1 Requirements Flowdown| A-1
(A2 Test Planl A-2

X

List of Tables

2.1 Key Requirements], 10
[2.2 Current Product Comparison| 14
4.1 The properties of acrylic made available from the UL company| 30
[10.1 Range requirements and verification results|. 60
[10.2 Latency requirements and verification results/. 61
(12.1 Current Product Comparison| 73
[12.2 Component cost breakdown| 78
(12.3 Labor breakdown| oo 78
(12.4 Cost per Vehicle|. 78
B.1 Customer Needs| B-1

1 Introduction

Robotic systems are used to enhance even the most mundane aspects of daily life.
Robots can clean our floors, dispense our soft drinks, and, pretty soon, drive us around
town. Powerful and precise, robots are also used to make up for the qualities humans
lack. They can do and see what humans cannot, and are resilient in situations where
humans physically could not be. As one might imagine, robots are used to perform
great feats.

Recently, autonomous systems have been of great interest to robotics experts. The
race to fully autonomous driving is at its peak with GM, Mercedes-Benz, Audi, Nissan,
BMW, Renault, Tesla and Google all expecting to sell at least partially autonomous
vehicles by 2020[?]; however, the applications for autonomous systems are expanding
past commercial uses. Researchers are now looking to use unmanned and partially
autonomous vehicles, both ground and air, to aid in providing relief services in the
event of a natural disaster.[?]

Gathering information is a critical part of providing disaster relief services. This is
true both immediately following a natural disaster, and for prolonged periods of time
afterwards. Relief service personnel and investigators place themselves in dangerous
environments in order to assist those affected by a natural disaster. To avoid placing
human lives in unnecessary danger, relief services have begun to rely on unmanned
vehicles to gather information.

Drones, in particular, have been utilized to collect this information; however,
the environment after a natural disaster is not always conducive to drone activity.
Extreme weather, dust, and smoke are all conditions that make it difficult for drones
to operate and gather information to aid relief services [?]. In certain situations like
wildfires, having drones in the air actually severely impacts the ability of firefighters
to combat wildfires. While a drone is in the air, other manned aerial vehicles cannot
enter the airspace, preventing them from performing vital operations [?].

Furthermore, after the initial relief service efforts, the area can remain hostile

for indefinite periods of time. Investigators looking to determine the root cause of a

disaster — building collapse, wildfire, flood, etc. — have to be aware of:
e building structural integrity
e smoke
e clectrical, chemical, or biological hazards
e other health risks [?].

This investigatory period can be as dangerous as the initial relief service operations.
This poses the question: how can robots be used to allow post-disaster investigators

to safely determine what types of risks lurk within the disaster zone?

1.1 Motivation

The motivation behind our project is to provide an unmanned vehicle that can
examine an environment after a natural disaster so that humans do not have to place

their lives in danger to do so.

e Santa Clara University possesses a 2004 Series 11 Polaris Ranger 6x6 that is

ideal for traversing a rugged environment. (See Figure on page (3

e Members of our team have personal relationships with those who serve as fire

responders.

e Other members have access to the types of sensors and testing locations that are

ideal to implement a vehicle that can aid in any post-fire investigation efforts.

So, we were motivated to design an unmanned vehicle that can specifically examine
a post-forest-fire environment and ultimately keep fire responders out of hazardous

situations.

Figure 1.1: Polaris 6x6 Ranger

1.2 Literature Review

The sources reviewed have revealed a need for an unmanned vehicle that can assess
the hazards, particularly pertaining to air quality, that lurk in a post-fire environ-
ment. ”Guide for fire and explosion investigations” by the National Fire Protection
Association gives a detailed procedure that fire responders follow while investigating
the cause and damage of a fire[?] and ”Evaluation of hazards in the post-fire en-
vironment” by The Inter-agency Board reveals the specific risks fire responders are
exposed to while investigating a fire[?]. More information can be found in the re-
mainder of this section. These two sources in particular helped inspire and shape the
functionality of our vehicle and provided the motivation behind using an unmanned
vehicle to assess a post-fire environment. There is a need for an unmanned vehicle
that can help determine whether a post-fire zone is dangerous for fire servicemen, law
enforcement officers, and various other people to enter, even with protective clothing

and masks.|[?]

After a fire, there are very deliberate steps taken to gather information on the
state of the environment. This is mainly done to determine whether the post-fire
zone is safe for humans to enter, whether it be for ”victim recovery, salvage and
overhaul, origin and cause investigation, or criminal investigations.” [?] The general

post-fire assessment steps and concerns are highlighted in Figure (1.2

Figure 1.2: Fire Investigation Flowchart [?]

During the ”Venting/air quality assessment step” in Figure there is a sub-

4

step that prompts the fire investigators to ”determine protective breathing needs.” [?]
This is the primary focus of our vehicle’s functionalities.

Currently, in order to asses the types of air quality risks within a post-fire environ-
ment (and therefore the types of protective breathing needs/clothing), a responder
must enter the environment equipped with some degree of protective gear and var-
ious sensors. These sensors include, but are not limited to, multi-gas detectors and
air particulate detectors.[?] Once the environment is assessed and the proper protec-
tive gear is chosen, the post-fire procedure can commence. Therein lies the problem.
In order to assess the harmful gasses and particulates in a post-fire zone, a person
must enter said zone. This person could potentially be exposed to excessive: carbon
monoxide, carbon dioxide, air particulates, and toxic chemicals from the fire and fire
retardants. [7]

We have used the sources we have found to develop our vehicle in such a way that
it can perform all of the tasks that a responder would, as well as provide additional
data that can be used to further ensure that no humans will be harmed during the
post-fire assessment /investigation /recovery procedure. Our vehicle has been equipped
with multiple useful sensors that reveal air quality conditions to operators who are
controlling the vehicle from a safe distance. The operators also receive a live video
stream as the vehicle traverses the environment. All of the relevant information can
be visualized and analyzed through our web-based user interface.

In addition, our vehicle gathers data from which 3D maps can be generated, a
capability that is beyond what can be collected by a human responder. This 3D map
can serve as a resource for other people who will enter the post-fire environment.
The operators will be able to identify "hot spots” and other notable zones. When
assessing post-fire environments, it is useful to keep track of particularly hot or dense,
gaseous zones in order to maximize safety for the humans involved. [?]

The sources we found have provided information on and inspiration for the exact

role our vehicle can serve in aiding those who assess post-fire environment. Our

vehicle will help operators determine the state of the environment and keep humans

out of any particularly hazardous situations.

1.3 Vehicle Background

The vehicle was built for the 2004 and 2005 DARPA Grand Challenge competitions
by a private team called Team Overbot [?]. Unfortunately, the vehicle did not meet
requirements for the challenge either year and was then donated to University of
California Santa Cruz. Students at UC Santa Cruz worked on the vehicle trying to
expand its autonomous functions. UC Santa Cruz then donated the vehicle to Santa
Clara University for use in the Robotic Systems Laboratory. The vehicle was in a
state of disarray after being passed around for ten years.

The vehicle is a 2004 Series 11 Polaris Ranger 6x6 [?]. It contains a single-cylinder
carbureted gasoline engine which produces approximately 40 horsepower. The two
rear axles have fixed differentials, forcing the four wheels to always turn at the same
speed. It has a rated top speed of 40 mph and the bed is a tilting unit and raises up
allowing contents to be dumped out of the vehicle.

Two previous Senior Design teams worked on the vehicle in 2014 and 2015. The
2014 Senior Design team focused on creating an autonomous vehicle testbed. They
successfully developed a software control system to operate the vehicle via a remote
console, redesigned the wiring of the vehicle, and implemented safety features. They
used Arduino microcontrollers to control steering, throttle, brakes, transmission and
the parking brake [?]. All of these microcontrollers and emergency stop safety features
are still present and in use in our current system.

The 2015 Senior Design team attempted to build on the system developed by the
2014 Senior Design team and add sensors and microprocessors to give the vehicle
autonomous capabilities [?]. At the end of their year of work, the 2015 Senior Design

team successfully implemented obstacle detection using a LIDAR unit. When the

vehicle detected an object in it’s path, it would make an emergency stop in order to
avoid collision [?]. Currently, the vehicle still houses the LIDAR unit but no longer

performs obstacle detection, as we have developed our own software using the LIDAR.

1.4 Problem Statement

Our goal was to design and implement an unmanned vehicle that gathers and
relays information on potentially hazardous environmental conditions back to its op-
erators.

To do this, we planned to accomplish the following:

e cquip the Polaris 6x6 Ranger with appropriate sensors and cameras to determine

how safe the environment is for humans to enter

e use GPS and laser scans to generate a 3D map that operators can use to define

certain zones as particularly dangerous.

e incorporate partially-autonomous sensing capabilities that help the operator

successfully drive the vehicle by remote control

The result is a rugged, advanced vehicle that can be used to protect fire responders

from any lingering hazards during the investigation of a post-fire environment.

2 Systems Level Design

2.1 Customer Needs

Even after wildland fires have been contained, they present many potentially haz-
ardous environments for people. Residual smoke can make large areas of land unsafe
for human traffic, especially for prolonged periods of time. Fire fighters, however,
have to continue to work in these areas after the initial fire is contained, exposing
themselves to unsafe levels of contamination. This creates a need for an unmanned
vehicle that can be deployed in backcountry areas.

In order to better understand the needs of the current market, our team inter-
viewed some potential users. Three persons were interviewed: Antoinne ”Chidi”
Untamed, a Forest Firefighter at ASI Arden Solutions Inc., Max Reese, a Volun-
teer Search and Rescue First Responder, and Matthew Perez, Lieutenant Firefighter,
Santa Clara Fire Department.

When interviewed, interest was expressed for a product that could provide ground
level environmental sensing to firefighters. Mr. Untamed talked about how after a
fire, it is the responsibility of people to go in and analyze the area. Though they
are provided with aerial maps taken by Unmanned Aerial Vehices, they oftentimes
are still put in dangerous situations that an unmanned rover could be in instead.
The dangers these people face include unsafe air to breathe, the chance that the fire
is not entirely out, and "snags,” which are different branches, logs, etc., that can
get caught on the protective equipment of the firefighters and that can cause the
protective equipment to tear, or even to cause trees to fall down on or near them.

Mr. Untamed also expressed concern over the efficacy of drones because of FAA
regulations that limit usability, unpredictable wind conditions, and limited visibility
from smoke. He stated that especially during the mornings, smoke has a tendency to
sit on top of the canopy and spread across the canopy, rather than simply rise from

the source of the fire. This causes the aerial view from the UAV’s to not provide

usable data. He says that in one situation, people tried to use this data to pinpoint
the location of remaining fire that a helicopter could then air-drop water on the fire,
and the helicopter completely missed the source of the fire. When asked what kind of
data a person going into a post fire situation would have to find, he responded, " They
would need to find forrestry trails, if and where the fire was still going, and see if the
air was safe to go into the area without a mask. [Also] the temperature would have
to be reported.”

Mr. Perez talked to us about his experience as a fireman, and even though his
work mostly dealt with residential fires, our project interested him, and he saw a
lot of good uses from it, including air quality sensing. He was especially concerned
with combustible gasses in the air that could ignite and quickly restart a fire. Mr.
Perez also suggested having a larger vehicle that, instead of being towed to a scene
taking up space, could be driven to the location carrying the gear of the firefighters
traveling with it. Mr. Perez was interested in a vehicle that could provide data
to multiple sources, including fire fighters and trained search-and-rescue teams.The
summarized result from these interviews is shown in Appendix[B] The resultant design
requirements and customer needs are listed in Appendix [A]

To fill those needs, the prototype vehicle has been outfitted with an array of
environmental sensors to monitor air quality, LIDAR units, marine batteries, and
a forward looking infrared camera. Although multiple passenger capabilities is a

requirement, the prototype vehicle is unable to provide space for multiple passengers.

2.2 Key Requirements

In order to ensure that we met all of our customer’s needs, we identified and
sought to meet a series of requirements. The full list of requirements is included in
Appendix [A] The most critical requirements are outlined in [2.1]

We chose these Key Requirements because they specifically address the needs of

Description Requirement
Range - Remote Operator Console 150 meters
Range - WiFi Network 150 meters
Latency - Cameras to Onboard Laptop 1 second
Latency - Cameras to User Interface 1 second
Latency - Vehicle State Data to User Interface 1 second
Mapping - GPS Accuracy < 2 meters
Visuals - Cameras Blind-Spot Testing 360 degrees

Table 2.1: Key Requirements

the customers we interviewed. We sought to design an intuitive, long-range vehicle
that disseminated critical data in close to real-time and provided accurate mapping
and localization information. These Key Requirements heavily influenced our deci-
sions during the design and development of our vehicle. These requirements were

verified through a series of tests we designed, which is discussed in detail in Chapter

10.

2.3 System Level Sketch and Use Cases

The primary use case for the vehicle is during the mop-up phase of forest fire
fighting operations. As forest fire fighters are carrying out mop-up operations, un-
known environmental hazards, such as carbon monoxide, low oxygen levels and high

air particulate concentrations, present a real and imminent danger to fire fighters.

10

Figure 2.1: Use Case Scenario [llustration

For example, while conducting fire fighting operations, the fire fighters make the
decision to send the rover into an area which has been flagged as potentially hazardous.
The operators manually operate the vehicle to position themselves and their gear near
the danger zone. The operators can then quickly dismount and setup the teleoperation
command center. The vehicle then proceeds into the potentially toxic environment,
measuring the concentrations of potentially toxic, airborne substances and relaying
that information back to the operators. While one operator focuses on driving the
vehicle, an analyst focuses on the sensor streams, including the environmental sensors,
monitoring harmful gas concentrations, and the LIDAR data, identifying physical
obstacles which may be difficult to see in a visually impaired environment. Both
operators will also relay, via a satellite communications link, images, videos and data
to the forest fire fighting mobile operations center where strategists can best decide

how to proceed with fire fighting operations. (See Fig

11

2.4 Functional Analysis

WIRELESSLY
PUBLISHED
MESSAGES

Central Node

ROS Master/ |
Camera Image msg

videoListener()

Sensor(s) Data msg

plays relevant data

Webpage with Ul that
Data Storage
>|| sensorListener() I

LIDAR Scan msg

DY

GPS Localization msg

“autonomousPublisher()

>I| gpsListener() |:Z'-- :

Vehicle Ackermann msg

> vehicleListener) |}

Remote Controller msg

T
[}
[}
[}
[}
]
v
[}
[}
[}
[}
[}
[}
[}
I
[l
[}

.- \
Acke 1 hicl =~
g Temanree e | switck: remote |
control/autonomous

SOFTWARE DIAGRAM OF ONBOARD SYSTEMS

Figure 2.2: Software Component Block Diagram

The vehicle is categorized into five subsystems: environment sensing, operator
control and user interface, communications, power, and localization. The breakdown
of the two primary systems, hardware and software, can be seen in figures [2.3] and
and show how these subsystems fit together. The environment sensing subsystem
includes the sensor packages, cameras, and LIDAR units. The operator control and

user interface subsystems are the systems that control the vehicle remotely as well
as the data presentation components. The vehicle must communicate back and forth
with the operator, receiving driving commands and sending data readouts. This is
categorized under the communications subsystem. All powering is classified by the
power subsystem. The final subsystem is labeled localization and it includes the ROS

architecture involved with determining vehicle position for accurate mapping.

12

Figure 2.3: Mech/Elen Component Block Diagram
13

2.5 Benchmarking Results

Many all-terrain, unmanned vehicles on the market are for military contracts
exclusively. However, Northrop Grumman and Argo Robotics both have products
that fit the category of an unmanned, all-terrain vehicle that can be equipped with
sensor packages for non-military purposes. Some of the specs for these products
can be found in Table 2.1. These are the Argo J5 Mobility Platform (Fig at
thirty-nine-thousand dollars, the Northrop Grumman Andros F6 (Fig , and the
Northrop Grumman Wheelbarrow Mk9 (Fig[2.6). Prices for the two later vehicles are

not available without a direct quote.

Product | Height(m) | Width(m) | Length(m) | Sensor Packages | Features
J5 Mobility Platform 0.83 1.38 1.52 1 Camera Mount Amphibious
Andros F6 1.486 0.445 1.32 5 Cameras Extendable Arm
Wheelbarrow Mk9 1.24 0.63 1.24 Up to 10 Cameras | Extendable Arm

Table 2.2: Current Product Comparison

Figure 2.4: Argo J5 Mobility Platform

14

Figure 2.5: Northrop Grumman’s Andros F6

Figure 2.6: Northrop Grumman’s Remotec Wheelbarrow Mk9

While these products that are on the market are the most similar to the product
we wish to produce, the issues we wish to address are not solved by these rovers.
Neither of Northrop Grumman’s rovers have the housing needed for sensor packages
necessary to monitor atmospheric conditions in forest fires. The Argo rover also does

not house the necessary data packages, and while it is amphibious, inclusion of a

15

sensor housing is more important.

Other aerial drones are also in the market for unmanned vehicles capable of re-
laying data such as thermal imaging and video back to the user. Two such products
are the Elimco UAV-E300 (Fig and the Sensefly’s EBee (Fig . Both of these
products have the capabilities necessary to map and relay usable data, and are mar-
keted as disaster response vehicles. However, there are some inherent weaknesses to
their aerial nature. Mr. Untamed has pointed out that images provided by aerial
vehicles can oftentimes be unusable as smoke can sit on top of the canopy of a forest,
especially in the mornings. They also can only provide overhead data, and may not
be able to map certain elements disaster responders could need, such as air quality
at ground level or mapping paths that are safe. Our vehicle seeks to get under this

layer of smoke to provide data from the ground level.

Figure 2.7: Elimco UAV-E300

Figure 2.8: Sensefly’s UAV EBee

16

2.6 System Level Issues, Trade-off Analysis

The design process for this vehicle required that we opt for certain configurations
and components over alternatives. The biggest design decisions we had to make were

on the LIDAR layout and environmental sensing systems.

2.6.1 LIDAR Physical Configuration

Two LIDAR units, a SICK LMS221 on a pivoting mount (Fig capable of
generating a 3D point cloud and SICK LMS111 2D linescan LIDAR (Fig capable
of producing 2D obstacle maps, were made available to our team through Santa
Clara’s Robotic Systems Lab. One design challenge was to determine the optimal
location for these two sensors on the vehicle. The total combined field of view, blind-
spots, total weight, material cost, view height and vehicle vertical clearance were all

taken into account when deciding on the configuration.

(a) LMS 111: 2D LIDAR (b) LMS 221: 3D LIDAR

Figure 2.9: LIDAR Types

A final configuration was chosen based on the Concept Scoring Tradeoff Analysis
in Appendix . The final configuration has the 3D, articulated LIDAR (LMS221)
mounted on the top of the roll cage where it has a full forward and rear field of view.
The 2D LIDAR (LMS 111) has been mounted on the front grill of the vehicle where

it can mitigate a blind spot immediately in front of the vehicle.

17

2.6.2 Sensor Physical Configuration

The hazardous environment sensing requirement has been filled by three redun-
dant sensor packages placed on the hood and each side of the roll cage (See Figure
. The sensor packages are enclosed in a box with a forced air inlet to continually
monitor the air for changes in composition while also protecting the components.
The enclosed array of sensors are able to detect temperature and concentrations of:
carbon monoxide, methane, carbon dioxide, hydrogen, air particulate, and liquefied
petroleum gas. The cost of an oxygen sensor is prohibitive, so oxygen concentrations
must be extrapolated from alternative sensors. These sensors could be expanded
as needs arise. The vehicle is equipped with redundant packages for a multitude
of reasons. If a sensor fails, there are two other identical sensors to fill that role.
Additionally, having the sensors spread out on the vehicle, it can be determined if
concentration readings are representative of the greater area, certain elevations, or a
single point. The data from the redundant sensors could be analyzed in three ways;
the greatest reading could be displayed, the reading most common among sensors,
or all three could be displayed. The first option, outputting the highest value, is the
most conservative option while also being concise, but it makes it possible that false
data could be transmitted. The most thorough method would be to transmit all three
data streams and allow the operator to decide which to trust.

The location of the air quality sensors and cameras was the next critical design
decision. See Figure[2.10|for examples of air quality sensors and cameras. For the cam-
eras, the field of view, mounting costs, implementation time and robustness, among
other factors, were considered when deciding on a final design. Additionally, for the
environmental sensors, the cost, implementation time, robustness and proximity to
the vehicle’s exhaust systems were considered when deciding on a sensor configura-

tion. Appendix [C] features a complete tradeoff analysis for the sensor configurations.

18

(a) Carbon Monoxide Sensor (b) IP Camera

Figure 2.10: Sample Sensor Types

A final configuration was chosen where the cameras are mounted on all 4 sides
of the roll cage, allowing full coverage of the surroundings while also allowing the
operator to see over obstacles. The redundant sensor packages are located on the

front of the roll cage and on the front of the vehicle.

2.7 System Level Architecture

Figure 2.11: System Layout Architecture

19

Figure shows the physical layout of the subsystems of our design. There is
a large LIDAR unit on a gimbal mounted on the top as well as a smaller, stationary
LIDAR unit on the front bumper of the vehicle. These two LIDAR units work in
unison to gather data to create 3D maps of the environment. The top roll bar also
houses the GPS antenna, environmental sensors, and cameras. The redundant envi-
ronmental sensors are mounted on the front bumper of the vehicle. The controlling
electronics and power are housed in the trunk of the vehicle to protect them from

hazards.

2.8 Team and Project Management

As the RSL Rover project is a continuing project through Santa Clara’s Robotic
System’s Lab, we were provided with a workshop right off of the engineering quad
which is outfitted with computers, tools and workspaces. We were also provided some
financial assistance in purchasing some tools which will stay with the RSL and will
continue to be used by teams in the future.

One of our major constraints was our budget. We were awarded a grant of $2500
from Santa Clara’s School of Engineering (Undergraduate Programs Funding). We
used this funding to purchase sensors and raw materials for the environmental sensing
packages, repair the vehicle and purchase various electronic components in order to
support the new computing and sensing packages. A complete, line-item budget can
be found in Appendix: [D]

Due to the scope of our project, an accelerated timeline was required. During
fall quarter, we successfully integrated GPS and LIDAR sensors, including power and
communication systems, onto the vehicle and successfully integrated these sensors,
along with driving functionality to the ROS (Robot Operating System) software plat-
form. During winter quarter we designed the environmental sensing packages, and

integrated cameras and an inertial measurement unit on the vehicle and began de-

20

velopment on a web-based GUI application to present this data to first responders.
During spring quarter we successfully integrated all of our subsystems and ran ex-
tensive field testing to validate our design against our engineering requirements. See
Appendix [E] for a complete Gantt chart summarizing our schedule.

As a team we dedicated ourselves to this task, in the hopes of completing the listed
goals by the end of the year. We held each other accountable by meeting at least
twice a week, once under the supervision of our advisor and once on our own. At each
meeting, we went over the work we had done in the previous week and talked about
tasks, and who would be best suited to handle each task. Patrick Barone has served
as the primary leader of the group, however, each of us has taken initiative in leading
the group on different occasions or when undergoing certain tasks. Despite the fact
that we are split between two majors, we have been able to always communicate
effectively about our projects, successes, failures, and insights to others. We have all
contributed to the project as a whole and to the research process in order to inform
our design.

To begin our design process, we first assessed the state of the vehicle as it had
already been modified by two senior design teams in previous years. From there, we
assessed how the rover could be changed, fixed, or left as is in order to make it best
suited for disaster response, especially in the case of forest fires. During this time,
we researched what was actually needed in these disasters by interviewing disaster
responders and reviewing literature; in addition, we researched current solutions and
similar market products, paying close attention to their strengths and shortcomings.
We then created a criteria for ourselves and set goals and a timeline. We then began
to design our system layouts, while assessing each possible design choice to find the
best choice.

This project, as a full sized, unmanned vehicle that will enter disaster sites, is
subject to many risks, but we sought to manage these risks as we feel this project is

worth undertaking. First, as this project is unmanned, we run the risk of working with

21

technology that the public has not yet fully accepted. Many see robotic technology
as something to fear. In order to address this fear, we designed our system as a whole
to make our vehicle not only functional, but also intuitive and aesthetically pleasing.

Also, as an unmanned vehicle, there is no human to make snap decisions, such as
braking. In order to mitigate these risks, we leveraged the already-existing emergency
stop button system that can quickly and effectively stop the vehicle in an emergency.
This allows human controllers to make snap decisions to stop the rover before anything
bad can happen. For example, if the vehicle is not driving as anticipated and it is on
course to hit an object, or even a person, we can quickly stop the vehicle.

As the vehicle is fully-sized, our team ran the risk of causing injury to ourselves
and others as we put the car up on jacks to work with it; consequently, we established
safety guidelines in order to ensure that we kept ourselves and guests working on the
machinery with us safe. The approved safety protocol is included in [} As the vehicle
itself is also a few years old, we ran the risk of it breaking down on us. To prevent
this, the team performed extensive work, through preventative maintenance, to ensure
that the rover is kept in a well maintained state. As for the risk of us putting the
rover into unstable disaster sites, we ran the risk of the environment harming our
equipment. We conducted research on heat shielding in order to protect key features
on our rover; however, the solutions discovered were both cost prohibitive and also
not critical to the robotic and sensing functionality that we aimed to prove through
this project. That being said, we housed most of the delicate electronic equipment
under a layer of protection. The roll cage, the hood, and the trunk cover all provide

a sufficient level of protection for sensitive equipment.

22

3 Subsystem: Environmental Sensing

The environmental sensing subsystem includes the air quality sensors and video
imaging array. The environmental sensing subsystem is an integral component of the
fire monitoring functionality of the RSL Rover. It is the system that allows operators
to gather visual and atmospheric information, an essential component for assessing
fire-scene safety. The air quality sensors must display accurate information because
they determine what gear is required to enter the area. The video imaging array
is critical as it allows the operator to successfully see where the vehicle is within
the environment, thus making it easy for the operator to drive through and visually

inspect the environment.

3.1 Air Quality Assessment

The air quality sensing subsystem consists of three redundant packages distributed
on the front and top of the vehicle. Using three independent but redundant packages
improve the accuracy of results since operators then have multiple values to compare
against if there is a spike or other anomaly. It also allows a safety buffer if one
or more sensors were to fail. Within each package there is an array of eight gas
sensors, two temperature sensors with different temperature range sensitivities, an
air particulate sensor, and a humidity sensor. The eight gas sensor array detects
atmospheric concentration of the following: liquefied petroleum gas, carbon monoxide,

carbon dioxide, natural gas, and hydrogen gas.

3.1.1 Payload Requirements

The list of important gases to detect was derived from the National Fire Protec-
tion Association handbook as they are the gases produced by a fire most hazardous
to human life. Carbon dioxide is used as an indicator for fire because it is a primary

product of complete combustion while carbon monoxide is a product of incomplete

23

combustion. There are numerous components to smoke, most of which are hazardous,
so the air particulate sensor is responsible for the detection of the smoke hazard in-
dicator. In addition to the hazards produced from combustion, forest fires also in-
crease the risk of residential gas leaks and explosions. Some jurisdictions use liquefied
petroleum gas for residential heating and cooking while some use natural gas. Thus,
liquefied petroleum gas and natural gas must both be detected to limit risks from
gas fires. Atmospheric air temperatures can increase dramatically from large forest
fires so it is important that the sensor package be able to detect fine changes at lower
temperatures while still being able to detect high temperatures that are dangerous

for firefighters.

3.1.2 Component Selection

Gas sensors on the market are incredibly expensive, detect only a limited range
of gases, and require complex, expensive calibration equipment. Instead of trying to
implement this into the RSL Rover, we started from scratch and utilized the MQ-

series sensors pictured in figure [3.1]

Figure 3.1: MQ-Series gas sensor

These sensors use a reactive filament that changes resistance according to the

concentration of gases it is sensitive to. This makes for a robust, low cost solution

24

that can easily be calibrated to show presence of a wide variety of gases. These sensors
are sensitive to humidity, so a humidity sensor is also incorporated into the sensor
package to allow for humidity corrections in the field. In addition, two temperature
sensors are included to provide accurate temperature readings up to 250° Fahrenheit,
which is beyond the safe limit for firefighters. The final sensing component was the
air particulate sensor. For this, we utilized a Sharp GP2Y1010AUOF smoke and dust

sensor picture in figure 3.2

Figure 3.2: Sharp air particulate sensor with air flow

The device works by pushing air through the center hole where it reflects infrared
light off the smoke or dust. The more light that is reflected into the infrared receiver,
the higher the smoke concentration is. The small voltage from the receiver is then
amplified to a range of 0 to 3.3 Volts where 3.3 Volts is the maximum detectable
concentration.

Each of these sensors requires its own circuitry and mounting hardware; to avoid
large amounts of wiring and to give the sensors a place to sit, we created a printed
circuit board that interfaces with each sensor. The board does not process the read-
ings; an Arduino Mega 2560 is used to read and scale the analog voltages and digital
readings from the sensor array. This is a low cost solution that allows for future mod-
ification as well as the planned modularity of the sensor package. The current printed
circuit boards could be swapped out for a new circuit board with different sensing

capabilities without having to change additional hardware. The data collected by the

25

Arduino is processed on the onboard computer using ROS, limiting the impact on

the Arduino.

3.1.3 PCB Design

We used kicad, a free CAD program, to design the entire circuit board. The first
step was designing the schematic shown in figure [3.3

e N
S Lt | |
s\ p/3 3
B TMP36 |yg [g
TuF | Tempt Ek E
oy E RHTO3
f B2 E dityt
6 1 .
s\, /3y 5}"
. - RS
1

RSLRover

Sheet:
File: SensorBoard.sch

Title: SensorBoardSchematic

Size: Al Date: March10.201 [Rew:

KiCad ED.A_Kcad 4.0.1-stable [& 17T
T T T

Figure 3.3: Air quality PCB schematic

The schematic includes the timing circuit for the air particulate sensor, MQ sensor
circuits, humidity hookups, and temperature circuits. Originally, a 12 Volt to 5
Volt regulating circuit was included in the schematic, but it was removed due to an
overheating problem during testing. Instead, an external pulse width modulating

regulator was added. The next step in designing the printed circuit board was laying

26

out the circuits and component footprints in the layout editor. The final layout

schematic is shown in figure [3.4]

Figure 3.4: Printed circuit board layout

The design was sent to a board house where it was manufactured. We then
populated the board with our sensors and tested. The first iteration had several
problems, the most pronounced was the overheating of the voltage regulator. The
regulator had to dissipate nearly 10 watts which caused it to get dangerously hot. We
solved this by implementing a pulse width modulating voltage regulator and using
a jumper wire across the original voltage regulator footprint. The next big problem
we encountered was with the timer circuit for the air particulate sensor. The data
sheet for the sensor showed an inverse graph of the required pulse form. To solve this,
we simply removed the transistor that inverted the output from the 555 timer. All
of these changes are shown in the schematic in figure but not the circuit board
layout shown in figure (3.4}

27

3.2 Cameras

The camera system is a four camera array that provides a front facing view for the
operator as well as a roughly 260°view for observation of the surroundings. The initial
design included four IP cameras, all of which ran as a unique node within the ROS
network. ROS handles IP cameras over RTSP, the Real Time Streaming Protocol.
This introduced an unacceptable amount of latency, about 4 seconds, to the camera
stream. The final design includes four Logitech c¢615 usb cameras that are connected
to a Raspberry Pi 2 Model B. A photo of the selected model of Logitech camera
is included in Figure [3.5 The dedicated Raspberry Pi runs an image of Ubuntu
with ROS. The usb camera images are captured through ROS and sent through an
OpenCV "person detection” application that recognizes bodies within the camera
stream and outlines them in a green box so that they are visible to the operator. For

an example of this capability, see Figure [3.6]

Figure 3.5: Logitech c615 camera

28

Figure 3.6: Example of OpenCV People Detection Application

3.3 Sensor and Camera Layout

The location of the air quality sensors and cameras was a design decision. For
the cameras, the field of view, mounting costs, implementation time and robustness,
among other factors, were considered when deciding on a final design. Additionally,
for the environmental sensors, the cost, implementation time, robustness and prox-
imity to the vehicle’s exhaust systems were considered when deciding on a sensor
configuration. Appendix [C] features a complete tradeoff analysis for the sensor con-
figurations. A final configuration was chosen where the cameras are mounted on all
4 corners of the roll cage, allowing for a 360 degree view of the surroundings while
also allowing the operator to see over obstacles. The redundant sensor packages are

located on both sides of the front bumper and the center of the roll cage.

29

4 Subsystem: Sensor Housing

4.1 Need for Housing

Our vehicle, being equipped with multiple sensors, including sensors for air partic-
ulates, natural gas, petroleum gas, carbon monoxide, carbon dioxide, and hydrogen
gas, needs to protect the sensors from physical elements that could damage them
while also ensuring they are installed such that the sensors are exposed to the ele-
ments they are meant to detect. We decided to house these sensors together in one

housing unit. This unit serves to shield the sensors from any physical interferences.

4.2 Materials Used

The material for the housing unit needed to be relatively sturdy to protect the
sensors, cheap and easy to machine for economic efficiency, and thermally resistant
to protect our sensors from high heat. After researching many materials, acrylic was
decided upon for the material to construct our housing structure. See Figure for
the favorable characteristics of acrylic.

Acrylic has relatively low thermal conductivity, meaning it can insulate our sensors
effectively, and it’s melting temperature is far above the maximum of 250deg F' that
we expect our vehicle to experience. Though we do not expect our unit to be under
a great deal of mechanical stress, as the most stress our housing unit will be in is
under the stress of its own weight, the compressive and tensile strengths are both well

above the weight of the system. The price of acrylic is relatively cheap compared to

Property Associated Value
Thermal Conductivity | 1.3 to 1.5 ﬁ;—jﬁgf,
Melting Temperature 464 to 473 deg F
Compressive Strength 14100 to 18000 psi
Tensile Strength 5420 to 10700 psi

Table 4.1: The properties of acrylic made available from the UL company

30

other plastics of comparable properties, and it is very easy to machine and assemble

through the use of adhesives.

4.3 Initial Design

The first question that we addressed in the design of the housing was how do we
force the air into the housing unit? Though our housing unit is designed to protect
our sensors from many of the outside elements, our sensors require exposure to air.
We decided to use a PWM fan for its speed control and relatively small size. The
model we used is the Artic F9 Case fan, which reaches a maximum air flow of 31
ft3/min. For our initial iterations of the design, our team decided to use the fan as
an outlet for airflow, pulling air through our housing unit.

The next question facing our team concerned the means by which air could flow
over and through our sensors. Figures and show the unique air flow needs
of the sensors we used. Most of our sensors simply needed air to flow over them, as
shown in Figure 4.1. Our air particulate sensor, however, needed air to rise through a
very specific segment, as demonstrated in Figure 4.2. Due to this, our housing design
needed to account for these means of air low. Our initial design had two main inlet
holes, one on the front of the unit, and one on the underside. The front inlet was
designed to be the major inlet of air to fill our housing unit. Our bottom hole was
designed specifically to intake air, pushing air directly through the air particulate

Sensor.

31

Figure 4.1: For the gas sensors to work, air must flow over the sensor

Figure 4.2: For the air particulate sensor to work, air must flow through the sensor

The major question we were left with was, will the air flow where we want the air
to flow? For this a computational fluid dynamics (CFD) test was performed on our

design.

32

4.4 CFD Analysis and Iterative Work

Ansys Workbench was used to perform a series of tasks designed to complete a
CFD analysis. The first task was to design the internal space of the feature. This
means designing a part that would represent only the area inside the housing unit.

Figure [4.3| shows the design of said part.

Figure 4.3: The solid designed for the initial CFD analysis that shows the initial
design

After this internal space was designed, a mesh was created around the part using
Ansys Workbench. Once the mesh was created and reformatted to be as precise as
possible, boundary conditions could be set. No-slip conditions were set on all of the
walls of the part. The inlets of the part were set at ambient pressure of 1 atm. The
outlet was given a constant outlet velocity, calculated from converting the 31 ft3/min
of the fan into a usable velocity of 2.6 m/sec; then this was computed by dividing
the flow rate by the area of the fan and converting feet to meters. From there, a
streamline map was developed for the system in order to show how successful our
design was.

Our streamline map in Figure |4.4] pointed out some key failings of our initial

design. Though we were successful in driving air up the hole dedicated to feeding

33

our air particulate sensor, we were unable to fill the area of the housing unit where
most of our other sensors would be placed. Instead of the air filling up the empty
space, only a few streamlines reached the center of our housing unit; many of our

streamlines clung to the edge of our design.

Figure 4.4: CFD streamline analysis for our first design

In our second iteration, we attempted the same tests while adding a second inlet
hole on the opposite side of the housing unit to our primary inlet. This was added to
push air streams into the streams currently clinging to the wall of our unit in order
to send air through the central area of our housing unit, where the gas sensors would
most likely be. While this did move air more successfully through our system than

the prior design, Figure [4.5] shows there were still deficiencies in the streamlines as

34

vorticies were created as the streams collided.

Figure 4.5: CFD streamline analysis for our second design

In our final iteration, we attempted to use the PWM fan as an air inlet instead, and
we received positive results from our CFD analysis. The use of the fan as an inlet
caused the streamlines to be smooth throughout most of the system until exiting
through the three outlet holes, the two primary outlets and the secondary outlet
dedicated to the air particulate sensor. The streamlines shown in Figure [4.6] show
the air exiting directly through the air particulate sensor still, while also driving air
smoothly over the area where our gas sensors would be located. From this design, we

built our acrylic prototypes.

35

Figure 4.6: CFD streamline analysis for our final design

4.5 Final Design

Three housing units were made and nicknamed Larry, Curly and Moe. Each was
fitted with our dedicated PCBs, which had been fitted with our gas sensors, the air
particulate sensor, an Arduino unit to process the data, and the PWM fan. These
fully equipped sensor units were then fitted to the roll cage of the vehicle. Two units,
Larry and Moe, were installed on the right and left side of the upper bar of the front
cage, shown in Figure [£.7] Allowing air to be pulled in on both sides of the vehicle.
The remaining unit, Curly, was placed at the center-front of the overhead roll cage
to draw air in from the front of the vehicle. This mounting strategy protected the
sensor cases and allowed air intakes from all three directions of concern around the

vehicle. It also created an aesthetically pleasing look.

36

Figure 4.7: The final sensor housing design equipped with our sensors, mounted to
the vehicle

37

5 Subsystem: Operator Control and User

Interface

5.1 User-Interface Design

The inherited user interface uses a large black-box with a joystick, a series of but-
tons and switches, and a small LED display. The box provides all major functionality
that an operator could need to interface with the vehicle. An operator can throttle,
break, steer, change gears and force the vehicle to an emergency stop all from the
box. This box; however, is not the best solution for our design.

Our design requires displaying a large amount of data to an operator. The small
LED display on the box will not work for this goal. The black-box is also not desirable
because it is hard to extend. There are a finite number of buttons and switches, many
of which have already been programmed for essential functionality. Our design needs

a user-interface that is:
e casy to use

e can handle displaying large amounts of information to the operator but does

not overwhelm them with the info
e can be extended to provide extra functionality in the future
e can display the most critical information in a single page view ...

Given these requirements, we decided to implement a web-based user-interface.
Operators interact with the vehicle through a web-page. This web-page displays the
incoming information from the sensor packages on the vehicle and incoming infor-
mation about the state of the vehicle itself. Most operators are familiar with how
to navigate a web-page from interacting with them on a regular basis on their own,
so the assumption is that the interface should feel intuitive and natural to most op-

erators. There is also a vast amount of research on how to develop friendly and

38

easy-to-use web-pages that our team leveraged when implementing our web-based
user-interface. The legacy black box control system is still operational and required
when operating the vehicle. The new user interface hosts the video feeds and other

vehicle information.

5.2 RobotWebTools and the ROS Control Center

Initially our team thought about replacing the black-box entirely and allowing
users to drive the vehicle by using a gamepad controller. Google Chrome and Mozilla
Firefox both natively support gamepad interactions via the Gamepad API; however,
we abandoned this goal to focus more on visualizing the incoming sensor data. The
black-box already contains the functionality for driving the vehicle and the Gamepad
API is still in active development and is not at a state where we felt comfortable
using it for driving a vehicle.

After a large amount of research on how to visualize ROS data via a web-page we
discovered the RobotWebTools group [?]. This group was actively developing tools
for connecting to ROS from a website. The architecture works by running a webserver
with ROS, and then having HTML pages connect to that webserver via JavaScript.
The JavaScript library is meant to replicate the ROS architecture. It subscribes to
nodes, and when that node publishes an event, the webserver captures it, converts
it into a JavaScript Object Notation (JSON) message, and sends that object to the
JavaScript library. JSON is a standard data format for web applications, so this
makes it very easy to work with the data coming from the rover in other JavaScript
libraries.

The RobotWebTools provide the low end infrastructure for building a web-based
user-interface with ROS. We started to design our user-interface to be a single page
view of the state of the vehicle and visualize all of the sensor data. We decided on

this because a user needs to be able to focus on driving the vehicle, and forcing them

39

to have to click through tabs to find the data that they needed seemed unreasonable.
However, the sheer amount of data that we process makes this difficult. We have a
handful of sensors and cameras, the LIDAR, and vehicle state and location data to
display in one page. Furthermore, we need our interface to be flexible and dynamic
so that it can subscribe to all of the necessary nodes immediately without needing to
be reconfigured. If we add new nodes for new sensors on the vehicle, then we want
our user-interface to be able to identify and display that data with little effort.
While researching how to accomplish our user-interface, we discovered an open
source web-based user-interface that was built on top of the RobotWebTools libraries.
The project is called the ROS Control Center and is an AngularJS project which
provides a template for how to build a web-based user-interface to visualize ROS

data [?].

Figure 5.1: ROS Control Center

As seen in Figure [5.1] the ROS Control center comes prepackaged with visual-
ization for a variety of default ROS packages, but these visualizations are limited

to text displays of incoming data. The ROS Control Center works by asking the

40

RobotWebTools web server for all nodes that are currently publishing messages.
These node-message type pairings create unique names as part of the ROS archi-
tecture. The ROS Control Center leverages this feature and creates an associative
array where each node is a key and each value is the message type. When the ROS
Control Center recognizes a node, it adds the node to the left-side navigation bar.
Then, the ROS Control Center embeds the HTML code for visualizing the individual
message types into the page. This way, a user can click on a particular node’s name,
and then see all of data for all of the messages that belong to that node. Writing
these HTML files for each message is fairly simple to do because the ROS Control
Center handles all of the data processing.

The ROS Control Center is not a perfect solution. It does not provide a one page
view of the vehicle’s most critical systems. It also does not come pre-packaged with
any graphing ability. The ROS Control Center also does not provide any way to
handle the idea of thresholds and warnings. Many of the environmental hazards we
are trying to detect have safe and unsafe thresholds. We want our user-interface to
be able to provide feedback to the user when the unsafe thresholds are exceeded to
quickly alert the user that there is a problem.

These are all features that can be added to the ROS Control Center. Since each
message is given it’s own HTML page, we can write the JavaScript logic in those
pages to handle alerts for safe and unsafe conditions and build live-stream plots in
those pages too. We can also build a page that uses the data from multiple messages
and displays them in one page. Adding these features on top of the ROS Control

Center meets our design requirements and goals.

5.3 Improving the ROS Control Center

We made several changes to the ROS Control Center in order to implement the

features that we wanted. The largest issue with the ROS Control Center framework

41

is that it doesn’t provide any easy way to display data from multiple nodes in one
page. In order to implement this feature we force the ROS Control Center to load
a fake Dashboard topic. This topic is always the first one to load and display and
subscribes to the different topics that we need it to. Currently the Dashboard topic
subscribes to the three different environmental sensor packages, the LIDAR point
cloud, the four cameras, and the vehicle state information. Not all of the data from
each message is displayed on this page. Instead we identified what we believe to be

the most critical parts of each topic.

Figure 5.2: Screenshot of the User Interface during our testing session.

Figure displays a screenshot of the this main dashboard view. On the left
side of the screen are the camera feeds - front, right, left and rear. In the center
of the page is the visualization of the LIDAR point cloud using the ros3djs library
provided by the RobotWebTools. Part of that LIDAR visualization also includes

rendering the model of the rover within the cloud. The reason that the point cloud

42

https://github.com/RobotWebTools/ros3djs

is the prominent feature on the page is that the cameras don’t always provide the
most reliable view of the environment. Factors such as smoke will make it difficult
for an operator to drive the vehicle while using the cameras. The LIDAR point cloud
however will always generate a reliable scan of the environment and give operators a
clear view of where the vehicle is. The right side of the page is a combination of the
vehicle state information (the speed of the vehicle) and the environmental sensors.
All of the charts are created using the highcharts-ng AngularJS library which

provides a convenient way to use Highcharts in AngularJS.

5.3.1 Rendering the LIDAR Point Cloud

Rendering the LIDAR point cloud presented a special challenge. The data coming
off of the LIDAR is simply a line of what the LIDAR is scanning. As the LIDAR
moves up and down it publishes these lines, and it is then the responsibility of the
visualizing software to aggregate these lines and display the resulting cloud.

There are two potential solutions to this problem:
1. Assign each point a timer, and when the timer expires, remove the point
2. Only hold so many points in the scene at once

For our implementation, we chose to only hold so many points on the screen at
once. The ros3djs library allows a maximum number of points to be set for display on
the screen, but it assumes that it already has a full point cloud. We added the ability
to have the scene aggregate the points during render time. Essentially, we keep track
of the last index that we wrote points to, and on the next message, we start writing
at that location. When we reach the end of the array, we start back the beginning
and overwrite old points with new information. We currently have the scene set to
hold 75,000 points at once, which seems to hold about three to five seconds worth of
point cloud data, which is plenty of time to visualize the surrounding environment as

the vehicle moves through it.

43

https://github.com/pablojim/highcharts-ng
http://www.highcharts.com/

We also needed to assign color to the points. If we didn’t assign colors, the entire
cloud would be gray which can makes it hard to distinguish what’s in the cloud.
We use a quick linear-interpolation to determine color of a given point by using its
y-axis value. We chose the y-axis value because it gave us the best clarity. The colors
progress from red to green to blue as you move upward in the scene. This interpolation
isn’t perfect though. It actually cycles through the color wheel before reaching the
max y-axis value. This was done partially on purpose to provide greater clarity. Our
first attempt at coloring the scene made people hard to distinguish. A standing body
takes up a very small portion of y-axis values, and so they were appearing as single
colored blobs. We allowed the colors to cycle in order to allow small objects to be
more visible; however, we may have allowed the colors to cycle too much. Now, there

are almost too many colors on the screen which can make it hard to process.

5.4 Network for Internet Communication

The RobotWebTools libraries and the ROS Controller Center assume that there
is an internet connection between ROS and the device running the ROS Controller
Center. The rover is meant to be deployed in rugged, off-road terrain where an
existing internet connection is not necessarily available. To deal with this problem,
we purchased a high-power router that sits on the vehicle. On the vehicle we run
the RobotWebTools rosbridge'server package and a small HT'TP web-server. The
rosbridge server package handles translating ROS messages to a JSON format so that

the web-client can use the data. The vehicle network architecture is explained further

in Figure

44

Figure 5.3: Network architecture to enable the user-interface

Ideally, we would want the rover to be able to serve up the HTML pages and
JavaScript files necessary to run the Ul. Unfortunately, all of the computer systems
currently on the rover are already overburdened. Our current solution is to just
download our modified version of the ROS Control Center on a laptop and then load
the page from a browser locally. This has worked well enough for our use cases,
although in the future, it would be nice to have the vehicle serve the files. This would

require the least amount of setup for accessing the user interface in the field.

45

6 Subsystem: Communications

In order to meet our design objectives, our vehicle needs to be able to relay
information back to its operator and receive commands from the operator. In order
to achieve this, we need to design a strong communication link between the vehicle
and the operator.

Our current implementation uses a peer-to-peer wifi network to receive feedback
from the vehicle and an XBee PRO for vehicle driving commands. Peer-to-peer wifi
networks are easy to setup and maintain and provide the high bandwidth required
to transmit the camera and sensor data from the vehicle to the operators. However,
the main problem with the peer-to-peer wifi network is that it has a relatively short
range. The connection is not good at long distances, and the actual distance varies
depending on if there are any objects in between the network nodes. For safety and
reliability reasons, we chose to keep the XBee PRO communication link between the
control console and rover for the driving commands. The XBee has a much lower
bandwidth, but a much higher range (theoretical 28 miles, line-of-sight).

In order to meet our design requirement of 150 meters line-of-sight communication
link, we chose to install a Amped Wireless High Power Wireless-N 600mW Gigabit
Router (R10000G). While the theoretical range of this device is dependent on the wifi
performance of the receiving device, our field tests demonstrated an actual range of

over 300 meters. Photos of the XBee and router can be found in Figure [6.1]

(a) Amped Wireless High Power

Wifi Router (b) XBee PRO 900hp

Figure 6.1: Communication Subsystem

46

We recognize that the shortcomings of a peer-to-peer network are unacceptable
and unsafe for our application. However, due to budget constraints and the technology
that we had readily available to us, we decided to use the peer-to-peer wifi network
anyways. This was enough to develop a functioning prototype of the vehicle and
implement all of the other functionality that we need to.

In order to create a market ready solution, future teams should look to update

this subsystem and use a technology that has a greater range and reliability.

47

7 Subsystem: Power

Our vehicle houses a great deal of equipment and payloads that run off of elec-
trical power, and it is important that we keep all of these payloads operational and
functioning in an efficient manner.

We have decided to utilize three, 12V deep-cycle marine batteries. Two of these are
wired in series to supply 24VDC to the actuators, LIDAR units and other electronic
equipment, and one is used to provide 12V power to the engine, lights and sensing
packages. This option of marine batteries provided us a space and cost efficient way
to power our equipment, though different options have been considered.

We have also added a 24V DC/DC regulator to filter out electrical transients.
While the actuators are still powered directly from the battery bank, the LIDAR
units required a source of "clean” power. The 24V regulator which we chose can both
up and down convert the voltage levels in order to provide a stable power source for
the more sensitive electronics. We have successfully incorporated this change into the
vehicle’s power system and have power margins to support additional 5V, 12V and
24V payloads.

We considered attaching two more additional batteries in parallel to the 24 volt
battery bank, but decided to postpone adding more battery capacity due to the
incremental cost. However should future payloads require more power, additional
batteries could be wired in parallel to provide more energy storage capacity. For

more information, please reference our power budget: Appendix

48

8 Subsystem: Localization/Mapping

Figure 8.1: Localization Ilustration [?]

Localization is an important step for any autonomous or partially autonomous
system hoping to navigate in the physical world. While autonomous driving does not
fall within the scope of our project, localization is a necessary step for creating an
accurate map of the environment.

ROS provides a framework for developing localization systems and provides several
cutting-edge algorithms for fusing sensor data into an accurate position estimate. For
our vehicle we are combining the LIDAR, accelerometer, gyroscope, GPS, and wheel
sensor data using an Extended Kalman filter, using ROS’s robot_localiation package
(Figure , to generate an accurate position estimate. Using this estimate, we then

build both 2D and 3D maps of the environment using our LIDAR sensor data.

8.1 Sensors

The first sensor that was incorporated into our localization scheme was the vehicle
tachometer (Figure [8.2). The tachometer is an aftermarket sensor addition which
senses the vehicle speed, which we consider to be a ”"body-frame forward” speed. The

tachometer is actually two adjacent hall-effect sensors which sense the movement of

49

Figure 8.2: Hall Effect Tachometer

the teeth on a gear fixed to the rear drive shaft. Through the use of dual hall-effect
sensors, the sensor is able to output a quadrature signal from which both speed and
direction can be extrapolated. The output of this sensor is fed to the 'Tachometer
Arduino’, which interprets the quadrature signal and feeds the resulting position and

speed to the Vehicle Mega.

Figure 8.3: CH Robotics UM7 IMU

The second source of data comes the Inertial Measurement Unit (IMU), which

50

includes 3 sensors; a 3-axis accelerometer, a 3-axis gyro, and a 3 axis-magnetometer.
We chose the CH Robotics UM7 IMU (shown in Figure to use on the vehicle
because of it’s relatively low price point, existing integration with ROS and it’s active
user base. Most modern IMU’s have filtering on the device and in the case of the
UMY, it outputs an orientation estimate (yaw,pitch,roll) as well as the raw sensor

data.

b) GPS Ant
(a) GPS Receiver (b) ntenna

Figure 8.4: Novatel ProPak-LB GPS System

Next, the GPS unit, a Novatel Propak-LB, consists of a GPS antenna (Figure
8.4b|) and a separate GPS receiver (Figure . The system outputs position and
velocity estimates in the form of standard NMEA strings. Preexisting ROS nodes
(nmea_serial_driver) enable us to read in these NMEA strings over a usb-to-serial
adapter and incorporate the GPS data into our state estimate. The GPS unit has the
added benefit of performing it’s own estimate of the covariance (a statistical measure
of the estimate’s certainty). The Kalman Filter utilizes the covariance to weigh the
GPS more heavily when the GPS has more satellites in view. Additionally, the GPS
unit is capable of taking WAAS (Wide Area Augmentation System) GPS corrections
into account. The WAAS system calculates and transmits corrections to increase the

prevision of GPS receivers.

51

() Front Mounted Static LIDAR (b) Roll Cage Mounted Sweeping LIDAR

Figure 8.5: RSL Rover LIDAR Sensors

Finally, the rover incorporates 2 LIDAR sensors; a statically mounted unit on
the front grill (Figure and a tilting unit on a gimbal mounted on top of the
vehicle (Figure . For localization, we are using the unit mounted on the front
of the vehicle, along with a ROS package called hector_slam to produce an estimate
for the robot’s state. The SLAM (Simultaneous Localization and Mapping) process
compares the current laser scan to a map or past data to estimate the movement of
the vehicle. The SLAM process also provides us with a 2D map of the environment

which can be saved and used for navigation at a later time.

8.2 Coordinate Frames

When developing a complex robotic system, keeping track of the reference frames
for all of the different components of the robot is critical for determining the config-
uration of the robot in space. ROS has convenient functionality for not only defining
coordinate frames, but also for calculating the transformations between them. The
coordinate frame locations are illustrated in Figure ?7.

Our first frame of interest is the base_link frame. By convention this is the highest
level frame on the robot. For our purposes we chose to define the base_link frame to
be located at the centroid of the four rear tires with the X axis forward, Y axis left

and Z axis up. The direction conventions are ROS standards, but the translational

92

Figure 8.6: ROS Coordinate Frame Illustration

location of this frame was left to us. We chose this particular location based on the
kinematics of the vehicle as the center of rotation of the vehicle should be around the
centroid of the four rear wheels.

When considering the location of the rover in it’s environment or the ”world
frame” as it is often called in ROS documentation, we consider two types of estimates
and therefore two frames. The first frame is the odometry frame (\odom) and the
second is the map frame (\map). The odometry frame serves as an intermediate step
in the estimation process for determining where the rover is located in the map frame.

The localization of the vehicle is performed in two stages, first taking into account
only sensors which produce a continuous estimate of the robot state (i.e., Tachometer,
IMU) for use in the future autonomous driving and local path planning. The output
of the localization defines a coordinate transform between \base_link and the \odom
frame.

The second step takes into account discontinuous sensor data (i.e., GPS, SLAM) to

produce a more accurate, but sometimes ’jumpy’ position estimate. The advantage

53

of using this frame is that when planning long-term navigation, this frame is not
subject to the same drift that the odom frame is subject to. The second step in the
localization process defines a transformation between the \baselink and the \map
frames, often using the \odom frame as a starting point.

Several other frames exist for generating the pointcloud data. The \front_laser
frame is located in the center of the front bumper. The \gimbal base frame is lo-
cated on the top of the roll-cage, at the center of rotation of the gimbal and parallel
to the \base_link frame. Finally the \gimbal laser frame is located on top of the
\gimbal base frame but rotates in pitch with the motion of the LIDAR.

8.3 Kalman Filter

We are using an implementation of an extended Kalman filter for state estima-
tion through the ROS robot_localization package. This package takes input from an
arbitarary number of sensors and produces an estimate of the robot’s 15 dimensional
state, [x,y,z,roll,pitch,yaw,vx,vy,vz,vroll,vpitch,vyaw,ax,ay,az][?].

As mentioned previously, the localization takes place in two steps. The first step
defines the continuous estimate in the \odom frame. For this step we only fuse the
continuous estimates of the robot position, specifically the IMU and the tachometer.
For each of these sensors, we only define a subset of their measured quantities to use.
For example, with the IMU, we chose only to fuse the roll, pitch and yaw into the
position estimate, excluding the raw angular rates, and accelerations, because they
were already incorporated in the IMU’s internal filters. Next, we chose to fuse the
tachometer speed as a body-frame forward velocity for the rover. Using these two
pieces of information, the IMU for the direction and the tachometer for the speed, we
are able to get a rough position estimate for the rover.

However, as time increases, small bias errors or noise will accumulate to create a

position estimate which is unusably incorrect. To compensate for this, we perform

o4

a second localization step which incorporates the GPS and SLAM functionality to
provide absolute positioning relative to the environment. We fuse the same variables
from the IMU and tachometers but then add the X,Y position from the GPS and
X,Y velocities from the SLAM node. The \map frame defined by this node has small
discontinuous jumps, however its absolute position error does not grow continuously
like the \odom frame.

One of the features which was most frustrating to debug with the Kalman filter was
the effects of the covariance matrix for each sensor. The covariance matrix represents
the statistical confidence in the sensor data being reported. Some nodes, such as
the GPS node and the SLAM node report an actual, dynamic covariance based on
the performance of their algorithms. However, other sensors such as the IMU and
Tachometer don’t report covariance. In order for the Kalman filter to output a valid
estimate, we had to estimate these values. In order to do this, we viewed the steady
state noise floor for each sensor and set the covariance such that it was slightly higher
than this value. While not extremely accurate, this seemed to perform well and

prevented the Kalman filter from propagating this noise into the position estimate.

8.4 Hector SLAM

In order to generate a more accurate absolute position estimate than the GPS
could provide, we turned to a SLAM (Simultaneous Localization And Mapping) so-
lution. SLAM works by analyzing LIDAR data, comparing subsequent scans to de-
termine a position and orientation estimate for the robot. In order to decrease the
implementation time, we turned to several available ROS implementations of SLAM
algorithms. The most common packages for SLAM are gmapping and hector_slam.
Both packages are 2D SLAM algorithms which compare planar laser scans to deter-
mine position. We chose to use hector_slam due to the fact that an odometry input

is not necessary.

%)

While we saw very good performance out of the SLAM system, there are several
critical caveats which would make the currently available implementations not ideal
for our particular application. First, the SLAM algorithms have a fixed map of a
fixed size. This essentially means that the area that the vehicle can navigate is lim-
ited by the memory available on the laptop. An ideal and proven solution to this
problem would be to have a rolling map, where only the map in the area surround-
ing the current rover persists. Secondly, through ROS, we only had access to 2D
SLAM implementations, which rely on the assumption that the environment is uni-
form in the vertical direction. While these implementations work very well in indoor
environments with many vertical features, the outdoor environment, especially the
natural outdoor environment has very few purely vertical features. In order to get
better performance in an unstructured 3D environment, a 3D SLAM solution would
be required. While the algorithms currently available in ROS do not address these
3-dimensional problems well, future teams or researchers may choose to implement

more advanced algorithms which can perform 3D slam.

56

8.5 3D Visualization

Figure 8.7: RVIZ LIDAR Pointcloud

In addition to the 3D pointcloud which is visualized in the web UI (Ch[5), ROS’s
rviz utility was heavily utilized to visualize pointclouds and provide debugging in-
formation to both operators and developers. Figure shows a typical view that
an operator or developer might see when using rviz to visualize pointcloud data.
We chose to use the RVIZ utility over other visualization tools because of it’s exist-
ing integration with ROS and the ability to view all of our data, including camera
streams, transformation information and raw sensor data all in one convenient loca-
tion. Additionally, rviz handled the projections of the various sensor messages into
the appropriate coordinate frames so that we did not have to program that from
scratch. Finally, it allowed us to dynamically change what we are visualizing depend-
ing on the task at hand. Displaying all of the information being generated by the

rover simultaneously would be impracticable so this functionality proved to be critical

57

in our development.

Figure 8.8: Assembled Pointcloud of Santa Clara Service Street

In post-processing we are able to feed the position estimates and LIDAR data into
the Octomap ROS package. Figure[8.7/shows an example of an accumulated octomap
of the service road behind Santa Clara’s School of Engineering. Octomap is a 3D oc-
cupancy grid implementation which allows the LIDAR not only to identify obstacles,
but also clear obstacles from the map. Octomap uses a probabilistic algorithim which
means that it is able to correct mistakes or outliers when additional, contradictory
sensor data is received. For example, for a case where the rover is scanning a moving
obstacle, such as a person, it is able to clear the space where that the person previ-
ously occupied while simultaneously marking the place where the person currently is
as ‘occupied’. The dynamic abilities of this algorithm is critical for any application

where a robot will be operating in a real-world environment.

58

9 C(Construction Plan

Our team spent the first 11 weeks of the school year planning the scope and
finalizing our design and requirements for the RSL Rover: Disaster Response and
Reconnaissance Vehicle. As early as December, we began purchasing the bulk of our
sensors so that we could begin our next stage of prototyping as early as the first week
of winter quarter. Our major milestones, including prototype deadlines and testing
schedules, are outlined in the Gantt Chart in Appendix [E]

Each team member took ownership of a specific subsystem or task; purchasing
components and prototyping functions over winter break. In January, we began to
integrate the remaining sensors required for localization, and we manufactured the
housing and mountings for our environmental sensing sensors. By the end of winter
quarter, we completed a first iteration of all hardware, including electronics and
mounting, in order to iterate on that design in the spring. We spent spring quarter

integrating our subsystems onto the vehicle and preparing for testing.

59

10 System Integration Testing and Results

In order to validate our final product, we designed a series of tests to determine
to what extent we met the hard engineering requirements outlined in our engineering

requirement flowdown (Appendix |A)).

10.1 Range Requirement Testing

Being able to operate the vehicle at a safe distance was a very important require-
ment for our customers. We wanted to verify that the remote operator console could
maintain good contact with the vehicle at range and also that the router on the back
of the rover gave us enough range to be able to operate the User Interface at a range
as well.

We knew that the router on the back of the vehicle that powers our WiFi network
that allows us to run the User Interface was going to have a shorter range than the
system powering the communication with the remote operator console. We set our
requirement threshold to a range that we considered feasible based on the specifica-
tions of the router. Our requirement was that the WiFi network and remote operator
console have a range of at least 150 meters.

To test this, we left the vehicle and one member of our team in a stationary
location and loaded the remote operator console and a laptop into another vehicle
and drove as far away as possible before we lost connection. We would stop along the
way, while remaining in line of sight with the vehicle, and would send commands to the
vehicle via the remote operator console. If our team member with the vehicle saw the
event happen, we knew the remote operator console still had contact. For the WiFi
network, the web-based user interface will display a message when it loses connection,
so we monitored the user interface and marked when that message appeared.

For the WiFi network, we lost connection at about 250 meters away from the
vehicle. The remote operator console still had good connection, so we kept driving.

We reached the edge of the property we were testing at about one kilometer away

60

from the vehicle and were still able to send commands. We know that the remote
operator console has a range in excess of one kilometer, which greatly surpasses our

150 meter requirement.

Verification | Requirement (meters) | Result (meters)
Remote Operator Console 150 1000
WiFi Network 150 250

Table 10.1: Range requirements and verification results

Table [10.1]shows the requirements we set for our the range of our operator console

and WiFi network.

10.2 Latency Requirement Verification

Latency is important to be able to operate the vehicle effectively. We do not want
operators to be making decisions based on stale data, and if the video feeds are not
coming through fast enough, it will make it very hard to drive the vehicle. Figure
shows an example of the view from the front of the vehicle, provided by our front

facing camera.

Figure 10.1: Screenshot from the front facing camera on the vehicle taken during our
testing

There were several areas of latency that we wanted to test. First, we wanted

to test the latency from the cameras to the onboard laptop. Second, we wanted to

61

test the latency from the cameras to the web-based user interface and see what the
difference is between the two. Finally, we wanted to check what the latency was for
vehicle state data, such as wheel speed and the readings from environmental sensing
packages, from the vehicle to the user interface. In all of these cases, we set the
requirement that this latency be less than one second. Due to practical constraints,
we conducted our latency tests near (j10m away) the vehicle, but did not experience
any significant increase in latency during our range testing. Table shows the

specific requirements we set for the latency of our cameras and vehicle state data.

Verification | Requirement (seconds) | Result (seconds)
Cameras to onboard laptop 1 75
Cameras to user interface 1 .8
Vehicle state data to user interface 1 2

Table 10.2: Latency requirements and verification results

As shown in table[10.2] the camera feeds in both cases had a latency under our one
second requirement. The vehicle state data however, had a latency of two seconds.
We later discovered that this was due to lack of optimization. There were points in
the data pipeline that were causing data to take longer to send and be processed than
we originally thought. Displaying the data in graph form, such as the gauges for the
different gas readings, added extra time to processing the data.

Future optimizations could be done to increase the speed of this processing.

10.3 GPS Testing

In order for our vehicle to be effective in it’s goal of providing meaningful infor-
mation to fire responders, the vehicle needs to know it’s geographic location, not only
for driving purposes, but also to correlate the payload (environmental sensor) data
as well. In order to do this we used a high end Novatel GPS receiver and with the
incorporation of WAAS (Wide Area Augmentation System) corrections we were able

to get a reliable GPS fix higher than 2 meter accuracy. We attained this number by

62

Figure 10.2: Logged GPS tracks of various field testing activities

looking at the GPS receiver’s self-reported HDOP (Horizontal Dilution of Precision).
For determining long term trends in environmental data, we consider this accuracy
to be more than sufficient for our application. Figure [10.2] shows GPS driving data

we collected during our testing.

10.4 Localization and Mapping Testing

As part of our testing process, we ran our localization and 3D visualization nodes
while driving in order to confirm the functionality of our system. As shown in Figure
[10.3] the resolution and accuracy of our 3D visualizations is more than sufficient
for detecting driving obstacles and offers a viable alternative to visual driving (via
cameras) in situations where smoke occludes the camera view.

While there were no quantitative requirements associated with the 3d visualiza-
tion, we can definitively say that the 3D views, exemplified in Figure [10.3| allow fire
responders not only to avoid obstacles but to inspect objects of interest in their envi-

ronment, therefore validating our results as providing a solution to the fire responder’s

63

Figure 10.3: 3D visualization of vehicle during mapping activity

practical needs.

10.5 Environmental Sensor Package Testing

Our environmental sensing packages are a critical component of our vehicle. To
test the effectiveness of these packages, we set a small, controlled burn and circled the
fire with our vehicle. With each pass around the fire we increased the radius of our
lap. The point of this was to test our ability to pinpoint the location of a fire using
the mapping and localization system in conjunction with the environmental sensing
packages.

As shown in figure [10.4] our environmental sensing units are able to detect the
presence of environmental hazards. The x and y-axes are position, and the z-axis is
the concentration of air particulates, which in this case is the presence of smoke. The
concentration peaks at the center of the graph and decreases as position away from
the center increases. These are the expected results, since the concentration of smoke
should decrease as we move away from the fire. Additionally, we measured higher
concentrations of smoke downwind of the fire which was expected due to the visibly
higher concentration of smoke in that direction.

We can also see how the different sensor packages detect the gases differently.

64

Figure 10.4: The results of our controlled burn test.

While not an actual requirement, we were curious to see how the different sensor
packages functioned. The point to having redundant sensors was to be able to continue
detecting environmental hazards even if one package dies. We wanted to know if the
packages behave comparably to each other.

Figure shows the measurement of LPG versus time for each of the environ-
mental sensing units. While all of the sensing units follow a similar trend, each one
displays different levels of LPG. When the test started, we were closest to the fire,
which is why the LPG concentration is the higher at the beginning of the plot. Each
sensor is also positioned in a different place on the vehicle, which explains some of
the differences. However, all of the sensors show an increase in LPG closest to the

fire, and less LPG as the vehicle moved away from it, which was what we expected.

65

Figure 10.5: LPG versus time of three sensor packages.

10.6 Blind-spot Testing

To test the blind-spots on the vehicle, we attached string to the cameras and
placed posts in the ground when they had just left the field of view of the cameras.
The strings were all of close to equal length such that we could measure the distance
between the posts in a straight line. You can see how we performed this test in Figure
[10.6] We can then convert those distances into angles that define the field of view of
the vehicle, and the size of the blind-spots of the vehicle.

66

Figure 10.6: The resulting web from attaching string to each camera and then tying
those strings to posts and placing them in the ground when the post left the field of
view of the respective camera.

Our requirement was that the cameras would offer 360 degrees of view. In other
words, our requirement was to have no blind-spots. Unfortunately, based on the
resulting calculations from the measurements we took, each camera only provided 65
degrees of coverage, resulting in a total 260 degrees of view. Each blind-spot between

the cameras was only 25 degrees, but this still fell short of our requirement.

193"
65 degrees

196"
65 degrees

196"
65 degrees

193"
65 degrees

Figure 10.7: The distance between the posts and the angles we derived between them.

A diagram of the field of view is shown in Figure [10.7, We could further increase

67

our field of view by adding two more cameras to the vehicle, placing them on the side
of the roll cage angled backwards. We would then take the two cameras already on
the roll cage and angle them more forwards. These six cameras together would then

cover the current blind-spots on the vehicle.

68

11 Costing Analysis

As part of the design process, a detailed, itemized budget was assembled for the
purchase of the components necessary to fulfill our engineering requirements (Ap-
pendix @[) The most expensive items that we purchased are the sensors, for environ-
mental sensing and for localization. We were fortunate enough to be provided with 2
SICK laser range finders by our advisor (Dr. Christopher Kitts). These items alone
would have exceeded our budget of $2500. In addition to the sensors provided by Dr.
Kitts, we calculated that the environmental sensing packages cost roughly $200. The
remainder of our funds went towards communication and interface equipment as well
as towards repairing the vehicle. As the vehicle is indeed an experimental research
platform and is highly modified from a stock state, we allotted a generous amount of
our funding to go towards repairing, tuning and upgrading the vehicle.

The RSL Rover Vehicle is a prototype and a technology demonstrator. Our pri-
mary goal is to showcase the capabilities of a vehicle with environmental sensing ca-
pabilities, remote drive by wire functionality and data visualization packages. Both
cost and time are constraints to our design. While we currently do not offer a market-
ready solution, we have considered features beyond what we will be providing, which
would have great value in a commercial product. For example, for a market vehicle,
we would want to have the vehicle adhere to as many specifications of MIL-STD-
810G, the US Military’s environmental resistance testing specifications, as possible.
Additionally, features such as heat shielding, LTE connectivity, advanced and high
powered RF transmitters and autonomy would all be desired capabilities for a market-

ready vehicle, but are beyond our budget and time line.

69

12 Commercialization Plan

12.1 Introduction

The RSL Rover is a robotic vehicle prototype designed to aid in the process of
post fire investigation. The RSL Rover design is built around integrating individual
subsystems under the industry standard Robotic Operating System (ROS) in order
to create a vehicle capable of driving fire fighters to areas affected by forest fires,
proceeding unmanned into said area, visually scanning the area, creating 3D visual
maps using LIDAR technology and GPS location, gathering data on various danger-
ous gasses, the temperature, air particulates, and smoke, storing the data for future
dissemination, and presenting important data live to users on an interface that is
accessible and easy to understand. While this vehicle is a prototype built around the
technology available to the RSL at Santa Clara University, our final design would
integrate our modular environmental sensing and mapping subsystems to a modified
drive-by-wire vehicle such as a Ford F-150 so that our product can be useful in a
variety of disaster situations. We would seek to market our design to both govern-
ment funded and privately funded forest fire fighting organizations. Though forest fire
fighting services already have a process they go through during the stages of post-fire
investigation, these processes are dangerous for the fire fighters who enter in to scan
the area before any other kinds of ground-level assessments have been made. Though
currently many fire fighting agencies are purchasing UAV’s for robotic assistance in
post fire investigation, these platforms have many disadvantages in comparison to the

RSL Rover.

12.2 Goals and Objectives

Our company’s main objective is to keep disaster responders out of harm’s way.

Responders will use our unmanned, modular vehicle to assess the environment that

70

has been affected by a disaster. Our vehicles are driven remotely and collect a variety
of meaningful data and our user interface elegantly displays this data to the operators,
who are located far from the disaster zone at a safe distance. With this data, operators
can make educated decisions regarding the subsequent steps that must be taken in
order to recover the affected area. Our goal is to ensure that responders are not
subjecting themselves to any environmental hazards during this disaster response
process.

Our vision for the commercialization of our product is to provide unmanned and
modular disaster response vehicles to a variety of public and private disaster response
and recovery departments. To do this, we will work closely with these departments
to offer useful vehicles that can be used to assess environments that have been af-
fected by various disasters. Our company will develop these vehicles with the proper
environmental sensors and user interface for the specific needs of the customer in
question. For example, our prototype was developed with fire response in mind (see

Chapter 3 for a more detailed description of our prototype).

12.3 Description

The RSL Rover is unlike any product currently on the market. It is a modular
drive-by-wire vehicle designed to serve emergency responders in all types of natural
disasters and emergency situations. The drive-by-wire system allows emergency per-
sonel to operate the vehicle at a safe distance while still being able to collect relevant
ground level information about an area. The vehicle is not limited to drive-by-wire,
though; it is also capable of being controlled manually so that it can be driven to the
command center rather than being towed there. This also means that the vehicle will
not only be limited to remote operation missions, it could also be utilized in scenarios

where remote driving is not necessary.

71

Figure 12.1: The RSL Rover monitoring air quality around a controlled burn in
California

Current modular packages that could be outfitted onto the vehicle include a smoke
and fire-gas detection package useful in forest fire investigations and a lammable and
toxic gas detection package for urban and suburban natural disaster response. Figure
shows one capability of the vehicle where it is monitoring air quality during a
controlled burn in the central valley of California. Additionally, the vehicle is capable
of generating 3-dimensional maps of an environment so that emergency personnel
can have the most information to make informed decisions on response plans. The
platform for a versatile, multi-function vehicle is there with the RSL Rover; it is up
to fire departments and emergency services to discover the many functions the RSL

Rover has to offer.

12.4 Potential Markets

The RSL Rover is meant to be marketed towards forest fire fighting agencies.
These agencies range from the United States Forest Service, which currently has 750

locations, hires over 30,000 employees, of which a third are fire fighters, and has an

72

annual budget of over $5.5 billion, to private forestry services, such as the National
Wildfire Suppression Association who represent over 150 private wildfire services that
contract out work on an as-needed basis to fight fires. Both of these styles of forest
fire fighting rely on the bravery of fire fighters to analyze areas affected by forest fires,
and thus our product could provide the capabilities to remove people from harms way
during the period of post fire investigation.

We were lucky enough to talk to Lieutenant Firefighter Perez from the Santa
Clara Fire Department, who told us that his department is given an annual budget of
around one-million dollars for new equipment. While budgets vary from area to area,
it can be assumed that fire fighting agencies are given high amounts of money for the
purchasing of equipment that could be spent on our vehicle. As many fire fighting
agencies are considering drone technologies for fire reconnaissance, we believe that this
market is one that we can tap into, as our vehicle not only provides reconnaissance,

but also many levels of useful data to fire fighters.

12.5 Competition

Many all-terrain, unmanned vehicles on the market are for military contracts
exclusively. However, Northrop Grumman and Argo Robotics both have products
that fit the category of an unmanned, all-terrain vehicle that can be equipped with
sensor packages for non-military purposes. Some of the specs for these products
can be found in Table 2.1. These are the Argo J5 Mobility Platform at thirty-nine-
thousand dollars, the Northrop Grumman Andros F6, and the Northrop Grumman
Wheelbarrow Mk9. Prices for the two later vehicles are not available without a direct

quote.

73

Product | Height(m) | Width(m) | Length(m) | Sensor Packages | Features

J5 Mobility Platform 0.83 1.38 1.52 1 Camera Mount Amphibious
Andros F6 1.486 0.445 1.32 5 Cameras Extendable Arm
Wheelbarrow Mk9 1.24 0.63 1.24 Up to 10 Cameras | Extendable Arm

Table 12.1: Current Product Comparison

Figure 12.2: Argo J5 Mobility Platform

Figure 12.3: Northrop Grumman’s Andros F6

74

Figure 12.4: Northrop Grumman’s Remotec Wheelbarrow Mk9

While these products that are on the market are the most similar to the product
we wish to produce, the issues we wish to address are not solved by these rovers. Both
of Northrop Grumman’s rovers do not have the housing needed for sensor packages
necessary to respond to forest fires. The Argo rover also does not house the necessary
data packages, and while it is amphibious, we have concluded through our research
and customer interactions that the sensor housing is more important.

Other Aerial Drones are also in the market for unmanned vehicles capable of
relaying data such as thermal imaging and video back to the user. Two such products
are the Elimco UAV-E300 and the Sensefly’s EBee. Both of these products have the
capabilities necessary to map and relay usable data, and are marketed as disaster
response vehicles. However, there are some inherent weaknesses to their aerial nature.
Images provided by Aerial vehicles can oftentimes be unusable as smoke can sit on
top of the canopy of a forest, especially in the mornings. They also can only provide
overhead data, and may not be able to map certain elements disaster responders could
need, such as air quality at ground level or mapping paths that are safe. Our vehicle

seeks to get under this layer of smoke to provide data from the ground level.

1)

Figure 12.5: Elimco UAV-E300

Figure 12.6: Sensefly’s UAV EBee

12.6 Sales and Marketing Strategy

In order to market and sell our product, we would need to target national and
international disaster response departments and make our product visible within the
department communities.

To make our product visible and generate interest, we must get communities in-
volved in the effort to keep disaster responders out of harm’s way. We can create
a series of disaster response community training efforts. For example, we could of-
fer members of a community courses where they can learn what to do in the event
of an earthquake or fire where we would also educate them on the sort of dangers
disaster responders face in their daily lives. We can also make efforts to establish a

relationship with local media outlets. For example, local news channels can highlight

76

our product during a segment on innovation in robotics or on disaster response edu-
cation. Through strategies such as these, we will be able to market our product by
establishing a presence within the communities our product can help in the event of a
disaster. This presence will encourage disaster departments to adopt our technology.

When advertising our product, our company’s main goal is to emphasize how these
vehicles can save the lives of the brave disaster responders who serve to protect our
communities in the event of an earthquake, fire, etc. Our vehicles allow the responders
to assess the environment that has been affected by a disaster from a safe distance.
With our product, these responders will not have to subject themselves to dangers
such as unstable structures or toxic gases in the air. Our company should convey
this message clearly through our advertising efforts so that potential customers can
immediately recognize the great value of our product.

In order to sell our vehicles, we would have to employ company representatives in
multiple states and countries. These representatives will meet with the department
leads to determine what their specific department needs are and whether our com-
pany can meet those needs. If an agreement is made and the department purchases
one or more vehicle(s), the vehicle will be hauled from one of our factories to the
department location. A minimal amount of training for these disaster responders
would be included. The regional /statewide/countrywide company representative will

also be responsible for holding a training workshop for the responders.

12.7 Manufacturing Plan

Manufacturing facilities have been minimized by using the existing platform of
Ford F-150 pickup trucks as the base for the RSL Rover. The trucks will be outfitted
in our warehouse by trained technicians. Manufacturing the RSL Rover at the same
location where it is designed will allow the engineers to have the oversight necessary

to ensure manufacturing goes according to plan. It also makes it possible to quickly

7

implement design changes as needed. This will require the lease of a warehouse facility
with welding equipment, 3-phase power, hydraulic hoists, and a large footprint. The
initial process of training technicians and outfitting the warehouse will be the most
time consuming part of the process. Once the initial setup is complete, the vehicles
will take approximately 200 hours to manufacture and test. This initial phase will
be costly and likely require one million dollars, including the upfront research and
development costs.

To offset these large costs, the production goal will be 100 to 200 vehicles per
year. According to the cost estimates outlined in the following section, this will net
five million to ten million dollars in revenue annually. As demand increases, more
warehouses will be opened throughout the nation and potentially globally if the global
market is receptive to the vehicle.

Manufacturing will take place in four phases. The first phase of the process will be
outfitting the vehicle with the drive-by-wire system that is the heart of the vehicle’s
functionality. The importance of this system is reinforced by the next phase; phase
two of manufacturing is the rigorous testing of the drive-by-wire system. After the
drive-by-wire system is installed and tested, the Lidar and cameras will be outfitted
to the vehicle to provide vision for the operators and analysts. The final stage of
production is outfitting the vehicle with the selected modular sensing packages. There
are multiple packages to choose from that allow functionality for different types of

disasters.

12.8 Product Cost and Price

The vehicle will be built upon the existing platform of a Ford F-150 truck in
an effort to minimize construction costs and maximize utility for fire fighters. The
breakdowns for manufacturing costs are listed in tables and and the cost of
producing a single vehicle at any volume is listed in table [12.4]

78

Component Price
Drive-By-Wire Outfitting $5,000
F-150 vehicle platform $31,000
Modular Sensing Package(s) | $1,000 ea
Velodyne Puck Lidar $7,999

’ Total Component Cost \ $44,999+ ‘

Table 12.2: Component cost breakdown

Labor Cost/hr $20
Labor Hours/vehicle 250

’ Labor Cost per Vehicle \ $5,000 ‘

Table 12.3: Labor breakdown

Component Cost per Vehicle | $44,999
Labor Cost per Vehicle $5,000

’ Cost per Vehicle \ $49,999 ‘

Table 12.4: Cost per Vehicle

The vehicle will be priced at $100,000 base with additional modular packages
available for purchase and integration. The profits associated with the sale will fund
the development costs of the vehicle as well as future research and development of
modular accessories.

There are no direct competitors to the RSL Rover but the available budgets of
departments should be considered. A Typical, mid-sized department has a million
dollar annual budget for equipment. This means that it would be relatively easy
for fire departments to add RSL Rovers to their fleets. Even small departments
will be able to afford them and large departments will be able to purchase several
per year. According to the United States Fire Administration, there are over 25,000
registered fire departments in the U.S. Therefore, it is reasonable to predict 100 vehicle

sales annually. This would allow for significant reasearch efforts and cover the initial

79

development costs in just one year.

12.9 Service and Warranties

Since we plan on using existing vehicles (such as a Ford F-150) as a platform to
apply our technology to, warranties must be handled solely by our company. We
would be modifying the existing vehicle to a degree that would potentially void the
car warranty. This potential loss of warranty is caused by the chance that any modi-
fications we make to the vehicle can be the reason why the vehicle fails. The vehicle
mechanical components should last roughly as long as the vehicle manufacturer claims
they should last. However, we cannot predict the type of wear and tear the vehicle
will experience with the subsystems we introduce.

If our product were to fail, it would be the company’s responsibility to diagnose
the issue and replace the necessary parts. Since our product includes complicated
electrical subsystems and modified driving components we cannot expect on-site or
local mechanics to know how to fix them. In some cases, like in highly populated
cities, disaster response departments have their own mechanic. Or, in smaller cities
and towns, these departments have local shops that they turn to when their equip-
ment requires maintenance. Our company could introduce a special contract with
automotive parts retailers as well as automotive repair shops in order to quickly and
locally rectify the vehicle’s small mechanical issues for the departments. For the more
complicated subsystems and driving components that we introduce, we would need
to have a series of specially trained technicians that can travel to the locations of
disaster departments and repair the vehicles. We could require a yearly maintenance

fee from the disaster departments in order to cover these costs.

80

12.10 Financial Plan and ROI

As was previously mentioned in our Cost and Price section, our vehicles when
manufactured should have a cost of around $49,999, and we feel that due to the
capability of our vehicle to protect human lives, the research and development of
robotic solutions to the problem, as well as the amount of skilled labor being put
into combining the multiple subsystems into a usable and applicable device our price
is set at $100,000. In order to estimate overhead, our team looked for warehouse
space to establish as a workshop through LoopNet, a website dedicated to renting
commercial real estate. We established a relative average of around $15 per square
foot per year. Thinking that we would need at least 500 square feet for production of
20 or less vehicles in a year, while moving up 1000 square feet for production of 50 or
more vehicles. Our plan would be to sell 5 vehicles in our first year to initial buyers,
then expanding our market every year based on our profits we acquire. We also had
an extra $2000 in overhead for the first year in case of extra expenses. In order to
cover the costs of the first year, we would need an investment of around $30,000 (or
perhaps a loan if we are desperate), followed by continuing to find investors for the
future two years. Our goal is then to work up to selling 100 units per year. The

Return on investment and Financial plan is shown in the figure below.

Figure 12.7: Excel table showing Team RSL Rover’s estimated financial plan and
return of investment

81

13 Engineering Standards and Realistic Con-

straints

13.1 Ethics

Any ethical concerns are very important to our design of this vehicle. We aim
to potentially save the lives of fire responders. This can only be achieved if our
system displays true sensor data to the best of our abilities. If our vehicle provides
false values, that could mean the environment is inaccurately assessed and people
could potentially perish. There might be some legal repercussions to this. We had
to ensure that our readings of environmental factors like air quality and temperature
are accurate. It may not completely be our responsibility since the sensors are to be
purchased from other vendors (we are not making the sensors ourselves), but we must
be sure to handle these sensors properly and provide the most accurate data to our
ability.

To ensure that our readings are correct, we equipped the vehicle with three re-
dundant sensor packages. This was done to ensure that any anomalous readings can
be verified or disregarded, according to what the other sensor packages show.

The vehicle itself, as a tool, is not unethical. Since its application is so specific and
it is clear that the vehicle is to be used in a post-fire situation, we do not foresee any
scenario in which our vehicle can be used unethically. We must be “good” engineers
in the sense that we had to be honest about our testing, results, and errors so that
any future developers may not assume that all systems are working properly if they,

in reality, are not.

13.2 Health and Safety

Our vehicle is housed in a small garage, where it sits on top of a handful of jack

stands. We have a formal safety document that has been reviewed by certain Santa

82

Clara University employees that deal with safety concerns. The document contains

certain rules for us engineers to follow. For example:

e make sure that the garage is properly ventilated
e have a "kill-switch” functionality for the vehicle at all times

e take special precaution when working underneath the vehicle or in any internal

electrical wiring

e there should always be at least two people present in the garage when working

on the vehicle.

We have explicit guidelines and our own intuition and common sense to follow. If we
work on our vehicle in accordance with the safety documentation, it should be safe
to operate by other users. All design decisions were made with the existing safety
documentation in mind. For example, the vehicle will contain two kill-switches (one in
the front and one in the back) and the remote controls will also contain a kill-switch.

The actual operators of this vehicle will also have a document that outlines all

safety concerns and rules associated with operation and maintenance of this vehicle.

13.3 Manufacturability

The previous electrical work done to the vehicle is not easy to reproduce. This
electrical work supports the "unmanned” feature of this vehicle. It was the 2014 RSL
Rover team that created the ”drive-by-wire” system. [?]

This year, with ease of production in mind, we have decided to make all sensor
packages as modular as possible. We wanted the environmental sensors to be easily
incorporated into any vehicle. We have kept the environmental sensor processors and
other components completely separate from the subsystem that drives the vehicle. So,
ideally, the disaster response aspect of this vehicle’s design can be simple to reproduce

onto already manufactured unmanned (or even autonomous) vehicles.

83

We have also decided to integrate a robotic operating system (ROS) that is consid-
ered to be the industry standard at this time. That way, any perfective or corrective
maintenance on the system software can be done with ease by a team of competent

programmers.

13.4 Environment

Environmental impact was not much of a relevant concern for our design. Since
the vehicle was inherited, we must work with what is available to us. The Polaris
6x6 Ranger that we are using can undergo inspection by a professional mechanic
who can determine whether the vehicle emits the appropriate amount of exhaust
into the environment. However, our fire response vehicle design was not affected by
environmental concerns, since none of the features we will be incorporating will have

a positive or adverse affect on the environment.

13.5 Society

The motivation behind our project as a whole is to benefit society by keeping fire
responders out of harm’s way. We recognized an issue in society (that fire responders
are exposed to deadly conditions while investigating a fire) and we aimed to fix
this issue. We considered societal repercussions while making our design decisions,
especially the designs that pertain to the "unmanned” feature of our vehicle. We
recognize that unmanned and autonomous vehicles are slowly making their way into
daily life. [?] We also recognize that this transition is met with great opposition.
With any new technological advancements that transform activities that are heavily
integrated into daily life (such as driving), many members of society react with fear.
This is why we have decided to keep the driving functionality as transparent as

possible. This means that we did not abstract away any driving mechanisms, such

84

as the gear stick. When the operator changes gears, the actual gear stick moves
accordingly. Keeping the driving functionality as familiar as possible will increase

our vehicle’s chances of being embraced by society.

85

14 Summary and Conclusions

Our senior design team sought to design and implement an unmanned vehicle that
gathers and relays information about a post-fire environment back to its operator so
that humans do not have to subject themselves to those hazardous environments. Our
team identified five key subsystem that, when combined, create a fully functioning
vehicle fit to meet our customer needs. These subsystems are environment sensing,
user interface, communications, power, and localization.

Overall, our design solves the problem by providing the necessary tools to give
operators the ability to investigate a post-fire environment without placing themselves
in immediate danger. The sensor packages, including the air particulate sensors, gas
sensors and cameras, provide data on environmental hazards. Our user-interface
makes it easy for operators to both drive the vehicle and view the incoming data
from these sensor packages so that operators can quickly identify potential hazards.

We tested the various subsystems in a series of field tests to verify the success of
the project. The results showed that the vehicle is capable of being driven from a
kilometer away which exceeded the 100 meter goal. The GPS mapping capabilities
were tested throughout the days and then analyzed showing successful tracking when
overlaid on a map. Air quality assessment verification was done with a controlled
burn and concentrated propane, confirming the proper operation of the air quality
assessment subsystem.

One area in which our design is lacking is in the communications subsystem. Due
to budget constraints, we are relying on a short range peer-to-peer wifi connection
to communicate with the vehicle. This works for prototyping the functions of the
vehicle, but future teams should consider upgrading the communication subsystem
to something that has a longer ranger and greater reliability.

Furthermore, while not included in the scope of our project, future teams could
make use of the localization subsystem and the Robotic Operating System (ROS) to

develop autonomous functionality to run on the vehicle. All of our design decisions

86

tried to keep this ultimate goal of full vehicle autonomy in mind.

We are now the third team to have worked on this vehicle and we hope that
future teams will be able to reuse and improve upon our design, similarly to how
we built upon the work of previous teams. We envision the next phase of work
including developing semi-autonomous functionality, identifying obstacles and points
of interest automatically and alerting the operators. Over the next few years, future
senior design teams could feasibly implement autonomous functionality, incorporating
path planning and navigation stacks to allow the vehicle to drive simple trajectories
on it’s own. Finally, we hope that the vehicle will be developed to the point where
it can independently serve exploratory functions, navigating complex environments

autonomously, even in communication-denied environments.

87

Design Requirement Flow-

Appendix A

down

asuodsal | PUB UONEINWIS U9aM]S] dWI} 3INSEIIN 1 e1ep |edNLd-uou Uo sz > Adusre]| p-S-OW
bay udisag ¥a uonewJoyur yidap-ui aiouw ureqo o0y ajAls ,umop |ud,| €-S-ON
bay usisag ¥a A|9512U03 e1ep |[PIUSWUOIIAUG Aeldsid| Z-S-ON
bay usisag ¥a a8ed 9|3uls e uo 3|a1yaA ay3 ulALIp 0] JueAd|2J UollewIOyUl e Aedsig| T-S-OW
3084193U1 135N 3A1I3Y3 UE IPINOI] S-ON
Bunsal pjayy Suunp Ajaaiaalgns ajenjea3 da JUBWUOJIAUD 3y} 9|dwes Aj91edndde 0} paudisap ainsopul| 8-y-ON
asuodsal | PUB UOIIBINWIIS U33MIAG dWI} INSEIIN 1 sg>huaie]| /-v-ON
bay usisaq Ha sJojesado a10wal 03 awifieal ul ejep weans 9-p-OW
s)un € jo 3ndino asedwo) ¥a sadeyoed Buisuas Juepunpay| S-p-OIN
SIUBIDINSEIW JaYIRIM UMOU)| 0} SJUaWINSeaw aiedwo) ya wny pue aunjesadwal asuss| y-y-ON
Sunsay 1 (31wi) aAIsojdxa Jamo|) 137 03 suolesjuaduod asedwod| €-y-ON
pIay 8uunp spjoysauyy A1ajes o1 sannuenb painseaw o} asedwio)
SAIsUadxs 00} ¥a ZH ‘20D ‘0D ‘Od1 ‘seo [ednieN Jo 5|aA3] 19933a| Z-7-ON
/3qe|iene Jou Juawndinba Inq sases ||e 4o} 3|qe1sa) ‘anoge se awes
asuodsal ya SUOIBJIUAdUOD 3YOWS 19938| T-v-OW
pa303dxa 21BN[RAS PUE (SDUBLSIP 3)BS B 1B) 3}0WS 03 32IYaA 393[gns
sau13 153103 Aq pajdaye eale Ue ul suewny o} spiezey ay) ajenjeny v-ON
Bunsal pjal4 1 eal ur dew pz 21esauan| p-€-ON
Bunsay pjayy Suunp pajesauald sdew anes da sishjeue ua3e| 4oy sdew anes 03 Al|Iqy| €-€-ON
SeJawed pue Jepl| 3yl Jo sisAjeue jods pui|q 39npuo) 1 Ajjiqeded Suiddew aa.8ap 09¢€ apinoid| Z-€-ON
Bunsay pjaly Suunp sadewi pnojd Juiod J11e1S 91eJIaUD) 1 SUOISUSWIP € Ul JUBWIUOUIAUD 3y ueds Ajjeanels| T-€-On
3awn-|eas ul JUaWUOIAUS ay) dejy €-0N
Sunsay p| np aduewopad SUIALIP PEO.-JJO 33eN|eA] ya ajqede) peoy o[€-z-OW
$94N1E3) SPLIISAO [ENUBLW YIIM BUIALIP 1591 1 (49]]043u0d S10WaI INOYUM) B|qeALIp Ajlenueln| z-z-ON
1ea3 pue ajdoad ajdiinw yum SuiALp 159 ¥a Jead Jo 'sq| 00 pue sia8uassed g Aued| T-z-ON
(a19eA11a Aj230WaY pue Aj|ea07) 3dIYaA asodind |ena -0
sdols Aouadiawa ¥a swa3sAs doys Aouagsawl| 9-T-ON
21BMJOS PUB 3]IIY3A 3y} U0 suonng dois Aouasiawsa |(e 1saL
95u0dsal 9[21YaA PUB PUBLILIOD USIMID] SWI) 3INSEIIN 1 ST>asuodsas [03u0)| §-T-ON
an2a3gns’ ya UONEWIOJUI Y}[e3Y 3|DIYDA 10} 9IBJIDIUI gOM SWN-[edy| -T-OW
BI3WED UO PIMBIA 3 0} JUSAS UE 10} W} dINSea|N 1 sG°0> Jo Adusie| oapIA| €-T-OW
seJawed pue Jepl| ay3 Jo sishjeue Jods puijq 1onpuo) 1 SUIALIP 10} B]D1Y2A 31 JO M3IA BIBWIED 92189p 09€ apInoid| Z-T-OW
199} O0E < 9IURISIP B WOJJ SIDANBUBW SUIALIP 10NPUO) 1 1J00€ Jo duesip e je s|qesadodpl| T-T-ON
Aem swiiey 40 N0 apIyan ayy ajesado Ajajes ued Jaauq T-ON
uonenjeny ¥a/l uondudsaqg al
B

uawalinbay usisaq - ¥a
1S9 - 1

PUEIP|IM € J31JE SUOIIPUOD [EIUSWUOIIAUS JOJUOW 0} J0Jesado 910Wal e 0} el1ep YyalT pue ‘ainjesadwa);
‘Ayjenb Jie Suiwsuesy Jo 3|qeded 3PdIYaA ulelld) ||e 3|qesadoa|d)} e 33eaud O] :JUIWIe]S UOISSIA

Requirements Flowdown

Figure A.1

€ ST 0T SZ0 yaemdoss / ssandwod z-hein / NDS asuodsal |n pue uone|NWIIS US3MIS] SWI) 94NSealA| ¥-5-ON
€ 19|\ JuswWalinbay snonuijuo) Y/N 191ndwo))! Z-hein / NDS bay udisaq €-S-OW
€ Ae|d: 19|\ JuswWalinbay snonuijuo) Y/N 191ndwo))! z-hein / NDS bay udisaq Z-S-ON
23.e| ‘aA1d3IgNS
€ Ae|dsip 131\l JudWalInbay snonuiuo) V/N JaIndwo) z-hew / nDs bay udisea| 1-5-OW
23.e| ‘aA13d3[gNS
S-ON
€ JuaWUOIIAUS S /N V/N| 0€-1dy / youey 8unsay pjayy Bulnp AjaAnnoalqns syenjea3| 8-y-ON
snouagowoH
€ 1 00€ UIIM sz 0T S0 yoremdols z-kew / nds asuodsal | pue uone|nwils usamiag awi ansean| /-y-ON
- - - snonuiuo) V/N J2Indwo) z-heN / NDS bay udisaa| 9-v-OW
S JuawuolIAUD %0T S V/N V/N| 0€-1dv / youey s)un ¢ jo Indino asedwod| g-p-ON
snouagowoH UIYIM 0ul JUDISISUOD
S siojesedwod %SOT S %S ‘D€ J919Wo048AH ST-4dv / DS S1UBWINSEAW JBYIEIM UMOUY| 0] Sjudwainseaw asedwo)| -y-ON
91e4n20y /1919Wwowlay) plpypueH
S RUEITIVE] wdd o5 S wdd o5 se9 1sa] / alld pa|josauo)| og-4dy / youey Bunsayplpy| €-v-ON
snouasowoH np sp|oysaiyl Ayajes 03 sanpuenb painseaw o} asedwo)
S RUEITTIVE] wdd o5 S wdd o5 se9 31sa] / all4 pa|jos3uo)| og-4dy / youey anisuadxa 003} /a|qejiene| z-p-OW
snouaSowoH j0u Juawdinba 1nq sases ||e 4oy 3|qeISa) ‘DA0qe Se Bwes
S pla1y Mjows wdd 10 S wdd 10 se9 1sa] / alld pa|jos3uo)| og-4dy / youey asuodsal payadxa| T-p-ON
snouaSowoH 2}en|eAd pue (3JUelsIp 34es e 1e) oWs 03 3|dIYaA 13Igns
7-ON
€ JuswuolIAUR uoMedIJIIUBP| 3|2RISqO STO'UT yaiemdols paje|dwo) Aouaie| ainseaw ‘Bunsey pjald[p-€-ON
D11eIs ‘swaisAs pieoquo
€ UEITIIVNE] o1ydead ajqesaydioag € /N swaisAs pJeoquo paje|dwo) Bunsay pjayy Bulnp pajesauad sdew anes| €-€-ON
bneis
v - 89p 05€ € 8ap 0T swaisAs pJeoquo 0z -1dv / NS selawed pue yYyal] ays 4o sishjeue jods puijq 1onpuod| z-€-OW
€ JuswuolIAUD o1ydead ajqesaydioag S Ul swaisAs pJeoquo paiajdwo) Bunsey pjaly Sulnp sadewl pnojpd julod J1je3s ajessusn| T-£-OW
o181
€O
S spaads mo|S SaNss| ON ulw g V/N V/N| o0g-1dy / youey 8unsal pjayy Sulnp asuewdopad SulAup peol-yo aleneal| €-z-OW
%4 spaads mo|S Y/N Y/N pajo|dwo) S31Nn3}ea) dpLUAA0 [ENUBW YUM BulAup Isa]| Z-Z-ON
v peoq painquisig [ainjiey oN T sq| 0T aleg Aeq| 0g-udy / youey 1ead pue ajdoad ajdinw yum Suiaup isal| T-z-OW
O
S - doas jin4 € V/N V/N paia|dwo) sdoys Aouagiswd| 9-T-ON
94BM1JOS pue 3)2IYaA 3y} uo suonng dois Axuadiawa e 159
S 1J000T UIYIM S50 0T sT0 yolemdois| og-4dy / youey asuodsal 321yaA pue PUBLIWIOD UaMIa] awil ainseaN| G-T-OW
- - - snonuiuo) V/N Ja3ndwo)’ z-Aew / nds aA3lgns| #-T-OW
€ 14 00€ IM S0 0T S0 yo1emdoss: 0z -1dv / NS BJ9WED UO PIMBIA 3q 0} JUIAD U JOj 3wl ainsea|N| €-T-OW
S - 3ap 00g € 8ap 01 BuLis ‘sajod ‘ade] Buunsa|y 0z -1dv / NS selawed pue yYyqal] ays Jo sisAjeue jods puijq 1onpuod| z-T-OW
ST 1ysis jo aury 14 005 YE 0g-1dy / youey 123} QO€ < DUEISIP € WOJ) sJaAnauew SulaLp npuod| T-T-OW
T-ON
SIH ueln m:OZQEJmm{ awoonnQ ﬂquWQXm s|et | >UNL:uU< UEWEQ_:UM WE_F\:OZNUOA_ anb uyda) uonenjeay| qilea3z

/ e|nwio4

: Test Plan

Figure A.2

A-2

Appendix B:

Market Survey

Need Category Need Description Priority Justification
Communication Strong Com- | Vehicle must have a strong com- | LOW Communication links are expen-
munication munication link both to the op- sive COTS solutions, our senior
Link erators as well as to mobile com- design is a proof of concept, not
mand station a marketable product.
Clear Effec- | Sensor data must be presented | HIGH Information presentation is key
tive Data | in such a way that the first re- functionality which is necessary
Presentation | sponder can quickly and easily in a proof of concept
extract useful information
Imaging Sen- | An array of thermal imaging | HIGH The vehicle awareness from the
sors cameras, LIDAR, and video cameras is key to the proof of
Sensors feeds that work in many visibility concept vehicle.
conditions
Combustible | First responders need to be | MEDIUM | We can include inexpensive
Gas Indica- | aware of any potentially explo- senors to search for some gasses
tor (CGI) sive gasses present at a disaster but more comprehensive sensors
site are outside of our price range
Air Particu- | Accurate smoke levels provide | HIGH Air particulate sensors are within
late (Smoke) | first responders information our price range and provide valu-
about the survivability of an able information
area for unprotected individuals
Temperature | Temperature sensors provide in- | HIGH Sensor is readily available and
formation about danger levels es- provides useful information to
pecially in forest fire fighting op- the first responder
erations
Geiger The geiger counter would pro- | MEDIUM | While the data would be inter-
Counter vide useful information but only esting, the sensor is expensive it
in specific disaster scenarios is not necessary for a proof of
concept.
Off-Road The vehicle must be able to rea- | HIGH The RSL Rover platform is al-
Capable sonably traverse obstacles while ready tailored for off-road appli-
Vehicle remaining nimble cations
Weather/ This is especially important for | LOW Heat shielding would be very ex-
Temperature | fire fighting operations. Heat pensive and can be added for a
Resistant shielding would be invaluable for post-prototype vehicle
these instances
High Angle | The vehicle needs to be able to | MEDIUM | The RSL Rover vehicle platform
of Attack climb hills and over debris already has this capability
Long Range | The range of the vehicle directly | HIGH The RSL Rover vehicle was de-
impacts the type of operations signed with an extended gas tank
that it can participate in. (greater than 20 gal)
Power Sup- | The vehicle must be able to | HIGH ‘We can provide excess power and
plies incorporate application specific communication facilities for ex-
sensors tra sensors to be integrated

Table B.1: Customer Needs

B-1

SLOzLLL

Tradeoftf Analysis

e Buzhuoud

AN i i L L L L L L @3
0l 0} b b b b b b (22
6 6 b b b b b b oL
Gl Gl 13 0 0 0 0 0 EEEERICENENG
Sy Sy EX L 0 1 1 G0 G0 1ybleH aAnoadsiad|g
Sy Sy 3 3 2 0 13 0 0 S0 1s0Q _m:m«m_\ih
X S0 S0 0 [[0 S 0 0 0 a_r_wn_m\s 9
SL S'L 3 3 3 3 | b S0 b sjods pulg|s
o | S0 =7 T 0 0 X 0 0 0
d B3 i3 v 0 v v 0 0 50 NOH os1orod 8
L L 3 S0 3 3 S0 3 | AO4 piemiod g
n Sy Sy 3 S0 S0 3 0 3 su) uonejuswajdw |
HOL0vd Wns (43 23 (13 6 8 L 9 S 14 :o:m«_.of
e SLOZIOLILL :o)eq
uogeinByuog sepry ‘wayshg
p 48r0Y 18Y :308foid

Figure C.1: LIDAR Configuration Tradeoff Analysis Priority Matrix

C-1

XSix'SisAleuy}j0apes| UoeInBUoOEpI]

(1210981507 - (§1)210981500) + ((1)10059MM1 [-
T/(eroxdd/(npod) + (gpoidd,

[l BLIILID 10j Quijaseq uey) HSIOM yonu st 1, Bt 1 | = (Fuosurdwo)

BLIGILID 10] JUIASEQ URY) ISIOM
f, BLIAILID 0] durjaseq s dwes
BLI2ILIO J0J dU[aseq Uey) JNaq
W, BLIGILI Joj auijaseq vyl Janaq yonu s

. BOPLJL T = (Fyuostedwio)
2 BaPLJL € = (Fuostredwo)
8Pt = (Fuosueduwio)
, BPLE G = (Fuosueduwio)

(0 ns = (DeoL

101d2),(£)21098150)=(1)210951507)

(@) LLOLL+ (@aLMaL + ()AL()AL)«(g)200sawr ~()as0dsou |

61 HO3IN

suonduosaq eap| ubisag

o4 g doy| =3NIN3sve

paxy 1o pajeinojes aie sease pjob ‘sease ajding

xijew Bugznoud wouy pajly sease aniq 1BIT

0861 XVIN
%101 %1°01 %1°01 %1°01 %101 %1°01 %1°01 %9'LE %Z 17 %0001 XVIN %
SINVY|
00T 00T 00T 0°0C 002 002 00T ChL S8 0361 TVIOL
0 0 0 0 0 o o o €€ € [o
0 0 0 0 0 0 0 0 o¢ € o1 o
o 0 0 0 0 0 o 0 LT € 6 0
o 0 0 0 0 o S'L s St € ST QOUBITILD) [FINIOA]
0 o 0 0 0 o St set se1 e a WERH Ea&eﬂ
0 0 o o o o o 6 sel € St 1500 (oLl
o o 0 o o o 1 ST ST € 50 B M|
0 o o 0 o o sTC st stz e S'L siods purg|
0 0 0 0 o o St St st € ST AO 9pIS
0 o 0 0 0 o cel 1 el e St AOd as1080y]
o 0 o 0 0 0 13 vl Iz € L AOd preaiog]
oui |
0 0 o o o o o 6 el e St uoneyuawa|duy
00°0 000 000 000 000 000 000 0001 0001 o1 21095 3500
1 uondNpoid — 150D
1 adfi01014 — 150D
000 000 000 000 000 000 000 0001 0001 o1 21035 ouny,
i 1501~ oun]
1 pling — oun |
1 uBisa(] — ow]
o 0 0 0 0 o o PEOY ¥ POOH avay p dog ourseg = 1| MOLOVA| VIIALRDD)
a0
SVAAINDISId LIDAVL

SLOZIPLILL

[o e -uerss

[E— R

Lidar Configuration Tradeoff Analysis Summary

Figure C.2

C-2

910219215

Soxenbs MO[9 A) UT U Yovd 10 SI0108] SunyFom USIssy

UWN[OD 1eY} Ul UOLIAILID 3y} teyy (0) yuepioduit ssaf 10 (§°0) 2ouenoduw uwres ‘() JueLioduwr 310U ST MOI By} U UOLIdILID 3} JI SUIULIAIIP ‘MOI (OB SSOI08 Fupiom
Xtnew 3y Jo a[Suern saddn ul

ar0qe sarenbs ajding u

[13 T T T T T T ,E
59 S9 0 3 S0 S0 3 S0 S0 1
S SZ L 3 S0 0 3 S0 L JaMod [BoL198I5[0F
3 3 0 3 0 0 0 0 0 80UEIES|] [EOBA|6
S S 0 S0 L 1 0 S0 1 0 1 uBleH aAoadsied|g
St SY S50 0 v L 3 0 S50 0 S50 1500 [BUSIEN |/
0 0 0 0 0 0 0 0 0 0 0 1uBloM[9
z z 50 50 v v v L L 0 50 s10dS pug|s
SL SL S0 3 3 S0 3 3 3 0 3 AO4 wu_wﬁ
GE GE 0 0 L 0 S0 L 0 0 1 /\O4 8sionay (g
6 6 S0 S0 3 3 3 3 3 3 /\O4 premiod |z
g€ g€ S0 0 3 0 S50 3 S0 0 0 Swi L uopeyuaweduy||
H¥O10vd WNS (4 13 [} 6 8 L 9 S v | € o)
SLOZ/OL/LL ejeq
uonenByueY Josues :wayshg

1on0Y 1S :309foad

Priority Matrix

1S

Sensor Configuration Tradeoff Analys
C-3

Figure C.3

XSIX'SISAEUVJJ08PE1 | UOEINBI0D 05USS 61 HOIN

[l BLIILID 10j Quijaseq uey) HSIOM yonu st 1, Bt 1 | = (Fuosurdwo)
. BOPLJL T = (Fyuostedwio)
2 BaPLJL € = (Fuostredwo)
8Pt = (Fuosueduwio)
, BPLE G = (Fuosueduwio)

BLIAILID 0] AUI[ASEQ URY) ISIOM

BLIGILID 10} QUIASE] SE AU

W[, BHOILID 10) duIfaseq uey) 1219q
W, BLIGILI Joj auijaseq vyl Janaq yonu s

((1)210081500) - (€1)21095150D) -+ ((1)210959W1 |- 11) + ((Fuost. (03 ns = (VoL suonduasaq eap| ubisaq
T(aroxdd/(npord) + (@)o1d/(1)101d)).(8)01005150)=(1)21005150)
(@ LLMLL+ (@gLOaL + ()AL()AL)x(8)09s0wt [~(orodsowr 9Beo-{|0J U0 pajunowl seiswie) y 'y ased)| =3NIN3sva

xijew Bugznoud wouy pajly sease aniq 1BIT
paxy 1o pajeinojes aie sease pjob ‘sease ajding

0'861 XVIA
%101 %101 %101 %101 %101 %101 %101 %168 %" €6 %0001 XV %
SINVA
0°0C 00T 00T 00T 00T 00T 00T $'891 0581 0861 TV.IOL|
0 0 0 0 0 0 0 0 €€ € 11 0
0 0 0 0 0 0 S6l 9¢ S61 € 9 Ssouysnqoy|
0 0 0 0 0 0 sTe s'Te ScC € S'L 230 [ELROH]}
0 0 0 0 0 0 € € g € 1 ODUEBIEI[D) [EINIIA)
0 0 0 0 0 0 St 0T ST € S YBIRH 2AR2ds12]
0 0 0 0 0 0 SEl 81 €l € S'h 150D [eoleN|
0 0 0 0 0 0 0 0 0 € 0 1B
0 0 0 0 0 0 144 14! 1t € 12 s10ds puiig]
0 0 0 0 0 0 §'TT 0€ $'TC € S'L AOH PIS|
0 0 0 0 0 0 sor S01 Sor € '€ AQH 351943y}
0 0 0 0 0 0 LT LT LT € 6 AOQH pIeAIo |
oury]
0 0 0 0 0 0 14t 1 S01 € '€ uoyeyuawo|duy
000 000 000 000 000 000 000 0001 00701 01 21035 3500
1 uonINpoId ~150))|
1 adfi01014 — 150D
00'0 00'0 00'0 00'0 00'0 00'0 00'0 0001 0001 [21008 awnt 1,
1 1501 - oun]
1 plmg — o]
T gisaq — owi |
0 0 0 0 0 0 0 seowe) g 1) ase)| sesowe) 9 :g Ise))| surppseq = | AOLOVd| VIIALRD)
10
SVAAINDISIA LADYV.L

[oo -wersks [G = woefosd wiseq

oLoz/9zIs

Sensor Configuration Tradeoff Analysis Summary
C-4

Figure C.4

: Budget

Appendix D

8.'692'¢$ VLOL ANVYD

00°09$ pajewns3
00'$ pajewnsy
00'SY$ pajewnsy
00'08$ pajewns3y
00'00L$ pajewns3
09'L$ lenpy
€€°0L$ lenpy
2T91$ |lenoy
00'S21$ |enjoy
12°05$ lenpy
00'v2$ pajewnsy
66'S$ lenpy
66'61$ lenpy
08'661$ lenpy
009$ pajewns3y
00°06€$ pajewns3
86'051$ |enjoy
66'72$ lenpy
00'051$ pajewns3y
00'00L$ pajewns3y
zLries lenpy
S6'62$ lenpy

|ejoL way| 3dld 33 10 [enjoy

0009% |
00v$ L

00'SsY$ L
0008 L
00°00L$ L

0928 L
€E0L$ L
zzol$ L
00GZL$ |
12°05$ L
00zl T
66'S$ L
6661 L
S6'6v$ ¥
00z$ €

000€L$ €
86°0S1$ |
66vc$ |

00°051$ L
00°00L$ L
980l T
S6'62 L

@oud Ao

[en4 [euonippy
suoje9 g auljoses

snoauejasiy

uoy| Buuspjos

soef uaxyoig aoejdey yoer Joo|4

N0 Jsneyxa JuaA Ajpjes 9s0H Jonq Jeqqny agn L JuaA Jsneyx3
saddng doysg

ybnouy| ssed |aued gsn

ybnouy| ssed [aued jousaylg

(1 uondQ) sayoul £g°Q 0} dn s10}08UUOD Joj yBnouy ssed ajqey ybnoiy| ssed alip\ wej) a|qed

(NI SHHY 2NN

000-V1dO-ONS-58 Jejswoyoe | aEmEmom_me

seyoIMS Jusweoe|dey

weiq uizz'0:e19e0 (z uondo) youl gz'0 03 dn 8jgea ‘youl | 0} dn uoysuuo) ‘ybnoiy) ssed ajqes Ajjus epis ybnouyL ssed aip werd a|qed

any gsn pasemod piod / anH 0°e @SN
selowe) dj
sabeyoed Buisuag 1o} }9bpng |elaua sabexyoed Buisueg

sjpuauodwo) o1uos3o9|3
Kiapeg Je) juswaoe|day
19H9AU0D DQ/OA AVZ
Alddng Jemod Buiyoyms pejeinbey 0a M09E VSL Az (IWL)IHOINYIJNS Alddns Jjemod DAAKZ 0} OVAOZL

swaysAg Jamod
(eAup piey seneld yym senss| uonelqia Juanaid) aAuQ pieH ASS doyde 1oy ass
(doyde| Aq pspoddns xew) wey go91 doyden Joy epesbidn WvY
Jeydepe gsn 0} Ze2SY
diyd 1aL4 Z2rSYH / §8¥SH 01 8SN UG 0d @ONIERD Jeydepe gsn 0} ZZrSY
uopesiunwwogy/Buyndwod
S3joN uondussaqg ped aweN Med

Budget

Figure D.1

D-1

Appendix E: Gantt Chart

Figure E.1: Gantt Chart

E-1

Appendix F: Power Budget

The following power budget was adapted from the 2014 senior design team, up-
dated with the new hardware that we plan to add to the rover [?]. We hope to
attain a more accurate understanding of how much power each component draws at
the quarter progresses as we can measure the current draw of each component and

update the spreadsheet.

Component (VEHICLE) Voltage (V) Max Current Qty Max Total Duty Cycle Avg Total V notes A notes
(A) Power (W) Power (W)
Arduino Mega 5 0.1 2 1.0 100.00% 1.0 est
Arduino Uno 5 0.1 5 2.5 100.00% 25 est
Motor Controller 1 24 1 1 24.0 100.00% 24.0 est
Motor Controller 2 12 1 1 12.0 100.00% 12.0 est
Steering Actuator 24 18 1 432.0 50.00% 216.0
Brake Actuator 24 7.9 1 189.6 20.00% 37.9
Transmission Actuator 24 18 1 43.2 10.00% 4.3
E-brake Actuator 12 7 1 84.0 5.00% 4.2
Throttle Actuator 24 0.79 1 19.0 80.00% 15.2
Warning Beacon 12 1.3 1 15.6 100.00% 15.6 10-30V 10A fuse
LED sign 7.5 3.25 1 24.4 100.00% 24.4
xBee 3.3 0.245 1 0.8 100.00% 0.8 2.1-3.6V
Tach 12 0.25 1 3.0 100.00% 3.0 8-30V est
Brake Pressure 12 0.25 1 3.0 100.00% 3.0 8-28V est
Transducer
GPS 5 0.1 1 0.5 100.00% 0.5
Horn 12 5 1 60.0 1.00% 0.6 est
LMS 221 24 1 1 24.0 100.00% 24.0 typ
LMS 111 12 0.66 1 7.9 100.00% 7.9 typ
Lidar Gimbal 24 6 1 144.0 50.00% 72.0 rough est.
Sensor Packages 12 1 3 36 100.00% 36.0 rough est.
STOCK ITEMS:
Tail lights 5 100.00% 5.0
Brake lights 5 20.00% 1.0
Headlights 35 100.00% 35.0
Indicator 1 0.00% 0.0
Total 1,1725 545.9
Component (CONSOLE) Voltage (V) Max Current Qty Max Total Duty Cycle Avg Total V notes A notes
(A) Power (W) Power (W)
Arduino Mega 5 0.1 1 0.5 100.00% 0.5 est
Switches/buttons 5 0.1 1 0.5 100.00% 0.5
Joystick 5 0.05 1 0.25 100.00% 0.25
LCD screen 5 0.2 1 1 100.00% 1
LEDs 5 0.013 20 1.3 70.00% 0.91 13 mA: need resistor?
xBee 3.3 0.245 1 0.8 100.00% 0.8
Total 4.4 4.0
ALTERNATOR OUTPUT 250
Battery Capacity Individual Number of Power Avg Power Avg Time Peak Power Min Time
Battery Batteries Capacity
Capacity (Ah) (VAh)
85 3 3060 545.9 5.60530416 1,172.5 2.60988935

Figure F.1: Power Budget: Adapted from [?]

F-1

G-1

: Drawings

Appendix G

I b

1/1 01 |

319e3S—T°0"% PEIIY 'V'A"3 PEDIN

EEN 7

9T0Z'0TY2IeW :31e@ | WY azis

>1jewayd5pieoglosuas 3311

y2S°pJR0gIOSUIS
/ 133ys

13aAN0M 1S

TUIA3TA

WWG'SZOW

INAINQIaWIL €

555
121

&
2
&
Thuprwny | ¢ a
Vi colny [T 5
J= z Tdway
- oA 98dWL
< p
5 7

Tdr

G-2

SN

A

) aiirg
{2 10

RSL Rover

orBoard.kicad_pcb

Title: Sens
Si

or Board PCB Layout

Date: March 15, 2016

[

KiCad E.D.A. kicad 4.0.1-stable

ze: AL

[Id: 1/1

G-3

I 4 z

co'ee

T/1 € K
uwwAm uonRip3 HCDO_\/_ m&w
BUUDIUY SdD |[931RAON 104 Junoly abedjjoy
S102/6/8 eleN weyssH suoJeg dlijed
aeqg ajeq Aq panoiddy Aq paypayd Aq paubisaqg
- L0'vT
GE€9
S =
| | Qm T
|| I 1 _ F——]
NN L]
N +—-4 P — L —
[Yen e //_I ._\ d
Qe
08'0S p'stT 1S91Q
02'9L

€9'v¢C

Jod 11-.8/S 10} w_o_._\\

01'8€

G4

!
40 T 133HS
€ ! _ _N /1 31v2S
VIUNO v
AZY ON OMd 3718
JUNO|N elawe) J3A0UddY|
REIN
ExiRil
v
19A0Y 1Sy QaNDIHD
9T0Z/</%! ouoJeg dored
NMYYd

| 4

N~

G-5

I v
€40 ¢ ._.m_m__._w_ _H T
31v2S
T-WO Viunop v
AT ON S5M\d 37IS
JunoJy elawe) J3A0UddY|
REIN |
J1LLL
v0
19A0Y 1Sy Q3IMDIHD
9T02/E/Y! auoleg ouied
NMYHd

00°0T

000§

00'174‘ -

00°'0T

00°Cd

0S'p—= =

1 74 4
C 10 ¢ Eu:w_ _H o
37vY2S
WD ViUNoW v
AJY ON OMNJ! 37IS
JunoJy elawe) J3IN0¥UddY|
odn]
37111 o
19A0Y 1SY aIIHD
STOC/Efy| ouorea pied
i
_ }
_ (|_4|w 00'z—|}= ~
_ o> w 002y
P v 8o —
y74 [WFW N \\ N
7T T vy T 7 \
]t g | e
(R W m | \ \
~_ | AN
/m| 4
aan - *
| .. ! 00°S
e : ~—00'5¢—~
_ 00'S
00°0S
11610
w . .
P S0°Z 1219y
o
| = [oos \\
f — T [y___|00S
+ ~ S N B ~
& —) N
o
Ha 1 ﬂ \\ N\
o Vl
<1 002y oo.mmL 00'S
(9] . .
S | g 00€d— 86
T N_w 4

G-7

|

1 40 | 133HS IHOEM 61 FTVOS
LHS \'/
AJd ‘'ON "OMmd 3718

Juol4 BUISNOH JOSUSS

=R

L@\/Om I_mm 910z/S/e

ilva

suiNg uoIDY

IWVYN

001

G¢'¢

ONIMVA 3I¥OS 1ON Od NOILYOITddY
NO @3sn
HSINI
| OIAIDY
SININWOO 434 ONIDNVAITOL
VO DIIINOID 133dAINI

"4ddV OIW 46000 F IWWIDIA IOV I3UHL
UIo0F IWWIDId 30V1d OML

8ddVONI | T gNag FHOWW AVINONY
aPOHO FIVNOILOV
‘SIONVATIOL

NMYIa SIHONI NI 33V SNOISNIWIQ

d3HID3dS ISIMAFHLO SSIINN

ASSV IXaN

¢

‘Q3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>

40 NOISSIWId NILLIIM IHL INOHLIM
JIOHM V SV JO L[dVd NI NOILONAOIdId
ANV “<3¥3H IWYN ANVAWOD L33SNI>
40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

Gco

006

GC'/

G/

0S'v

o, 001

0g¢

G-8

v

1 40 | 133HS

AJd

|

IHOEM 61 FTVOS

CHS

‘'ON "OMd

v

3718

asog BuISNOH Josuas

JoA0Y 1S

G¢o

GL'¢C
VA

—Tr—T

0gy

=R

910z/S/€
ilva

suINg UCIOY

IWVYN

ONIMYYA 3TvOS LON Od

HSINI

DI|AID
. I \4 WIELYW
SININWOO ‘434 ONIONVAI10L
V'O DIJIFIWOIO 133dIIINI

¥dd¥ OIW ygpg 7 IVWIDIA OV FFAHL
15000 ¥
agv ong | W00 T TYWIDIA 30V1d OML

NO assn

NOILYOIddY

ASSY IXaN

¢

‘Q3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>

40 NOISSIWId NILLIIM IHL INOHLIM
J1OHM V SV JO 13Vd NI NOILONAOHIY
ANV "<333H IWVN ANVIWOD L33SNI>
40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

006

0S¢

[45%

091

FANIE FHOVW VINONY .
Ao FIVNOILOVS 09/
‘S3ONVIIOL -
NMvaQ SIHONI NI 38V SNOISNIWIa 099
:d314103dS ISIMITHLO SSTINN 00’9
00y
©
& 5/'8
09'8
Ge'8
23 50’8
SN © .
o\ © e/
o 9 07’9
B 60°'G
©
N
W &3
~O
.7U —
- w
— o~ N
—|O
N o
o=
o O~
o s K +
N 'Y /
N[> + + m
OO
(@]
+ + <+ +
w
NS
N

G-9

|

¢

09t

VA

| 4O | 133HS AHODIAM T 31V OS ONIMY¥A 3IVOS LON Od NOILYOITddY "Q3L8HO¥d
Sl <3¥3H INVN ANVAWOD L33SNI>
NO a3sn ASSV IXaN 40 NOISSIWId NILLIIM IHL LNOHLIM
HSINE JIOHM V¥ SV 3O L3Vd NI NOILONAO¥IY
o \CU< ANV "<333H JWVYN ANVIWOD L¥ISNI>
5 . 4O ALYIO¥d 3108 3HL S ONIMVIA
AT ON "OMd 3zIS NN . WIELYW SIHL NI G3NIVINOD NOILYWAOANI 3HL
’ 434 ONIDNVAITOL VIINIAINOD NV A¥VIINAO¥d
V'O DIJIFIWOIO 133dIIINI
._.F_ @ | M @ Ul m n O _I_ P Om u ® W "dddV OIW o000 T IVWIDIA IOV I3UHL
. . . UIL00 ¥ IWWIDIA 30V1d OML
8ddYONI | TS gNag FHOWW AVINONY
. FIVNOILOV
Q! GO Wﬁzéﬂoh
L@\/O m I_ mm 9102/S/€ suing uoioy NMYda SIHONI NI 33V SNOISNIWIA
alva IWVN *Q3HID3dS ISIMATHLO SSIINN 00°6
o 0S¢
7
N
()]
[I
©
O - N B
o w; g O 5.8
Cl_ .
— o ST/
N =T [
NN
[G,R1@)]
w
- N % \ -
~ 3
o
O — — —

53]

o0

BT

A

G-10

| ¢

: o ONIMVIA 3IVOS LON Od NOILYOI1ddY ‘Q3L8IHO¥d
_. mo _. ._.WMIW ._.Io_m; N _. ml_<om Sl <343H IWVYN ANVAWOD L33SNI>
NO a3sn ASSV IXaN 40 NOISSIWId NILLIIM IHL INOHLIM
.V m < HSIN JIOHM V SV 3O 13d NI NOLONQO¥Y
—l_ AN “<3¥3H INVYN ANVAWOO LEISNI>
” . o]| _\CO< 40 AL¥3dO¥d 3108 3HL S| ONIMYAA
AT ON "OMd 3zIS] . WIELYW SIHL NI G3NIVINOD NOILYWAOANI 3HL
SINIWWOD ¥3d ONIONVITOL VIINIQINOD ANV A¥VIINdONd
V'O ORIEFWOIO 134dIIINI

@ _O _ W @ C_m n O _I_ P Om u @ W "dddV OIW o000 T IVWIDIA IOV I3UHL

oo ¥ IYWIO3d 30V1d OML

YddVONT |3 aNag FHOVW RIVINONY
UL 3K “SaonvaoL
JOAO N_ |_ WW_ 910e/5/e suing uoioy NMY3Q SIHONI NI 33V SNOISNIWIA
ava IAVYN *Q3HID3dS ISIMATHLO SSIINN 006
05/
059
00
00'v
o 05T
& 051
[|
R
& 1% GC'L

mN.O mR. _.

——

y — — 5¢0

Gece
Gl

00y
Gce

00y

53]

ON.O@ %N

G-11

| ¢

: o ONIMYJA 3TvOS ION Od NOILYOI1ddY ‘Q3L8IHO¥d
140 1 133H5 1HOBM 2-1 -31vOS $1 <383H IWVYN ANVAWOD LE3SNI>
NO Q35N A5V 1XN 40 NOISSIWE3d NaLLIM 3HL LAOHLIM
HSIN J10HM V S 3O 13vd NI NOLDNAO¥3Y
A ANV “<333H IWVN ANVAWOD L¥ZSNI>
: . JIAID 40 AL¥3JO¥d 3105 3HL S| ONIMVAQ
AT ON "OMd 3zIS] I \4 WIELYW SIHL NI G3NIVINOD NOILYWAOANI 3HL
SINIWWOD ¥3d ONIONVITOL VIINIQINOD ANV A¥VIINdONd
VO OIIIWOID [34HALNI

V_ oD m @ C_m no _I_ JOSuUa w "4ddY OIW g0 F TYWIDIA IOV F33HL

uloo * IYWIO3d 30V1d OML

HddYONI T agNag FHOWW AVINONY

. FIVNOILOVS

1L APIOIHO 'SIONVAIIOL

L ®>O m l_ mm 910z/5/€ suing uoIoy NMYda SIHONI NI 33V SNOISNIWIA
va | IAWN '3HID3dS ISIMITHLO SSTINN

(014
ey
GLC

Gco

Gl

GC'¢

G/

G-12

G¢o <70

00¢

Ge'¢

Gee

00y

5 .

|

1 40 | 133HS AHOBEM 211 31vOS
9HS v
A ‘'ON "OMmd 3718

{U0J4 BUISNOH JOSUSS

JOA0Y 1S

=R

910z/S/€

ilva

suINg UCIOY

IWVYN

G¢o

‘SINIAWOD
V'O

ONIMYYA 3TvOS LON Od

JllAIDY

HSINI4

IVIELYW

43d ONIONVIIT0L
ORIEFWOIO 134dIIINI

¥dd¥ OIW uigoo'0 ¥ TYWIDIA JOVTd F38HL
WWID3A 3DV1d OML
FHOVW AVINONY
FIVNOILOVS
‘S3ONVIIOL
SIHONI NI 33V SNOISNIWIQ

"dddV ON3
Q3AO3IHO

NMVda

oo F
* aN3g

d3HID3dS ISIMAFHLO SSIINN

Ge'l

G90

¢

NOILYOIddY ‘a3LgIHOYd
Sl <343H IWVYN ANVAWOD L33SNI>

40 NOISSIWId NILLIIM IHL INOHLIM
J1OHM V SV JO 13Vd NI NOILONAOHIY
ANV "<333H IWVN ANVIWOD L33SNI>
40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

NO assn ASSY IXaN

0S¥

STy

€L'¢ A

/T A
/8¢ /S
v

Gco

0S50

¢90

00y

GL¢

09°¢

GC'¢

G-13

|

1 40 | 133HS AHOEM LFL 3TV OS

AJd

LHS

\'/

‘'ON "OMmd 3718

SS|OH (Iud
UM W04 U4

19A0Y 1S

=R

9102/G/€ suing uoipy

ilva IWVYN

p = (&

‘SINIAWOD
V'O

‘dddV O4W
"dddV ON3
Q3AO3IHO

NMVda

ONIMYYA 3TvOS LON Od

HSINI4

21s0|d

IVIELYW
434 ONIONVII10L

ORIEFWOIO 134dIIINI

UIS00°'0% TYWID3d 3DV1d 333HL
ulo'oF vWID3Ad 30V1d OML
FAN3g FHOVW AVINONY

FIVNOILOV
‘SIONVIIT10L

SIHONI NI 3V SNOISNIWIQ

d3HID3dS ISIMAFHLO SSIINN

4

NOILYOIddY ‘a3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>

NO a3sn ASSY IXaN 40 NOISSIWId NILLIIM IHL INOHLIM
JIOHM V SV JO L[dVd NI NOILONAOIdId

ANV “<3¥3H IWYN ANVAWOD L33SNI>

40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

=

P05 61°0
S {03 8rZ'e
EN
\d %
X r/ &
/ A
iq
<7
0
N - & : ;
(0¢]
AN
\ 4
RN =
)
D N
N4 7

G-14

|

1 40 | 133HS AHOEM LFL 3TV OS
8HS \'/
AJd ‘'ON "OMmd 3718

JUNOW 810|NDIUDd IV

=R

JOAOY 1S

910z/S/€

ilva

suINg UCIOY

IWVYN

‘SINIAWOD
V'O

ONIMYYA 3TvOS LON Od

HSINI4
U__>LO< IVIELYW

434 ONIONVII10L
ORIEFWOIO 134dIIINI

"4ddV OIW uigao'0 T IWWIDIA IOV 1d I3UHL

"dddV ON3
Q3AO3IHO

NMVda

UulooF Ivwid3a 3ovid OmL
FAN3g FHOVW AVINONY
FIVNOILOV

‘SIONVIIT10L

SIHONI NI 3V SNOISNIWIQ

d3HID3dS ISIMAFHLO SSIINN

¢

NOILYOIddY ‘a3LgIHOYd
Sl <343H IWVYN ANVAWOD L33SNI>

40 NOISSIWId NILLIIM IHL INOHLIM
JIOHM V SV JO L[dVd NI NOILONAOIdId
ANV “<3¥3H IWYN ANVAWOD L33SNI>
40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

NO assn ASSY IXaN

A

LG
6¢°1
6¢’1

g0

620

|
VAR
3V

Ge'e

0S¢
8l¢

610

G-15

1 40 | 133HS

AJd

LHESN

|

IHOEM 61 FTVOS

\'/

‘'ON "OMmd 3718

as0g 9sNoH gsn

‘SINIAWOD

ONIMYYA 3TvOS LON Od

HSINI4
U:EU{ IVIELYW

434 ONIONVII10L
VO ORIEFWOIO 134dIIINI

“dddVY O4W uigpp'p * 1YWIO3d 30V1d 333HL

ulloo ¥ 1IYWID3d 30V1d OML

NO assn

¢

NOILYOIddY ‘a3LgIHOYd
Sl <343H IWVYN ANVAWOD L33SNI>

ASSY IXaN 40 NOISSIWId NILLIIM IHL INOHLIM

JIOHM V SV JO L[dVd NI NOILONAOIdId

ANV “<3¥3H IWYN ANVAWOD L33SNI>

40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

G¢'0

#dVONI I aNgE FHOVW RIVINONY
1L IO Plvemits
o10z/5/e buing uoioy] NMYaQ SIHONI NI 33V SNOISNIWIQ
JISAO W_ |_ mm Uva | IwwN :Q34103dS ISIMITHLO SSTINN
o
N
(@3]
[
006
o G/'8
% ;
N 007
0s°q
S2°0 05'¢
[00¢C
| R
w
N
~ |5 L
N
m.j ()]
o
o

G-16

1 40 | 133HS

AJd

¢HASN

|

AHOBEM 211 31vOS

\'/

‘'ON "OMmd 3718

1UoJ4 8SNOH 9SN

JoA0Y 1S

=R

910z/S/e
ilva

suing UoIOY

IWVYN

¢

ONIMYYA 3TvOS LON Od NOILYOIddY ‘a3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>
40 NOISSIWId NILLIIM IHL INOHLIM

HSINI NO azsn ASSY LN J10HM V SV 3O 13Vd NI NOILONAO¥Y
ANV “<333H IWYN ANVIWOD L¥3SNI>
2l _\»._O/\ 4O AL¥3dO¥d 310 IHL S| ONIMVAA
ININNOS . WRELYW SIHL NI GINIVINOD NOILYWAOANI FHL
: ‘434 ONIONVAI10L VIINIAINOD ANV A¥VIIINdONd
V'O DIJIFIWOIO 133dIIINI
"4ddY OIW 6009 F TYWIDIA IOV 338HL
. Uioo ¥ YWID3Q 30V1d OML
8ddYONI | T aNag FHOWW AVINONY
aINOIHD FIVNOILOV
SIONVHII0L
NMV3d SIHONI NI 33V SNOISNIWIA
'@314103dS FSIMITHLO SSTINN
(@)
&
00's
o STe
s 052
G/
N
—
—

00'v

Gc'e

00'¢

G-17

1 40 | 133HS

AJd

|

IHOEM 61 FTVOS

€HAsN

\'/

‘'ON "OMmd 3718

P 8SNOH 4SN

J9A0Y 1S

=R

9loz/sie
ilva

‘SINIWWOD

VO

“dddV O4W

"dddV ON3

d3aNDO3IHO

suing uoloy NMVad

IWVYN

00 *
100 ¥
7 an

ONIMYYA 3TvOS LON Od

HSINI4
o__\»go{ IVIELYW

434 ONIONVII10L
ORIEFWOIO 134dIIINI

TVYWID3A 30V1d 333HL
IYWID3d 30V1d OML
FHOVW AVINONY
FIVNOILOV
‘SIONVIIT10L

SIHONI NI 3V SNOISNIWIQ

d3HID3dS ISIMAFHLO SSIINN

NO assn

NOILYOIddY

ASSV IXaN

¢

‘Q3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>

40 NOISSIWId NILLIIM IHL INOHLIM
JIOHM V SV JO L[dVd NI NOILONAOIdId
ANV “<3¥3H IWYN ANVAWOD L33SNI>
40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

00°L

G-18

00'6

008
0Sv

00°L

00'S

00y

0S¢

|

1 40 | 133HS IHOEM 61 FTVOS
yHASN V¥
A ‘'ON "OMmd 3718

}97 9SNOH gsN

=R

JOA0Y 1S

ONIMYYA 3TvOS LON Od

HSINI
DI|AID

. I v WIELYW

SININWOO 434 ONIDNVAITOL

V'O DIJIFIWOIO 133dIIINI

‘4ddV OIN 5000 ¥ TYWIOIQ IOV 338HL
. ULo0 ¥ IYWID3Q 3DV1d OML
9ddVONI |5 gnag FHOWW vINONY

‘Q3LgIHOYd

Sl <343H IWVYN ANVAWOD L33SNI>

ASSV IXaN 40 NOISSIWId NILLIIM IHL INOHLIM
J1OHM V SV JO 13Vd NI NOILONAOHIY

ANV "<333H IWVN ANVIWOD L33SNI>

40 AL¥3dO¥d F10S 3HL S ONIMYIA

SIHL NI G3NIVINOD NOILYWIOLNI FHL

IVIINIAIINOD ANV A¥V1IINdO¥d

OO or
910z/S/€ suing uoloy NMY3a S3IHONI NI 33V SNOISNIWIa
ilva IWVYN :@3141234S ISIMIIHLO SSTTINN
1 [[1]
o 006
o G/’
00/
zr9
G/°S
0SS
8¢S
z9°¢
0S¥
- 05°€
—~ 15 Sze
38 88'C
-) 00¢C
o
3 i
w N 7u B
RYERE
.ﬂu (@]
(@)

G¢o

G-19

1 40 | 133HS

AJd

GHASN

|

IHOEM 61 FTVOS

v

‘'ON "OMmd 3718

1YBIY 8snoH gsn

JOA0Y 1S

ONIMYYA 3TvOS LON Od

HSINI
DI|AIDY

. N TVINALYW

SININWOO 434 ONIDNVAITOL

V'O DIJIFIWOIO 133dIIINI

¥ddY OIW o050 T TYWIOIA 3OV 338HL
Uio0 ¥ IYWID3IA 30V1d OML

¢

HddYONI | T agNag FHOWW AvINONY
. FIVNOILOVS
1L APIOIHO 'SIONVAIIOL
9102/5/€ suing uoioy NMVda SIHONI NI 3V SNOISNIWIQ
va | IAWN :0314103dS ISIMYIHLO SSTINN
o
o H¢O0
no
T IOTrT—
wiS
o
o0
(@)

GZ'e

NOILYOINddY ‘a3LgiHOdd
SI <3¥3H IWVN ANVAWOD L33SNI>
NO a3sn ASSV IXaN 40 NOISSIWY3d NILLIIM 3HL LNOHLIM
FTIOHM V SV JO 1¥Vd NI NOILONAOI4IY
ANV "<3¥3H IWVN ANVAWOD L33SNI>
40 AL¥3dO¥d 3108 FHL SI ONIMYIA
SIHL NI @3NIVINOD NOILYWYO4NI IHL
IVIINIAIINOD ANV A¥VIIINHO¥d
006
G/'8
00’/
0S¢
08¢
I
l‘.‘
Gc'o
G/'8
Gl/
1179
or'9
0s'q
/8V
oSV
ey
— 09°¢
O B
w £C'C
A —1G8 L
N W] L
oo
S pan WD AR
4

0c0® ’ o@*km

G-20

Appendix H: Code

Vehicle Visualization URDF Model

<robot name="rsl_roverzoe”>
<link name="base_-link”>
<visual>
<origin xyz="0 0 0” rpy="0 0 0” />
<geometry>
<mesh filename="package://rsl_rover /urdf/RoughBody_corrected.stl”/>
</geometry>

</visual>

<collision ><!—— Test values for now —>
<geometry>
<box size=7300 200 200" />
</geometry>
</collision >

</link>

<!—— Front Right Wheel —>

<joint name="body-to_fr_tire” type="fixed” >
<parent link="base_link” />
<child link="fr_tire” />
<origin xyz="1.9431 —0.584 0” rpy="0 0 0” />
<axis xyz="0 1 07 />

</joint>
<link name="fr_tire”>
<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual>
</link >
<!—— Front Left Wheel —>

<joint name="body_-to_fl_tire” type="fixed” >
<parent link="base_link” />
<child link="fl_tire” />
<origin xyz="1.9431 0.584 0” rpy="0 0 0” />
<axis xyz="0 1 07 />

</joint>
<link name="fl_tire”>
<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual>
</link >
<!—— Center Right Wheel —>

<joint name="body_to_cr_tire” type="fixed” >
<parent link="base_link” />
<child link="cr_tire” />
<origin xyz="0.3429 —0.584 0” rpy="0 0 0” />
<axis xyz="0 1 07 />

</joint>
<link name="cr_tire”>
<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual >
</link >
<!—— Center Left Wheel —>

<joint name="body_-to_cl_tire” type="fixed” >
<parent link="base_link” />
<child link="cl_tire” />
<origin xyz=70.3429 0.584 0” rpy="0 0 0” />
<axis xyz="0 1 07 />

</joint >

<link name="cl_tire”>

<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual>

<!—— Back Right Wheel —>

</link><joint name="body_to_br_tire” type="fixed” >
<parent link="base_link” />
<child link="br_tire” />
<origin xyz="-0.3429 —0.584 0” rpy="0 0 0” />
<axis xyz="0 1 0” />

</joint>

<link name="br_tire”>

<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual >
</link >

<!—— Back Left Wheel —>

<joint name="body-to_-bl_tire” type="fixed” >
<parent link="base_link” />
<child link="bl_tire” />
<origin xyz="-0.3429 0.584 0” rpy="0 0 0” />
<axis xyz="0 1 0”7 />

</joint>

<link name="bl_tire”>

<visual>
<geometry>
<mesh filename="package://rsl_rover /urdf/Tire_corrected.stl”/>
</geometry>
</visual>
</link >

<!—— Front_Laser —>

<joint name="body-to_-front_-laser” type="fixed” >
<parent link="base_link” />
<child link="front_laser” />
<origin xyz=7"2.4 0 0.24” rpy=7"3.1416 0 0” />
<axis xyz="0 1 0”7 />

</joint>
<link name="front_laser”>
<visual>
<geometry>
<box size=".5 .5 .01” />
</geometry>
</visual>
</link >
<!—— Gimbal_Base —>

<joint name="body-to_-gimbal_base” type="fixed” >
<parent link="base_link” />
<child link="gimbal_base” />
<!——<origin xyz=7.978 0 1.892” rpy="0 0 07 />——>
<origin xyz=7"1.1 0 1.892” rpy="0 0 0” />
<axis xyz="0 1 0” />

</joint>
<link name="gimbal_base”>
<visual>
<geometry>
<box size=".5 .5 .01” />
</geometry>
</visual>
</link >
<!—— Imu Link —>

<joint name="body-to_imu_link” type="fixed” >
<parent link="base_link” />
<child link="imu_link” />
<origin xyz="0 0 0.5” rpy="0 0 07 />
<axis xyz="0 1 07 />

</joint >
<link name="imu_link”>
<visual>
<geometry>
<box size=".05 .05 .05” />
</geometry>
</visual>
</link >
<!—— Base Footprint Link (base link shifted down to under the wheels) —>

<joint name="body-to_base_footprint” type="fixed” >
<parent link="base_link” />
<child link="base_footprint” />
<origin xyz="0 0 —0.3429” rpy="0 0 0” />
<axis xyz="0 0 0” />

</joint>
<link name="base_footprint”>

</link>

<joint name="body_to_front_camera” type="fixed” >
<parent link="base_link” />
<child link="front_camera” />
<origin xyz=71.0 0 1.0” rpy=7"3.14 0 07 />
<axis xyz="0 0 0”7 />

</joint >
<link name="front_camera”>

</link >

</robot>

Cameras Launch File

<launch>
<arg name="fps” default="10" />
<arg name="width” default="432" />
<arg name="height” default="240" />
<node name="camera_web_server” pkg="web_video_server”
screen”>
<param name="port” value=78080" />
<param name="address” value=710.0.0.111" />
<param name="server_threads” value=7"1" />
<param name="ros_threads” value="2" />
<param name="quality” value="90" />
</node>

<node pkg="uvc_camera” type="uvc_-camera_-node” name="camerafront” output="screen”>
<remap from="/image_.raw” to=”"/camerafront_raw” />
<param name="device” value=”/dev/camerafront” />
<param name="camera_-info_url” value="file:///home/ubuntu/cfg/cameracalib/
camerafront.yaml” />
<param name="fps” value="$(arg fps)” />
<param name="width” value="$(arg width)” />
<param name="height” value="$(arg height)” />
<param name="frame” value="front_camera” />
</node>

<node pkg="uvc_camera” type="uvc_camera_node” name="cameraright”>
<remap from="/image_raw” to="/cameraright_raw” />
<param name="device” value=”/dev/cameraright” />
<param name="camera_info_url” value="file:///home/ubuntu/cfg/cameracalib/
cameraright .yaml” />
<param name="fps” value="$(arg fps)” />
<param name="width” value="$(arg width)” />
<param name="height” value="$(arg height)” />
</node>

<node pkg="uvc_.camera” type="uvc_.camera_-node” name="cameraleft”>
<remap from="/image_-raw” to="/cameraleft_raw” />
<param name="device” value=”/dev/cameraleft” />
<param name="camera_info_url” value="file:///home/ubuntu/cfg/cameracalib/
cameraleft.yaml” />
<param name="fps” value="$(arg fps)” />
<param name="width” value="$(arg width)” />
<param name="height” value="$(arg height)” />
</node>

<node pkg="uvc_camera” type="uvc_camera_-node” name="camerarear”’>
<remap from="/image_raw” to="/camerarear_raw” />
<param name="device” value=”/dev/camerarear” />
<param name="camera_info_url” value="file:///home/ubuntu/cfg/cameracalib/
camerarear .yaml” />
<param name="fps” value="$(arg fps)” />
<param name="width” value="$(arg width)” />
<param name="height” value="$(arg height)” />

</node>
<!l—— <node name="people_detect” pkg="opencv_apps” type="people_detect” args="image:=/
cameraright_raw”/> —>
</launch>

Camera Calibration: Front

image_width: 640
image_height: 480

H-3

type="web_video_server” output="

camera.-name: camera
camera_matrix:
rows: 3
cols: 3
data: [652.560454, 0.000000, 319.752367, 0.000000, 650.694801, 248.296020, 0.000000, 0.000000,
1.000000]
distortion_model: plumb_bob
distortion_coefficients:
rows: 1

cols: 5
data: [—0.040380, —0.112498, —0.005992, 0.003583, 0.000000]
rectification_matrix:
rows: 3
cols: 3
data: [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 1.000000]

projection_matrix:
rows: 3
cols: 4
data: [640.549927, 0.000000, 321.096783, 0.000000, 0.000000, 644.552368, 246.303601, 0.000000,
0.000000, 0.000000, 1.000000, 0.000000]

Camera Calibration: Left

image_width: 640
image_height: 480
camera_name: camera
camera_matrix:

rows: 3

cols: 3

data: [680.338468, 0.000000, 308.172392, 0.000000, 680.430062, 268.088277, 0.000000, 0.000000,

1.000000]

distortion_-model: plumb_bob
distortion_coefficients:

rows: 1

cols: &
data: [—0.071290, 0.126918, 0.012577, —0.003966, 0.000000]
rectification_matrix:
rows: 3
cols: 3
data: [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 1.000000]

projection_matrix:
rows: 3
cols: 4
data: [677.564697, 0.000000, 305.707383, 0.000000, 0.000000, 674.015991, 271.888351, 0.000000,
0.000000, 0.000000, 1.000000, 0.000000]

Camera Calibration: Rear

image_-width: 640
image_height: 480
camera_name: camera
camera_matrix:
rows: 3
cols: 3
data: [652.885564, 0.000000, 294.983103, 0.000000, 655.716920, 239.362656, 0.000000, 0.000000,
1.000000]
distortion_-model: plumb_bob
distortion_coefficients:

rows: 1
cols: 5
data: [—0.070639, 0.052269, 0.001334, —0.000681, 0.000000]
rectification_matrix:
rows: 3
cols: 3
data: [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 1.000000]

projection_-matrix:
rows: 3
cols: 4
data: [642.366028, 0.000000, 293.619005, 0.000000, 0.000000, 648.596558, 239.218096, 0.000000,
0.000000, 0.000000, 1.000000, 0.000000]

Camera Calibration: Right

H-4

image_-width: 640
image_height: 480
camera_name: camera

camera_matrix:
rows: 3

cols: 3
data: [652.817375, 0.000000, 311.656932, 0.000000, 654.014227, 249.445159, 0.000000, 0.000000,
1.000000]
distortion_-model: plumb_bob
distortion_coefficients:
rows: 1
cols: 5
data: [—0.076846, 0.091739, —0.001813, —0.003684, 0.000000]
rectification_matrix:
rows: 3
cols: 3
data: [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000, 1.000000]
projection_-matrix:
rows: 3
cols: 4
data: [642.887573, 0.000000, 309.222547, 0.000000, 0.000000, 647.120850, 248.549064, 0.000000,
0.000000, 0.000000, 1.000000, 0.000000]

LIDAR Scan to Point Cloud

#include ”ros/ros.h”
#include ”ros/message.h”

#include ”tf/transform_listener .h”
#include ”sensor_msgs/PointCloud2.h”
#include ”sensor_msgs/PointField.h”
#include ”tf/message_filter .h”

#include "message_filters/subscriber.h”
#include ”laser_geometry/laser_geometry
#include ”ros/console.h”

#include <vector>
#include <string>
class LaserScanToPointCloud{
public:
ros :: NodeHandle n_;

laser_geometry :: LaserProjection project
tf:: TransformListener listener_;
message_filters :: Subscriber<sensor_msgs
tf:: MessageFilter<sensor_msgs :
ros :: Publisher scan_pub_;

LaserScanToPointCloud (ros
n_(n),
laser_sub_(n_-, ”scanlms221”, 10),
laser_notifier_(laser_sub_ ,6listener_ ,

laser_notifier_.registerCallback (

boost :: bind(&LaserScanToPointCloud ::
:: Duration (0.01)) ;
:: PointCloud2 >(”/ass-cloud” ,1);

laser_notifier_.setTolerance(ros

scan_-pub_ = n_.advertise<sensor_msgs

}
void scanCallback (const sensor_msgs
{
sensor_msgs :: PointCloud2 cloud;
try
{

: LaserScan>

:: LaserScan

_h”

or_;

:: LaserScan> laser_sub_;

:: NodeHandle n)

”base_link”,

scanCallback ,

projector_.transformLaserScanToPointCloud (

”"base_link” ,xscan_in ,
catch (tf:: TransformException& e)

std::cout << e.what();
return ;

// our scan doesn’t come with
// use the y value as the color

cloud , listener_);

intensities
value of the point

int fields_length = cloud. fields .size();

int y-offset = 0;

int count = 0;

for (int i =0; i < fields_-length; i+4) {

if (cloud.fields[i].name == "y”

y-offset = cloud. fields [i]. offset;
count = cloud. fields [i].count;
break;

H-5

10)

this ,

laser_notifier_;

-1))s

:: ConstPtr& scan_in)

¥
¥
sensor_msgs :: PointField p;
p.name = "rgbh”;
p.offset= y_offset;
p.datatype= 6;
p.count = count;
cloud. fields .push_back(p);

// Do something with cloud.
scan-pub_.publish (cloud);

}
+s

int main(int argc, char*x argv)

ros::init (argc, argv, ”"my_scan_to_cloud”);
ros :: NodeHandle nj;
LaserScanToPointCloud lstopc(n);

ros ::spin () ;

return 0;

Vehicle State Information

#!/usr/bin/env python

import rospy

import numpy

import binascii

import roslib

import time

import struct

from serial import Serial

from array import array

from collections import namedtuple
from nav_msgs.msg import Odometry
from rsl_rover_msgs.msg import vehicle_state
from math import pi,tan

class RoverInterface:
#-rx_len =0
_rx_size = 26

fmt = iffhcchh????????7??hf’
RoverDataKeys = [
’time ’ ,

’wheel_pos ’,

’wheel_speed ',
’desired_throttle 7,

B

’desired_gear ’,
’actual_gear ',
’desired_steering ’,
’actual_steering ’,
’temp_-warn’,
’voltage_warn ’,

‘estop ',
'A’, °B’, 'C’, 'D’, 'E’, 'Horn’,'F’,
’estop-code ’]

def __init__(self , ser_in):
self. _rx_size = struct.calcsize (self.fmt)
self.ser = ser_in
self. _rx_len = 0
self .rx_buffer = bytearray(self._rx_size+1)
self . rx_array_inx = 0
self . RoverState = dict ()

def receiveData(self):
ser = self.ser
#global rx_len, rx_buffer ,rx_array_-inx, RoverDataKeys, RoverData
#Translated from the c4++ arduino Easy Transfer Library
if self._rx_len == 0:
if ser.inWaiting () >= 3:
while ser.read () ! ’\x06 ’:
if ser.inWaiting () < 3:
return False

if ser.read () == ’\x85":
self._rx_len = ord(ser.read())
if self._rx_len != self._rx_size:

H-6

self._rx_len = 0
return False

if self._rx_len != O0:
while ser.inWaiting () and self.rx_array_inx <= self._rx_len:
try:
self.rx_buffer [self.rx_array_-inx] = ser.read()

self . rx_array_inx +=1
except Exception, err:
rospy .logwarn (’Error while reading after start bits’,err)

if(self._rx_len == (self.rx_array_inx —1)):
calc_.CS = self._rx_len
for i in range(0,self._rx_len):
calc_.CS "= self.rx_buffer[i]

if calc_.CS == self.rx_buffer[self.rx_array_-inx —1]:
try:
self.decodeStruct(self.rx_buffer [0: —1])
except Exception, err:
rospy .logwarn (err)
rospy .logwarn (’Failed to Decode Packet’)
rospy.logwarn(binascii.b2a_hex(self.rx_buffer[0:—1]))

self._rx_len = 0
self . rx_array_inx = 0
return True
else:
self._rx_len = 0
self .rx_array_.inx = 0

return False

def decodeStruct (self ,data):

#print ’’.join ('{:02x}’.format(x) for x in self.rx_buffer[0:—1])
values = struct.unpack(self.fmt,data)
self . RoverState = dict (zip(self.RoverDataKeys, values))

def getRoverState(self):

return self.RoverState
if __name_._. == ’__main__":
ser = Serial(

port=’/dev/rover’,

baudrate=115200,

timeout=0.1,

dsrdtr=False ,

)

rover = RoverInterface(ser)
pub = rospy.Publisher (’VehicleTach’,Odometry, queue_size=2)
pub_state = rospy.Publisher (’VehicleState ’, vehicle_state ,queue_size=2)

rospy.init_-node (’Roverlnterface)
rate = rospy.Rate(100)

while not rospy.is_shutdown ():
rover .receiveData ()
RS = rover.getRoverState ()
try :
#Build up odometry message
odom_msg = Odometry ()

odom_msg. header .stamp = rospy .Time.now ()
odom_msg. header . frame_id = ”odom”
odom_msg.child_frame_id = ”"base_link”

wheel_speed_rpm = RS[’wheel_speed 7]
wheel_pos_r = RS[’wheel_pos ’]
steering = RS[’actual_steering ’]
#Wheel diamater is 25”7 or 0.635m
#Min to sec divide by 30
#Multiply by pi to get circumference

wheel_speed = 0.635 * pi / 60 x wheel_speed_-rpm #Convert from rpm to m/s
wheel_pos = 0.635 % pi * wheel_pos_r

odom_msg.twist.twist.linear.x = wheel_speed
odom_msg.twist.twist.linear.y = 0

#odom_msg. twist . twist.angular.z = wheel_speed*—tan(pi/6xsteering /1000.0)/1.97
odom_msg.twist.covariance = numpy.diag([le—2,le—2,le—2,le—2,1le—2,1e—2]). flatten ().
tolist ()

pub.publish (odom_msg)

except Exception, err:
rospy .logwarn (’Could Not Publish tach_odom) ;
rospy .logwarn (err)

try:
#Build up vehicle state message
vs_msg = vehicle_state ()
vs_msg . header.stamp = rospy .Time.now()
vs_msg.wheel_pos = wheel_pos # Convert from Revs to M

vs_msg.wheel_speed = wheel_speed #Convert from RPM to M/S

H-7

,’Horn’ ,’F’]]

vs_msg.desired-throttle = RS[’desired-throttle ’]
vs_msg.desired_gear = RS[’desired_gear ’]
vs_msg.actual_gear = RS[’actual_gear ’]
vs_msg.desired_steering = RS[’desired_steering ’]
vs_msg.actual_steering = RS[’actual_steering ’]
vs_msg.temp_-warn = RS[’temp_warn ’]
vs_msg.voltage_warn = RS[’voltage_warn ’]
vs_msg.estop = RS[’estop ’]

vs_msg.aux = [RS[x] for x in ['A’,’B’,’C’,’D’,’E’
vs_msg.estop_code = RS[’estop_code ’]
#vs_msg.engine_rpm = RS[’engine_rpm ’]

pub_state.publish (vs_msg)

except Exception, err:
rospy .logwarn (’Could Not Publish
rospy .logwarn (err)

rover_state)

rate.sleep ()

GPS Configuration

#!/usr/bin/python

import serial

import time

import struct

ser = serial. Serial(

#port="/dev/ttyUSBO’,
#port="/home/rover—dev/dev/ttyLMS’ ,
port=’/dev/novatel ’,
baudrate=115200)
print (ser .isOpen())
#ser . write (7\x02\x00\x01\x00\x31\x15\x12")
#cmd = [’COM COMIL,115200,N,8,1,N,OFF,ON’]
cmd = [’UNLOGALL\r\n’, \
#’LOG coml versiona once\r\n’,
’SBASCONTROL ENABLE ANY 0 NONE\r\n’, \
#’SBASCONTROL DISABLE\r\n’, \

’LOG coml GPGGA ontime 0.1\r\n’, \
’LOG coml GPVTG ontime 1\r\n’, \
’LOG coml GPGSV ontime 1\r\n’, \
’LOG coml GPGSA ontime 1\r\n’, \
’LOG coml GPGST ontime 1\r\n’, \
’SAVECONFIG\ r\n ’]
for ¢ in cmd:

print c

ser.write (c)

ser . flush ()

time.sleep (0.5)

output = ’’

while ser.inWaiting () > O0:

output += ser.read ()

print output
while 1:

output = []

if ser.inWaiting () > O:

print ser.preadline ()

print output.encode(hex’)
ser.close ()

GPS Driver Launch

<launch>

<node pkg="nmea_navsat_driver” type="nmea_serial_driver”

<param name="port” value=”"/dev/novatel” />
<param name="baud” value=7115200" />
</node>
</launch>

Gimbal Driver

H-8

name="gps_driver”>

#!/usr/bin/env python

import sys

import socket

import rospy

import roslib

import time

import tf

import re

from math import pi

from rsl_rover_msgs.msg import vehicle_state

TCP.IP = ’10.0.0.141"
TCP_PORT = 2000
BUFFER.SIZE = 1024

moving = 0

MOVEPAUSE = 0.01
COMMPAUSE = 0.01
COUNTSTORAD = 45837
OFFSET_RAD = pi/2
GOALMAXRADFWD = pi/5
GOALMINRAD FWD = —pi/5
GOALRAD_FWD_STATIC = —pi/8
CALIBRATION_COUNTS = 1150

GOALMAXRADREV = pi/5—pi;
GOALMINRADREV = —pi/5—pi;
GOALRAD_REV_STATIC = —pi+pi/8

goal = 0#GOALMAXRADFWD

lastCMD_T = 0
reversing =
sweeping = False

def movetorad(s,setpoint):
goal = (setpoint+OFFSET_RAD)«COUNTSTORAD
sendCommandWOResp (s , "GOAL="+str (goal+CALIBRATION_.COUNTS))

def moveto(s,pos):
sendCommandWOResp (s , ’GOAL="+str (pos+CALIBRATION_.COUNTS))
moving = 1

def sendPitchTF (br, pitch_rad):
#br.sendTransform ((0,0,0) ,

tf.transformations.quaternion_from_euler (0,—(pitch_rad -OFFSET_RAD) ,0) ,
rospy . Time.now () ,

’gimbal_laser ’

’gimbal_base)

br.sendTransform ((0,0,0) ,
tf.transformations.quaternion_from_euler (0,— pitch_rad ,0) ,
rospy . Time.now () ,

’gimbal_laser ’
’gimbal_base ’)

def getpos(s):
data = sendCommandWResp (s, TP’)
data = float (bufferTolnt (data))/float (COUNTSTORAD) — OFFSET_RAD
return data

def getvel(s):
data = sendCommandWResp (s, TV’)
data = float (bufferTolnt (data))/float (COUNTSTORAD)
return data

def sendCommandWOResp (s ,cmd) :
s.send (cmd+’\r ")
time . sleep (COMMPAUSE)
data = s.recv (BUFFER.SIZE) #clear the buffer

def sendCommandWResp (s ,cmd) :
s.send (cmd + ’\r’)
time . sleep (COMMPAUSE)
data = s.recv (BUFFER_SIZE)
return data

def bufferTolnt (data):
data = re.findall (r’—?\d+’,data.rstrip ())
data = int(data [0].rstrip())
return data

def init ():
rospy.init_node (’gimbal_driver ’)
br = tf.TransformBroadcaster ()
try:

s = socket.socket (socket .AF_INET, socket .SOCK.STREAM)
s.connect ((TCP_IP,TCP_PORT))

H-9

except socket.error as msg:
rospy .logwarn ('PROBLEM CONNECTING’ , msg)
sys.exit (1)

time.sleep (0.1)

sendCommandWOResp (s, 7)

rospy .loginfo (’INIT COMPLETED’)

return (s,br)

def vehicle_state_callback (data):
global reversing , sweeping

reversing = data.desired_gear == 'R’
sweeping = data.aux([1]
pass
if __name.. == ’__main__":
try :
ret = init ()

s = ret [0]
br = ret[1]

sendCommandWOResp (s, "GOAL=10000")
rate = rospy.Rate(100)
rover_sub = rospy.Subscriber (’VehicleState ’, vehicle_state , vehicle_state_callback)

while not rospy.is_shutdown ():
vel = getvel(s)
pos = getpos(s)
sendPitchTF (br, pos)
if vel < 1000.0/COUNTSTORAD:
moving = False
else:
moving = True

if reversing:
GOALMINRAD = GOALMINRAD_REV
GOALMAXRAD = GOALMAXRAD_REV
GOALRAD = GOALRAD_REV_STATIC
else:
GOALMINRAD GOALMINRAD _FWD
GOALMAXRAD = GOALMAXRADFWD
GOALRAD = GOALRAD_FWD_STATIC

if sweeping:
if not moving and (time.time() — lastCMD.T > 0.2):
lastCMD_T = time.time ()
if pos > (GOALMINRADHGOALMAXRAD) /2: #GOALMAXRAD:
goal = GOALMINRAD
movetorad (s, goal)
elif pos <=(GOALMINRAD4+GOALMAXRAD) /2:# GOALMINRAD:
goal = GOALMAXRAD
movetorad (s, goal)
else:
movetorad (s ,GOALRAD)

rate.sleep ()
except rospy.ROSInterruptException:
rospy .logwarn (’ROSInterruptException Thrown’)
pass

sendCommandWOResp (s , ’"GOAL=0")

Environmental Sensor State Information

#!/usr/bin/env python
import re
import traceback
import sys
import rospy
import numpy
import binascii
import roslib
import time
import struct
from serial import Serial
from array import array
from collections import namedtuple
from rsl_-rover_msgs.msg import env._data
from math import pi,tan
from MQSensor import MQ
import os
class RoverInterface:

#-rx_len =0

_rx._size = 26

H-10

fmt = *iffffffffffff >’

RoverDataKeys = [’time’, Templ’, Temp2’,’ Humidity’, Particulate ’]
MQNames = ['MQ—4’,’MQ—135",’"MQ—9",’'MQ—2",’'MQ—5","MQ—6", MQ—7",’MQ—38"’]
RoverDataKeys = RoverDataKeys + MQNames
def __init__(self ,ser_in):

self._rx_size = struct.calcsize(self.fmt)

self.ser = ser_in

self._rx_len = 0

self . rx_buffer = bytearray(self._rx_size+1)

self . rx_array_inx = 0

self . RoverState = dict ()

def setupMQ(self):
dbpath = os.path.join (os.path.dirname(MQ. -_file__) ,’mqdb.sqlite ”)
self MQSEN = dict ()
for name in self.MQNames:
self .MQSEN|[name] = MQ.MQ(dbpath ,name)

def receiveData(self):

ser = self.ser
#global rx_len, rx_buffer ,rx_array_inx , RoverDataKeys, RoverData
#Translated from the c4++ arduino Easy Transfer Library
if self._rx_len == 0:
if ser.inWaiting () >= 3:
while ser.read () != ’\x06’:

if ser.inWaiting () < 3:
return False

if ser.read () == ’\x85":
self._rx_len = ord(ser.read())
if self._rx_len != self._rx_size:
self._rx_len = 0

return False

if self._rx_len != 0:
while ser.inWaiting () and self.rx_array_inx <= self._rx_len:
try:
self . rx_buffer [self.rx_array_inx] = ser.read ()

self.rx_array_inx += 1
except Exception, err:

rospy .logwarn (’Error while reading after start bits’,err)
if (self._rx_len == (self.rx_array_inx —1)):
calc_.CS = self._rx_len

for i in range(0,self._rx_len):
calc_.CS "= self.rx_buffer[i]

if calc_.CS == self.rx_buffer[self.rx_array_inx —1]:
try:
self.decodeStruct(self.rx_buffer [0: —1])
except Exception, err:
rospy .logwarn (err)
rospy .logwarn (’Failed to Decode Packet’)
rospy.logwarn(binascii.b2a_hex(self.rx_buffer[0:—1]))

self._rx_len = 0
self .rx_array_inx = 0
return True
else:
self._rx_len = 0
self . rx_array_inx = 0

return False

def decodeStruct(self ,data):

#print ’’.join ('{:02x}’.format(x) for x in self.rx_buffer[0:—1])
values = struct.unpack(self.fmt,data)
self . RoverState = dict (zip(self.RoverDataKeys, values))

def getRoverState(self):
return self.RoverState
if __name_._. == ’__main__":
rospy.init_-node (’EnviroDataNode)
serport = rospy.get_param (’~ port’)
rospy.loginfo (serport)

ser = Serial(
port=serport ,
baudrate=115200,
timeout=0.1,

)

rover = RoverInterface (ser)

rover .setupMQ ()

pub = rospy.Publisher (’EnvData’,env_data ,queue_size=2)
rate = rospy.Rate(5)

H-11

setupsamples = 0
setup-sample_list = []

while not rospy.is_shutdown ():
rover .receiveData ()
ES = rover.getRoverState ()

if setupsamples < 20:
if len(ES) > 0:
setup-sample_list .append (ES)
setupsamples += 1

if (setupsamples == 19):
init-val =
for name in ES.keys():
if name.startswith ("MQ-"):
init-val [name] = sum(d[name] for d in setup-sample_list) / len(
setup-sample_list)
for name in init_val.keys():
rover .MQSEN [name]. initialCalibration (init_val [name])
print ’'Done Calibrating’

else:
try:
#Build up vehicle state message
msg = env_data ()
msg . header .stamp = rospy.Time.now()

msg .MQ4.raw= ES[MQ—4’]
msg.MQ135.raw = ES[’MQ—-135"]
msg .MQ2.raw = ES[’MQ—-2"]

msg .MQ5.raw = ES[MQ—-5"]

msg .MQ8.raw = ES[MQ-8"’]

msg .MQ9.raw = ES[MQ—9’]

msg .MQ7.raw = ES[MQ—7"]

msg .MQ6.raw = ES[MQ—6"]

try:

for sen_name in rover .MQSEN. keys () :

sen_.name_mod = re.sub(’[—]’,’’ ,sen_name)
mq = msg.__getattribute__(sen_name_mod)
mq. -_setattr__(’sen_name’,sen_name)
Y = rover .MQSEN[sen_name]. processValue (ES[sen_name])

for sub in Y:
mq. -_setattr__(sub,Y[sub])

msg. __setattr__ (sen_name_mod ,mq)

except Exception, e:
traceback.print_exc ()
rospy .logwarn (’Error Generating Calibrated Values’)

msg. Temperaturel = ES[’Templ’]

msg. Temperature2 = ES[’Temp2’]

msg. Humidity = ES[’ Humidity]

msg. Particulate = ES[’Particulate 7]
pub.publish (msg)

except Exception, err:
rospy .logwarn (’Could Not Publish Env Data’) ;

rospy .logwarn (err)

rate.sleep ()

Sensor Calibration

import sqlite3 as lite
import math
import sys

class MQ:
con = None
def __init_-_(self 6 calibration_path ,name):
self.calpath = calibration_path
self .name = name;
try:
con = lite.connect(self.calpath)
cur = con.cursor ()

H-12

query = ’'SELECT sub.Name, Intercept ,C,M,sen.R2,sen.Cair FROM Calibration AS cal INNER JOIN
Substances AS sub ON

cal.SubstanceID=sub.id INNER JOIN Sensors AS sen ON cal.SensorID=sen.id WHERE sen .name
="’ 4+ self.name + 7;°’

result = cur.execute(query)
colname = [d[0] for d in result.description |
self.calibrations = [dict(zip(colname, r)) for r in result.fetchall ()]

con.close ()
except lite.Error, e:
print "Error %s:” % e.args[0]
sys.exit (0)

finally :
if con:
con.close ()

def initialCalibration (self ,raw_val):
self .R2 = self.calibrations [0][R2’]
Cair = self.calibrations [0][Cair ’]
Vm = raw_val * (5.0 / 1023.0)
self . RO = self .R2%(5.0 — Vm) / (Cair * Vm)
return

def processValue(self ,raw_val):
Vm = raw_val % (5.0 / 1023.0)
try:
Rs = self .R2%(5.0—-Vm) /Vm
except ZeroDivisionError, e:
print (’Zero Division Error Caught’)
Rs =0
Y = dict ()
for x in self.calibrations:
C = float (x[’C’])
M = float (x['M’])
name = str (x[’Name’])
try:
Y [name] = math.pow(Cx*(Rs/self .R0) M)
except ValueError, e:
print ’Math Error Caught’
Y[name] = 0
return Y

if __name_.. == ’__main__":
MQl = MQ(’mqdb.sqlite ’, ’'MQ—4")
MQl. initialCalibration (128)
print MQILl. processValue (255)

Laser Startup

<launch>
<!—— Start the robot model which includes visual geometery and
static transformations which define the robot’s
different frames ——>
<env name="ROSCONSOLEFORMAT” value="[${thread}] [${node}/${function}:${line }]: ${message
17>

<param name="use_sim_time” value="false” />
<include file="$(find rsl_-rover)/launch/robot_state.launch” />

<!—— Connect to the Vehicle Mega —>
<include file="$(find rsl_rover)/launch/rover_interface.launch” />

<!—— Startup all of the sensors: Lidar, GPS, IMU, Cameras —>
<include file="$(find rsl_rover)/launch/RSL_LMS221.launch” />
<include file="$(find rsl_rover)/launch/lms221_filter.launch” />
<include file="$(find rsl_rover)/launch/RSL_LMS111.launch” />
<include file="$(find rsl_rover)/launch/novatel.launch” />
<include file="$(find rsl_-rover)/launch/um7.launch” />
<!——<include file="$(find rsl_rover)/launch/cameras.launch” /> —>

<!—— Startup all of the mapping & localization nodes —>
<include file="$(find rsl_rover)/launch/hector.launch” />
<!——<include file="$(find rsl_-rover)/launch/octomap.launch” />——>
<include file="$(find rsl_-rover)/launch/loc.launch” />

<!—— Startup RVIZ visualization , marked as required so
all nodes will exit if rviz is closed —>

<include file="$(find rsl_rover)/launch/rover_rviz.launch” />

<!—— Startup Web Services —>

H-13

<!—— <include file="$(find rsl_rover)/launch/serv.launch” /> —>
</launch>

LIDAR LMS111 Launch

<launch>
<arg name="host” default=7"10.0.0.140" />
<node pkg="lmslxx” name="lmslxx” type="LMSlxx_node” output="screen”>
<param name="host” value="$(arg host)” />
<param name="frame_id” value="front_laser” />
</node>
<include file="$(find rsl_.rover)/launch/scan_filter.launch” />
</launch>

LIDAR LMS221 Launch

<launch>
<node pkg="rsl_rover” name="gimbal_driver” type="gimbal_driver.py” output="screen”>
</node>
<node pkg="sicktoolbox_wrapper” name="1ms221” type="sicklms”>
<param name="port” value="/dev/lms221” />
<param name="baud” value="500000" />
<param name="frame_id” value="gimbal_laser” />
<remap from="scan” to="scanlms221” />
</node>
</launch>

LIDAR LMS221 Filter Launch

<launch>
<node pkg="rsl_rover” type="periodic_snapshotter2” name="rover_periodic_snapshotter2” />
<!—— Filter the point cloud with a Voxel Fliter Nodelet —>
<node pkg="nodelet” type="nodelet” name="pcl_manager” args="manager” output="screen” />
<!—— Run a VoxelGrid filter to clean NaNs and downsample the data —>

<node pkg="nodelet” type="nodelet” name="voxel_grid” args="load pcl/VoxelGrid
pcl_omanager” output="screen”>
<remap from=""input” to="assembled_cloud” />
<remap from=""output” to="filtered_cloud” />
<rosparam command="load” file="$(find rsl_rover)/filter_config/voxel_config.yaml”

/>
</node>
</launch>

All Laser Launch

<launch>
<include file="RSL_LMS221.launch” />
<include file="RSL_LMS111.launch” />
<node pkg="laser_assembler” name="laser_scan_assembler” type="laser_scan_assembler” >
<param name="max_scans” type="int” value="400" />
<param name="fixed_frame” type="string” value="base_link” />
</node>
</launch>

Hector Mapping Launch

<launch>
<arg name="tf_map_scanmatch_transform_frame_name” default="scanmatcher_frame”/>
<arg name="base_frame” default="base_link”/>
<arg name="odom_frame” default="odom”/>
<arg name="pub_map_odom_transform” default="false”/>

<arg name="scan_subscriber_queue_size” default="5"/>
<arg name="scan_topic” default="scan”/>
<arg name="map-_size” default="4096"/>

H-14

<!—— <node pkg="topic_tools” type="relay” name="scan_relay_1” args="scanlms221 scan_total” />

<node pkg="topic_tools” type="relay” name="scan_relay_

on

args="scan scan_total” /> ——>

<node pkg="hector_mapping” type="hector_mapping” name="hector_mapping” output="screen”>

<param name="laser_max._dist” value=7140.0" />

<!—— Frame names —>
<param name="map_frame” value="map” />

<param name="base_frame” value="$(arg base_frame)” />
<param name="odom_frame” value="$(arg odom_frame)” />

<!—— Tf use —>
<param name="use_tf_scan_transformation” value="true

" />

<param name="use_tf_pose_start_estimate” value="false”/>
<param name="pub_map-odom_transform” value="$(arg pub_map_odom_transform)”/>

<!—— Map size / start point —>

<param name="map-resolution” value="0.20"/>
<param name="map._size” value="$(arg map-_size)”/>
<param name="map_start_x” value="0.5"/>

<param name="map-_start_.y” value=70.5" />

<param name="map._-multi_res_levels” value=73" />

<!—— Map update parameters ——>
<param name="update_factor_free” value="0.4"7/>
<param name="update_factor_occupied” value=70.9"7 />

<param name="map-update_distance_thresh” value=70.1"/>
<param name="map-update_angle_thresh” value=70.02" />

<param name="laser_z_min_value” value = ”—-1.0" />
<param name="laser_z_max_value” value = 71.5” />
<!—— Advertising config —>

<param name="advertise_map_service” value="true”/>

aram name="scan_subscriber_queue_size” value= ar
< » b b » 1 ”g
<param name="scan_topic” value="$(arg scan_topic)”/>

<!—— Debug parameters —>
<!——
<param name="output_-timing” value="false”/>
<param name="pub_drawings” value="true”/>
<param name="pub_debug_output” value="true”/>
—>
<param name="tf_map_scanmatch_transform_frame_name”
tf_map_scanmatch_transform_frame_name)” />
</node>

</launch>

Localization Launch

<!—— Launch file for ekf_localization_node —>
<!—— Layer 1 Localization: Odometry Frame ——>
<launch>

g s

can_subscriber_queue_size)” />

value="$(arg

<node pkg="tf"” type="static_transform_publisher” name="tach_odom123” args="0 0 0 0 0 0 1 odom

tach_odom 20" />
<node pkg="rsl_rover” type="imu_-override_covariance.
<!l—— <node pkg="rsl_rover” type="virt_.yaw_sensor.

.

name="10C” />
name="VirtYaw” output="screen”/> ——>

<node pkg="imu_complementary_filter” type="complementary_filter_node” name="

complementary_filter_node” >
<remap from="imu/data.raw” to="imu/data_cov”
<remap from="imu/mag” to="imu/mag” />
<remap from="imu/data” to="imu/data_filtered”

/>

/>

<param name="do_bias_estimation” value="true”/>

<param name="do_adaptive_gain” value="true”/>
<param name="use_mag” value="false”/>
<param name="gain_acc” value="0.01"/>
<param name="gain_mag” value="0.01"/>
</node>

<node pkg="robot_localization” type="ekf_localization_-node” name="odom_localization”

clear_params="true” output="screen”>

<param name="frequency” value=730"/>

<param name="sensor-timeout” value=70.1"/>

<param name="two_d_mode” value="true”/>

<param name="map_frame” value="map”’/>

<param name="odom_frame” value="odom”/>

<param name="base_link_frame” value="base_link”/>

H-15

<l—

<param name="world_frame” value="odom”/>

<param name="transform_time_offset” value=70.0"/>
<!—— The filter accepts an arbitrary number of inputs from each input message type (Odometry
, PoseStamped,

TwistStamped, Imu). To add a new one, simply append the next number in the sequence to
its base name,

e.g., odom0O, odoml, twistO, twistl, imu0O, imul, imu2, etc. The value should be the
topic name. These
parameters obviously have no default values, and must be specified. —>
<param name="odom0” value="/VehicleTach”/>
<!—— <param name="odoml” value="/VirtYaw”/> —>

<param name="imu0” value="/imu/data_filtered”/>

<!—— Each sensor reading updates some or all of the filter ’s state. These options give you
greater control over
which values from each measurement /imu/data_filteredare fed to the filter. For example
, if you have an odometry message as input,

but only want to use its Z position value, then set the entire vector to false, except
for the third entry.
The order of the values is x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw,

ax, ay, az. Note that not some

message types lack certain variables. For example, a TwistWithCovarianceStamped message
has no pose information, so

the first six values would be meaningless in that case. Each vector defaults to all
false if unspecified, effectively

making this parameter required for each sensor. —>
<rosparam param="odomO_config” >[false , false , false,
false , false, false ,
true , true , false ,
false , false, true,
false , false, false]</rosparam> —>
<rosparam param="odoml_config” >[false , false, false,
false , false , false,
false , false , false ,
false , false , true,

false , false, false]</rosparam> ——>

<rosparam param="imuO_config”>[false, false, false,
true , true , true ,
false , false , false,
true , true , true ,
false , false , false]</rosparam>
<!—— The best practice for including new sensors in robot_-localization ’'s state estimation

nodes is to pass in velocity

measurements and let the nodes integrate them. However, this isn’t always feasible , and
so the state estimation

nodes support fusion of absolute measurements. If you have more than one sensor
providing absolute measurements,

however, you may run into problems if your covariances are not large enough, as the
sensors will inevitably

diverge from one another, causing the filter to jump back and forth rapidly. To combat
this situation, you can

either increase the covariances for the variables in question, or you can simply set
the sensor’s differential

parameter to true. When differential mode is enabled, all absolute pose data is

converted to velocity data by

differentiating the absolute pose measurements. These velocities are then integrated as
usual. NOTE: this only

applies to sensors that provide absolute measurements, so setting differential to true
for twit measurements has

no effect .

Users should take care when setting this to true for orientation variables: if you have
only one source of

absolute orientation data, you should not set the differential parameter to true. This
is due to the fact that

integration of velocities leads to slowly increasing error in the absolute (pose)
variable. For position variables,

this is acceptable. For orientation variables, it can lead to trouble. Users should
make sure that all orientation
variables have at least one source of absolute measurement. —>
<param name="odomO_differential” value="false”/>
<!—— <param name="odoml_differential” value="false”/> —>

<param name="imuO_differential” value="false”/>

<!—— When the node starts, if this parameter is true, then the first measurement is treated
as a ”"zero point” for all
future measurements. While you can achieve the same effect with the differential
paremeter , the key difference is
that the relative parameter doesn’t cause the measurement to be converted to a velocity
before integrating it. If
you simply want your measurements to start at O for a given sensor, set this to true.
—>
<param name="odomO._relative” value="false”/>

H-16

<!—— <param name="odoml_relative” value="false”/> —>
<param name="imuO_relative” value="false”/>

<!—— If we’re including accelerations in our state estimate, then we’ll probably want to
remove any acceleration that
is due to gravity for each IMU. If you don’t want to, then set this to false. Defaults
to false if unspecified. —>
<param name="imuO_remove_gravitational_acceleration” value="true”/>

<!—— If you’re having trouble, try setting this to true, and then echo the /diagnostics_agg
topic to see
if the node is unhappy with any settings or data. —>

<param name="print_diagnostics” value="true”/>

<!—— =——————= ADVANCED PARAMETERS ————— —>

<!—— Most users will be able to remove these parameters from the launch file without any

consequences . We recommend
that users do not set values for these parameters without having a thorough
understanding of

the parameters do. —>
<!—— By default, the subscription queue size for each message type is 1. If you wish to
increase that so as not
miss any messages (even if your frequency is set to a relatively small value), increase
these. —>
<param name="odomO_queue_size” value="2"/>
<!——<param name="odoml_queue_size” value=7"2"/> ——>

<param name="imuO_queue_size” value=72"/>

<!—— If your data is subject to outliers, use these threshold settings , expressed as
Mahalanobis distances, to control
how far away from the current vehicle state a sensor measurement is permitted to be.
Each defaults to

numeric_-limits <double >::max() if unspecified. —>
<!—— <param name="odoml_pose_rejection_threshold” value="5"/>
<param name="odoml_twist_rejection_threshold” value="1"/> —>
<!——<param name="imuO_pose_rejection_threshold” value=70.3"/>
<param name="imuO_twist_rejection_threshold” value=70.1"/>
<param name="imuO_linear_acceleration_rejection_threshold” value=70.1"/> —>
<!—— Debug settings. Not for the faint of heart. Outputs a ludicrous amount of information

to the file
specified by debug-out_file. I hope you like matrices! Defaults to false if unspecified

<param name="debug” value="false” />
<!—— Defaults to ”"robot_localization_debug.txt” if unspecified. —>
<param name="debug_out_file” value="debug_ekf_localization.txt”/>
<!—— The process noise covariance matrix can be difficult to tune, and can vary for each
application , so it
is exposed as a configuration parameter. The values are ordered as x, y, z, roll, pitch
, yaw, Vvx, vy, vz,
vroll , vpitch, vyaw, ax, ay, az. Defaults to the matrix below if unspecified. —>
<rosparam param="process_noise_covariance” >[0.05, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0.05, O, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0.06, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.03, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.03, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.06, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.025, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0.025, 0, 0, 0, 0, 0, 0,
0,
0, 0, 0, 0, 0, 0, 0, 0,
0.04, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0.01, O, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.01, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.02, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.01, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.01, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0 0 0, 0, 0, 0,

0.015] </rosparam>

H-17

<!—— This represents the initial value for the state estimate error covariance matrix.
Setting a diagonal value (a
variance) to a large value will result in early measurements for that variable being
accepted quickly. Users should
take care not to use large values for variables that will not be measured directly. The
values are ordered as x, y,
z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the
matrix below if unspecified. —>
<rosparam param="initial_estimate_covariance”>[le—9, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, le—9, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, le—9, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, le—9, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, le—9, O, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, le—9, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, le
-9, 0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
le—9, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, le—9, O, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, le—9, O, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, le—-9, O,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, le—9,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
le—-9, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, le—9, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, le—9]</rosparam>
<!—— Placeholder for output topic remapping—>

<remap from="odometry/filtered”

to="odometry/filtered_cont”/>

</node>

<node pkg="robot_-localization”

<param

<param name="yaw_offset”

type="navsat_transform_node” name="navsat_transform_node”>

name="magnetic_declination_radians” value="0.236"/>

value="0"/>

/>

<!—— <param name="yaw_offset” value="1.5707963"/>——>

<param name="publish_filtered_gps” value="true” />

<param name="broadcast_utm_transform” value="true” />

<remap from="/imu/data” to="/imu/data_filtered” />

<remap from="/gps/fix” to="/fix” />

<remap from="/odometry/filtered” to="/odometry/filtered_-discont”
</node>

<l

Layer 2 Localization:
<node pkg="robot_localization”
clear_params="true”

Map Frame ——>
type="ekf_localization_node”
output="screen”>

name="map_localization”

<param name="frequency” value="30"/>
<param name="sensor_timeout” value="0.1"/>
<param name="two_d_-mode” value="true”/>
aram name="map_frame” value="ma
< » £ » 1 » SIS
<param name="odom_frame” value="odom”/>
<param name="base_link_frame” value="base_link”/>
<param name="world_frame” value="map”/>

<param

name="transform_time_offset” value="0.0"/>

H-18

<

<param name="o0odom0” value="/odometry/filtered_cont”/>
<param name="pose0” value="/poseupdate”/>

<rosparam param="odomO_config” >[false , false, false,
false , false , false,
true , true , false ,
false , false, true,
true, true, false]</rosparam> ——>

<rosparam param="poseO_config”>[true, true, false,

false , false, true,
false , false , false ,
false , false, false ,

false , false, false]</rosparam> ——>

<param name="odomO_differential” value="false”/>
<param name="odomO._relative” value="false”/>
<param name="pose0O_differential” value="false”/>
<param name="poseO_relative” value="false”/>

<!—— If you’re having trouble, try setting this to true, and then echo the /diagnostics_agg
topic to see
if the node is unhappy with any settings or data. —>

<param name="print_diagnostics” value="true”/>
<!—— =——————= ADVANCED PARAMETERS —/———+— —>

<!—— Most users will be able to remove these parameters from the launch file without any
consequences . We recommend
that users do not set values for these parameters without having a thorough
understanding of

the parameters do. —>
<!—— By default, the subscription queue size for each message type is 1. If you wish to
increase that so as not
miss any messages (even if your frequency is set to a relatively small value), increase
these. —>

<param name="odomO_queue_size” value="1"/>
<param name="pose0_queue_size” value="1"/>

<!—— If your data is subject to outliers, use these threshold settings, expressed as
Mahalanobis distances, to control
how far away from the current vehicle state a sensor measurement is permitted to be.
Each defaults to

numeric_limits <double >::max() if unspecified. —>
<param name="odomO_pose_rejection_threshold” value="5"/>
<param name="odomO_twist_rejection_threshold” value="1"/> ——>
<!—— Debug settings. Not for the faint of heart. Outputs a ludicrous amount of information

to the file
specified by debug-out_-file. I hope you like matrices! Defaults to false if unspecified

>
<param name="debug” value="false” />
<!—— Defaults to "robot_localization_debug.txt” if unspecified. —>
<param name="debug_out_file” value="debug_ekf_localization.txt”/>
<!—— The process noise covariance matrix can be difficult to tune, and can vary for each
application, so it

is exposed as a configuration parameter. The values are ordered as x, y, z, roll, pitch
, yaw, VX, Vy, vz,

vroll , vpitch, vyaw, ax, ay, az. Defaults to the matrix below if unspecified. —>
<rosparam param="process_noise_covariance” >[0.05, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,

0, 0.05, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0.06, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.03, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.03, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.06, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.025, 0,
0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

0.025, 0, 0, 0, 0, 0, 0,
0,

0, 0, 0, 0, 0, 0, 0, 0,
0.04, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0.01, O, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.01, O, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.02, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.01, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.01, O,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0.015] < /rosparam>
<!—— This represents the initial value for the state estimate error covariance matrix.
Setting a diagonal value (a
variance) to a large value will result in early measurements for that variable being
accepted quickly. Users should
take care not to use large values for wvariables that will not be measured directly. The
values are ordered as x, vy,
z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the
matrix below if unspecified. —>
<rosparam param="initial_estimate_covariance”>[le—9, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1e—9, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, le—9, O, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, le—9, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, le—9, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 1e—9, 0,
0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, le
—9, 0, 0, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
le—9, O, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, le—9, 0, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, le—9, 0, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, le—9, 0,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, le—9,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
le—9, O, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, le—9, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, le—9]</rosparam>
<!—— Placeholder for output topic remapping—>
<remap from="odometry/filtered” to="odometry/filtered_discont”/>
</node>
</launch>
L]
Map Testing Launch
<launch>
<!—— Plays back data from bagfile and uses simualtion clock —>
<arg name="bagfile” default="$(find rsl_rover)/bag/jan25—rover—maneuvering.bag” />
<param name="use.sim_time” value="true” />
<node pkg="rosbag” type="play” name="rosbag” args="——clock $(arg bagfile)” required="true
»
>
</node>
<!—— Static transforms in place of odometry. Assumes stationary robot —>
<node pkg="tf” type="static_transform_publisher” name="stationary_robot_transform” args="0
00000 /base_link /map 100”/>

H-20

<node pkg="tf” type="static_-transform_publisher” name="stationary_-robot_transform_1”
="0 0 0 0 0 0 /base_link /odom 100”/>

<!—— Assemble the laser scans into a point cloud, published periodically —>

<node pkg="laser_assembler” type="laser_scan_assembler” name="rover_laser_assembler”
<param name="fixed_frame” type="string” value="base_link” />

</node>

<node pkg="rsl_rover” type="periodic_snapshotter” name="rover_periodic_snapshotter”

="screen”>

<param name="pub_duration” value="1.0" />

</node>

<!—— Filter the point cloud with a Voxel Fliter Nodelet —>

<node pkg="nodelet” type="nodelet” name="pcl_manager” args="manager” output="screen’

<!—— Run a VoxelGrid filter to clean NaNs and downsample the data —>

<node pkg="nodelet” type="nodelet” name="voxel_grid” args="load pcl/VoxelGrid
pcl-manager” output="screen”>
<remap from=""input” to="assembled_cloud” />

<remap from=""output” to="filtered_cloud” />
<rosparam command="load” file="$(find rsl_.rover)/filter_config/voxel_config.
/>
</node>
<!—— Alternative Filter Method —>

<node pkg="laser_filters” type="scan_to_cloud_filter_chain” name="scan2cloud” >
<rosparam command="load” file="8(find rsl_rover)/filter_config/laser_config.
/>
<rosparam command="load” file="$(find rsl_.rover)/filter_config/cloud_config.
/>
<param name="high_fidelity” value="false” />
<param name="target_frame” type="string” value="base_link” />

</node>
—>
<node pkg="octomap_server” type="octomap_server_node” name="rover_octomap.server” output="
screen” >
<remap from="cloud_in” to="filtered_cloud” />
<param name="resolution” value=70.3" />
<param name="filter_ground” value="false” />
<param name="latch” value="false” />
<param name="base_frame_id” value="base_footprint” />
<param name="ground_filter /distance” value=70.04" />
<param name="ground_filter /angle” value="0.15" />
<param name="ground_filter/plane_distance” value=70.07" />
</node>
<include file="$(find rsl_-rover)/launch/robot_state.launch” />
<include file="$(find rsl_-rover)/launch/rover_rviz.launch” />
</launch>

Navigation Stack Move Base Launch

<launch>
<!—— Optionally run something like AMCL —>

<!—— run Navigation Stack Move Base ——>

<node pkg="move_base” type="move_base” respawn="false” name="move_base” output="screen”>

<rosparam file="$(find rsl_.rover)/cfg/costmap_common_params.yaml” command="load”
global_costmap” />

<rosparam file="$(find rsl_rover)/cfg/costmap_common_params.yaml” command="load”
local_costmap” />

<rosparam file="$(find rsl_-rover)/cfg/local_costmap_params.yaml” command="load”

<rosparam file="$(find rsl_.rover)/cfg/global_costmap_params.yaml” command="load”

<rosparam file="$(find rsl_rover)/cfg/teb_local_planner_params.yaml” command="load”
<rosparam file="8$(find rsl_rover)/cfg/costmap_-converter_params.yaml” command="load”

<!—— Enable to activate costmap-conversion plugins —>
<param name="base_local_planner” value="teb_local_planner/TebLocalPlannerROS” />

<!——param name="base_global_planner” value="straight_global_planner/StraightROS” /——>

<param name="controller_frequency” value="5.0" />

<remap from="map” to="/map”’ />

<remap from="move_base_simple/goal” to="/move_base_simple/goal”/> <!—— We have only a
single robot now, that is controlled via goals —>
<remap from="odom” to="odometry/filtered_discont” />
</node>

<node pkg="rsl_rover” name="cmd_to_ack” type="cmd_vel_to_ackermann_drive.py”>
<param name="wheelbase” value="2.5" />
<param name="frame_id” value="odom” />
</node>
</launch>

H-21

OctoMap Launch

<launch>
<!—— Assemble the laser scans into a point cloud, published periodically —>
<!—— <node pkg="laser_assembler” type="laser_scan_assembler” name="rover_laser_assembler”

>

»

<param name="fixed_frame” type="string” value="base_link” />
<remap from="scan” to="scanlms221” />
</node> —>

<!—— <node pkg="rsl_rover” type="periodic_.snapshotter” name="rover_periodic_-snapshotter
»
>
<param name="fixed_frame” type="string” value="/odom” />
<param name="ignore_laser_skew” type="bool” value="false” />
<param name="pub_duration” value="1.0" />

</node>
—>
<!——
<node pkg="rsl_rover” type="periodic_snapshotter2” name="rover_periodic_snapshotter2” />
<node pkg="nodelet” type="nodelet” name="pcl_manager” args="manager” output="screen” />
<node pkg="nodelet” type="nodelet” name="voxel_grid” args="load pcl/VoxelGrid
pclomanager” output="screen”>
<remap from=""input” to="assembled_cloud” />
<remap from=""output” to="filtered_cloud” />
<rosparam command="load” file="$(find rsl_rover)/filter_config/voxel_config.yaml”
/>
</node>
—>
<!—— Alternative Filter Method —>
<!——
<node pkg="laser_filters” type="scan_to_cloud_filter_chain” name="scan2cloud” >
<rosparam command="load” file="$(find rsl_.rover)/filter_config/laser_config.yaml”
/>
<rosparam command="load” file="$(find rsl_rover)/filter_config/cloud_config.yaml”
/>
<param name="high_fidelity” value="false” />
<param name="target_frame” type="string” value="base_link” />
</node>
—>
<node pkg="octomap._server” type="octomap._server_node” name="rover_octomap._server” output="
screen” >
<remap from="cloud_-in” to="filtered_cloud” />
<param name="resolution” value=70.2" />
<param name="filter_ground” value="false” />
<param name="latch” value="false” />
<param name="base_frame_id” value="base_footprint” />
<param name="ground-_filter /distance” value=70.04" />
<param name="ground-_filter /angle” value=70.15" />
<param name="ground_filter /plane_distance” value=70.07" />
</node>
</launch>

Vehicle State in Map Launch

<launch>
<param name="robot_description” command="cat $(find rsl_rover)/urdf/rsl_roverzoe.urdf” />
<node name="robot_state_publisher” pkg="robot_state_publisher” type="state_publisher” />
</launch>

Vehicle Interface Launch

<launch>
<node pkg="rsl_rover” name="rover_interface” type="rover_decode.py” required="true” output
="screen”>
</node>
</launch>

H-22

Vehicle RVI1IZ Launch

<launch>
<node pkg="rviz” type="rviz”
.rviz” required="true”/>

name="rviz”

</launch>

Vehicle Startup Launch

<launch>
<node pkg="myahrs_driver” type="myahrs_driver”
<param name="port” value="/dev/ttyACMO” />
<param name="baud_rate” value="115200" />
</node>
<node pkg="nmea_navsat_driver”
<param name="port” value=”/dev/ttyS0” />
<param name="baud_rate” value=79600" />
</node>
<node pkg="rviz”
/>
</launch>

type="rviz” name="rviz”

Laser Scan Filter Launch

<launch>
<node pkg="laser_filters”
<rosparam command="load” file="$(find
<remap from="scan” to="scan” />
</node>
</launch>

args="—d $(find

type="nmea_serial_driver?”

type="scan_-to_-scan_filter_chain?”
rsl_rover)/cfg/my_laser_config.yaml” />

rsl_rover)/rviz_cfg/rover_driving

name="myahrs_driver”>

name="gps_driver”>

args="—d $(find myahrs_driver)/rviz_cfg/imu_test.rviz”

name="laser_filter”>

UMT7T Orientation Sensor Launch

<launch>
<node pkg="um7”
<param name="port”
<param name="covariance”
<param name="zero_gyros”’
</node>
</launch>

type="um?7_driver”
value="/dev/um7” />

value=".1 0 0 0
value="true” />

.1 000

Laser Configuration

scan_filter_chain:
— name: shadows
type: laser_filters/ScanShadowsFilter
params :
min_angle: 5
max_angle: 175
neighbors: 10
window: 1

— name: dark_shadows
type: laser_filters/LaserScanIntensityFilter
params:
lower_threshold: 100
upper-threshold: 10000

disp-histogram: 0

Web Server Launch

H-23

name="um?7_driver”>

1

/>

<launch>

<!——<param name="use_sim_time” value="false” />——>
<!——
<node name="camera_web_server” pkg="web_video_server” type="web_video_server” output="screen”>

<param name="port” value=78080" />
<param name="address” value=70.0.0.0" />

<param name="server_threads” value=7"1" />
<param name="ros_threads” value=72" />
</node>

—>

<arg name="port” default="9090" />
<arg name="address” default="" />
<arg name="ssl” default="false” />
<arg name="certfile” default=""/>
<arg name="keyfile” default="" />
<arg name="authenticate” default="false” />

<group if="$(arg ssl)”>
<node name="rosbridge_websocket” pkg="rosbridge_server” type="rosbridge_websocket” output="
screen”>
<param name="certfile” value="$(arg certfile)” />
<param name="keyfile” value="$(arg keyfile)” />
<param name="authenticate” value="$(arg authenticate)” />
<param name="port” value="$(arg port)”/>
<param name="address” value="$(arg address)”/>
</node>
</group>
<group unless="$(arg ssl)”>
<node name="rosbridge_websocket” pkg="rosbridge_server” type="rosbridge_websocket” output="
screen”>
<param name="authenticate” value="$(arg authenticate)” />
<param name="port” value="$(arg port)”/>
<param name="address” value="$(arg address)”/>
</node>
</group>

<node name="rosapi” pkg="rosapi” type="rosapi-node” />

</launch>
User Interface Control Center Main

))

use strict ’;

function ROSCCConfig($routeProvider, localStorageServiceProvider) {

$routeProvider .when(’/’, {
templateUrl: ’app/control/control.html’,
controller: ’'ControlController’
controllerAs: ’vm’

}).when(’/settings *, {
templateUrl: ’app/settings/settings.html’,
controller: ’SettingsController ’,
controllerAs: ’vm’

}) . otherwise ({ redirectTo: ’/’ });

localStorageServiceProvider.setPrefix (’roscc’);

angular . module(’roscc’, [’ngRoute’, ’ui.bootstrap’, ’LocalStorageModule ’]).config(ROSCCConfig);

‘use strict ’;

var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i];

descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (”
value” in descriptor) descriptor.writable = true;

Object.defineProperty (target , descriptor.key, descriptor); } } return function (Constructor,
protoProps, staticProps) { if (protoProps)

defineProperties (Constructor.prototype, protoProps); if (staticProps) defineProperties(
Constructor , staticProps); return Constructor; }; }();

function _classCallCheck (instance, Constructor) { if (!(instance instanceof Constructor)) { throw
new TypeError(” Cannot call a class as a function”); } }

var ros = undefined;
var isConnected = false;
var ControlController = function () {
function ControlController ($timeout, $interval, Settings, Domains) {
var -this = this;

_classCallCheck (this, ControlController);

H-24

this.$timeout = $timeout;

this . Domains = Domains;
this.isConnected = isConnected;
this.setting = Settings.get();
this. maxConsoleEntries = 200;

// Load ROS connection and keep trying

this . newRosConnection () ;
$interval (function ()

_this .newRosConnection () ;
}, 1000); // [ms]

this.resetData () ;

if (isConnected) {
this.onConnected () ;

}

}

// The active domain shows further information

if

_createClass (ControlController , [{
key: ’setActiveDomain ’,
value: function setActiveDomain(domain) {
this.activeDomain = domain;
}
FoA
key: ’'getDomains’,

value: function getDomains () {

var allData = this.data.topics.concat(this.data.services ,

it

fails

in the center view

var domains = this.Domains.getDomains(allData) ;

if (!this.activeDomain) {
// if no other domains are found,

this.setActiveDomain (’Dashboard’) ;

return domains;
¥
}s

key: ’getGlobalParameters’,

value: function getGlobalParameters() {

return this.Domains. getGlobalParameters(this.data.parameters);

}
FoA
key: ’resetData’,
value: function resetData () {
this.data = {
rosout: [],
topics: [],
nodes: [],
parameters: [],
services: []

}
b A

key: ’'newRosConnection’,
value: function newRosConnection () {
var _this2 = this;
if (isConnected || !this.setting) {
return ;

}
if (ros) {

ros.close(); // Close old connection

ros = false;
return;

ros = new ROSLIB.Ros({ url: ’ws://’ 4+ this.

ros.on(’connection’, function () {
_this2 .onConnected () ;
isConnected = true;
-this2 .isConnected = isConnected;
1)
ros.on(’error’, function () {
isConnected = false;
_this2.isConnected = isConnected;
1)
ros.on(’close’, function () {
isConnected = false;
_this2 .isConnected = isConnected;

1)

setting .address +

H-25

).

use Dashboard as the default

s

+ this .

this.data.nodes);

setting.port });

key: ’onConnected’,
value: function onConnected () {
var _this3 = this;

console.log (” Connected!”) ;
// wait a moment until ROS is loaded and initialized
this.$timeout (function () {
~this3 .loadData () ;
_this3 .setConsole () ;
if (-this3.setting.battery) {
_this3 .setBattery () ;

}
}, 1000); // [ms]

// Setup of console (in the right sidebar)

}s
key: ’setConsole ’,
value: function setConsole() {
var _this4 = this;
var consoleTopic = new ROSLIB. Topic ({
ros: ros,
name: this.setting.log,
messageType: ’rosgraph_msgs/Log’
H
consoleTopic.subscribe(function (message) {
var nameArray = message.name.split (’/’);
var d = new Date(message.header.stamp.secs * 1E3 4+ message.header.stamp.nsecs * 1E—6);
message.abbr = nameArray.length > 1 ? nameArray[l] : message.name;
// String formatting of message time and date
function addZero(i) {
return i < 10 ? 0’ + i : i;
message.dateString = addZero(d.getHours()) + ’:’ + addZero(d.getMinutes()) + ’:’ + addZero
(d.getSeconds()) + .’ 4+ addZero(d.getMilliseconds ());
-this4 .data.rosout.unshift (message);
if (-this4.data.rosout.length > _this4.maxConsoleEntries) {
_this4 .data.rosout.pop();
}
1)
}
// Setup battery status
b A
key: ’setBattery ’,
value: function setBattery () {
var _this5 = this;
var batteryTopic = new ROSLIB. Topic ({
ros: ros,
name: this.setting.batteryTopic,
messageType: ’std_msgs/Float32’
1)
batteryTopic.subscribe (function (message) {
-this5.batteryStatus = message.data;
1)
}

// Load structure, all data, parameters, topics, services, nodes...

key: ’loadData’,
value: function loadData () {
var _this6 = this;

this.resetData () ;

ros.getTopics(function (topics) {
angular.forEach(topics, function (name) {
_this6 .data.topics.push({ name: name });
console.log (” Getting topic: 7, name);
ros .getTopicType(name, function (type) {
_.findWhere(_this6 .data.topics, { name: name }).type = type;

s
s
s
ros.getServices (function (services) {
angular.forEach(services , function (name) {

H-26

_this6 .data.services.push({ name: name });

ros.getServiceType (name, function (type) {
_.findWhere(_this6 .data.services , { name: name }).type = type;
1)
s
s

ros .getParams(function (params) {
angular . forEach (params, function (name) {
var param = new ROSLIB.Param({ ros: ros, name: name });
_this6 .data.parameters.push({ name: name });

param. get (function (value) {

.findWhere(-this6 .data.parameters, { name: name }).value = value;
1)
1)
1)

ros.getNodes (function (nodes) {
angular.forEach (nodes, function (name) {
_this6 .data.nodes.push({ name: name });

1)

})s

}
s

return ControlController;

O

angular.module(’roscc’).controller (’ControlController >, ControlController);
‘use strict ’;

var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i];

descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (”
value” in descriptor)

descriptor.writable = true; Object.defineProperty (target , descriptor.key, descriptor); } } return

function (Constructor,

protoProps, staticProps) { if (protoProps)

defineProperties (Constructor.prototype, protoProps); if (staticProps) defineProperties(
Constructor , staticProps); return Constructor; }; }();

function _classCallCheck (instance, Constructor) { if (!(instance instanceof Constructor)) { throw
new TypeError(” Cannot call a class as a function”);

var DomainsService = function () {
function DomainsService () {
_classCallCheck (this, DomainsService);
}

_createClass (DomainsService, [{
key: ’filterAdvanced ’,
value: function filterAdvanced (entry, advanced) {
var entryArray = entry.split(’/’);
if (advanced) {
return true;

if (lentry || -.isEmpty(entryArray)) {
return false;

return _.last (entryArray) [0] === _.last(entryArray)[0].toUpperCase();
¥
+s
key: ’getDomains’,
value: function getDomains(array) {
var result = [];
angular.forEach (array, function (entry) {
var nameArray = entry.name.split (’/’);

if (nameArray.length > 1)
result . push(nameArray [1]) ;

¥
1)
return _.uniq(result).sort();
}
PoA
key: ’getGlobalParameters’,
value: function getGlobalParameters(array) {

var result = [];
angular.forEach (array, function (entry) {
s
)

var nameArray = entry.name.split (’/ H
if (nameArray.length =—= 2) {
entry.abbr = _.last (nameArray);

result.push(entry);

}
1)

return result;

H-27

¥
o A
key: ’getDataForDomain’,
value: function getDataForDomain(array , domainName, advanced) {
var _this = this;

var result = [];

angular.forEach (array, function (entry) {

var nameArray = entry.name.split (’/’);
if (nameArray.length > 1 && nameArray[1l] === domainName && _this . filterAdvanced (entry.name
, advanced)) {
entry.abbr = nameArray.slice (2).join(’ 7);

result.push(entry);
}
1)
return result;
b
1D
return DomainsService;
YO

// Filter advanced topics, services, parameters by checking the beginning capital letter

angular.module(’roscc ’) .service (’Domains’, DomainsService);
’use strict ’;

var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i];
descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (”value

” in descriptor)

descriptor.writable = true; Object.defineProperty (target , descriptor.key, descriptor);

} } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(
Constructor.prototype, protoProps); if (staticProps)

defineProperties (Constructor , staticProps); return Constructor; }; }();

function _classCallCheck (instance, Constructor) { if (!(instance instanceof Constructor)) { throw
new TypeError(” Cannot call a class as a function”);

var QuaternionsService = function () {
function QuaternionsService () {
_classCallCheck (this, QuaternionsService);

}

_createClass (QuaternionsService , [{
key: ’'getRoll’,
value: function getRoll(q) {
it (ta) {
return
¥
var rad = Math.atan2(2 * (gq.w * gq.x + q.y * gq.z), 1 — 2 * (g.x * gq.x + gq.y * q.y));
return 180 / Math.PI = rad;
¥
oA
key: ’'getPitch’,
value: function getPitch(q) {
if (lq) {
return ’’;
}
var rad = Math.asin(2 * (q.w * q.y — q.2z * q.X));
return 180 / Math.PI x rad;

¥
}s
key: ’getYaw’,
value: function getYaw(q) {
i (ta) {
return
¥
var rad = Math.atan2(2 * (gq.w * g.z + g.x * q.y), 1 — 2 * (q.y * q.y + 9.z * q.z));
return 180 / Math.PI x rad;
¥
IRt
key: ’'getlnit ’,
value: function getInit () {
return { w: 1, x: 0, y: 0, z: 0 };

}
s
return QuaternionsService;
JAON
// Quaternions to Euler angles converter

angular.module(’roscc’) .service (’Quaternions’, QuaternionsService);

‘use strict ’;

H-28

function NavbarDirective($location) {
return {
templateUrl: ’app/navbar/navbar.html’,
controllerAs: ’vm’,
controller: function controller () {
this.isPath = isPath;
function isPath(path) {
return $location.path () === path;

}
}s
}

angular . module(’roscc’) .directive (’ccNavbar’, NavbarDirective);
‘use strict ’;
function ParamaterDirective () {

return {

scope: { parameter: ’'=’ },

templateUrl: ’app/parameters/parameters.html’,

controllerAs: ’vm’,

controller: function controller ($scope) {
var param = new ROSLIB.Param({ ros: ros, name: $scope.parameter.name });
this.parameter = $scope.parameter;
this.setValue = setValue;

function setValue(value) {
param.set (value);
¥

}
}s
}

angular.module(’roscc ’) .directive (’ccParameter’, ParamaterDirective);
’use strict ’;
function serviceDirective () {

return {

scope: { service: =’ },
template: ’<ng—include src=\"vm.fileName\”></ng—include >’,
controllerAs: ’vm’,
controller: function controller ($scope, $timeout, S$http) {
var _this = this;
var path = ’app/services /’;
this.service = $scope.service;
this.callService = callService;

this.fileName = path + ’default.html’;

// Check if file exists
$scope.$watch(’service.type’, function () {
if (!$scope.service.type) {
return ;

var fileName = path + $scope.service.type + ’.html’;
_this.service = $scope.service;
$http.get (fileName) .then(function (result) {

if (result.data) {
_this.fileName = fileName;
}

3
1)

function callService (input, isJSON) {

var -this2 = this;
var data = isJSON ? angular.fromJSON (input) : input;
var service = new ROSLIB. Service ({

ros: ros,

name: this.service.name,
serviceType: this.service.type
1)
var request = new ROSLIB. ServiceRequest (data);
service.callService (request , function (result) {
$timeout (function () {
~this2.result = result;
1)
1)

H-29

angular . module(’roscc ’) .directive (’ccService ’, serviceDirective);

’use strict ’;

var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i];

descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (”value
” in descriptor)

descriptor.writable = true; Object.defineProperty (target, descriptor.key, descriptor);

} } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(
Constructor.prototype, protoProps); if (staticProps)
defineProperties (Constructor , staticProps); return Constructor; }; }();

function _classCallCheck (instance, Constructor) { if (!(instance instanceof Constructor)) { throw

new TypeError(” Cannot call a class as a function”);
var SettingsController = function ()
function SettingsController(localStorageService , Settings) {

_classCallCheck (this, SettingsController);

this.Settings = Settings;
this.settings = Settings.getSettings () || [Settings.getDefaultSetting()];
this.index = Settings.getIndex () ;
if (!this.index || this.index > this.settings.length) {
this.index = ’07;
}
}
_createClass (SettingsController , [{
key: ’save’,

value: function save() {
this.Settings.save(this.settings , this.index);
}

}s
key: ’add’,
value: function add() {
this.settings.push(this.Settings.getDefaultSetting()); // Clone object

this.index = String(this.settings.length — 1);
this.save () ;
}
PoA
key: ’remove’,

value: function remove() {
this.settings.splice(this.index, 1);
this.index = ’0’;

if (!this.settings.length) {

this.add () ;
this.save () ;
b
s
return SettingsController;
YO
angular.module(’roscc’).controller (’SettingsController ’, SettingsController);

’use strict ’;

var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i];
descriptor .enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (”
value” in descriptor)
descriptor . writable = true; Object.defineProperty (target , descriptor.key, descriptor);

} } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(
Constructor.prototype, protoProps); if (staticProps)
defineProperties (Constructor, staticProps); return Constructor; }; }();

function _classCallCheck (instance, Constructor) { if (!(instance instanceof Constructor)) { throw
new TypeError(” Cannot call a class as a function”);

var SettingsService = function () {
function SettingsService($location, localStorageService) {
_classCallCheck (this, SettingsService);

this. $location = $location;
this.localStorageService = localStorageService;
}
_createClass (SettingsService , [{

key: ’load’,
value: function load () {

this.index = this.localStorageService.get(selectedSettingIlndex ’);
this.settings = this.localStorageService.get(’settings ’);
if (this.settings && this.index) {

this.setting = this.settings [this.index];

H-30

}

// 1f there are no saved settings, redirect to /settings for first
if (!this.setting) {
this. $location.path(’/settings ’) .replace();
}
FoA
key: ’save’,
value: function save(newSettings, newlIndex) {
this.settings = newSettings;
this.index = newlndex;
this.localStorageService.set (’selectedSettingIlndex >, newlndex);
this.localStorageService.set (’settings ’, newSettings);
}
}s
key: ’get’,
value: function get () {
if (!this.setting) {
this.load () ;
}
return this.setting;
}
oA
key: ’getlndex’,
value: function getIndex () {
if (!this.setting) {
this.load () ;
}
return this.index;
}
b A
key: ’getSettings ’,
value: function getSettings () {
if (!this.setting) {
this.load () ;
return this.settings;
}
I
key: ’getDefaultSetting ’,
value: function getDefaultSetting () {
return {
name: ’'New Setting’,
address: location .hostname,
port: 9090,
log: ’/rosout’,
imagePreview: { port: 0, quality: 70, width: 640, height: 480 },
battery: true,
batteryTopic: 7,
advanced: false
}
}
s
return SettingsService;
YO
angular.module(’roscc’) .service (’Settings’, SettingsService);
use strict ’;
function topicDirective () {
return {
scope: { topic: =’ },
template: '<ng—include src=\"vm.fileName\”></ng—include >,
controllerAs: ’vm’,
controller: function controller ($scope, $timeout, $http, Settings,
var _this = this;
console.log(” Creating new topic for name: ”, $scope.topic.name, 7;
type);

var roslibTopic = new ROSLIB. Topic ({
ros: ros,
name: $scope.topic.name,
messageType: $scope.topic.type,
queue_size: 1

1)

var path = ’app/topics/’;

this.topic = $scope.topic;
this.toggleSubscription = toggleSubscription;
this.publishMessage = publishMessage;
this.isSubscribing = false;

H-31

setting

type:

»

)

input

Quaternions) {

$scope.

topic.

this.setting = Settings.get();
this.Quaternions = Quaternions;
this.fileName = path + ’default.html’;

// Check if file exists

$scope.$watch(’topic.type’, function () {
if (!$scope.topic.type) {
return ;

var fileName = path + $scope.topic.type + ’.html’;
_this.topic = $scope.topic;
$http.get (fileName) .then(function (result) {
if (result.data) {
_this.fileName = fileName;
¥

3
1)

function toggleSubscription (data) {

var _this2 = this;
if (!data) {
console.log (?ROSLIBTOPIC: ”, roslibTopic);

roslibTopic.subscribe (function (message) {
$timeout (function () {
// get the incoming message for the given topic
// console.log (message) ;
_this2 . message = message;
})s
})s
} else {

roslibTopic.unsubscribe () ;

this.isSubscribing = !data;

i

function publishMessage (input, isJSON) {
var data = isJSON ? angular.fromJSON (input) : input;
var message = new ROSLIB. Message(data) ;
roslibTopic.publish (message) ;

}
b
}

angular.module(’roscc ’) .directive (’ccTopic’, topicDirective);

/%%

* Controller for the main dashboard

*

% This controller is different than the default topic controller provided by the Ros Control
Center

* Here, we want to mix together data from multiple topics in one display.

* In order to do this we need to subscribe to each topic and make their data available in a way
that they don’t overwrite eachother

* To make the data available, we create a dicitonary called xmessagex*.

* We then break each topics name and type into keys that are used to create a nested dicitonary
structures .

* For example, the topic that contains the vehicle state information is:

* — name: /VehicleState

* — type: /rsl_rover_msgs/vehicle_state

*

* The data for that topic will then live at:

* — messages. VehicleState.rsl_rover_msgs.vehicle_state

*

* The data itself comes through as a JSON object which is then converted into a dicitonary

* So to get the wheel_speed of the rover we access:

* — messages. VehicleState.rsl_rover_-msgs.vehicle_state.wheel_speed

*/
function dashboardDirective () {
return {

scope: { topic: ’=’ },

template: '<ng—include src=\"vm. fileName\”></ng—include >,

controllerAs: ’vm’,

controller: function controller ($scope, $timeout, $http, Settings, Quaternions) {
var _this = this;

// given a topic name and type, we create a nested dicitonary structure
// each string before or after a '/’ becomes a new key to an empty dictionary

this.MessageToDict = function (name, type) {
console.log (name, type);
var messages = {};
var sub_message = messages;
var name_splice = name.split (”/”);
for (var i = 1; i < name_splice.length; i++) {
sub_message [name_splice[i]] = {};

H-32

sub_message = sub_message [name_splice[i]];

¥

var type_splice = type.split(”/”);

for (var i = 0; i < type_splice.length; i++) {
sub_message [type_splice[i]] = {};
sub_message = sub_message[type_splice[i]];

}

return messages;

}

// general topics that we want to visualize
this.topics = |
{’name”: ”/EnvData/curly”, "type”:” rsl_rover_msgs/env_data”, "throttle”:200},

//
sensor box 1
{’name”: ”/EnvData/moe”, ”"type”:” rsl_rover_msgs/env_data”, ”"throttle”:200}, //
sensor box 2
{’name”: ”/EnvData/larry”, “type”:” rsl_.rover_msgs/env_data”, “throttle”:200}, //
sensor box 3
?name”: ”/VehicleState”, "type”:” rsl_rover_msgs/vehicle_state”, "throttle”:100}, //
vehicle state information
]
// the gas sensor topics are special, so we need to deal with them seperately
// we want to monitor them as a group and aggregate their values
// but we only want to use certain sensors for certain gases
this.gasTopics =
CO: {topics:[this.topics [0], this.topics[1], this.topics[2]], sensors:[”MQ7”, "MQ9
"1}
CO2: {topics:[this.topics [0], this.topics[1], this.topics[2]], sensors:[”MQ7”, "MQ9
"1}
Propane: {topics:[this.topics [0], this.topics[1l], this.topics[2]], sensors:[”MQ2”, "MQ5”,
PMQE”, "MQ9”]},
Methane: {topics:[this.topics[0], this.topics[1], this.topics[2]], sensors:["MQ4”]}
¥
this.roslibTopics = {}
this.messages = {};

// build a ROSLIB Topic for each topic in the list
// and construct the holder for all the different message types
for (var topic in this.topics) {

this.roslibTopics|[_-this.topics[topic].name] = new ROSLIB. Topic ({
ros: ros,
name: _this.topics[topic].name,

messageType: _this.topics[topic].type,
throttle: _this.topics[topic].throttle ,
queue-size: 0

1)
angular.merge(this.messages, this.MessageToDict(this.topics[topic].name, this.
|- type));
console.log(this.messages);
var path = ’app/topics/’;
this.topic = $scope.topic;
this.isSubscribing = false;
this.setting = Settings.get();
this.Quaternions = Quaternions;

this.fileName = path + ’default.html’;

// Check if file exists

$scope.$watch(’topic.type’, function ()
var fileName = path + ”dashboard/dashboard2.html”;
-this.topic = $scope.topic;

$http.get (fileName).then(function (result) {
if (result.data) {
_this.fileName = fileName;

}
3
1)

this.roslibTopics[’/EnvData/curly ’]. subscribe (function (message) {
$timeout (function () {

_this.messages |’ EnvData’][’curly][’rsl_rover_msgs ’][’env_data ’] = message;
}, 1000);
5
this.roslibTopics [’/ EnvData/moe’]. subscribe (function (message) {
$timeout (function () {
_this .messages [’ EnvData’]["moe’][rsl_rover_msgs ’|["env_data ’] = message;

}, 1000);
H

)

this.roslibTopics [’/ EnvData/larry ’]. subscribe(function (message) {
$timeout (function () {
-this.messages [EnvData’][’larry][*rsl_-rover_msgs][env_data ’] = message;
}, 1000);

H-33

topics [topic

1)

this.roslibTopics [’/ VehicleState ’].
$timeout (function () {

_this.messages [’ VehicleState "] [’
}, 1000);
5
/*for (topic in this.roslibTopics) {
var t = this.roslibTopics [topic];
console.log (” Subscribing to 7, t.name);

//subscribe to topic and store messages

t.subscribe (function (message) {
$timeout (function ()
var name_splice =

var accessor;
accessor -this
if (name_splice.length > 2)
console.
accessor

}
var type_splice
//console.log(name_splice ,
//console.log (message) ;

log (?” CHECKING NAME SPLICE: 7,
accessor [name_splice [2]];

subscribe (function (message) {

rsl_rover_msgs][’ vehicle_state]

in appropriate place

t.name.split (7/”);

.messages [name_splice [1]];

name_splice [2]) ;

t . messageType.split (”/”);
type-splice);

accessor [type_splice [0]][type-splice[l]]=message;

console.log (accessor);
1000) ;

angular.module(’roscc’) .directive (’dashTopic

)
s

dashboardDirective);

Ve

* Controller to initialize the a LIDAR view

*

% This function will use the ROSLIB and ROS3DJS libraries to render a live
* It requires four different parts:

* — ROS connection

* — TF Client

* — URDF model

* — PointCloud

*

* The TF client is what makes everything come together. It does all

sure that the URDF model
* are rendered in the same scene.
* We also use a SceneNode to have a
* The default viewer
*/

function angularLidarViz (){
return {

controller: function
$scope.init

VEE
* Setup all

*/

// Connect to ROS.

controller ($scope,
function (height , divID)

visualization elements

this.settings = Settings.get();
var _this = this;
var ros = new ROSLIB.Ros({

url

1)

// Create the main viewer.
var width = $("#lidar_viz”).width();

?ws://”+ _this .settings

var viewer = new ROS3D.Viewer ({
divID : divID,
width width ,
height height ,

antialias false

1)

// Add a grid.
viewer .addObject (
new ROS3D. Grid ({
cellSize: 0.5,
num_cells: 100
1)
)

// Setup a client to listen to TFs.

// Base_link will redner everything

var tf_base = new ROSLIB.TFClient ({
ros ros ,

angularThres 0.01,

little more control
object makes some assumptions that we did not want to abide by.

.address + 7:”+ _this.

in

and the PointCloud

over the

$timeout , $http, Settings,
{
when the page is loaded.

settings . port

relation to the base of the

H-34

of the translations

message ;

point cloud on a page.

to make

initialization .

Quaternions) {

rover

transThres : 0.01,
rate : 5.0,
fixedFrame : ’/base_link’

1)

// setup a TF client for the world

// this will render something with relation to the general WORLD that the rover

var tf_cloud = new ROSLIB.TFClient ({
ros : ros,
angularThres : 0.01,
transThres : 0.01,
rate : 5.0,
fixedFrame : ’/map’

1)

// we want our scene to be focused around the WORLD in which the rover is in

is in

// for our purposes we want the tfClient and the frameld to reference the same topic

var urdfScene = new ROS3D.SceneNode ({
tfClient : tf_cloud,
frameID : ’/map’,

1)

// add the scene to the viewer object
viewer .scene.add (urdfScene) ;

// create a new pointcloud object

// our pointcloud is rendered via the /ass_cloud topic (short for /assembled_cloud)
// we use the tf_bae TF client in order to render the point cloud in relation to the rover

var pointcloud = new ROS3D.PointCloud2 ({
ros: ros,
topic: ”/ass_cloud”,
tfClient: tf_base,
rootObject: urdfScene,
size: 0.7,
max_pts: 75000 //save up to 75000 points in the scene at any given time

1)

// Setup the URDF client .
// we use the TF Base client here too in order to render the vehicles position

itself

// NOTE: the URDF model is stored locally at /urdf
// if the model ever updates, we need to update it here too
var urdfClient = new ROS3D. UrdfClient ({

ros : ros,

tfClient : tf_base,

path : ’http://localhost:8000/urdf/’,

rootObject : urdfScene,

loader : ROS3D.COLLADA_LOADER.2
3

}
}
} £l

angular.module(’roscc ’) .directive (’lidarViz ', angularLidarViz);

User Interface Speed Chart

‘use strict ’;
angular.module(””).requires.push(’highcharts—ng’);

var ctrl = angular.module(’roscc’).controller (”speedChartController”, function ($scope,
$parse) {
console.log (” Scope: 7, $scope);

$scope.speedChartConfig = {
options: {
chart: {
type: ’gauge’,

,
// the value axis

yAxis: {
min: O,
max: 10,
minorTickInterval: ’auto’,

minorTickWidth: 1,
minorTickLength: 10,
minorTickPosition: ’inside ’,
minorTickColor: ’#666°,

tickPixellnterval: 30,
tickWidth: 2,

H-35

relative to

$timeout ,

tickPosition: ’inside ’,
tickLength: 10,
tickColor: ’'#666°,
labels: {
step: 2,
rotation: ’auto’
b
title: {
text: ’'m/s’
}s
plotBands: [{
from: 0,
to: 5,
color: '#55BF3B’ // green
b A
from: 5,
to: 7,
color: ’#DDDFOD’ // yellow
o A
from: 7,
to: 10,
color: ’#DF5353° // red
3
Iz
pane: {
startAngle: —150,
endAngle: 150,
background: [{
backgroundColor: {
linearGradient: { x1: 0, yl:
stops: |
[0, "#FFF’],
[1, "#3337]
]
b
borderWidth: 0,
outerRadius: ’109%’
b A
backgroundColor: {
linearGradient: { x1: 0, yl:
stops: |
[0, ’#333°],
[1, *#FFF’]
]
b
borderWidth: 1,
outerRadius: ’107%’
// default background
Ix
backgroundColor: ’#DDD’ ,
borderWidth: O,
outerRadius: ’'105%’,
innerRadius: ’103%’
3]
Ix
},//end options
title: {
text: ”"Speed (m/s)”
Ir
series: [{
name: ’'speed’,
data: [0],
tooltip: {
valueSuffix: > m/s’,
Ix
dataLabels: {
format: 7{y:.1f}”
I3
plotOptions: {
series: {
marker: {
enabled: false
}
Iz
dataLabels: {
format: "{y:.2f}”
}
Iz
func: function(chart) {
$timeout (function () {
chart.reflow () ;
}, 10);
Ix
useHighStock: true,

H-36

x2:

x2:

0,

0,

y2:

y2:

1

1

b

b

}s

chart_height) {

chart. height

chart . height

$scope.init = function (topic_name,
$scope.topicName = topic_name;
if (chart_height != undefined) {
$scope.speedChartConfig.options.
}
}
if ($scope.chart_height){
$scope.speedChartConfig.options.
}
function deref(obj, s) {
var i = 0;
if (!s) {
return undefined;
¥
s = s.split (’.7);
while (i < s.length) {
obj = obj[s[i]l;
if (obj === undefined)
return obj;
i =14 1;

return obj;

s

function getTopicName () {
return $scope.topicName;

}

chart_height;

$scope.chart_height;

// watch the message and update the chart whenever the value updates

var topicName = $scope.topicName;

$scope.$watch(function ($scope) {
var val deref ($scope, $scope.
return val;

},function(val){

if (val){
$scope.
}, false);
/*var _scope = $scope;

$scope.$watch (model,
console.log (newValue,

if (newValue){
console .

oldValue ,

}) =/
1)

speedChartConfig.series [0].data [0]

function (newValue,

topicName) ;

oldValue) {
model) ;

log ('’ Updating value!’)
_scope.speedChartConfig.series [0].data[0]

Math.abs(val);

Math . abs (newValue) ;

User Interface Gas Sensor Charts

’use strict ’;
angular.module(” roscc”).requires.push(’highcharts—ng’) ;
var ctrl = angular.module(’roscc’).controller (” gasChart”,
$scope.gasChart = {
options: {
?chart”: {
"type”: ”solidgauge”,
exporting: {
”enabled”: false
Ix
”pane”: {
”center”: [
”50%”,
7 85%"
1,
”SiZe”Z 77100?6”7
?startAngle”: 7 —90",
”endAngle”: 7907,
”background”:
”backgroundColor”: "#EEE” ,
”innerRadius”: 760%”,
”outerRadius”: 7100%”,
”shape”: ”arc”
}
%
”tooltip”:
”enabled”: false
Ix

H-37

function ($scope,

$timeout) {

?yAxis”: {
?stops”: |

0.1,
” #55BF3B”
],
[
0.5,
» #DDDFOD”
1,
[
0.75,
" #DF5353”

]
1,
"min”: 0,
"max”: 100,
”lineWidth”: 0,
"minorTickInterval”: null,
”"tickPixellnterval”: 400,
”tickWidth”: 0,
Ptitle”: {

margin:0,
}

>
”labels”: {

vy7i 10
b

”"showFirstLabel”: false ,
”"showLastLabel”: false ,

b

Ptitle”:{
?text”:” Gas”,
”margin”: 0

¥
}, //end options
?plotOptions”: {
”solidgauge”: {
”dataLabels”:

7y”: 10,
”borderWidth”: 0,
7useHTML” : true

}
}
b
’series ': [{
‘name’: ’gas’,
‘data ’: [O0],
”dataLabels”: {
?format”: ’<div style="text—align:center’”><span style="font—size:8px;color:’ +
((Highcharts.theme && Highcharts.theme.contrastTextColor) || ’black’) + " >{y
i1 f}
’
Ix
I
func: function(chart) {
$timeout (function () {
chart.reflow () ;
}, 100);
>
useHighStock: true
}s
$scope.init = function (gas_name, chart_height, chart_title) {
/[%x
* topic_names is a list of all the different gas sensor topics
*/
$scope.gas_name = gas_name;
$scope.chart_height = chart_height;
$scope.chart_title = chart_title;
if (chart_-height != undefined) {
$scope.gasChart.options.chart.height = chart_height;
if (8$scope.chart_title) {
$scope.gasChart.options. title.text = chart_title;
b
$scope.topicNames = $scope.vm.gasTopics[gas_name |;
}s
function deref(obj, s) {
var i = 0;
if (!s) {

return undefined;
}
s = s.split (’.7);
while (i < s.length) {
obj = obj[s[i]];

if (obj == undefined)
return obj;
=i+ 1

H-38

1)

return obj;

+s

function getMessageName(topic) {

}s

var
var

name_splice = topic.name.split (”/”)
type-splice = topic.type.split(”/”);
s

return

type-splice [1]4+7.7);

(?”vm. messages.”+name_splice [1]

»

3

» »

”+name_splice[2]+”.”+ type_splice [0]+7.” +

$scope.$watch (function ($scope) {

var val = 0;
// for each of the sensor packs, there are certain sensors that are better than others for
certain gases
// these are listed under xsensorsx
// So we want to add and average these different sensor values for each sensor pack
$.each($scope.topicNames.topics, function(e) {
var sensor_pack = $scope.topicNames.topics[e];
var sensor_average = 0;
var count 0;

s

// iterate over each sensor
//console.log($scope.topicNames.sensors);

$.each($scope.topicNames.sensors, function(s){
var sensor = $scope.topicNames.sensors[s];
var sensor_path = getMessageName (sensor_pack)+4sensor+”.”4+8$scope.gas_name;
var sensor_-val = deref($scope, sensor_path);

3

if (semnsor_val) {

sensor_average 4= sensor_val;
count+4+4;

sensor_average = sensor_average/count;
+= sensor_average;

val

return (val/$scope.topicNames.topics.length);
},function (val){
if (val){

$scope.gasChart.series [0].data[0] = Math.abs(val);

}
}, false);

console .

log (” Loaded

controller: ”, ctrl);

User Interface HTML Dashboard

<div

class="panel

<div
</di
<div

panel—default” ng—class="{"panel—success ': vm.toggle}” id="dashboard_panel”>

class="panel—heading clearfix”>

v>

class="panel—body”>
<p>Timestamp: {{ vm.messages.VehicleState.rsl_rover_msgs.vehicle_state.header.stamp.secs x*
1000 |

date:’yyyy-MM-dd HH:mm:ss Z’}}</p>

<div class="container —fluid”>
<div class="col—-1g—-2">
<div id="cameras”>
<img class="img—responsive img—thumbnail”
ng—src="http://{{ vin.setting.raspberry_pi.address }}:{{ vm.setting.
raspberry_pi.imagePreview.port }}
/stream?topic={{ vin.setting.raspberry_pi.camera.front}}&quality={{ vin.setting.
imagePreview . quality }}&width=180&height=135">
<img class="img—responsive img—thumbnail”
ng—src="http://{{ vim.setting.raspberry_pi.address }}:{{ vm.setting.
raspberry_pi.imagePreview.port }}
/stream?topic={{ vin.setting.raspberry_pi.camera.right}}&quality={{ vimn.setting.
imagePreview . quality }}&width=180&height=135">
<img class="img—responsive img—thumbnail”
ng—src="http://{{ vm.setting.raspberry_pi.address }}:{{ vm.setting.
raspberry_pi.imagePreview.port }}
/stream?topic={{ vim.setting.raspberry_pi.camera.left}}&quality={{ vm.setting.
imagePreview. quality }}&width=180&height=135">
<img class="img—responsive img—thumbnail”
ng—src="http://{{ vmm.setting.raspberry_pi.address }}:{{ vm.setting.
raspberry_pi.imagePreview.port }}
/stream?topic={{ vin.setting.raspberry_pi.camera.back}}&quality={{ vm.setting.
imagePreview . quality }}&width=180&height=135">
</div>
</div>
<div class="col—-lg—-7">
<div lidar—viz id ="lidar_viz” style="height:500px; width:100%” ng—init="init (500,
>lidar_viz 7)”
</div>
</div>
<div class="col—-1g—3">

<!—— SPEDOMETER ——>

H-39

<div ng—controller="speedChartController” ng—init="init (’vin. messages. VehicleState.

rsl_rover_msgs.vehicle_state.wheel_speed’, 200);” >
<highchart id="speed_chart” config="speedChartConfig” class="chart’></
highchart>
</div>
<div class="row”>
<div class="col—lg—6">
<div ng—controller="gasChart”>
<highchart id="c02Chart” config="gasChart” class="chart” ng—init="init
(’CO2’, 120, ’CO2’)”></highchart>
</div>
</div>
<div class="col—-lg—6">
<div ng—controller="gasChart”>

<highchart id="cO0Chart” config="gasChart” class="chart” ng—init="init
(’CO’, 120, ’CO’)”></highchart>
</div>
</div>
</div>
<div class="row”>
<div class="col—-1g—6">
<div ng—controller="gasChart”>
<highchart id="GasChart” config="gasChart” class="chart” ng—init="init

(’Methane’, 120, ’CH4’)”></highchart>
</div>
</div>
<div class="col—-1g—6">
<div ng—controller="gasChart”>
<highchart id="PropaneChart” config="gasChart” class="chart” ng—init="
init (’Propane’, 120, ’C3H8’)”></highchart>
</div>
</div>
</div>
</div>
</div>
</div>
</div>

User Interface HT'ML Vehicle State

<div class="panel panel—default” ng—class="{’panel—success ’: vm.toggle}”’>

<div class="panel—heading clearfix”>
<button id="vehicle_state_sub” class="btn btn—default btn—sm pull—right?”

ng—click="vmm. toggleSubscription (!vin. toggle)” ng—model="vm. toggle” uib—btn—checkbox>{{ vm.
toggle ? ’Unsubscribe’ : ’Subscribe’ }}</button>

<h3 class="panel—title”>
{{ vm.topic.abbr }}

<small style="font—size: 12px;” >({{ vm.topic.type }})</small>
</h3>
</div>
<div class="alert alert—danger” ng—show="vm.message.estop != null && vm.message.estop != false
»
>
ESTOP Occured! Code: {{vm.message.estop_code}}
</div>

<div class="panel—body”>
<div class ="row”>
<div class="col—sm—12">
<div class="form—group”>
<label>Timestamp</label >
{{ vin. message.header .stamp.secs * 1000 | date:’yyyy-MM-dd HH:mm:ss Z’}}
</div>
</div>
</div>
<div class="row”>
<div class="col—sm—6">
<form class="form—horizontal form—margin”>
<div class="form—group”>
<div class="row”>
<div ng—controller="wheelAngleChart”>
<highchart id="actual_steering_chart”
topicName="vm. message.actual_steering”
</div>
</div>
<div class="row”>
<div class="col—-md—6">
<label>Actual Steering</label>
<div class="input—group”>
<input type="number” class="form—control”
.actual_steering” ng—readonly="vm.isSubscribing”>
degrees
</div>
</div>

config="wheelAngleConfig”
class="chart”></highchart>

ng—model="vin. message

H-40

<div class="col—md—6">
<label>Desired Steering</label>
<div class="input—group”>
<input type="number” class="form—control” ng—model="vim.message
.desired_steering” ng—readonly="vm.isSubscribing”>
degrees
</div>
</div>
</div>
</div>
<div class="form—group”>
<label>Wheel Pos</label>
<div class="input—group”>
<input type="number” class="form—control” ng—model="vin. message.
wheel_pos” ng—readonly="vm.isSubscribing”>
m/s²
</div>
</div>

<div class="form—group”>
<label>Desired Throttle</label>
<div class="input—group”>
<input type="number” class="form—control” ng—model="vm. message.
desired_throttle” ng—readonly="vm.isSubscribing”>
m/s
</div>
</div>
</form>
</div>
<div class="col—sm—6">
<form class="form—horizontal form—margin”>
<div class="form—group”>
<div ng—controller="speedChartController” ng—init="topicName=’vin. message .
wheel_speed ™ >
<highchart id="speed_chart” config="speedChartConfig” class="chart’></
highchart>
</div>
<label >Wheel Speed</label>
<div class="input—group”>
<input id=’wheel_speed_val’ type="number” class="form—control” ng—
model="vm. message. wheel_speed” ng—readonly="vm.isSubscribing”>
m/s
</div>
</div>
<div class="form—group”>
<div class="row”>
<div class="col—-md—6">
<label>Desired Gear</label>
<div class="input—group”>
<input type="string” class="form—control” ng—model="vin. message
.desired-gear” ng—readonly="vm.isSubscribing”>
</div>
</div>
<div class="col—-md—6">
<label>Actual Gear</label>
<div class="input—group”>
<input type="string” class="form—control” ng—model="vim.message
.actual_gear” ng—readonly="vm.isSubscribing”>
</div>
</div>
</div>
</div>
<div class="form—group”>
<label>Voltage Warn</label >
<div class="input—group”>
<input type="bool” class="form—control” ng—class="{"bg—danger
message . voltage_warn}”
ng—model="vin. message . voltage_-warn” ng—readonly="vm. isSubscribing”>
</div>
</div>
</form>
</div>

Jivm.

</div>

Tachometer Arduino: tach_arduino.ino

#include <Wire.h>
#include <Encoder.h>

H-41

#define SLAVE_ADDRESS 0x60
#define FLOATS_SENT 1
#define DELAY_TIME 50

long positionA;

long positionB;
unsigned long timeA;
unsigned long timeB;
byte data [8];

double rpm=0;

double wheel_speed =0;

Encoder myEnc(2, 3);

void setup ()

pinMode (2 ,INPUT_PULLUP) ;

pinMode (3 ,INPUT_PULLUP) ;

pinMode (9, OUTPUT); //PWM Output b/c legacy compatability
// pinMode (13, OUTPUT) ;

Serial .begin (9600) ;

// initialize i2c as slave
Wire . begin (SLAVE_ADDRESS) ;

// define callbacks for i2c communication
Wire.onRequest (sendData) ;
Serial . println (”SETUP COMPLETE”) ;

}
void loop () {
timeA = millis ();

positionA = myEnc.read () ;
delay (DELAY_TIME) ;
timeB = millis () ;
positionB = myEnc.read () ;

// Calculates the wheel speed averaged over roughly 1/5 second

float enc_spd = float (positionB — positionA)/float (timeB—timeA)=*1000.0;

// Serial.println (String (positionA) + ”7,” 4+ String(positionB) 4+ ”,” + String(int(enc_spd)));
// enc_spd = enc_spd*0.5%x0.07735;

// rpm=enc._spd ;

wheel_speed = .07735%rpm;

bytex byte_spd = (byte =) &enc_spd;
bytex byte_pos = (byte x) &positionB;

//A bit hackish but should work

data [0] = byte_spd [0];

data[1l] = byte_spd [1];

data [2] = byte_spd [2];

data [3] = byte_spd [3];

data[4] = byte_pos[0];

data [5] = byte_pos[1];

data [6] = byte_pos[2];

data [7] = byte_pos [3];

Serial.println (rpm);

// wheel_speed = (wheel_speed + 40)*(3.1875) ;

}

void sendData () {
Wire. write ((byte =) &data, 8);

}

Console Arduino: Console Code v2.ino

//RSL Rover 2014

// Console Code

// Serial 1: To Vehicle (drive by wire)
// Serial 22: To Vehicle (XBee)

#include <LiquidCrystal.h> //Library for LCD screen

#include <EasyTransfer.h> //Library for serial communication
#include ”comm_definitions.h”

#include ”"pin_-definitions.h”

#include ”config.h”

#include ”fscale.h”

LiquidCrystal led (12, 11, 5, 4, 3, 2); //LCD Screen initialization

H-42

//Serial communication objects
CONSOLE_.TO_ROVER txdata;
ROVER_.TO_.CONSOLE rxdata ;
EasyTransfer ETin, ETout;
//EasyTransfer ETdebug;

int packet_id=0;

//Strings (for more\ info see string initializations
//String command_type;

//String command_mode;

//String throttle_or_steer;

//String steering_string_to_send;

//String speed-string_to_send ;

//String gear_string_to_send;

char desired_gear; // Stores the gear selected by the
char previous_desired_gear; // Stores the last

”desired_-gear”

to facilitate comms between console & rover

in setup)

button on the console
to detect a change

//String comma;

//String aux_string;

//String aux_string_previous;

//String A_status;

//String B_status;

//String C_status;

//String D_status;

//String E_status;

//String horn_status;

//String F_status;

//String return_string;

//String string_from_usb;

//String string_from_usb_steering;

//String string_from_usb_speed;

//String string_from_usb_gear;

String act_speed; //Stores a string of the current speed as reported by the rover to display on
the LCD

String act-steer; //Same as above but for steering

char act_gear; //The current rover gear as reported by the rover

bool armed_status; //Is the rover armed?

bool temp; // Temperature warning flag

bool voltage; //Voltage warning flag

long int mark;

//int counter = 0; //used to control the intermittent
sending of data

//int comma_index_.1 = 0; //Index of first comma in a string (
for parsing)

//int comma_index_2 = 0; //Index of second comma in a string (
for parsing)

//int comma_index_-3 = 0; //Index of third comma in a string (
for parsing)

//int comma_index_-4 = 0; //Index of fourth comma in a string (
for parsing)

int desired_-steering = 0; //Desired steering position (int from
—1000(left) to 1000(right) with center at 0)

int steer_pos = 0; //Used to turn string act_steer into an
int to display actual steering position in real time

int desired_speed; //The variable desired_speed holds the
input for the speed potentiometer on the joystick , then is mapped from —1000 to 1000 and sent

in a string to the Vehicle Mega
governor ;

used to saturate throttle commands

int start_-time=0;
the flash rate

int stop-time=0;
flash rate

int elapsed_time=0;

meter the flash rate
int LED_state=OW;

for on, LOW for off)
int voltage_input = 0;

reading for console battery voltage
float Batt_Voltage = 0;

calculated battery voltage from the voltage_input

bool serial_sw_last = false;
void setup ()
initialize everything

Serial .begin(115200) ;
sets baud rate and opens serial
Serial .setTimeout(Serial_timout);

port)

character , it will read a really long string.

controller recieves a long garbage string, it will
Seriall .begin (9600) ;

wire (sets baud rate and opens serial port)

H-43

Setting the timeout ensures that

//Reading frmo governor potentiometer

//Used to store starting time to meter

//Used to store ending time to meter the

//Used to calculate elapsed time to

//Used to set the state of an LED (HIGH

//Used to store the initial analog input

//Used to store the value of the

//Stores last switch state

//Runs before the main loop to

//Serial to/from USB or serial monitor (
//1f the serial buffer misses the ’\r’

if the
not waste time

//Serial

reading it

to/from the Vehicle via drive by

Seriall .setTimeout(Serial_timout); //1f the serial buffer misses the ’\r’
character , it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time reading it

Serial2.begin(115200); //Serial to/from the Vehicle via x—bee
radio (sets baud rate and opens serial port)

Serial2.setTimeout (Serial_timout); //1f the serial buffer misses the ’\r’
character , it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time reading it

ETin. begin(details (rxdata), &Serial2);

ETout.begin(details (txdata), &Serial2);

//ETdebug. begin(details (txdata), &Serial);

lcd . begin (20, 4); //Sets up and opens port to LCD screen

pinMode (ind-H , OUTPUT) ; //Sets up digital pin ind_-H as a digital
output

pinMode (ind-L , OUTPUT) ; //Sets up digital pin ind-L as a digital
output

pinMode (ind_N , OUTPUT) ; //Sets up digital pin ind_-N as a digital
output

pinMode (ind_-R, OUTPUT) ; //Sets up digital pin ind_-R as a digital
output

pinMode (ind_-P , OUTPUT) ; //Sets up digital pin ind_-P as a digital
output

pinMode (ind_-1 , OUTPUT) ; //Sets up digital pin ind_-1 as a digital
output

pinMode (ind_-2 , OUTPUT) ; //Sets up digital pin ind-2 as a digital
output

pinMode (ind-3 , OUTPUT) ; //Sets up digital pin ind-3 as a digital
output

pinMode (ind-4 , OUTPUT) ; //Sets up digital pin ind-4 as a digital
output

pinMode (ind-5 , OUTPUT) ; //Sets up digital pin ind-5 as a digital
output

pinMode (ind_6 , OUTPUT) ; //Sets up digital pin ind_6 as a digital
output

lcd.setCursor (0, 0); lcd.print("HERE”); delay (80); //Startup procedure for LCD screen on
console

lcd .setCursor (0, 1); lcd.print ("WE”); delay (80);

lcd .setCursor (0, 2); lcd.print (”GO”); delay(150);

lcd.setCursor (0, 0); lcd.print(” 7

lcd.setCursor (0, 1); lcd.print(” 7Y

lcd .setCursor (0, 2); lcd.print(” 7Y

for (int flash=37; flash <=47; flash+4++) //Startup procedure for LED flash cycle on
console

{

digitalWrite (flash , HIGH) ;

delay (LED_delay) ;

digitalWrite (flash , LOW) ;

¥

digitalWrite (ind_-1, HIGH) ;

// command_type = String (7C”); //Sent at the beginning of a string
sent to the vehicle: C for command, ? for querries (not yet involved), etc

// command_mode = String (””); //Sent in string to vehicle to
indicate mode: A for actuator, S for speed control modes

// throttle_or_steer = String(””); //Sent in command string to vehicle to
indicate whether the command is a steering or speed related command: V for speed related
commands, W for steering related commands

// steering_string_to_send= String ("C,A,W,07); //Steering command string sent to
vehicle (initialized to center command)

// speed_string_to_send = String (?C,A,V,0”); //Speed related command sent ot
vehicle (initialized to zero meaning no brake and no throttle)

// gear_string_-to_send = String (”C,G,P”); //Gear change command sent to vehicle

(initialized to park)

desired_-gear = 'P’; //Sent in the gear_string_-to_-send to indicate the
desired gear (initialized ot park)

previous_desired_gear = ’'P’; //Stores the previously desired gear to insure that
the gear change string only gets sent if a different desired gear is input

// comma = String (”,”); //Used to separate different parts of
a command string sent to vehicle so the string can be parsed

// aux_string = String (" XXXXXXX") ; //String to send to vehicle to
indicate the position of the auxiliary pushbuttons or rockers

// aux_string_previous = String (”?XXXXXXX") ; //String to store aux_string to
determine if the status of any buttons has changed

// A_status = String(”7); //String sent in aux-string to
indicate that auxiliary button A is in the on position (”A” if read HIGH, ”"X” if read LOW)

// B_status = String(””); //String sent in aux_string to
indicate that auxiliary button B is in the on position (”B” if read HIGH, ”"X” if read LOW)

// C_status = String(””); //String sent in aux_string to
indicate that auxiliary button C is in the on position (”C” if read HIGH, "X’ if read LOW)

// D_status = String(””); //String sent in aux_string to
indicate that auxiliary button D is in the on position (”D” if read HIGH, "X’ if read LOW)

// E_status = String(””); //String sent in aux_string to

H-44

indicate that auxiliary button E is in the on position ("E” if read HIGH, "X’ if read LOW)

// F_status = String(””); //String sent in aux_string to
indicate that auxiliary button F is in the on position ("F” if read HIGH, "X’ if read LOW)

// horn_status = String(””); //String sent in aux_string to
indicate that auxiliary button H (Horn) is in the on position (’H’ if read HIGH, ”X” if read
LOW)

// return_string = String(””); //Stores string sent back to console
from vehicle either as feedback or a fault code

// string_from_usb = String (””); //Stores string sent to console from
the USB input

act_speed = String ("x”); //Stores the wheel speed value from the
vehicle feedback to display on LCD screen

act_steer = String(”x"); //Stores the steering position value from
the vehicle feedback to display on LCD screen

act_gear = ’'x’; //Stores the current gear that the vehicle is in
from the vehicle feedback to display on the console LEDs

armed_status = false; //Sent from vehicle to console to alert console
that the vehicle is armed and ready to take commands (”A” for armed, ”X” for not armed)

temp = false; //Sent from vehicle to console to alert console
that the vehicle’s temperature warning light is on (”"T” for temperature light on, "X’ for
temperature light off)

voltage = false; //Sent from vehicle to console to alert console
that one of the vehicle’s systems is at a low voltage (”V” for under voltage, "X” for healthy

voltage levels)

pinMode (high_gear , INPUT) ; //Sets up digital pin high_gear as a
digital input

pinMode (low_gear , INPUT) ; //Sets up digital pin low_gear as a digital
input

pinMode (neutral_gear , INPUT) ; //Sets up digital pin neutral_gear as a
digital input

pinMode(reverse_gear , INPUT); //Sets up digital pin reverse_gear as a
digital input

pinMode (park_-brake , INPUT); //Sets up digital pin park_-brake as a
digital input

pinMode (speed_vs_actuator , INPUT) ; //Sets up digital pin speed_vs_actuator as
a digital input

pinMode (serial_dbw_rc , INPUT); //Sets up digital pin serial_-dbw_rc as a
digital input

pinMode (aux-A, INPUT) ; //Sets up digital pin aux_-A as a digital
input

pinMode (aux-B, INPUT) ; //Sets up digital pin aux-B as a digital
input

pinMode (aux-C, INPUT) ; //Sets up digital pin aux_.C as a digital
input

pinMode (aux_-D, INPUT) ; //Sets up digital pin aux_.D as a digital
input

pinMode (aux-E, INPUT) ; //Sets up digital pin aux.E as a digital
input

pinMode (horn, INPUT); //Sets up digital pin horn as a digital
input

pinMode (aux-F, INPUT) ; //Sets up digital pin aux.F as a digital
input

mark = millis ();

¥

int map_joystick (int minimum, int min_dead, int max_dead, int maximum, int pos) //Maps

joystick input from minimum to maximum value (—1000 to 1000) for speed and steering inputs
while taking into account deadband

if (pos>max_dead)

pos=map(pos, max_dead, maximum, 0, 1000);
//pos = (int) round(fscale((float) max_dead, (float) maximum, 0.0, 1000.0, (float) pos, 0.0));

else if (pos<min_dead)

pos=map(pos, min_dead , minimum, 0, —1000);

//pos = (int) round(fscale((float) min_dead, (float) maximum, 0.0, —1000.0, (float) pos, 0.0));

else

{

pos=0;

}

return —1xpos;

}

void aux_switch_read () //Function to
read the auxilliary switch digital inputs and send a string to Vehicle Mega indicating their
status

{

// if(digitalRead (aux-A)==HIGH) //Checks to
see if aux-A pin is HIGH

// {A_status= String(”A”);} //1f the

button is on, assign the "A” character to its place in aux-string

H-45

// else{A_status= String (?X”);} //1f the

button is off, assign the ”"X” character to its place in aux_string

// if(digitalRead (aux_-B)==HIGH) //Checks to
see if aux_B pin is HIGH

// {B-status= String(”B”);} //1f the
button is on, assign the "B” character to its place in aux_string

// else{B_status= String (”X”);} //1f the
button is off, assign the ”"X” character to its place in aux_string

// if(digitalRead (aux_-C)==HIGH) //Checks to
see if aux_.C pin is HIGH

// {C-status= String(”C”);} //1f the
button is on, assign the ”"C” character to its place in aux_string

// else{C_status= String (?X”);} //1f the
button is off, assign the ”X” character to its place in aux_-string

// if(digitalRead (aux_-D)==HIGH) //Checks to
see if aux-D pin is HIGH

// {D-.status= String(”’D”);} //1f the
button is on, assign the ”"D” character to its place in aux-string

// else{D_status= String (?X”);} //1f the
button is off, assign the ”"X” character to its place in aux_string

// if(digitalRead (aux_-E)==HIGH) //Checks to
see if aux_E pin is HIGH

// {E.status= String(?E”);} //1f the
button is on, assign the "E” character to its place in aux_string

// else{E_status= String ("X");} //1f the
button is off, assign the ”X” character to its place in aux_string

// if(digitalRead (aux_F)==HIGH) //Checks to
see if aux_.F pin is HIGH

// {F_status= String ("F”);} //1f the
button is on, assign the ”"F” character to its place in aux-string

// else{F_status= String (?X”);} //1f the
button is off, assign the ”X” character to its place in aux_string

// if(digitalRead (horn)==HIGH) //Checks to
see if horn pin is HIGH

// {horn_status= String(’H’);} //1f the
button is on, assign the 'H’ character to its place in aux_string

// else{horn_status= String (?X”);} //1f the
button is off, assign the ”"X” character to its place in aux_string

txdata .aux
txdata.aux
txdata.aux

[0] = digitalRead (aux_A);
(1]
(2]
txdata.aux [3]
[4]
[5]
(6]

digitalRead (aux.-B);
digitalRead (aux_.C) ;
digitalRead (aux_-D) ;
digitalRead (aux-E);
digitalRead (aux_F);
= digitalRead (horn);

txdata .aux
txdata .aux
txdata .aux

// aux_string = String(”A”) 4+ A_status 4+ B_status 4+ C_status 4+ D_status 4+ E_status + F_status +
horn_status; //Formulate auxilliary switch string

if (aux-string != aux_string_previous) //So the
string is only sent when the status of a button or rocker changes

//

/A

// Serial . println (aux_string);

// Seriall.println (aux_string); //Send
auxilliary switch string over drive by wire

// Serial2.println (aux_string); //Send
auxilliary switch string over x—bees

//

//

¥

}

aux_string_previous = aux._string;

void return_command()//String return_string) //Function
to parse string coming from vehicle and assign variables based on string

// if(return_string.startsWith("F”)) //1f the
string starts with "F” it is a feedback string not an error string

//

// comma_index_-1 = return_string.indexOf(’,’); //Records
indesx value of first comma in string for parsing

// comma_index_-2 = return_string.indexOf(’,’, comma_index_-1 + 1); //Records
indesx value of second comma in string for parsing

// comma_index_-3 = return_string.indexOf(’,’, comma_index_-2 + 1); //Records
indesx value of third comma in string for parsing

//

// act_steer = return_string.substring(comma_index_.1 + 1, comma_index_2); //Parses
and records value of the current steering position

// act_speed = return_string.substring(comma_index_-2 + 1, comma_index_3); //Parses
and records value of the current wheel speed

// act_gear = return_string.substring(comma_index_.3 + 1); //Parses
and records value of the current gear

/)

if (ETin.receiveData ()){

act-steer = String(rxdata.rover_steering);

H-46

act-speed = String(rxdata.rover_speed);

act_gear = rxdata.rover_gear;

// else if(return_string.startsWith(?E”)) //1f the
vehicle is sending the console an error code

//

// armed_status = return_string.substring (1, 2); //Parse
armed_status out of error code

// voltage = return_string.substring (2, 3); //Parse
voltage out of error code

// temp = return_string.substring (3, 4); //Parse
temp out of error code

//

armed_status = rxdata.armed_status;

voltage = rxdata.voltage_error;

temp = rxdata.temp-error;

// else if(return_string.charAt(1)=="E’) //Same as
previous else if statement. This should not be necessary but every once in a while the
previous statement lets an error code go and this catches it and keeps it from going
undetected

//

// armed_status = return_string.substring (2, 3);

// voltage = return_string.substring (3, 4);

// temp = return_string.substring (4, 5);

//

if (armed_status){digitalWrite (ind-2, HIGH);} //Check if the vehicle

is armed. Illuminate ARMED LED if it is

else {digitalWrite (ind-2, LOW);}

if (temp){digitalWrite (ind-4, HIGH);} //Check if the vehicle

s

s temperature warning light is on. Illuminate ERROR LED if it is

else {digitalWrite (ind-4, LOW);}

if (voltage){digitalWrite (ind_-3 , HIGH);} //Check if the vehicle
is under voltage. Illuminate LOW BATT LED if it is

else {digitalWrite (ind_-3 , LOW);}

}

//void serial_interface_function () //1f the

~

R RS S RN
N

T T T e
e e N

serial versus remote control or drive by wire rocker is in the serial position, this function
is called to take read the input string from the USB port and deal with it

if (Serial.available ())

string_from_usb = Serial.readStringUntil(’\r’); //Read
string from USB port until return character

if (string_from_usb.substring(2,3) == "G”) //Checks to
see if it is a gear change command
{
gear_string_to_send = string_from_usb; //1f the
input string is a gear change string, set it equal to gear_string_to_send
if (gear_string_to_send != ”Clear”) //Checks to

make sure that the gear change string only gets sent once (sets equal to ”"Clear” later in the
code after it has been sent)

Seriall .println(gear_string_-to_send); //Send
gear_string_-to_-send to vehicle via drive by wire

Serial2.println(gear_string_-to_send); //Send
gear_string_-to-send to vehicle via x—bees

delay (20) ;

digitalWrite (ind-H, LOW) ; //turns off

all gear indicator LEDs that may have been on
digitalWrite (ind_L , LOW) ;

digitalWrite (ind_-N, LOW) ;

digitalWrite (ind-R, LOW) ;

digitalWrite (ind_P, LOW) ;

}

else if (string_from_usb.substring(4,5) == "W") //1f the
USB input string is not a gear change command this checks to see if it is a steering command

{
steering_string_-to-send = string_-from_usb; //1f the

input string is a steering string, set it equal to steering_string-to-send

}

else if (string_-from_usb.substring(4,5) == "V”) //1f the

H-47

USB input string is not a gear change or steering command this checks to see if it is a speed
related command

//

// speed_string_to_send = string_from_usb; //1f the
input string is a speed related command, set it equal to speed_string_to_send

//

//

// if (act_-gear == desired_gear) //Once the
vehicle has shifted gears, stop sending gear change string and get back to sending steering
and speed commands

//

// gear_string_to_send = String(” Clear”); // Clears
gear_string_to_-send so that the previous part of the code knows the vehicle is done changing
gears and stops sending the gear change command

//

// if (counter == 1) //Used to
alternate between sending steering and speed commands (sends the steering command on the first

iteration and speed related command on the second)

//

// Serial . println(steering_string_to_send);

// Seriall.println(steering_string_to_send); //Send
steering command over drive by wire

// Serial2.println(steering_string_to_send); //Send
steering command over x—bees

// delay (20) ;

//

//

// else if (counter >= 2) //Used to

alternate between sending steering and speed commands (sends the steering command on the first
iteration and speed related command on the second)

// {

// Serial . println (speed-string_to_send);

// Seriall . println(speed_string_to_send); //Send
speed related command over drive by wire

// Serial2 . println(speed_string_-to_send); //Send
speed related command over x—bees

/) delay (20) ;

// counter = 0; //Reset
counter

// }

//

// counter = counter +41; // Count
iterations

/)

//

//

// if(act_gear == 'H’) {digitalWrite(ind_-H, HIGH);digitalWrite (ind_.L , LOW) ;digitalWrite (ind_N,
LOW) ; digitalWrite (ind-R, LOW) ; digitalWrite (ind_-P, LOW);} //Illuminates LED
corresponding to the current gear of the vehicle and writes all other LEDs LOW

// else if (act_gear == ’L’) {digitalWrite(ind_-L, HIGH);digitalWrite (ind-H, LOW); digitalWrite (
ind_N, LOW) ;digitalWrite (ind-R, LOW) ; digitalWrite (ind_-P, LOW) ;}

// else if (act_-gear == ’'N’) {digitalWrite (ind-N, HIGH);digitalWrite (ind-L , LOW) ; digitalWrite (
ind_-H, LOW) ;digitalWrite (ind-R, LOW) ; digitalWrite (ind-P, LOW) ;}

// else if (act_gear == 'R’) {digitalWrite(ind_-R, HIGH);digitalWrite (ind_-N, LOW); digitalWrite (

ind_L, LOW);digitalWrite (ind_-H, LOW) ; digitalWrite (ind_P , LOW) ;}
// else {digitalWrite (ind_P, HIGH) ; digitalWrite (ind_-R, LOW);digitalWrite (ind_N, LOW) ;digitalWrite
(ind_L , LOW) ;digitalWrite (ind_-H, LOW);}

//

//}

void rc_dbw_function () //Separate
function for when the vehicle is operating in drive by wire or remote control mode as opposed
to serial mode

{

// string_from_usb = String (”C”); // Clears
string_from_usb

if (digitalRead (high_gear)) //Reads digital
inputs from gear pushbuttons and assigns the desired_-gear to a string indicating the gear if
one of the pushbuttons is pressed

{desired_gear = "H’;}

else if(digitalRead (low_gear))

{desired_gear = 'L’;}

else if(digitalRead(neutral_gear))

{desired_gear = 'N’;}

else if(digitalRead(reverse_gear))

{desired_gear = 'R’;}

else if(digitalRead (park_brake))

{desired_gear = 'P’;}

else

{desired_gear=previous_desired_gear;} //1If no gear
pushbuttons are pressed, this sets the desired_-gear=previous_desired_gear

if (desired_gear != previous_desired_gear) //Checks to make
sure the new desired gear is not equal to the previously desired gear

for (int flash=ind_H; flash<=ind_-P; flash++) //Flash sequence

H-48

during gear change
{digitalWrite (flash , LOW);}

previous_desired_gear=desired_gear; //Sets
previous_desired_gear=desired_gear

if (act_gear != desired_gear) //Checks to make
sure the desired gear is differnet from the actual gear and does not do anythign further if
the vehicle is currently in the gear desired

//command_mode = "G7; //Sets the
command mode to ”G” for gear (This will tell the Vehicle Mega that the command is a gear
change)

//gear_string_to_send = command_type + comma + command_-mode + comma + desired_gear; //Formulates

the gear change command to send to the vehicle
//Serial.println(gear_string_to_send);

//Seriall .println(gear_string_-to_send); //Sends the
gear change command to the vehicle via drive by wire

//Serial2.println(gear_string_to_send); //Sends the
gear change command to the vehicle via x—bee

/) delay (20);

txdata.gear = desired_gear; //Send a packet with 0
speed and brake on

txdata.throttle_.pos = —500;

stop_-time=millis () ; //Assigns the
stop time used to calculate the elapsed time which enforces the flash rate

elapsed_time=stop_-time—start_time; // Calcualtes the
elapsed time used to enforces the flash rate

if (elapsed_-time > flash_rate) //Checks to see
if the elapsed time is greater than the flash rate

{

start_time=millis () ; // Assigns the
start time used to calculate the elapsed time which enforces the flash rate

LED_state = (!LED_state); //1f the elapsed
time is greater than the flash rate, the LED switches states

if (desired_gear == 'H’) {digitalWrite (ind_H, LED_state);} //Writes LED_state

(HIGH or LOW) to digital pin corresponding to the gear that is changing
else if (desired_gear ’L’) {digitalWrite (ind_.L , LED_state);}
else if (desired_gear 'N’) {digitalWrite (ind_-N, LED_state);}

else if (desired_gear == ’'R’) {digitalWrite (ind_-R, LED_state);}

else {digitalWrite (ind_-P, LED_state);}

b

¥

//1f not changing gears, set the corresponding gear LED

else if(act_gear == 'H’) {digitalWrite(ind_-H, HIGH);digitalWrite (ind_-L , LOW) ;digitalWrite (ind_N,
LOW) ; digitalWrite (ind-R, LOW) ; digitalWrite (ind-P, LOW);} //If the vehicle is in the gear that

is desired, illuminate the corresponding LED

else if (act-gear == 'L’) {digitalWrite (ind-L , HIGH) ; digitalWrite (ind-H, LOW) ; digitalWrite (ind-N,
LOW) ; digitalWrite (ind-R, LOW) ; digitalWrite (ind-P , LOW) ;}

else if (act_gear == 'N’) {digitalWrite (ind_-N, HIGH) ; digitalWrite (ind_L , LOW) ; digitalWrite (ind_H,
LOW) ; digitalWrite (ind_.R, LOW) ; digitalWrite (ind_.P, LOW);}

else if (act_gear == 'R’) {digitalWrite (ind_-R, HIGH); digitalWrite (ind_-N, LOW) ; digitalWrite (ind_L ,

LOW) ; digitalWrite (ind-H, LOW) ; digitalWrite (ind_-P, LOW);}
else {digitalWrite (ind_-P, HIGH);digitalWrite (ind_-R, LOW) ;digitalWrite (ind_-N, LOW) ;digitalWrite (
ind_L , LOW) ;digitalWrite (ind-H, LOW) ;}

// governor = analogRead(gov_pin); //Read
governor analog input

governor = map(analogRead (gov_pin), 1023, 0, 0, 1000); //Map or
scale the governor’s input from 0 to 1000

if (act_gear == desired_gear) //Checks to
ensure that the vehicle is in the gear that is desired

{

// if (counter==1) //If on
the first iteration , formulate and send speed related commands (counter used to alternate
between speed related commands and steering related commands)

// {

if (digitalRead (speed_vs_actuator)) //Checks whether the
console indicates speed or actuator mode and assigns the command mode to the desired mode

{

// command_mode = String(”S”);

txdata.speedmode = ’S’;

¥

else

// command_mode = String (7A”);

txdata.speedmode = 'A’;

desired_speed = analogRead(speed_-pot_pin); //Reads speed

analog input from joystick

H-49

desired_speed= map-_joystick(joy-min_speed, joy-min_speed-deadband, joy-max.speed_-deadband ,
joy-max_speed, analogRead(speed_pot_pin)); //Maps speed analog input from
joystick with speed potentiometer deadband

// if (act_gear == ’'R’) //1f the
vehicle is currently in reverse, the desired speed commands should be reversed so it
intuitively makes sense to drive (in reverse if you push the joystick back, you will recieve
throttle input and if you push it forward the brakes will be activated)

//

// desired_speed = —1lxdesired_speed;

// ¥

//GOVERNOR: (Sanity Check?)

if (governor<desired_speed) //1f the desired
speed is greater than the governor input, govern the speed or throttle input from the
joystick

desired_-speed = governor;

// throttle_or_steer = String(”V”); //Set
throttle_or_steer equal to ”V” to indicate that this is a speed related command

// speed_string_to_send= command_type + comma + command_-mode + comma + throttle_or_steer +
comma + desired_speed; //Formulate speed related command

// Serial.println(speed_string_to_send);

// Seriall .println (speed_string_to_send); //Send
speed related command to vehicle via drive by wire

//Serial2.println (speed_string_to_send); //Send speed

related command to vehicle via x—bee
//delay (20);

// }

// if (counter >=2) //1f on
the second iteration, formulate and send steering commands (counter used to alternate between
speed related commands and steering related commands)

// {

desired_steering = analogRead(steering_pot_pin); //Reads analog
input from steering potentiometer on joystick

desired_steering= map_joystick(joy-min_steer , joy_-min_steer_.deadband , joy_-max_steer_deadband ,
joy-max_steer , desired_steering); //Maps or scales the analog steering input
from joystick

// throttle_or_steer = String ("W”); //Set
throttle_or_steer equal to "W’ to indicate that this is a steering command

// steering_string_-to_-send= command_-type + comma 4+ command-mode 4+ comma + throttle_or_steer +
comma + desired_steering; //Formulate steering command

// Serial . println(steering_string_to_send);

// Seriall .println(steering_string_-to_send); //Send
steering command to vehicle via drive by wire

//Serial2.println(steering_string_to_send); //Send
steering command to vehicle via x—bee

/7 delay (20) ;

// counter = 0; //Reset
counter

// counter = counter +1; //Keep
count of iteration

txdata.throttle_pos = desired_speed;

txdata.gear = desired_gear;

} // end of if(act_ger == desired_gear)

txdata.steering_-pos = desired_-steering;

txdata.packet_id=packet_id;
packet_id++;

ETout.sendData () ;

// ETdebug.sendData() ;

¥

void batt_check () //Function
to check battery voltage in console
{

voltage_input = analogRead(Batt_Voltage_pin); //Reads
analog input of console battery voltage if in remote control mode or 12 volt voltage from
vehicle if in drive by wire mode

Batt_-Voltage = voltage_input * .01468; //Scales
battery voltage input to display numerical value in volts
lcd .setCursor (0, 3); lcd.print(Batt_Voltage); //Prints

battery voltage or 12 volt input to LCD screen

}

void loop () //Main loop
(iterates over and over)

H-50

{

mark = millis ();
// if(digitalRead (serial_dbw_rc)==HIGH) //1f the
vehicle is in serial mode, call the serial_interface_fiunction

if (!'serial_sw_last) //If the last state was LOW (manual), then clear the buffer

while(Serial.available()) {Serial.read();}
serial_sw_last = true;

serial_interface_function () ;

}

else //1f the
vehicle is in drive by wire or remote control mode, call the rc_.dbw_function

PN N NN Ny

/
/
/
/
/
/
/
/
/
/
/

c_dbw_function () ;

// serial_sw_last = false;
//
aux_switch_read () ; //Reads status

of auxiliary rocker switches and pushbuttons and sends string to vehicle

//there’s a loop here so that we run the recieve function more often then the
//transmit function. This is important due to the slight differences in
//the clock speed of different Arduinos. If we didn’t do this, messages
//would build up in the buffer and appear to cause a delay.

for (int 1=0; i<2; i++){
return_command () ;

}

// if(Seriall.available()) //1f the
Vehicle Mega is sending serial data back to the consol via wired serial link, read it and
store it as return_string

{return_string = Seriall.readStringUntil(’\r’);

return_command (return_string);} // Call
function return_.command and pass the string return_string to it

~~ >~
S~ N~

if (Serial2.available ()) //1f the
Vehicle Mega is sending serial data back to the consol via x—bee, read it and store it as
return_string

// {return_string = Serial2.readStringUntil(’\r’);
return_command (return_string); // Call
function return_.command and pass the string return_string to it

// Serial.println(return_string);} //Forward

debug strings to usb port for debugging

lcd.setCursor (0, 0); lcd.print(”Speed =7);

//write ”Speed =" to LCD
screen
lcd .setCursor (8, 0); led.print(” 7Y
//write space to LCD
screen

lcd .setCursor (8, 0); lcd.print(act_speed);
//write current wheel
speed to LCD screen

steer_pos=act_steer.tolnt ();
// Transform
steering feedback from a string to an integer
steer_pos=steer_pos / 10;

//
Transofrm steering feedback from —1000 to 1000 value from —100 to 100 so it can be displayed
as a percentage
lcd .setCursor (0, 1); lcd.print(” Steering =7);
//write ”Steering =" to LCD
screen
lcd .setCursor (11, 1); lcd.print(” 7))
//write space to LCD screen
if (steer_pos <0) {lcd.setCursor(11l, 1); lcd.print(’L’); steer_pos=—steer_pos;
/If steering is negative, make positive percentage and put a
L before it to indicate left
lcd .setCursor (12,1); lcd.print(steer_pos); lcd.print("%”);}
//write "%” to LCD screen
else if (steer_pos >0) {lcd.setCursor(11l, 1); lcd.print(’R’);
//1f steering is negative, put a R before it
to indicate right
lcd .setCursor (12,1); lcd.print(steer_pos); lcd.print(?%”);}
//write "%” to LCD screen
else {lcd.setCursor(11, 1); lcd.print(” Center”);}
//1f steering feedback is zero,
write center
lcd .setCursor (0,2); lcd.print (” Governor =");
//write ”Governor =" to LCD
screen

H-51

lcd .setCursor (11, 2); lcd.print(” 7))

//write space to LCD screen
lcd .setCursor (11, 2);
if (digitalRead (speed_vs_actuator)==HIGH)

//1f in speed mode, map
governor from 0 to maximum vehicle speed and display this in miles per hour

{
governor = map(governor, 0, 1000, 0, max_speed);
lcd . print (governor); lcd.print(” MPH”);

else
//1f in actuator mode, map governor from 0 to 100 indicating a percentage of throttle input

governor = map(governor, 0, 1000, 0, 100);
led . print (governor); lcd.print(”%”);

lcd .setCursor (17, 3); lcd.print (?"RSL”);
//Write RSL to the
LCD screen to indicate ownership

//Serial.println (LOOP.TIME — (millis ()—mark));
delay (LOOP.TIME — (millis ()—mark));

}

Console Arduino: comm definitions.h

//Includes comm definitions for binary serial packets

struct CONSOLETO_ROVER{
int packet_id;

int steering_pos;

int throttle_pos;

char gear;

char speedmode;

bool aux|[7];

3

struct ROVER.TO.CONSOLE{
int rover_speed;

int rover_steering;

char rover_gear;

bool voltage_error;

bool temp_error;

bool armed_status;

}s

Console Arduino: config.h

int flash_rate = 300; //Rate in milliseconds for LED flashing
to indicate that the vehicle is in the process of shifting into a perspective gear

int LED_delay=40; //Time in milliseconds for initial LED
flash to indicate that the vehicle is about to begin the process of shifting gears

int max_speed = 40; //Maximum speed of vehicle (gives the
governor something to map to in speed mode)

int Serial_-timout = 25; //Set the serial timeout for hardware

serial ports

// Joystick calibration values

int joy-min_speed = 3;

int joy-max_speed = 813;

int joy-min_steer = 1;

int joy-max_steer = 939;

// Joystick deadband values —— in analog counts
int joy-min_speed_deadband = 311;

int joy-max_speed_deadband = 379;

int joy-min_steer_deadband = 316;

int joy-max-steer_deadband = 395;

const int LOOP.TIME = 80; // in milliseconds

Console Arduino: pin_definitions.h

H-52

int steering-pot_pin = 0; //Analog input pin associated with the
steering potentiometer on the joystick

int speed_pot_pin = 1; //Analog input pin associated with the
steering potentiometer on the joystick

int gov_pin = 2; //Analog input pin associated with the
governor potentiometer

int high_gear = 26; //Digital input pin number that reads
position of high gear pushbutton

int low_gear = 25; //Digital input pin number that reads
position of high gear pushbutton

int neutral_gear = 23; //Digital input pin number that reads
position of high gear pushbutton

int reverse_gear = 22; //Digital input pin number that reads
position of high gear pushbutton

int park_brake = 24; //Digital input pin number that reads
position of high gear pushbutton

int speed_vs_actuator=27; //Digital input pin number that reads
position of speed versus actuator mode rocker switch

int serial_-dbw_rc=29; //Digital input pin number that reads
position of serial versus drive by wire or remote control mode rocker switch

int aux_-A=30; //Digital input pin number for
auxilliary rocker switch A

int aux_-B=31; //Digital input pin number for
auxilliary rocker switch B

int aux-C=32; //Digital input pin number for
auxilliary rocker switch C

int aux-D=33; //Digital input pin number for
auxilliary rocker switch D

int aux-E=34; //Digital input pin number for
auxilliary rocker switch E

int horn=35; //Digital input pin number for
auxilliary pushbutton H which is currently the horn

int aux_F=36; //Digital input pin number for
auxilliary pushbutton E

int ind_-H=37; //LED pin associated with High Gear

int ind_L=38; //LED pin associated with Low Gear

int ind_-N=39; //LED pin associated with Neutral Gear

int ind_-R=40; //LED pin associated with Reverse Gear

int ind_P=41; //LED pin associated with Park Gear

int ind_-1=42; //LED pin to indicate that the console
is on

int ind_-2=43; //LED pin to indicate that the vehicle
is armed and ready to accept commands

int ind_3=44; //LED pin to indicate low battery on
vehicle (This LED will illuminate if the 24 volt system falls below 21 volts or if the 12 volt
system falls below 10 volts

int ind-4=45; //LED pin to indicate that the vehicle s
temperature light is on (if this light stays on for more than 20 seconds, the emergency stop
will be activated)

int ind_5=46; //Auxiliary LED pin number

int ind_6=47; //Auxiliary LED pin number

int Batt_Voltage_pin = 3; //Digital pin number to read battery

voltage from f

Vehicle Mega

//RSL Rover 2016
//Vehicle Mega code

#include <Wire.h>
#include <EasyTransfer.h>

Arduino: Vehicle_Mega_2016_v2.ino

//Library for serial communication

//#include <EasyTransferI2C_NL.h>

communication buffers

Transmission Motor Controller

#include ”comm_definitions.h”
#include ”pin_definitions.h”
#include ”config.h”

//Serial: USB: From ROS Computer
//Seriall: From Consol
//Serial2: To Steering and
//Serial3: To Speed Controller
//Setting up the serial

and processing objects

ROVER-TO_.-CONSOLE console_txdata;
CONSOLE-TO-ROVER console_rxdata;
ROVER-TOSPEED_ARDUINO spd-txdata;
//SPEED_ARDUINO_TO_ROVER spd-rxdata;

ROVER-TOROS ros_txdata;

//TACH.TO.ROVER tach_rxdata;

H-53

//Etin processes packets from the console to the VehicleMega
//ETout processes packets from the VehicleMega to the console
//ETspd_out processes packts from the VehicleMega to the speed
EasyTransfer ETin, ETout, ETspd_out, ETros; //ETspd_in,
//BEasyTransferI2C_NL ETtach;

String command_type;

String command_mode;

String throttle_or_steer;

String steering_command ;

String speed_-string_to_send;
String steering_string_-to_send;
String gear_string_-to_send;

char desired_-gear;

char current_gear;

String string-from_-motor_controller;
String mc_state;

String steering_query;

String feedback_to_consol;

String feedback_to_consol_prefix;
String feedback_to_ROS;

String position_prefix;

String suffix;

String space;

String comma;

bool A_status;
bool B_status;
bool C_status;
bool D_status;
bool E_status;
bool horn_status;
bool F_status;

String error_string;

String error_string_previous;
String temp;

String voltage;

int voltage_input = O0;
analogRead of voltage divider circuits
float Twenty_Four_V_Voltage = 0;

float Twelve_V_Voltage = 0;

int temp-count = O0;

temp_start_time begins timing when the temperature light first
unsigned long temp_start_time = 0;

the temperature light first turns on
unsigned long temp-end_-time = 0;

time an iteration occurs with the temperature light on
unsigned long temp-time = O0;
light has been on (temp-end-time — temp-_start_time)

int e_stop_-state = LOW;
activated (acts as a toggle and if statements can be added
emergency stop mode on)
int e_brake_state = HIGH;
is on, LOW is off
int contact_-with_consol = LOW;
initial contact with the console, this state turns HIGH

int counter = 0;
intermittent sending of data
int estoppin = 0;
int desired_-speed = 0;
to the speed controller when changing gears
float wheel_speed = 0;
int desired_-throttle = 0;
int gear_position = 0;

gear actuator
int channel=1;

arduino

//Integer

//24 Volt
//12 Volt

//Counter

comes on

placeholder for

system voltage
system voltage

used to ensure

//Absolute time recorded when

//Absolute time recorded every

//Time that the temperature

//if high

e—stop will be

anywhere in the code to toggle

//Emergency brake state: HIGH

//Once the Vehicle Mega makes

//used to

//Used to

control the

send a desired speed

//Current wheel speed

//Desired

//Channel

position to send to

used to formulate

strings to send to motor controllers (either 1 for steering or 2 for transmission command)

int steering_position=0;
parsed from console
int act_steering_position = 0;
querried from the steering motor controller (to be sent as
int comma_index_1;
string (for parsing)
int comma_index_2;
string (for parsing)
int comma_index_3;
string (for parsing)
unsigned long e_-stop-time_-1 = 0;
the last console contact occurred

H-54

//Desired

//Current

steering position

steering position as

feedback to the console)
//Index of first comma in a

//Index of

second comma in a

//Index of third comma in a

//Records

the start time when

unsigned long e-stop-time-2 = 0;
next console contact occurred
unsigned long e_stop_time = O0;
e_stop_time_2 and e_stop_-time_1 (compared to dead_man_timout)
int estop-code = O0;
unsigned long tic = 0;
long it takes to run the main loop
unsigned long toc = 0;

float tach_spd_-i2c = 0.0;
reported by the tach arduino
long tach_pos_i2c = 0.0;
position as reported by the tach arduino
byte i2c_in [32];
float engine_rpm = 0.0;

union float_-tag {
i2¢ data as a byte but getting it as a float or long

byte b[4];

float fval;

b ouof;

union long_tag {
byte b[4];

long lval;
}ou-l;

long int last_steering_sent;
long lastSendTime;

void setup ()
initialize everything

{
pinMode (ebrake_relay_pin , OUTPUT) ;
pin to output (same as parking brake)
digitalWrite (ebrake_relay_pin, e_brake_state);
brake state to emergency brake pin

pinMode(e_stop-relay_pin , OUTPUT) ;
pin to output

digitalWrite (e_stop_-relay_pin, e_stop_state);
stop state to emergency stop pin

pinMode(horn_relay_pin , OUTPUT) ;
output

digitalWrite (horn_relay_pin , LOW) ;
horn pin (LOW is off)

pinMode (beacon_relay_pin , OUTPUT) ;
output

digitalWrite (beacon_relay_pin , LOW) ;
stop state to emergency stop pin

// Open serial communications and wait for port to open:
Serial .begin(115200);

monitor (sets baud rate and opens serial port)
Serial .setTimeout (Serial_timout) ;

Seriall .begin(115200) ;
sets baud rate and opens serial port)
Seriall .setTimeout(Serial_timout);

Serial2 .begin(115200) ;
transmission motor controller (sets baud rate and opens
Serial2 .setTimeout (Serial_timout);

Serial3 .begin(115200) ;
Controller (sets baud rate and opens serial port)
Serial3 .setTimeout(Serial_timout);

pinMode (20 ,INPUT_PULLUP) ;
pinMode (21 ,INPUT_PULLUP) ;
Wire. begin () ;
communicate with the tach arduino

ETin. begin(details (console_rxdata), &Seriall);
ETout.begin(details (console_txdata), &Seriall);
ETspd-out.begin(details (spd-txdata), &Serial3);
//ETspd_in.begin(details (spd-rxdata), &Serial3);
ETros.begin(details (ros_txdata), &Serial);

pinMode (temp_-warning , INPUT) ;

H-55

serial

//Records the end time when the

//Difference between

//Used for evaluating how

//Variable for storing the speed

//Variable for storing the

//Buffer for i2c

//Unions used for storing the

//Runs before the main loop to

//Sets

the emergency brake relay

// Writes the startup emergency

//Sets

the emergency stop relay

//Writes the startup emergency

//Sets

the horn relay pin to

// Writes the startup horn state to

//Sets

the beacon relay pin to

// Writes the startup emergency

//Serial to/from USB or serial

//1f the serial buffer misses the
’\r’ character , it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time
//Serial to/from the Console (

reading it

//1f the serial buffer misses the
’\r’ character, it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time

//Seri

reading it
al to/from steering and

port)

//1f the serial buffer misses the
’\r’ character, it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time
//Serial to/from Speed

reading it

//1f the serial buffer misses the
’\r’ character, it will read a really long string. Setting the timeout ensures that if the
controller recieves a long garbage string, it will not waste time

//Sets

reading it

//Setup I2C Bus as Master to

the temp-warning pin as an

input (HIGH or LOW)

pinMode(reverse , INPUT); //Sets the reverse gear pin as an
input (HIGH or LOW)

pinMode (neutral , INPUT) ; //Sets the neutral gear pin as an
input (HIGH or LOW)

pinMode (low , INPUT) ; //Sets the low gear pin as an
input (HIGH or LOW)

pinMode (high, INPUT) ; //Sets the high gear pin as an
input (HIGH or LOW)

pinMode (wheel_speed_pin , INPUT); //Sets the wheel speed pin as an

input (PWM)
pinMode (47 ,INPUT) ;

// comnsol_input_string = String (””); //String from console

// ros_input_string = String (””); //Command string from ROS

command_type = String (7”); //Parsed from consol_input_string:
C for command, ? for querries (not yet involved), etc

command-mode = String (””); //Parsed from consol_input_string:
A for actuator, S for speed control modes

throttle_or_steer = String(””); //Parsed from consol_input_string:
W for steering command, V for speed related commands

steering_.command = String(””); //Parsed from consol_input_string:
Value from —1000 to 1000

steering_string_to_send = String (””); //Formulated string to send as a
steering motor command to steering and transmission motor controller

speed_string_to_send = String (””); //Formulated string to send as a
command to speed controller

gear_string_to_send = String(””); //Formulated string to send as a

transmission motor command to steering and transmission motor controller

desired_gear = ~’ H //Parsed from consol_input_string: H for
high, L for low, N for neutral, R for reverse, P for park

current_gear = 'N’; //Current gear that the vehicle is in: H
for high, L for low, N for neutral, R for reverse, P for park

steering_query = String (”?TR 17); //Query to be sent to steering and
transmission motor controller (Asks motor controller what the current steering position is as
a value from —1000 to 1000)

string_from_motor_controller = String (””); //String sent from steering and
transmission motor controller

mc_state = String(77); //State of the steering and
transmission motor controller: ”"Ready” when ready to take commands ”Starting” when performing
startup procedure

feedback_to_consol = String(””); //Feedback string to console
includes wheel speed, current gear, and current steering position

feedback_to_consol_prefix = String (?F”); //Prefix for feedback_to_consol so
console recognizes this as feedback and not an error string

feedback_to_.ROS = String (””); //Feedback to send over USB Serial

suffix = String ("\r”); //Return character to send at the
end of command or query to motor controller (denotes the end of a string of data)

space= String (7 7); //Space needed in motor controller
commands

comma = String (”,”); //Comma used mainly to separate
variables for data logging

position_prefix = String ("!g”); //”'g” is how absolute position

commands to motor controllers begin

// A_status = String(””); //String parsed from aux_string to
indicate that auxiliary button is in the on position (”"A” if read HIGH, ”"X” if read LOW)
// B.status = String (””); //String parsed from aux_string to
indicate that auxiliary button is in the on position (”"B” if read HIGH, ”"X” if read LOW)
// C_status = String (””); //String parsed from aux_string to
indicate that auxiliary button is in the on position (”C” if read HIGH, ”X” if read LOW)
// De_status = String (””); //String parsed from aux_string to
indicate that auxiliary button the on position (”D” if read HIGH, ”"X” if read LOW)
// E_status = String (””); //String parsed from aux_string to
indicate that auxiliary button is in the on position ("E” if read HIGH, ”X” if read LOW)
// F_status = String (””); //String parsed from aux_string to
indicate that auxiliary button is in the on position (”"F” if read HIGH, ”X” if read LOW)
// horn_status = String(””); //String parsed from aux_-string to
indicate that auxiliary button (Horn) is in the on position ("H” if read HIGH, "X” if read

T 8 ®m U Q w »
=
5

LOW)
error_string = String ("XXXX") ;
error_string_previous = String ("XXXX");
temp = String (?X"”);
voltage = String("X”);

//Casues Vehicle Mega to wait for contact from the consol to enter the main loop so that the
emergency stop is not hit if the console is powered up after the vehicle
Serial.println ("M, Done setting up ... waiting on console contact”);

top:
if (!ETin.receiveData ())

{
delay (50) ;
goto top;

H-56

}

else

{

Serial.println ("M, Console Contacted! Waiting 4.5s7);
delay (4500) ;
Serial.println ("M, Done Waiting!”) ;

last_steering_sent=millis () ;

lastSendTime = millis(); // For comm sending delays
Serial.println ("M, Starting Main Loop”);
¥

void readFromSpd ()

{
//if (ETspd-in.receiveData())
/4

//engine_rpm = spd_rxdata.engine.rpmj;

¥

void readFromTach ()

{

// if (ETtach.receiveData (TACH.SLAVE_ADDRESS)) {

// tach_pos_.i2c = tach_rxdata.pos;

// tach_spd_-i2c = tach_rxdata.spd;

// }

Wire . requestFrom (TACH.SLAVE_ADDRESS, 8); // request 8 bytes from slave device 0x60
int readcount = O0;

while (Wire.available()) { // slave may send less than requested
i2c_in [readcount] = Wire.read(); // receive a byte as character
readcount++;

s

/*

float tach_wheespd_i2c = 0.0;

long tach_pos_i2c = 0.0;

*/

//Serial.println ("M, Good Tach Contact”);

//Convert raw bytes to a float and a long for speed and position respectively using unions
u-f.b[0]=1i2c_in [0];
u-f.b[1l]=i2c_in [1
u-f.b[2]=1i2c_in [2
u-f.b[3]=i2c_in [3
tach_spd_.i2c = u fval;
u-l1.b[0]=1i2c_in |
u-l.b[1]=1i2c_in |
u-l.b[2]=1i2c_in |
u-l1.b[3]=i2c_.in |
tach_pos_i2c = u-l.lval;

wheel_speed = tach_spd_-i2c; //0.148749652 x
console_txdata.rover_-speed = tach_spd-i2c;

// Serial . println ("M.TachSPD:” + String (int(tach_pos_-i2c)));

N o O

void error_check () //Checks the vehicle’s systmes for
errors (currently the only errors being checked for are temperature light , under voltage, and
letting the console know that the vehicle is armed)

{

if (digitalRead (temp_warning) == HIGH) //Checks the digital pin that is tapped
into the temperature light on the dash (if the temperature light is on, the pin will read HIGH
)

{

console_txdata.temp_error = true;

ros_-txdata.temp_-warn = true;

temp = String ("T”); //Puts a "T” in the designated temperature
warning place in error_string (indicating that the temperature light is on)

temp-count = temp-count + 1; //Counts iterations that the temperature
light has been on

if (temp_count == 1) //Ensures that the timer will start for the
temperature light when the light first comes on

{

temp_start_-time = millis (); //Assigns the start time on the first
iteration that the temperature light has been on

}

temp_end_time = millis () ; //Assigns the end time each iteration that
the temperature light is on for

temp-time = temp_end_time — temp_start_time; // Calculates the total time that the
temperature light has been on for

if (temp_-time >= temp_time_limit) //Checks to see if the temperature light
has been on for longer than the designated temperature time limit

{

Serial . println ("M, ESTOP DUE TO ENGINE TEMP”) ;
estop-code=3;

H-57

e_stop-state = HIGH; //If the temperature light has been on for

longer than the temperature time limit, the emergency stop is activated

b

¥

else //1f the temperature light is off

{

console_txdata.temp_error = false;

ros_-txdata.temp_warn = false;

temp = String (?X”); //Puts a "X” in the designated temperature
warning place in error_string (indicating that the temperature light is off)

temp_count = 0; //Resets the counter

b

¥

void check_voltage () //Function to check the on—
vehicle voltage levels

{

voltage_-input = analogRead(Twelve_-V_Voltage_pin); //Reads analog value from
Twelve_V_Voltage_pin

Twelve_V_Voltage = voltage_input *x .01468; //Scales voltage_input

voltage_input = analogRead(Twenty_Four_V_Voltage_pin); //Reads analog value from
Twelve_V_Voltage_pin

Twenty_Four_V_Voltage = voltage_input x .03205; //Scales voltage_input

if ((Twelve_V_Voltage <= threshold_e_stop_-12_v) || (Twenty_Four_V_Voltage <= threshold_e_stop_-24_v)
) //Checks to make sure voltage levels are above emergency stop threshold levels and activates
emergency stop if they are not

{

Serial.println ("M, ESTOP DUE TO LOW BATTERY”) ;

Serial.println ("M, 24V —> ” 4 String(int (round(Twenty_Four_V_Voltage*1000)))+"E—3");
Serial.println ("M, 12V —> ” 4 String(int (round(Twelve_.V_Voltage*1000)))+"E—-3");
console_txdata.voltage_error = true;

estop-code=2;

e_stop-state = HIGH;

else if ((Twelve_.V_Voltage <= threshold_warning_12_v) || (Twenty_Four_V_Voltage <=
threshold_warning_24_v)) //Checks to make sure voltage levels are above temperature light
warning threshold levels and activates temperature light if they are not

{

voltage = String ("V”); //Puts a "V’ in the designated
temperature warning place in error_string (indicating that one of the vehicle’s systems is
under voltage)

console_txdata.voltage_error = true;

ros_txdata.voltage_.warn = true;

}

else

{

voltage = String ("X”); //Puts a ”X” in the designated
temperature warning place in error_string (indicating that the vehicle’s voltage levels are
not too low)

console_txdata.voltage_error = false;

ros_txdata.voltage_warn = false;

}

void aux_switch_parse () //Function to parse the
auxiliary switch string from console

{

// A_status = consol_input_string.substring (2, 3); //Status of rocker switch A on
console ("A” for on, 7?X” for off)

// B_status = consol_input_string.substring (3, 4); //Status of rocker switch B on
console ("B” for on, 7”X” for off)

// C_status = consol_input_string.substring (4, 5); //Status of rocker switch C on
console (”C” for on, ”X” for off)

// De_status = consol_input_string.substring (5, 6); //Status of rocker switch D on
console (”D” for on, 7’X” for off)

// E_status = consol_input_string.substring (6, 7); //Status of rocker switch E on
console ("E” for on, ”X” for off)

// F_status = consol_input_string.substring (7, 8); //Status of pushbutton F on
console (”F” for on, ”X” for off)

// horn_status = consol_input_string.substring (8, 9); //Status of pushbutton H on
console ("H” for on, ”X” for off)

A_status = console_rxdata.aux[0];

B_status = console_rxdata.aux[1];

C_status = console_rxdata.aux[2];

D_status = console_rxdata.aux[3];

E_status = console_rxdata.aux[4];

F_status = console_rxdata.aux[5];

horn_status = console_rxdata.aux[6];

ros-txdata.A = A_status;
ros-txdata.B = B_status;

H-58

ros-txdata.C = C_status;
ros_txdata.D = D_status;
ros_-txdata .E = E_status;
ros_txdata.Horn = horn_status;
ros_txdata.F = F_status;

if (horn_status)

console has been pressed, activate the horn relay
digitalWrite (horn_relay_pin , HIGH);
else

console has not been pressed, make sure the horn is off

digitalWrite (horn_relay_pin , LOW) ;

}

void gear_change ()

{

desired_gear

//Function

console_rxdata.gear;

if (desired_gear != current_gear)

called when a gear change

//1f the horn button on the

//1f the horn button on the

is desired

//Only changes if the desired gear

and current gear are differnet
desired_speed = —500; //Sets up a string to sent to the
Speed Controller to apply the brake while the gear is changed so that throttle will be zero

and the brake will be applied for
command_type String (7C”);
command_mode = String (”A”);

throttle_or_steer String (?V”);

you

NN
SN

+ comma 4+ desired_-speed;

//
if
{
gear_position 1000;
associated with High
e_brake_state = LOW;
digitalWrite (ebrake_relay_pin ,

}

else
{
gear_position 103;
associated with Low
e_brake_state = LOW;
digitalWrite (ebrake_relay_pin

Serial3 . println(speed_string_to_send);
Controller to apply brakes
(desired_gear == 'H’)

e_brake_state);

if (desired_gear == ’L’)

, e-brake_state);

else if(desired_gear N

gear_position —449;
associated with Neutral
e_brake_state = LOW;

digitalWrite (ebrake_relay_pin, e_brake_state);

else
{
gear_position —1000;
associated with Reverse
e_brake_state = LOW;
digitalWrite (ebrake_relay_pin

if (desired_gear == 'R’)

, e-brake_state);

else if(desired_gear P)

gear_position —449;
associated with Neutral
e_brake_state HIGH;

digitalWrite (ebrake_relay_pin

, e_brake_state);

else

{

desired_gear

current_gear ;

channel = 2;
gear_string_-to-send
Serial2 . println(gear_string_-to_send);

// Serial.println(gear_string_to_send);
// current_gear_function () ;

¥

H-59

if you are on a hill

changing gears

speed_string_-to_send= space 4+ command_-type 4+ comma + command-mode + comma + throttle_or_steer

//Sends string to Speed

//I1f desired gear is High

// Transmission actuator position

//Ensures emergency brake is off

//1f desired gear is Low

// Transmission actuator position

//Ensures emergency brake is off

//If desired gear is Neutral

// Transmission actuator position

//Ensures emergency brake is off

//1f desired gear is Reverse

//Transmission actuator position

//Ensures emergency brake is off

//If desired gear is Park

// Transmission actuator position

//Applies parking brake

position_prefix 4 space + channel + space 4+ gear_position;

else //When the gear is done changing,
the brake is released

//desired_speed = 0; //Brake off and throttle at zero

//speed_string_to_send= space + space + command_type + comma + command.-mode + comma -+
throttle_or_steer 4+ comma + desired_speed;

//while (Seriall.available()){Seriall.read();} //clear serial buffer

//Serial3 .println(speed_string_-to_send); //Send the speed command on the
the Speed Controller

b

¥

void current_gear_function () //Updates the current gear

{

if (digitalRead (high) == HIGH) //If the high gear indicator

light on the vehicle is on

{

current_gear = 'H’;

else if(digitalRead (low) == HIGH) //1f the low gear indicator light
on the vehicle is on

{

current_gear = ’'L’;

else if(digitalRead (neutral) == HIGH) //1f the neutral gear indicator
light on the vehicle is on

if (e-brake_state == LOW) //1f parking brake is off, and
vehicle in neutral, the vehicle is simply in neutral
{

current_gear = 'N’;
else if(e_brake_state == HIGH) //1f parking brake is on, and vehicle
in neutral, the vehicle is in park

{

current_gear = ’'P’;
}
}

else if(digitalRead(reverse) == HIGH) //1f the reverse gear indicator
light on the vehicle is on

current_gear = ’'R’;
console_txdata.rover_gear = current._gear;

void control_command ()//String consol_input_-string)
// Called when the string from Vehicle Mega is a control command

steering_position = console_rxdata.steering_pos;
spd_-txdata.speedmode = console_rxdata.speedmode;
if (desired_gear == ’'P’)

{

desired_throttle = —800;

else

{

desired_throttle = console_rxdata.throttle_pos;
spd-txdata.throttle_pos = desired_-throttle;

//Serial.println (spd-txdata.throttle_pos);

if (millis ()—last_steering_sent > steering_.cmd._rate){
steering_string_-to_-send = position_prefix 4+ ” 1 ” 4+ steering-position;
Serial2 . println(steering_string_to_send);

}

if (abs(wheel_speed)<=1) //1f the console input
string is a gear change string and the absolute value of wheel speed is below 1 mph (Trying
not to grind gears!)

{

gear_change ();//consol_input_string); //
Call gear change function

b

}

boolean IsNumeric(String str) {
for(char i = 0; i < str.length(); i++4) {
if (!(isDigit(str.charAt(i)) || str.charAt(i) = .7)) {

return false;

H-60

}

return true;

void parseSteeringControllerFeedback ()

if (Serial2.available()) //
Read String from transmission and steering motor controller

string_from_motor_controller = Serial2.readStringUntil(’\r’);

if (string_-from_motor_controller.startsWith (”TR”)) //1f

the string is a response to the steering position query

{

string_from_motor_controller = string_from_motor_controller.substring (3); //
Parse the numerical value from the query response

if (IsNumeric(string_-from_-motor_controller) & string_-from_motor_controller != 77) {

act_-steering_position = string_-from_-motor_controller.tolnt(); //
Convert this numerical value from a string to intiger

console_txdata.rover_steering = act_steering_position;

if (act_steering_position == 0)

Serial . println(string_from_motor_controller);

}

else if(string_from_motor_controller.startsWith(” Starting”)) //1f
the motor controller is executing its startup procedure
{

mc_state = string_-from_motor_controller; //Set
mc_state to ”Starting”

console_txdata.armed_status = false;

}

else if(string_from_motor_controller.startsWith (”Ready”)) //
When the motor controller is finished executing the startup procedure, the mc_state changes to
”Ready”

{

mc_state = string_from_motor_controller;

digitalWrite (beacon_relay_pin , HIGH) ; //
Lights up beacon to demonstrate vehicle is armed and ready

console_txdata.armed_status = true;

//Serial2.println (? "TELS \” ?TR:#200\””);

}

void loop ()

int mark = millis ();
tic = millis ();
if (ETin.receiveData ()) //

If the rover recieves a valid packet from the console

{

// Serial.print ("DATA! ”); Serial.println(console_rxdata.packet_id);

e_stop_time_.1 = millis (); //Record emergency stop start time (if contact with console is
lost , the start time will stop updating itself)

}

if (Serial.available ())
// 1f data is available on the USB Serial ... AKA from ROS

if (A_status) // AND if
the ”A” aux switch is ON

//ros_input_string = Serial.readStringUntil(’\r’);
//Process the serial buffer as a command string
//TODO: ROS COMMAND INTERPRETATION

else

e e S
SN NS N

while (Serial.available () > 0) {
//Flush the serial buffer so that when autonomous mode is switched on, no cached commands are
executed
char t = Serial.read();

}

/calculate the difference in time between our last console contact and now
//if this time exceeds xdead_man_timeoutx then we need to estop the vehicle
//because we have lost contact with the console

//
//
// }
//
/

e_stop-time_2 = millis (); //
Record emergency stop end time
e_stop-time = e_stop-time_2 — e_stop-time_1; //

Time between start and stop for dead man switch

H-61

if(e-stop-time >= dead-man_timout) //1f

difference in time is greater than the dead—man timeout, toggle on the emergency stop system
{
estop-code=1;
e_stop_state = HIGH; //Indicates the emergency stop system is engaged

Serial.println (?M,ESTOP Due to Communication Timeout”);

if (e_stop-state == HIGH) //1f
emergency stop state is HIGH, write low to the emergency stop relay to engage the emergency
stop system

{

ros_-txdata.estop = true;

digitalWrite (e_stop-relay_pin , LOW) ;
Serial.println ("M,ESTOP! Relay Set!”);

else //

Otherwise write the emergency stop relay pin HIGH to keep the emergency stop system off

{

ros_txdata.estop = false;

digitalWrite (e_stop_-relay_pin , HIGH) ;

if (mc_state == ”Ready”) //
Ensuring that the motor controller is not executing its startup procedure

if (counter%5==0)

Serial2 . println(steering_query); //Prints
steering_query to transmission and steering motor controller

counter++4;

control_command () ;
aux_switch_parse () ;

}

parseSteeringControllerFeedback () ;
readFromTach () ;
readFromSpd () ;

current_gear_function (); //
Function call to determine the current gear

check_voltage () ; //
Function call to check voltages

error_check () ; //

Function call to check the vehicle for errors and either alert the console or activate the
emergency stop
if (millis () — lastSendTime > MAXXBEESEND_RATE) {

lastSendTime = millis ();

ETout.sendData () ; //
Send data packet back to consol

ETspd-out.sendData () ; //Send data packet to the speed arduino

sendFeedbackToROS () ;

// Serial.print ("LT: 7);

// Serial.println(millis ()—mark);
void sendFeedbackToROS ()

//Packet format from Rover —> ROS
// Comma delimited

//1: R (char)

//2: Timestamp (unsigned long): milliseconds since arduino epoch

//3: Loop time (unsigned long): number of millieconds to complete loop

//4: Actual Steering Position (int): steering position [—1000 1000] as reported by the motor
controller

//5: Commanded Steering Position (int): current steering setpoint (format same as actual steering
pos)

//6: Wheel speed: (float) Wheel speed in mph [—40,40]

//7: Desired Speed: (float) setpoint from [—1000 1000]???? maybe?

//8: Current Gear (char): [P,N,L,H,R]

//9: Desired Gear (char): [P,N,L,H,R]

//toc = millis ();

//feedback_to_.ROS = "R,” + String(millis ()%10000) + comma + ((toc—tic)) + comma +

act_steering_position + comma + steering_position + comma + (wheel_speed*1000) + comma +
desired_speed 4 comma + current_gear + comma + desired_gear;
ros_-txdata.wheel_speed = wheel_speed*60.0/444.0; //converts to wheel revs

ros_txdata.wheel_pos = float (tach_pos_i2c)/444.0;//converst to rpm
ros_-txdata.desired_throttle = desired_throttle;
ros_-txdata.desired_gear = desired_gear;

ros_-txdata.actual_gear = current_gear;

ros-txdata.desired_steering = steering_position;
ros-txdata.actual_steering = act_steering_position;
ros_txdata.time = millis ();

ros-txdata.estop-code = estop-code;

ros-txdata.engine_rpm = engine_rpm;

H-62

ETros.sendData () ;
//Serial.println (feedback_to_.ROS);

Vehicle Mega Arduino: comm _definitions.h

// Structures to define binary communication protocols
struct CONSOLETO_ROVER{

int packet_id;

int steering_pos;

int throttle_pos;

char gear;

char speedmode;

bool aux|[7];

}s

struct ROVER_TO_.CONSOLE{
int rover_speed;

int rover_steering;

char rover_gear;

bool voltage_error;

bool temp_error;

bool armed_status;

}s

struct ROVER_TO_SPEED_ARDUINO{
int throttle_pos;
char speedmode;

H

struct SPEED_ARDUINO_.TO_ROVER{
float engine_rpm;

s
struct TACH.TO_ROVER {
float spd;

long int pos;

5

struct ROVER.TO_ROS {
long time;

float wheel_pos;
float wheel_speed;
int desired_throttle;
char desired_gear;
char actual_gear;

int desired_steering;
int actual_steering;
boolean temp-warn;
boolean voltage_-warn;
boolean estop;
boolean Aj;

boolean B;

boolean C;

boolean Dj;

boolean E;

boolean Horn;
boolean F;

int estop-code;

float engine_rpm;

}s

Vehicle Mega Arduino: config.h

//Configurations and thresholds

const int temp_time_limit = 20000; //Time in milliseconds to
allow the temperature light to stay on before activating emergency stop (important safeguard
to prevent serious engine damage)

const int threshold_warning_12_v = 11; //12 Volt threshold to
give low battery warning on console

const int threshold_-warning_-24_v = 21; //24 Volt threshold to
give low battery warning on console

const int threshold_e_stop-12_v = T7; //12 volt threshold to
activate emergency stop

const int threshold_e_stop-24_v = 19; //24 volt threshold to

activate emergency stop

H-63

const int Serial_timout = 100;

for hardware serial ports
const int dead_-man_timout = 750;
loses

const int steering_cmd_rate = 25;

const int MAX XBEESEND_RATE = 80;

//Set the serial timeout

//1f the Vehicle Mega
contact with the console for more than the dead_-man_timout (in milliseconds), the
emergency stop will be hit

Vehicle Mega Arduino: pin_definitions.h

//This file

#define TACHSLAVE_ADDRESS 0x60 //Slave address for the tach arduino for

defines the vehicle mega pinout

i2c

#define SPD_SLAVE_ADDRESS 0x61 //Slave address for the arduino speed controller

const int Twenty_Four_V_Voltage_pin = 8;
input pin

const int Twelve_V_Voltage_pin = 9;
input pin

const int temp_warning = 10;
vehicle ’s temp warning light

const int reverse = 9;
vehicle ’s reverse gear light

const int neutral = 8

vehicle

’s neutral gear light

const int low = 7;
vehicle ’s low gear light
const int high = 6;

B

vehicle ’s high gear light

const int ebrake_relay_pin = 2;
pin

const int horn_relay_pin = 3;

const int e_stop-relay_pin = 4;

const int beacon_relay_pin = 5;
rollcage

const int wheel_speed_pin = 11;

the Axle Tachometer Interpreter

//24 Volt s

//12 Volt s

ystem voltage

ystem voltage

//Digital input pin for

//Digital input pin for

//Digital input pin for

//Digital input pin for

//Digital input pin for

//Emergency

brake relay

//Horn relay pin

//Emergency
//Relay pin

//PWM wheel

Environmental Sensing Unit: enviro.ino

#include
#include
#include
#include
#include

volatile
volatile

”pin_-definitions .h”
?”comm-._definitions .h”
<TimerOne.h>
<idDHTLib.h>
<EasyTransfer.h>

int dustval = 0; //Analog reading of the dust sensor. Set in
long cnt = 0; //Counts number of software interrupt timer

timer input and taking the ADC reading

//DHT22 — Humidity callback declaration
void dhtLib_wrapper(); // must be declared before the lib initialization

//DHT22 — Humidity Lib instantiate
idDHTLib DHTLib(DHT_PIN, digitalPinTolInterrupt (DHT_PIN) ,dhtLib_wrapper) ;

// East Transfer (communicate to ROS)
EasyTransfer ET;

// DHT Callback Function
void dhtLib_wrapper () {
DHTLib. dht22Callback (); // Change dhtll1Callback () for a dht22Callback() if you ha

sensor

}

// Hardware ISR triggered on the falling edge of the VLED signal
void callback ()

{

cnt = 0;

;
Timerl.attachInterrupt (SW_.IRQ) ;

}

H-64

the softwar
iterations

stop relay pin
for beacon on

speed pin from

e interrupt IRQ
betwwen 555

ve a DHT22

// Software ISR triggered by the hardware ISR — for reading the dust sensor

void SW_RQ()
{
if(cnt > 4) // Wait 5 iterations

digitalWrite (DEBUG._PIN, HIGH); // Set output pin high (purely
dustval = analogRead(A0); //Read the dust sensor signal in

digitalWrite (DEBUG_PIN, LOW); // Set output pin low (purely for

Timerl.detachInterrupt(); // Disable software interrupt until
triggered again

}
cnt++;
}

void setup () {

//Setup the Serial communications
Serial.begin(115200); //Debug
Serial.println (”\nStartup”);

Serial.print (”Begin Intialization ... 7

for debugging purposes)

;
// Initialize the timer for driving the fan PWM and software interrupts

Timerl.initialize (40);

//Register EasyTransfer
ET.begin(details (packet), &Serial);

//Set pin mode for diagnostic output for determining if we are
// dust sensor at the right time

pinMode (DUST_SENSOR_DEBUG,OUTPUT) ;

digitalWrite (DUST_SENSOR_-DEBUG,LOW) ;

//Setup the interrupt to catch the VLED line falling to start
pinMode (DUST_SENSOR_PULSE_IN ,INPUT) ;

//Set the fan speed to 90% of maximum
setFanSpd (90) ;

//Wait 2 seconds to allow the DHT sensor to initialize
delay (2000) ;
Serial.println (?DONE”) ;

}

void loop ()

//Read the humidity sensor

readHumiditySensor () ;

//Store the dust sensor value (set by interrupt)
packet.dust-v = dustval;

//Read the gas and temperature sensors
readGasSensors () ;

readTempSensor () ;

//Send the data back to ROS

ET.sendData () ;

reading the

triggering the

debugging purposes)

the hardware interrupt is

analog read process

//Attach hardware interrupts, wait 1 sec and then detach to safely access volatile variables
attachInterrupt (digitalPinToInterrupt (DUST_SENSOR_PULSE_IN) ,callback , FALLING) ;

delay (1000) ;

detachInterrupt (digitalPinTolInterrupt (DUST_SENSOR_PULSE_IN)) ;

}

void readHumiditySensor ()

//Code more or less copied from the library example — minus some debug statements

DHTLib. acquire () ;

while (DHTLib.acquiring());

int result = DHTLib. getStatus () ;
if (result == IDDHTLIB_OK)

packet.dht_-humid = DHTLib. getHumidity () ;
packet.dht_temp = DHTLib. getCelsius () ;

i

void readGasSensors () {

//Reading in all gas sensor values
packet .MQ4 = analogRead (MQ4_PIN) ;
packet .MQ135 = analogRead (MQ135_PIN) ;
packet .MQ9 analogRead (MQ9_PIN) ;
packet .MQ2 analogRead (MQ2_PIN) ;
packet .MQ5 analogRead (MQ5_PIN) ;
packet .MQ6 analogRead (MQ6_PIN) ;
packet .MQT7 analogRead (MQ7_PIN) ;
packet .MQ8 analogRead (MQ8_PIN) ;

void readTempSensor () {
packet . TMP36 = (analogRead (TMP36_PIN) %(5000.0/1024.0) —500)/10;
}

H-65

void setFanSpd(float percent) {

//We need to supply a 25 kHz PWM signal and the standard analogWrite will only supply one at
“500Hz. The Timerl library

//used below is able to supply the propper wavefrom.

Timerl .pwm(FAN_CTL_PIN, int (round(percent * 1024.0 / 100.0)));

Environmental Sensing Unit: comm _definitions.h

struct SENSORPACKET {
long timestamp;
float dht_temp;
float TMP36;
float dht_-humid;
float dust-v;
float MQM4;

float MQ135;
float MQQ;

float MQ2;

float MQ5;

float MQ6;

float MQT7;

float MQS8;

} packet;

Environmental Sensing Unit: pin_definitions.h

const int DEBUG-PIN = 13;

const int DUST_SENSOR-AIN = 0;

const int DUST_SENSOR_PULSE_IN = 21;
const int DUST_SENSOR_DEBUG = 13;

const int DHT_PIN = 3;
const int MQ4_PIN = 1;
const int MQI135_PIN = 2;
const int MQ9_-PIN = 3;
const int MQ2_PIN = 4;
const int MQ5_PIN = 5;
const int MQ6-PIN = 6;
const int MQ7-PIN = 7;
const int MQ8_-PIN = 8;

const int TMP36_-PIN = 9;

const int FAN_CTL_PIN = 11;

H-66

Appendix I: Safety Protocol

VEHICLE OPERATION RULES

General Rules:

1.

7.

8.

9.

‘When operating the vehicle, one person must have a cell phone with enough battery to make a
call. In case of emergency, call 911.

The vehicle is not street-legal. Do not drive on public roads.

Confirm explicit permission from the property owner before operating the vehicle on private
property.

If trailering the vehicle, use proper loading and strapping procedures.

If operating in a parking lot or near buildings or people, use traffic cones to block off a testing
zone.

Two people must be present when operating the vehicle. Always assign someone to watch
surroundings for possibly safety concerns such as people walking or driving by. This person
must be ready to stop and direct traffic if necessary.

Do not drive the vehicle in small buildings or confined spaces. The exhaust will quickly become
hazardous.

Do not drive the vehicle when you are impaired. Do not drive when you are too tired, stressed
or hurried to drive carefully.

Never annoy or distract the vehicle driver or operator unless there is a safety risk.

10. Do not operate the vehicle unless you have been properly trained and approved to do so.
11. Do not leave the vehicle unattended.
12. Always wear the seatbelt while driving or riding in the vehicle.

Pre-Drive Checklist:

1.

2.

Visually check the tires for low pressure or damage. If necessary, consult the tire’s specifications
to check tire pressure (maximum pressure is marked on the sidewall).
Visually check the vehicle for fluid leaks. This includes:

a. Brake fluid

b. Differential or gear oil

c. Motor oil

d. Gasoline
Briefly test the horn.
Describe intended testing methods to all who are present; this will make operation malfunctions
much easier to notice.
Confirm that all components and wiring are properly secured, especially near the wheels. No
cables should be hanging down from the vehicle at any point.
Release all emergency stop buttons on the vehicle and console.
Power on the console and the vehicle electronics and wait for the ARMED light to come on.
This signifies that the vehicle is ready to take commands and has gone through its power-up
sequence before the motor is started.
Shift the transmission into Neutral (or Park on the console) before starting the motor.
Apply the pedal brake when starting the vehicle. The choke may need to be adjusted to start the
vehicle and maintain idle speed. If this is not a familiar process, seek help.

V2 3/28/15

I-1

Safe Operating Rules

This document outlines the minimum Safety Standards for operating the RSL Rover on jacks while applying the
throttle required by Santa Clara University and OSHA. RSL Rover safety should exceed these requirements.
The purpose of RSL safety is to eliminate:

1. Accidents and Injuries
2. Property Damage
3. Equipment Abuses and Damage

Meeting these requirements requires understanding the system and the laws or regulations that may apply.
These operating rules include all the rules required by OSHA, state OSHA and Santa Clara University. All
operators need a copy of these Operating Rules and each operator must acknowledge them by signing that they
have received a copy of these rules and understand them.

Training requires documentation. Undocumented training has the same basic legal effect as no training. The
operator must acknowledge receipt of these rules for documentation to occur under OSHA, state OSHA and
Santa Clara University requirements.

OPERATING RULES:

1. Only operators authorized by the management, and trained in the safe operation of the RSL rover will be
permitted to operate and test such vehicle. Methods will be devised to train operators in safe operation
of an off-road vehicle. A minimum of three trained operators must be present in order to perform
testing.

2. Initial operating procedures must be performed at least once before commencing testing. Attention will
be given to the proper functioning of tires, horn, lights, battery, controller, brakes, and steering
mechanism. All emergency stop systems must be tested and checked to make sure they are all working
as intended.

3. A minimum of 6 jacks must be used in the raising of the vehicle. Place these jacks in locations that
distribute the weight of the vehicle equally. Apply some force to the side of the vehicle and shake it.
The vehicle should stay securely on the jacks and hardly move.

4. A secondary safety measure must be implemented. Tether the car with a chain to either a secure spot on
the ground or a spot in the testing area. This location must be able to withstand the force of the weight
of the car and/or the movement. This failsafe system will only activate if the vehicle happens to fall off
the jacks.

5. The testing area must be clear of any objects within 2 feet of the vehicle. The operators/testers need to
be at least 6 feet away from the vehicle at all times when the throttle is being used. Have one of the
operators making sure no bystanders are within 50 feet of the test area.

6. The vehicle will not exceed a speed of 8mph which is approximately 20% of full throttle.

7. NO RIDERS WILL BE PERMITTED ON THE VEHICLE. A person may not ride on the rover due to
the possibly instability/shaking that may occur.

I-2

Appendix J:

Conference Slides

SL
OVER

Aaron Burns - MECH
Giovanni Briggs - COEN
Hesham Naja - MECH
Patrick Barone - MECH
Zoe Demertzis - COEN

Advisor: Dr. Christopher Kitts

Post-Fire Risks

Responders exposed to...
Carbon monoxide

Carbon dioxide

Low oxygen

Air particulate

Toxins from retardant

Other carcinogens

ProfessorDavid Purser

Presentation Road Map

Project Motivation

Background
Our Solution
- Subsystem Breakdown

- Requirement Verification

Post-Fire Investigation Protocol

Environmental/air
quality
assessment

Structural
assessment/shoring

National Fire Protsction Association

Problem Statement

that gathers and relays information on potentially

Our goal is to design and implement an unmanned vehicle

hazardous environmental conditions back to its operators.

Customer Needs

Results of interviews with two fire fighters

Category Specific Needs

Sensors Imaging sensors
Multiple gas detectors
Air particulate

Temperature

Strong link
Clear data presentation

Vehicle Rugged
Temperature/weather resistant

Travel long distances

J-1

Current Technologies

Northrop Grumann’s Andros F6

+ 5 cameras
- No housing for air quality
sensors

Sensefly’s UAV EBee

+ Thermal imaging/mapping
- No ability to assess air quality
on ground

Legacy Work

Drive by Wire

- Remote Operator Console
- Analog Override System

Emergency Stop

RSL Rover Solution

Five Subsystems

. Environment Sensing

Payload Sensors

. Mapping

GPS

LiDAR Sensors
Operation/Ul

Controllers Electronics

Inertial Measurement Unit

Communications
Network Electronics

Power
Batteries

Design Objectives

Hazardous Environment Evaluation
LIDAR and GPS Mapping Capabilities
Dual Purpose Vehicle

Store Data Streams

Information Dissemination

Robot Operating System (ROS)

All of the rover subsystems are integrated with ROS
Industry Standard

This provides pluggable software functionality
Centralized data collection

Enables subsystem testing with recorded data

Cameras Localization/Mapping
Completed Navigation
Sensor Integration
. . GPS
Dedicated Raspberry Pi 2 Model B o LDAR
Four Logitech C615 USB cameras MU
Tachometer

OpenCV people detection Steering Sensor
3D LIDAR Vi
2D Environment Mapping
Complete System Data
Acquisition

Air Quality Sensing Unit User Interface
- Detects presence of CO, CO2, Natural Gas,
LPG, H2, and smoke
- Sensors mounted on a custom printed
circuit board
Sensor Housing Non-technical Considerations
= Ensure that sensors receive X
appropriate airflow - Economic « Health & Safety
= Multiple Iterations were analyzed + Manufacturability - Social
Some designs used fan as outlet - Political - Ethical

Single Inlet + Particulate Inlet

« Final Design
Fan Used as Inlet for smoothness
Double Outlet + Particulate Outlet

J-3

Testing Results

Environmental Sensor Requirement Verification

- Successfully tested the ability of sensors to detect gases and
particulates caused by a fire

 Results:

Vehicle Blindspot Requirement Verification

- Evaluated the camera coverage and blind-spots

Requirement Result

360 deg visibility | 260 deg

Latency Requirement Verification

« Tested latency of cameras and Ul

Vehicle Forward Camera

Requirement Result

Cameras latency | 0.75s

<1s

Ul camera stream | 0.8s
latency < 1s

Ul vehicle state | 2s
latency < 1s

Range Requirement Verification

Tested maximum distance between rover and driving controls

Requirement Result

Wifi must reach | 250m
150m

Driving control | >1000m
must work at
150m

GPS Requirement Verification

Localization and Mapping Verification

2D maps successfully
generated while driving

« 3D point-clouds visualized
while driving

« Accumulated 3D point-
clouds assembled in post-
processing

Conclusion

Questions?

J-5

Software Architecture

System Architecture

Post Fire Protocol

Requirements Flowdown

References

Tech,Rep 9751263

\TOC. Missoul, NT: U. Forest Serie, Misoul

invesigaton acihites. 2009

J-6

	Santa Clara University
	Scholar Commons
	6-10-2016

	RSL Rover
	Patrick Barone
	Giovanni Briggs
	Aaron Burns
	Hesham Naja
	Zoe Demertzis
	Recommended Citation

	Introduction
	Motivation
	Literature Review
	Vehicle Background
	Problem Statement

	Systems Level Design
	Customer Needs
	Key Requirements
	System Level Sketch and Use Cases
	Functional Analysis
	Benchmarking Results
	System Level Issues, Trade-off Analysis
	LIDAR Physical Configuration
	Sensor Physical Configuration

	System Level Architecture
	Team and Project Management

	Subsystem: Environmental Sensing
	Air Quality Assessment
	Payload Requirements
	Component Selection
	PCB Design

	Cameras
	Sensor and Camera Layout

	Subsystem: Sensor Housing
	Need for Housing
	Materials Used
	Initial Design
	CFD Analysis and Iterative Work
	Final Design

	Subsystem: Operator Control and User Interface
	User-Interface Design
	RobotWebTools and the ROS Control Center
	Improving the ROS Control Center
	Rendering the LIDAR Point Cloud

	Network for Internet Communication

	Subsystem: Communications
	Subsystem: Power
	Subsystem: Localization/Mapping
	Sensors
	Coordinate Frames
	Kalman Filter
	Hector SLAM
	3D Visualization

	Construction Plan
	System Integration Testing and Results
	Range Requirement Testing
	Latency Requirement Verification
	GPS Testing
	Localization and Mapping Testing
	Environmental Sensor Package Testing
	Blind-spot Testing

	Costing Analysis
	Commercialization Plan
	Introduction
	Goals and Objectives
	Description
	Potential Markets
	Competition
	Sales and Marketing Strategy
	Manufacturing Plan
	Product Cost and Price
	Service and Warranties
	Financial Plan and ROI

	Engineering Standards and Realistic Constraints
	Ethics
	Health and Safety
	Manufacturability
	Environment
	Society

	Summary and Conclusions
	References
	Appendix Design Requirement Flowdown
	Appendix Market Survey
	Appendix Tradeoff Analysis
	Appendix Budget
	Appendix Gantt Chart
	Appendix Power Budget
	Appendix Drawings
	Appendix Code
	Appendix Safety Protocol
	Appendix Conference Slides

