
Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-9-2015

Pilot-1: autonomous fixed-wing aircraft control
system
Chris Millsap
Santa Clara University

Nathan Garvey
Santa Clara University

Faisal Hayat
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/idp_senior

Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Millsap, Chris; Garvey, Nathan; and Hayat, Faisal, "Pilot-1: autonomous fixed-wing aircraft control system" (2015). Interdisciplinary
Design Senior Theses. 12.
https://scholarcommons.scu.edu/idp_senior/12

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior/12?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Pilot-1: Autonomous Fixed-Wing Aircraft Control System

by

Chris Millsap
Nathan Garvey

Faisal Hayat

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Engineering
Bachelor of Science in Electrical Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 9, 2015

Pilot-1: Autonomous Fixed-Wing Aircraft Control System

Chris Millsap
Nathan Garvey

Faisal Hayat

Department of Computer Engineering
Department of Electrical Engineering

Santa Clara University
June 9, 2015

ABSTRACT

In the past decade, the personal ownership of unmanned aerial vehicles has exploded in the US and
around the world. The rapidly declining size and cost of integrated circuits, sensors and embedded
micro-controllers has lead to a flourishing community of hobbyists designing flight controllers with
levels of sophistication approaching those for government and military applications. The typical
flight assisted controllers integrate data from the user’s control system and an Inertial Measurement
Unit (IMU) in order to keep the craft level and on course. Deriving mostly from the radio controlled
(RC) hobby industry, the flight control technologies for both rotary and fixed wing systems are
generally community-built and open source. While this leads to rapid development and ease of
modification, quality usually suffers. Because the community is not a community of professionals,
best coding practices are often left behind, leading to unexpected failures. Such flight control systems
are unsuitable for integration into US airspace due to their failure-prone nature and inability to
mitigate the failure of flight control surfaces. Fixed wing systems can also be controlled without
an onboard flight controller or autopilot, with a simple camera downlink and direct control surface
control being sufficient for most first-person video (FPV) needs. This has left a hole in the market
for such controllers, with all offerings lacking in professional features such as redundancy and failure
mitigation. Our project suffered from many setbacks, including one team member becoming ill and
another leaving the project halfway into development. We were also hampered by our choice to use
the brand new STM32Cube Hardware Abstraction Layer (described in more detail in Chapter 9),
as 3rd party support and example code was nonexistent or conflicting with official documentation.
As such, we were required to greatly reduce the featureset of our system. To compensate for this,
we implemented a basic software plugin system, where future developers can code their own flight
modes and recompile the software without having to revisit the basic I/O required to setup and
access the onboard sensors and actuators. Looking forward, we believe we have solved many of the
issues involved with developing a flight controller on this powerful, next-gen platform. We have
implemented basic IMU-based flight stabilization and control, and future developers can easily code
in the more premium features, such as GPS and telemetry, on top of the existing foundation.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Solution . 2

2 System Overview 3

3 Vehicle 5
3.1 The Sky Surfer . 5
3.2 Other Supported Aircraft . 6

4 Requirements 7
4.1 Functional Requirements . 7
4.2 Non-Functional Requiremets . 8

5 Hardware 10
5.1 Hardware Component Overview . 10
5.2 Microcontroller Protocols . 11
5.3 Prototypes . 11
5.4 Main Flight Board . 12
5.5 Current And Voltage Sensor Board . 15
5.6 High-Power Accessory Board . 15
5.7 Device Compatibility . 16
5.8 Current Protocol Compatibility . 16

6 Flight Modes 17
6.1 Mode 0 - Unarmed . 17
6.2 Mode 1 - Manual Control . 17
6.3 Mode 2 - Angle . 17
6.4 Mode 3 - Failsafe . 17

7 Use Cases 18
7.1 Cases . 18
7.2 Use Case - Flying to a Specific Location . 18

8 Testing 20
8.1 Benchtop Tests . 20
8.2 Hardware Test . 20
8.3 Manual Mode Verification . 20
8.4 Future Testing . 21

9 Societal Issues 23

10 Outcome and Future Expansion 26

iv

A Source Code 28
A.1 Main Source . 28
A.2 Flight Modes Source . 32
A.3 Header Files . 33

v

List of Figures

2.1 System Block Diagram of the Complete Pilot-1 Implimentation 3

3.1 The Sky Surfer From Banana Hobby . 5
3.2 Battery Eliminator Circuit Used for 5V System Power 6

5.1 Pilot-1 Prototype Installed . 10
5.2 Custom Printed Routing Board Layout for Rapid Prototyping 12
5.3 Power Supply and I2C Devices in Eagle Schematic 13
5.4 Sparkfun Breakout of the MPU-9150 9-axis Gyro and Accelerometer 13
5.5 Sparkfun Breakout of the BMP 180 Pressure Sensor 14
5.6 8-pin DIP Package of EEPROM Used for Datalogging 15

vi

Chapter 1

Introduction

1.1 Motivation

With the emerging technology of very complex microcontrollers and small, accurate, low-power

sensors becoming available for less and less money, the devices necessary to bring a high-quality

autonomous aircraft to the market is now a reality. We believe that providing an integrated solution

that is easy to manufacture, cost effective and highly reliable, will lead to the wide popularization

of these vehicles. Currently we see no clear leader in this space. Our opportunity to make a

contribution to the field parallels the way personal computers emerged in the late 1970s with the

introduction of the Apple II. We see commonality with this previous generation of technology with

the hobbyist community and the ametuer computer clubs of the late 60s. Back then, nobody really

knew what to do with computers. All the software was opensource and unprofessional, and each

was custom built to the creators specific vision, bringing with it inherent difficulties that proved

distasteful or too complex for ordinary people to understand. Possible ways an automated aircraft

technology such as the Pilot-1 system could contribute to present needs are gathering of scientific

data from remote locations such as measuring the rate of glacial melt, surveying remote lands for

climate change or geological activity, observing wildlife in an unobtrusive way, performing crop and

animal population studies and performing search missions for mission people. Other exciting uses

include rapid package delivery and transport, security and surveillance and low cost terrain and road

mapping for further development of GPS navigation systems. All of the aforementioned applications

currently require a piloted aircraft, which can be extremely costly. To bring autonomous fixed-wing

vehicle technology into the mainstream, a standardization across the board of technologies with high

levels of integration, safety and friendly user experiences is needed.

1

1.2 Solution

Our solution is a fully featured fixed wing autopilot designed and programmed to aerospace quality

specifications. It is plug-and-play ready for any fixed wing airframe, to be chosen by the client. Unlike

all other controllers on the market today, it includes failure detection and malfunction mitigation.

For example, in the event of loss of RC control, the system will begin a controlled glide, using

available techniques (flaps or cross-controlled1 ailerons and elevators) to reduce the speed of the

craft. The systems architecture allows for expansion, such that it may control a hobby grade 2-

meter airplane as readily as it controls a 20-meter military surveillance drone. Control is available

through standardized expansion busses; for example, a hobbyist may simply use an RC transmitter

for real-time control, whereas a corporate user may opt for a satellite uplink modem. With to-be-

written software expansion, the user may be able to use an interactive program to determine flight

waypoints for autonomous flights, as well as configuring such systems settings as failure modes. It

may also interface with ground based networks to perform routing and collision avoidance with other

aircraft, both manned and unmanned. This makes our product an attractive offering on the market,

as users can integrate it into their airframes without modification to existing control actuators and

motors. Our system is a professional grade autopilot available to both corporate, government and

private users and, as such, we expect it to be highly profitable.

1Cross-controlled: A technique used in aviation where opposite aileron and rudder commands (i.e. left aileron,
right rudder) are given to reduce the speed of an aircraft when flaps are not available.

2

Chapter 2

System Overview

By definition, an autopilot is a system which controls the trajectory of a vehicle without constant

“hands-on” adjustment by a human operator1. Autopilots are not intended to replace the need for

a human operator, but rather assist them in maintaining vehicle velocity, stability and heading,

allowing the operator to focus on larger tasks that may be required. Our system is the foundation of

a true and robust autopilot system, and begins by implementing basic attitude control and a manual

passthrough mode allowing for electronically selecting between modes of operation. The system is

composed of 4 major components: The inertial measurement unit (IMU/MPU), Barometric pressure

sensor (BARO), a microcontroller, and non-volatile memory for datalogging. Other features such

Figure 2.1: System Block Diagram of the Complete Pilot-1 Implimentation

1http://en.wikipedia.org/wiki/Autopilot

3

as GPS have not been included, as attitude control was the main focus for this thesis. Further

development is needed to include all the parts included in the block diagram in figure 2.1. This

figure includes all components needed in high level to realize the Pilot-1 and continues development.

4

Chapter 3

Vehicle

The Pilot-1 flight controller is designed to support a wide variety of hobbyist standard, fixed-wing

aircraft ranging from a 1m wingspan to 20m wingspan. Some of the standard features provided

in these types of aircraft are three-line signal, power and ground wires with 0.1” center pinheads

for servo/speed control to interface with the receiver and Pilot-1 system. Additionally, most model

aircraft come with a Battery Eliminator Circuit (BEC), (figure 3.2) which allows for a single battery

to provide power to the motor while breaking out a separate line of typically 5V for servo and

auxiliary system power.

3.1 The Sky Surfer

Figure 3.1: The Sky Surfer From Banana Hobby

Our selection of aircraft is the Sky surfer from Banana Hobby. The aircraft is made of a solid

lightweight Expanded PolyOlefin (EPO) foam that is strong enough to support the aircraft and

its payload, but is also a safe, lightweight material that is less hazardous than wood, fiberglass or

5

carbon fiber in instances of unintentional hard landings. The SkySurfer is perfect for our application

because of its large canopy and hull allowing for expansion and addition of our custom components

to the interior of the aircraft. It also provides plenty of power in the form of a 3S Li-Po battery rated

at 11.1V, 3600mAh, 25C1 discharge rating. The aircraft is full four channel allowing for Aileron,

Elevator, Rudder and Throttle to be controlled independently, giving us the ability to control the

aircraft in unorthodox ways in the case of certain failures. The aircraft comes 95% assembled as an

RTF, requiring only the installation of our flight controller, the servos and construction of the wing

and push-rod assemblies for control surfaces.

3.2 Other Supported Aircraft

In general, all aircraft can be supported by the Pilot-1 flight controller with no or some modification

necessary. The current prototype design of the Pilot-1 is best suited for any side model aircraft

using 0.1” center, three-pin control wires and a standard 2.4 Ghz receiver/transmitter. As long as

the aircraft is large enough to accommodate the 2.5” X 3.5” footprint of the main board, and the

aircraft has or can be equipped with a battery eliminator circuit, such as the one in fugure 3.2, the

Figure 3.2: Battery Eliminator Circuit Used for 5V System Power

Pilot-1 will work.

1The C rating referred to here is the ratio of discharge rate over charge rate. Meaning this particular battery can
safely discharge 25 times faster than it can charge.

6

Chapter 4

Requirements

Our system requirements, both functional and nonfunctional, were determined by examination of

the feature-sets of existing flight controllers, both fixed wing and multirotor. In addition, experi-

enced pilots were interviewed at Baylands park in Sunnyvale. Our requirements were tailored to

improve upon what existing offerings are doing well, and patch holes in existing feature-sets, imple-

menting features that pilots would like to have, but do not have access to. Lastly, requirements were

added to make the system more appealing to industrial clients seeking a turnkey system. The func-

tional requirements, section 4.1, define the tasks that the system must perform. The non-functional

requirements, section 4.2, describe the manner in which the system must perform these tasks.

4.1 Functional Requirements

• The system must offer the flight control modes as described in chapter 6. The user must be

able to switch between these flight modes, or a predefined subset of these flight modes, via a

switch on the control system or a setting on the ground station.

• The system must stabilize the craft in such a way that it will prevent oscillations in the roll,

pitch and yaw axis, which can range in severity from an annoyance to a danger to the craft.

• The system must receive commands from a standard RC receiver using both the Pulse Width

Modulation (PWM) and Pulse Position Modulation (PPM) protocols.

• The system must control the control surfaces of the aircraft using standard PWM-controlled

RC servos.

• The system must transmit telemetry data via a UART port. The medium over which this data

is transmitted after it has left the flight control board is undefined.

7

• The system must provide stable operation on a range of aircraft sizes from 1 meter in wingspan

to 30+ meters in wingspan.

• The systems parameters, GPS waypoints and operational modes must be tunable via a USB

port.

• The system must detect failures of the controller, Inertiaql Measurement Unit (IMU), GPS

and control surfaces and use equipment such as airbrakes, parachutes and flaps if installed on

the aircraft, to provide control to the user and minimize the kinetic energy of the craft when

it touches down.

• When operating in any semi or fully autonomous modes (see modes 2-6 in section 7.1), the

system must manage the throttle to ensure the airspeed does not fall below the aircraft stall

speed, as defined by the user.

• The system should, when operating in modes 2-6, manage the throttle to minimize power

expended per mile traveled. After the system has been powered on, it must test all sensors,

inputs and outputs. It must refuse to take off and alert the user if any fatal anomalies are

detected.

• The system must log all user inputs and sensor values to an onboard, non-user-accessible

memory such as a black box.

4.2 Non-Functional Requiremets

• The system should be provided in a durable, user friendly package.

• The system should exhibit a plug-and-play functionality for aircrafts of a 2 meter, aileron-

elevator-throttle-rudder-flap configuration. Such aircraft include the Penguin from FinWing

and the Super SkySurfer from Banana Hobby.

• The computer interface and configuration program should be user friendly and easily accessible

to personnel without knowledge of industrial control tuning.

• Often-accessed ports, such as the USB port for configuration, should be easily accessible. The

retail product should be bundled with an extension cable to allow the user to embed this port

in the side of the airframe, allowing access without opening an access hatch.

• All user-accessible ports should have unique, keyed plugs to prevent the accidental insertion

of an unsuitable accessory into a port.

8

• Where possible, the system should communicate on standard protocols, to allow interoperabil-

ity with existing systems and accessories.

• When on the ground, the system should express its state using a system that can be easily

read from a short distance, such as audio tones.

• The system shall offer several expansion ports. These will be used in conjunction with a future

software update to enable industrial-grade functionality such as CAN-BUS enabled actuators

and aircraft position reporting transponders.

• To ease the ability of the system to conform with future FAA regulations regarding autonomous

flight, the hardware and software must be implemented to aerospace industry standards. In

the event that full conformance with these standards is too costly and time consuming, im-

plementation will follow all standards and recommendations possible within the allotted time

frame.

9

Chapter 5

Hardware

5.1 Hardware Component Overview

Pilot-1 is built around a high-speed ARM Cortex M4 processor, specifically the STM32F407 proces-

sor from STMicroelectronics. This processor offers 32 bit performance at over 180 MHz. In addition,

hardware implementation of I2C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface), Timer

and UART (Universal Asynchronous Receiver Transmitter) peripherals equates to high-speed, asyn-

chronous communication with system sensors and user inputs and outputs. Our system is imple-

mented on specialized printed circuit boards, which allows for flexibility depending on the users needs

and physical space constraints. The hardware goals are for a one size fits all application where the

user can easily adapt the system to their particular application without extensive modification. the

hardware selected allows for this ease of adaptability by using a small footprint, industry standard

communication protocols and standard hardware interfaces for peripheral expandability.

Figure 5.1: Pilot-1 Prototype Installed

10

5.2 Microcontroller Protocols

The STM32F407 provides enough horsepower for supporting up to 16 peripheral devices on a single

I2C bus, as well as additional USART I/O for serial to parallel applications such as sending and

receiving GPS data, controlling payload devices and handling live and stored video. Some of the

technology utilized in the development of this platform is explained in detail below.

Pulse-Width Modulation

Pulse-Width Modulation (PWM) is a technique for getting analog results from a digital means.

Digital control is used to create a square wave whose duty cycle or length of the pulse cor-

responds to a position on an analog motor controller. In our particular case, PWM is used

to control the position of the analog servos, where the length of the pulse corresponds to the

position of the servo, giving the control surfaces more or less influence on the airstream they

encounter.

I2C Communication

The Inter-integrated Circuit (I2C) Protocol is a protocol intended to allow multiple slave

digital integrated circuits (chips) to communicate with one or more master chips. Like the

Serial Peripheral Interface (SPI), it is only intended for short distance communications within

a single device. Like Asynchronous Serial Interfaces (such as RS-232 or UARTs), it only

requires two signal wires to exchange information. This dual wire bus can support up to 16

devices with a 4 bit unique identifier on each device. The master sends the identifier byte out

which signals the device to start receiving and transmitting.

5.3 Prototypes

Due to financial constraints and time limitations, the project is only a prototype at this time. The

board constructions consists of several breakout parts listed below and a breadboard with all devices

blue-wired to signals, power and ground. Onboard power is provided from the battery eliminator

circuit (BEC) which provides a 5V output and is found on most hobby aircraft. The BEC is typically

a feature of the electronic speed control and takes power from the motor battery, typically 6V and

higher and steps it down to 5V and delivers this to the receiver and servos. This eliminates the need

for a second battery of the right voltage just for the receiver/servos and in our case, the control

hardware.

Breadboard and Bluewire

11

The breadboard and bluewire prototype is a fully functioning prototype demo of the main

flight controller that is to be printed in the future. This bluewire breadboard contains all the

sensors, servo and motor control inputs and outputs, and serial interfaces necessary for full

scale operation.

Printed Routing Board

The printed routing board is a concept board that was initially planned to enhance testing

before full scale production of the PCB begins. This board will contain all electrical routes

needed between the STM32F407 and the sensor components, as well as power and ground,

and servo and motor control signals.

Figure 5.2: Custom Printed Routing Board Layout for Rapid Prototyping

5.4 Main Flight Board

The main flight control board will provide all functionality required for basic flight control and

stabilization. It will house the STM32 processor, all sensors required for flight stabilization, and

user accessible interfaces. It will connect directly to the control surface servos and actuators on

board the aircraft.

LT3805 PWM Buck Converter

For powering the main board and associated hardware, we are using Linear Technologies

LT3805 in 17 pin FE package shown in figure 5.3. This buck converter is a switch-mode power

supply where the average Vout = Vin*Duty cycle. It can take a wide range of input voltages

12

Figure 5.3: Power Supply and I2C Devices in Eagle Schematic

between 3.7V and 36V and provide a range of DC outputs. Our STM32F4, EEPROM and

MPU all run on 3.3V so the output voltage selected is 3.3V to power the main board. Output

voltage is dictated by a resistor value to control switching frequency, and a feedback loop

which controls the pulse-width-modulated duty cycle. This high frequency (current config. is

750MHz) produces a small output ripple allowing the use of small, low cost inductors and

ceramic capacitors.

MPU-9150

Figure 5.4: Sparkfun Breakout of the MPU-9150 9-axis Gyro and Accelerometer

13

This MPU, from Invensense, is an integrated 9-axis motion processor solution, providing a

3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer (compass). Taken together

in a process called motion fusion, these three sets of data provide a complete picture of the

aircraft’s roll, pitch and yaw with respect to the ground. In addition, the magnetometer will

be used for heading information. The MPU-9150 also includes a motion fusion processor which

can be used to offload this processing from the main processor.

BMP 180

Figure 5.5: Sparkfun Breakout of the BMP 180 Pressure Sensor

The BMP 180 figure 5.5 barometer will provide short-term altitude information, to complement

the GPS altitude reading when a GPS is installed, or replace it when a GPS is not installed.

The barometer only measures relative altitude, however, so it will only provide altitude relative

to the takeoff location unless periodically referenced against a GPS. It is most useful in an

altitude-hold situation, where the flight controller attempts to minimize the change in altitude

while cruising.

1 Mbit EEPROM x2

Two 1 Mbit (128 KB) EEPROM chips will provide non-volatile storage for the system. The

lower approx. 1KB will be used for configuration, calibration and tuning data. This includes

PID control loop settings, failsafe actions, channel mapping and MPU calibration offsets. A

further 2KB will be allocated for user-defined GPS waypoint coordinates, which the aircraft

will fly to in sequence when in GPS waypoint mode. The rest of the memory will be dedicated

to black-box logging of all system parameters and debug variables. This will provide a tamper-

14

resistant form of logging, which can be used in the face of frivolous warranty claims or lawsuits.

Figure 5.6: 8-pin DIP Package of EEPROM Used for Datalogging

Micro SD Card Slot

A Micro SD card slot will provide user-accessible logging of GPS coordinates and system

performance. This will allow the user to view and monitor system performance and efficiency,

as well as debug any aircraft related issues affecting flight performance. In addition, the results

of the power on self-test (POST) will be written to this card.

5.5 Current And Voltage Sensor Board

This board, a standard among higher-end flight controllers, connects in series with the battery and

motor. It monitors the current voltage of the battery as well as the current drawn by the motor

and all other onboard systems. This aids in improving the efficiency of flight, as well as providing

an estimate of the flight time remaining to the pilot. In addition, a system can be configured to

turn home before its mission is complete if the battery will not permit completion. This board

will also house the 3.3 and 5 volt regulators which provide a power source to the flight control

board. However, as 5 volts is also provided by the motor speed controller (ESC), this device is

optional. Our implementation will be sized to measure the voltage of a 3S (11.1 volt nominal)

Lithium Polymer battery pack with a maximum current draw of 80 amps, which is enough to drive

the two meter gliders we are prototyping on. However, we plan to publish the pinout of this device

in our documentation, which will allow this functionality to be easily implemented on much larger

aircraft.

5.6 High-Power Accessory Board

This optional board, which will attach to the main flight control board over a UART, will house up

to 10 MOSFETS to switch current at the voltage of the main power source, between 11-25 volts.

15

These accessories will be user defined and configurable, and will include high-luminance navigation

lighting, a loud buzzer to locate downed aircraft in remote areas, landing gear retraction actuators

and more. Each switching circuit will also be fused to prevent these non-mission-critical accessories

from blowing the entire system, which is a real danger in current systems which lack fuses.

5.7 Device Compatibility

Our system will be integrated with standard RC components such as servo actuators, batteries,

receivers and telemetric on-screen displays. Section 9.2.1 describes the components and protocols

that already exist on the market that our system will be compatible with.

5.8 Current Protocol Compatibility

RC Receiver - 8 Channel PWM or PPM Input

PWM input consists of up to 8 individual wires leaving an RC receiver, one for each channel

of control. On each wire, a high pulse of between 1 and 2 ms indicates the analog value of

the input, with 1ms being -100 percent, 1.5ms being 0 percent and 2ms being 100 percent.

Traditionally, this signal is sent directly to servos to indicate the angle they should rotate to,

and to speed controllers to indicate the throttle value. A PPM input is the same signal on

one wire, with a synchronization pulse followed by one PWM pulse per channel. While all

RC receivers support PWM and only some support PPM, PPM has recently become highly

popular due to its two wire interface (1 line + ground) versus the 9 or more lines required for

PWM input.

RC Servo - PWM Output

These actuators rotate to a specific angle depending on the length of the PWM pulse inputted,

and are used to move control surfaces such as the elevator and rudder. In addition, the same

protocol is used to control the motor speed.

MAVLink Telemetry

An industry standard protocol, MAVLink, will be used to transmit telemetry from a USART

port. This will ensure compatibility with a wide range of ground station accessories, such as

telemetric antenna trackers, glass cockpits and voice annunciators.

16

Chapter 6

Flight Modes

This section describes the various flight modes that the system can be in at any time. These flight

modes can be changed in-flight using a switch on the RC transmitter.

6.1 Mode 0 - Unarmed

Entered after power-on self-test (POST) Throttle pinned to zero (motor will not spin). Other

outputs follow user-selected flight mode.

6.2 Mode 1 - Manual Control

In this mode, RC control is passed through the Pilot-1 system with no change. To the user, it

appears that the Pilot-1 system has disconnected, and the RC receiver is connected directly to the

servos and propeller. This is the preferred control mode whenever abrupt movements and hands on

control are required, such as takeoffs and landings.

6.3 Mode 2 - Angle

This mode uses the IMU to keep the aircraft level in the pitch and roll axis. A control input on

the RC control sticks equates to a specific angle, and the aircraft will hold that angle until the stick

returns to zero. This is the preferred mode once the craft is in the air, allowing the pilot to perform

other tasks while the aircraft levels itself.

6.4 Mode 3 - Failsafe

Sensors required: accelerometer, gyro, GPS or pitot airspeed, current sensor roll, pitch same as

mode 2 throttle input = climb/fall rate Throttle managed to keep airspeed at most efficient level

above stall speed.

17

Chapter 7

Use Cases

7.1 Cases

A use case defines the steps a user must take to accomplish a specific task. The following use case

describes how a pilot and observer may fly to a specific location, with the pilot controlling the

aircraft while the observer uses the observer camera to scan the area. This is a common use case in

recreational, search-and-rescue, surveying, firefighting and other fields.

7.2 Use Case - Flying to a Specific Location

Goal:

Take off, fly to GPS coordinate. Manually explore surrounding area, and return home.

Actors:

Pilot, Observer

Preconditions:

Pilot-1 is installed in aircraft. Pilot-1 is properly configured and tuned. A GPS is installed

on the system. The specified GPS coordinate has been transmitted to the system via The

configuration program. Pilot has basic RC piloting skills.

Postconditions:

System is circling above its launch location.

Pilot steps:

Power on aircraft, control transmitter, video receiver. Wait for GPS lock. Switch to preferred

takeoff mode - manual mode or auto-level mode Increase throttle command, pull back on

elevator to lift off. Adjust aileron, elevator and throttle as required to keep aircraft on desired

18

departure path. Switch flight mode to GPS waypoint mode. Wait for aircraft to attain

GPS waypoint. Switch flight mode to auto-level mode. Use aileron and elevator input to

steer aircraft. Wait until observer is satisfied or battery level necessitates a return to launch.

Switch flight mode to GPS return-to-home mode. Wait until aircraft is loitering above launch

area. Switch flight mode to preferred landing mode - manual or auto-level. Land aircraft as a

conventional RC aircraft.

Observer steps:

Wait until pilot has completed step 7. Use auxiliary input stick, if available, to pan and tilt

observer camera.

Exceptions:

Insufficient battery power to complete flight. GPS target is beyond range of control or video

links. Intended target is behind physical features such as buildings or a mountain.

19

Chapter 8

Testing

8.1 Benchtop Tests

Once the hardware breadboarding had been complete with the Discovery development kit and the

MPU and Barometer breakout boards, certain input and output modules were coded. Once these

input/output modules were assumed to be functioning properly, development on the processing code,

such as auto-stabilization and attitude control began. As this code was developed, the hardware was

connected to generate inputs and hardware and software interfaces were created to view the outputs

(servos or debug code on a laptop). The hardware was manually moved to elicit a change in the

MPU, and the outputs were be observed to ensure appropriate device response. A rudimentary test

rig was built using breadboarding of components, which lay out servos according to their physical

position on the plane (ailerons, rudder and elevator, along with a servo to indicate the value of the

throttle output). A pointer was then attached to the output shaft of each servo to visually indicate

the deflection from neutral.

8.2 Hardware Test

To ensure code stability, the hardware was first be tested to ensure it could will successfully run

the flight code. To do this, unit software tests were be run to ensure that all onboard inputs and

outputs, such as the MPU, EEPROM and UART accessory links, could be read to and written from.

Long term tests several times the length of an expected flight have been run overnight to ensure

that the hardware remains stable after prolonged runs.

8.3 Manual Mode Verification

Before prototyped hardware was installed on an airframe, the operation of the manual, or passthrough,

mode had to be verified. This mode pipes the RC inputs directly to their respective outputs, essen-

20

tially removing the system from the control of the aircraft. This mode is entered or exited using a

switch on the RC receiver. Bench tests were used to verify that in the case of malfunction of more

advanced flight modes, the manual mode can always be entered into by the pilot or a failsafe routine

could be entered into in case of a total communication loss or hardware disconnect.

8.4 Future Testing

Airframe Operation Verification

After development has progressed to the point where all team members believe that flight

testing may proceed, the system will be installed in a test airframe. This small, 1 meter

wingspan powered glider is made out of EPO foam, which is easily repaired following a crash.

This aircraft will be equipped with the least expensive RC batteries and components possible,

to minimize the financial loss in case of a catastrophic failure. The aircraft will be launched

in manual mode, and taken to a “minimum recovery altitude”, being the minimum altitude

required to recover from a roll-over or stall. At this point, the flight mode undergoing test will

be activated by the pilot, who will subjectively assess the “feel” of the flight mode. A second

team member will also objectively assess system performance, either in real-time via telemetry

or post-flight via data logged onboard. If at any time the aircraft becomes unresponsive or

enters an unacceptable orientation, the pilot will switch back to manual mode and land the

plane. A landing will only be attempted in the flight mode under test if the pilot deems it safe.

Optionally and at the test pilots discretion, the aircraft will be equipped with a parachute

system entirely separate from the Pilot-1 system which can, in the case of system failure, halt

the forward motion of the aircraft and bring it to the ground with minimal damage.

Mid-Range Video Flight Tests

After several successful test flights, the aircraft will be equipped with video flight and long-

range radio control equipment. A flight will be executed along the standard Baylands testing

flight path. This flight path has been flown by the test pilot for several years, and thusly

provides familiar landmarks. This test flight will be a maximum of 1 KM over land, during

which time the aircraft does not cross over any populated areas. The aircraft will be flown

via video downlink, rather than line of sight. Multiple laps to the 1 KM marker and back to

Baylands will be performed, until battery exhaustion, to simulate a much longer flight. The

vehicle used in these tests will be equipped with a parachute abort system controlled by a

separate radio system.

21

Long Range Flight Tests

These tests will only be executed once the system is complete and GPS failsafe return-to-home

has been proven to work reliably. This test will be flown in the larger Super SkySurfer aircraft,

equipped with high capacity batteries which provide two hours of flight time. The test will be

flown along the Baylands southern long-range flight path. This flight path heads downwind

to the east, until the aircraft crosses over the town of Alviso. At this point, the pilot will

visually acquire the Amtrak train tracks running through Alviso, and follow them north to

the ghost town of Drawbridge. As the aircraft crosses over Drawbridge, it will be 7 KM away

from Baylands. Depending on control signal conditions, the pilot may turn back over the bay

to return to Baylands, or continue north along the train tracks to increase the flight distance.

When the pilot turns towards Baylands, he may optionally engage GPS return to home to

evaluate its performance. As this segment is over-water, it must be closely monitored to prevent

against a costly systems loss. This test will be primarily conducted to assess the ability of the

system to maximize power efficiency and thusly, the test may be flown simultaneously with an

identical aircraft with known efficiency characteristics as a control sample.

Distributed Beta Tests

We would like to thank the community at Sunnyvale Baylands for their continued support and

assistance during the development of this product. To repay them as well as receive feedback

from experienced flyers, retail kits of Pilot1, which include the Pilot-1 main board, accessory

control board, GPS and power module will be offered to the community below the cost of

production. Their feedback will be used to improve the usability of the system, as well as

integrate oft-requested features. In addition, this test will ensure a main performance goal of

the system by ensuring that it is compatible with a wide variety of aircraft and control setups.

Exhibition Test

Upon completion of the development and test plan, the system will be flown for the maximum

possible flight time at a scenic location, such as along the California coast. The test airframe

will be a new, never-crashed Super SkySurfer, which will be outfitted with pleasing visuals.

A second camera ship will tail the test aircraft. Video from onboard cameras, ground-based

cameras and the tail aircraft will be integrated to produce a demonstration video of all sys-

tems capabilities and features, for the consideration of the Senior Design judges and potential

customers.

22

Chapter 9

Societal Issues

Our project is on the forefront of technological advancement, but it is not without its issues. The

very mention of drones in our society brings up controversy and questions of legality. For this reason,

it is important to outline the issues concerning the ethical implications of our project. This analysis

would delve into the social, team/organizational, and design issues that are relevant to this project.

The drone project has a variety of stakeholders that can be affected by our project. These are, but

are not limited to:

Ethical

Our Pilot-1 project is designed with safety in mind, and in designing our project, we made sure

to address the ethical sides of such an endeavor. In order to maintain safe, autonomous flight,

we had to thoroughly test our flight control functionality until it was at a reliable state, with

no system-breaking bugs present at launch. To do this, we maintain the highest standard of

coding practices to ensure our system is air-tight. We also used the highest quality of electrical

components to ensure the reliability of the final product.

Social

Our system is meant to be used by the general public, the consumer, so a major component of

our project is the ability to safely handle failure states. To do that, we’ve implemented a failure

handling system that requires the user to take back control, or in case of no user control, an

optional parachute attachment may be deployed, landing the aircraft safely. Another concern

was the misuse of our project, which we have addressed by limiting the systems capabilities to

those only of flight and control of flight. Our project cannot be re-purposed for any other use

other than recreational RC plane flying.

Political

23

Due to the hot-button issue of drones in today’s media, there is a certain amount of speculation

as to whether drones being in public hands would be acceptable. We understand this concern,

and thus have designed our project to work well within the confines of the RC industry. What

our group offers is not full-on drone technology, but simply a method of controlling their planes

with more precision. We note that drone technology in public and private settings may be

alarming, and have thus allowed the project to only exists within a hobbyist scope.

Economic

Our goal with this project was to simply give the RC industry a competitive flight controller,

aimed to please the RC hobbyist of all budgets. Due to the costs of custom printed circuit

boards, and the time to make them, our project was done by hand using readily available

material at local electronics shops. However, this can be produced en masse in a manufacturing

facility as any other electric appliance or device. Of course, the pricing of the final product will

be based upon the demand, the manufacturing process of the final product, and other things.

Our main goal is to make it affordable for the average consumer.

Health and Safety

As far as health and safety concerns for this product goes, our design is aimed to be a small,

sturdy, and compact device that is easily fitted into the cavity of an RC plane. The device

would be safe to the touch and can be handled without much difficulty. Since the product is an

electronic device, we do ask to handle the device with care and keep it away from contaminants

and other destructive materials, such as liquids.

Manufacturability

Our project is made with the idea of mass production. The issues we faced in attempting

to produce the prototype were the cost of the materials needed for the printed circuit boards

and the time-intensive schedule it takes to manufacture them. If this product were to go into

production, a manufacturing facility would be needed as well as software/hardware QA testers,

the costs of which would need to be covered by investors in the company.

Sustainability

Our software would be updated via simple online releases of new code to be flashed onto the

on-board memory. As for the hardware, the sturdy design and the available components make

it suitable for flight aboard an RC plane.

Environmental Impact

24

We do not view this project as having a significant environmental impact, if at all.

Usability

Our product is manufactured with usability in mind. A simple package with instruction would

get the user started in installing and using the product.

Lifelong Learning

This project forced us to get acquainted with tools and equipment the group members may

not have used before. In an effort to get the project working, we had to find materials to

tools to weld together the few components, and use tools that are different than those we have

been using. The project truly inspired us to come out of our comfort zones and tackle new

challenges head on.

Compassion

Our project does not, in and of itself, alleviate suffering or help those in need. It is a recre-

ational product that results from the use of RC-related products that were deemed lacking or

unsatisfactory, which led to the creation of our own fixed-wing RC plane controlling device.

While our project isn’t an altruistic one, it certainly is made with the knowledge of satisfying

other RC hobbyists’ wants and needs when it comes to a capable product for their beloved RC

planes.

25

Chapter 10

Outcome and Future Expansion

Our project was hindered by conflicting documentation on the chosen STM32 processor, as well as

staffing issues. A team member, representing one quarter of our effective workforce, left the team

one third of the way through development, and a second team member was struck with a long-term

illness. As such, we dropped the requirements for GPS-based operation and instead focused only

on flight modes that would operate using the IMU. To compensate for this reduced functionality,

we implemented a plugin system, where a third party may add GPS operation, or indeed any other

functionality, to our code at a later date. In addition, development was hindered by issues with

the STM32Cube system. As this system was just released a few months before development began,

third party support was nonexistent. To compensate for this, we chose to rely much less heavily

on the STM32Cube layer, and do the majority of our GPIO through the STM32F4-Discovery third

party libraries.

Testing was hindered and delayed due to problems integrating the various software and hardware

components together. Per our design plan, each software module was coded and tested independently

before integration into the final project. Problems arose, however, due to unforeseen interactions

and competition for device resources. For example, the IMU and RC control input modules were

tested separately as fully operational. However, when attempting to receive IMU data and RC input

at the same time, it was discovered that the task of reading the IMU would block the processor for

long enough that it missed one or two RC pulses, which would then be flagged as a failure. The

hardware presented a similar challenge – a breadboarded version of the system was fully operational,

however due to its construction it was impossible to mount in a flying aircraft. The flight worthy

board was built, however hardware failures arose in its construction and the decision was made to

limit testing to benchtop testing with the breadboard unit.

We believe we have provided a solid base for future development to continue on this platform. As we

26

have abstracted away the underlying tasks present in running such a system, further development

may continue without concern for low-level tasks such as reading the IMU or detecting RC failures.

27

Appendix A

Source Code

A.1 Main Source

/∗ the tm stm32f4 xxx l i b r a r i e s and f i l e s are from http :// stm32f4−d i s cove ry . com , used under the GNU GPL v3 l i c e n s e .
∗ See any tm stm32f4 xxx . h f i l e f o r f u r t h e r d e t a i l s .
∗/

#inc lude ” stm32f4xx . h”
#inc lude ” stm32f4xx rcc . h”
#inc lude ” stm32f4xx gpio . h”
#inc lude ” tm stm32f4 servo . h”
#inc lude ” tm stm32f4 de lay . h”
#inc lude ” tm stm32f4 usart . h”
#inc lude ”tm stm32f4 pwmin . h”
#inc lude ” tm stm32f4 i2c . h”
#inc lude ” tm stm32f4 d i sco . h”
#inc lude ” s e t t i n g s . h”
#inc lude ” s t r u c t s . h”
#inc lude ” f l i g h t m o d e s . h”

#d e f i n e USE USART1 1
#d e f i n e IMU ADDRESS 0xd0

#d e f i n e IMU ROLL MIN −16000// the IMU read ings at −90 and 90 degree s from l e v e l . . .
#d e f i n e IMU ROLL MAX 16000 // f o r purposes o f t r a n s l a t i n g to ang l e s in degree s
#d e f i n e IMU PITCH MIN −16000
#d e f i n e IMU PITCH MAX 16000

void s ta r tup () ;
void debug (char ∗) ;

f l o a t mapFloat (long x , long in min , long in max , long out min , long out max) ;

i n t main (void)
{

/∗ I n i t i a l i z e system ∗/

28

SystemInit () ;
TM USART Init (USART1, TM USART PinsPack 2 , 9600) ; //PB6, RX: PB7
TM DELAY Init () ;
TM DISCO LedInit () ;
debug (” Pi lo t−1 V0. 1 s t a r t i n g up\n\ r ”) ;
s ta r tup () ;

TM I2C Init (I2C1 , TM I2C PinsPack 2 , 100000) ;

// Write ”5” at l o c a t i o n 0x00 to s l a v e with address ADDRESS
TM I2C Write (I2C1 , IMU ADDRESS, 0x6B , 0x01) ;

char b u f f e r [2 5 5] ;
whi l e (1){

i f (TM DELAY Time()>50) {
TM DELAY SetTime (0) ;
readIMU () ;
processIMU () ;
readRCIn () ;
i f (rc raw . mode==0){

MODE0;
} e l s e i f (rc raw . mode==1){

MODE1;
} e l s e i f (rc raw . mode==2){

MODE2;
} e l s e i f (rc raw . mode==3){

MODE3;
} e l s e {

m o d e f a i l s a f e () ;
}
i f (rc raw . f a i l s a f e >RC FAILSAFE THRESHOLD | | imu proc . f a i l s a f e >IMU FAILSAFE THRESHOLD){

m o d e f a i l s a f e () ;
} e l s e {

c l e a r f a i l s a f e () ;
}

}
}

}

void s ta r tup (){ // c a l l e d a f t e r the system has been i n i t i a l i z e d , to begin Servo output and senso r input
debug (” I n i t s e rvo s . . . ”) ;
TM SERVO Init(&ServoRol l , TIM2, TM PWM Channel 1 , TM PWM PinsPack 2) ; // = PA5
TM SERVO Init(&ServoPitch , TIM2, TM PWM Channel 2 , TM PWM PinsPack 2) ; // = PB3
TM SERVO Init(&ServoThrott le , TIM2, TM PWM Channel 3 , TM PWM PinsPack 2) ; // = PB10
TM SERVO Init(&ServoYaw , TIM2, TM PWM Channel 4 , TM PWM PinsPack 2) ; //= PB11
debug (” [OK]\ r \n ”) ;
TM SERVO SetMicros(&ServoThrott le , 1000) ; // pin the t h r o t t l e to zero

TM PWMIN InitTimer (TIM3, &PWMIN Roll , TM PWMIN Channel 1 , TM PWMIN PinsPack 3 , 100000 , TIM3 IRQn) ;
TM PWMIN InitTimer (TIM3, &PWMIN Pitch , TM PWMIN Channel 2 , TM PWMIN PinsPack 1 , 100000 , TIM3 IRQn) ;
TM PWMIN InitTimer (TIM5, &PWMIN Yaw, TM PWMIN Channel 1 , TM PWMIN PinsPack 1 , 100000 , TIM5 IRQn) ;

29

TM PWMIN InitTimer (TIM5, &PWMIN Mode, TM PWMIN Channel 2 , TM PWMIN PinsPack 1 , 100000 , TIM5 IRQn) ;

}

void readIMU (){
i n t 8 t data [6] ;
TM I2C ReadMulti (I2C1 , IMU ADDRESS, 0x3B , data , 6) ;

imu raw . acc [0]=(data [0]<<8) | (data [1]&0xFF) ;
imu raw . acc [1]=(data [2]<<8) | (data [3]&0xFF) ;
imu raw . acc [2]=(data [4]<<8) | (data [5]&0xFF) ;

TM I2C ReadMulti (I2C1 ,IMU ADDRESS, 0x43 , data , 6) ;
imu raw . gyro [0]=(data [0]<<8) | (data [1]&0xFF) ;
imu raw . gyro [1]=(data [2]<<8) | (data [3]&0xFF) ;
imu raw . gyro [2]=(data [4]<<8) | (data [5]&0xFF) ;

TM I2C ReadMulti (I2C1 , IMU ADDRESS, 0x41 , data , 2) ;
imu raw . temp = ((data [0]<<8) | (data [1]&0xFF)) ;

}

void processIMU (){
imu proc . temp = imu raw . temp/340 + 35 ;

i f (imu proc . temp<10 | | imu proc . temp>200){
// i n d i c a t e s e i t h e r an I2C bus f a i l u r e or a f i r e in the cockp i t . E i ther way . . . bad .
imu proc . f a i l s a f e ++;

}

f l o a t r = (double) (imu raw . gyro [0] ∗ IMU GYRO WEIGHT) + (double)((1−IMU GYRO WEIGHT) ∗ imu raw . acc [1]) ;
//x gyro , y acc

imu proc . r o l l = mapFloat (r , IMU ROLL MIN, IMU ROLL MAX, −90, 9 0) ;

f l o a t p = (double) (imu raw . gyro [1] ∗ IMU GYRO WEIGHT) + (double)((1−IMU GYRO WEIGHT) ∗ imu raw . acc [0]) ;
//y gyro , x acc

imu proc . p i t ch = mapFloat (p , IMU PITCH MIN, IMU PITCH MAX, −90, 9 0) ;

}

void readRCIn (){

/∗ Get new data f o r both input s i g n a l s ∗/
TM PWMIN Get(&PWMIN Roll) ;
TM PWMIN Get(&PWMIN Pitch) ;
TM PWMIN Get(&PWMIN Yaw) ;
TM PWMIN Get(&PWMIN Throttle) ;
TM PWMIN Get(&PWMIN Mode) ;

/∗ Valid PWM input s i g n a l ∗/
u i n t 8 t f a i l =0;
i f (PWMIN Roll . Frequency > 0) {

rc raw . r o l l = (PWMIN Roll . DutyCycle /100 .0)∗ (1000000 .0/ PWMIN Roll . Frequency) ;

30

} e l s e {
// f a i l =1;

}
i f (PWMIN Pitch . Frequency > 0){

rc raw . p i t ch = (PWMIN Pitch . DutyCycle /100 .0)∗ (1000000 .0/ PWMIN Pitch . Frequency) ;
} e l s e {

f a i l =1;
}
i f (PWMIN Yaw. Frequency > 0){

rc raw . yaw = (PWMIN Yaw. DutyCycle /100 .0)∗ (1000000 .0/PWMIN Yaw. Frequency) ;
} e l s e {

f a i l =1;
}

i f (PWMIN Throttle . Frequency > 0){
rc raw . t h r o t t l e = (PWMIN Throttle . DutyCycle /100 .0)∗ (1000000 .0/ PWMIN Throttle . Frequency) ;

} e l s e {
f a i l =1;

}
i f (PWMIN Mode. Frequency > 0){

i n t mode = (PWMIN Mode. DutyCycle /100 .0)∗ (1000000 .0/PWMIN Mode. Frequency) ;
i f (mode<1000){

rc raw . mode = 0 ;
} e l s e i f (mode<1250){

rc raw . mode = 1 ;
} e l s e i f (mode<1750){

rc raw . mode = 2 ;
} e l s e {

rc raw . mode = 3 ;
}

} e l s e {
f a i l =1;

}

f a i l = (f a i l | | rc raw . r o l l >2500 | | rc raw . pitch >2500);
rc raw . f a i l s a f e =(f a i l ? rc raw . f a i l s a f e+f a i l : 0) ;

}

/∗ TIM3 IRQ handler ∗/
void TIM3 IRQHandler (void) {

/∗ In t e r rup t request , don ’ t f o r g e t ! ∗/
TM PWMIN InterruptHandler(&PWMIN Roll) ;
TM PWMIN InterruptHandler(&PWMIN Pitch) ;

}
void TIM5 IRQHandler (void){

TM PWMIN InterruptHandler(&PWMIN Mode) ;
TM PWMIN InterruptHandler(&PWMIN Throttle) ;

}

void debug (char ∗ s t r){
//# i f d e f DEBUG
TM USART Puts(USART1, s t r) ;

31

//#e n d i f
}

f l o a t mapFloat (long x , long in min , long in max , long out min , long out max)
{

re turn (f l o a t) (x − in min) ∗ (out max − out min) / (f l o a t) (in max − in min) + out min ;
}
i n t map(i n t x , i n t in min , i n t in max , i n t out min , i n t out max)
{

re turn (i n t) (x − in min) ∗ (out max − out min) / (i n t) (in max − in min) + out min ;
}

// −−

A.2 Flight Modes Source

/∗
∗ f l i g h t m o d e s . c
∗
∗ Created on : Jun 1 , 2015
∗ Author : m i l l s a p s k i
∗/

#inc lude ” tm stm32f4 d i sco . h”

#inc lude ” s t r u c t s . h”
#inc lude ” s e t t i n g s . h”

#inc lude ” f l i g h t m o d e s . h”

/∗
∗ Addit iona l f l i g h t modes may be added here . To add a f l i g h t mode , use data in rc raw and imu proc s t r u c t u r e s as input
∗ Use TM SERVO SetMicroseconds and TM SERVO SetDegrees as output to f l i g h t su r f a c e s , as shown in code below
∗ Last ly , r e g i s t e r the f l i g h t mode as your d e s i r e d mode number in s e t t i n g s . h
∗/

void mode unarmed (){
TM SERVO SetMicros(&ServoThrott le , 1000) ; // pin the t h r o t t l e to zero

}

void mode manual (){

TM SERVO SetMicros(&ServoRol l , rc raw . r o l l) ;

TM SERVO SetMicros(&ServoPitch , rc raw . p i t ch) ;

TM SERVO SetMicros(&ServoThrott le , rc raw . t h r o t t l e) ;

TM SERVO SetMicros(&ServoYaw , rc raw . yaw) ;
}

32

void mode leve l (){
// uses a s imple p r o p o r t i o n a l f i l t e r , which i s a l l that s r e a l l y nece s sa ry f o r an a i r c r a f t o f t h i s s i z e .
i f (i sVa l idMicro (rc raw . r o l l))

TM SERVO SetDegrees(&ServoRol l , 90−((i n t) (imu proc . r o l l ∗P ROLL))+mapFloat (rc raw . r o l l , RC EPA ROLL LOW,RC EPA ROLL HIGH, 0 , 1 8 0)) ;
i f (i sVa l idMicro (rc raw . p i t ch))

TM SERVO SetDegrees(&ServoPitch , 90−((i n t) (imu proc . p i t ch ∗P PITCH))+mapFloat (rc raw . pitch , RC EPA PITCH LOW, RC EPA PITCH HIGH, 0 , 1 8 0)) ;
i f (i sVa l idMicro (rc raw . t h r o t t l e))

TM SERVO SetMicros(&ServoThrott le , rc raw . t h r o t t l e) ; // passthrough t h r o t t l e and yaw , as those aren ’ t r e a l l y important to t h i s mode
i f (i sVa l idMicro (rc raw . yaw))

TM SERVO SetMicros(&ServoYaw , rc raw . yaw) ;
}
void m o d e f a i l s a f e (){

TM SERVO SetMicros(&ServoThrott le , 1000) ; // shut down t h r o t t l e
i f (PARACHUTE FAILSAFE ENABLED){

TM DISCO LedOn(LED RED) ; // parachute connected to D13 (red LED f o r v i s u a l t e s t i n g)
} e l s e {

rc raw . r o l l = CROSSCONTROL GLIDE VAL;
rc raw . yaw = −CROSSCONTROL GLIDE VAL;
mode leve l () ;

}
TM DISCO LedOn(LED GREEN | LED ORANGE | LED BLUE) ;

}

void c l e a r f a i l s a f e (){
TM DISCO LedOff (LED RED | LED GREEN | LED ORANGE | LED BLUE) ;

}

i n t i sVa l idMicro (long time){
re turn (time>800 && time <2200);

}

A.3 Header Files

/∗
∗ s e t t i n g s . h
∗
∗ Created on : Jun 1 , 2015
∗ Author : m i l l s a p s k i
∗/

#i f n d e f SETTINGS H
#d e f i n e SETTINGS H

// s e c t i o n : RC c o n t r o l l e r c o n f i g u r a t i o n
//EPA : end−po int c o n f i g u r a t i o n . The minimum and maximum va lues that the RC c o n t r o l l e r w i l l output . 1000 and 2000 are ” standard ” , though some TX’ s range from 800−2200 or 1200−1800
#d e f i n e RC EPA ROLL LOW 1000
#d e f i n e RC EPA ROLL HIGH 2000
#d e f i n e RC EPA PITCH LOW 1000
#d e f i n e RC EPA PITCH HIGH 2000

// s e c t i o n : f l i g h t tuning . These are a i r c r a f t−s p e c i f i c values , and must be tuned to ach ieve s t a b l e f l i g h t
#d e f i n e IMU GYRO WEIGHT 0.3

33

#d e f i n e P ROLL 0.9// p r o p o r t i o n a l re sponse f o r changes to a t t i t u d e . Higher = stronger , f a s t e r re sponse to i n s t a b i l i t y
#d e f i n e P PITCH 0.9

// s e c t i o n : f a i l s a f e c o n f i g u r a t i o n
#d e f i n e PARACHUTE FAILSAFE ENABLED 1 // s e t to 1 to enable parachute f a i l s a f e , 0 to d i s a b l e i t
#d e f i n e RC FAILSAFE THRESHOLD 10 // the number o f f a i l u r e s on the RC input be f o r e f a i l s a f e i s deployed . 20= ˜1/10 o f a second
#d e f i n e IMU FAILSAFE THRESHOLD 3 // the number o f I2C bus e r r o r s be f o r e f a i l s a f e . Due to nature o f I2C , s e t VERY LOW (but above 1)
#d e f i n e CROSSCONTROL GLIDE VAL 10 //when f a i l s a f e i s deployed and parachute i s not a v a i l a b l e , the system w i l l output a ’ c ros s−c on t ro l l e d ’ command to rudder + a i l e r o n s , which s lows the plane . 10 degree s i s appropr iate , too high w i l l l ead to a sp in . Set to 0 to d i s a b l e .

// s e c t i o n : f l i g h t mode c o n f i g u r a t i o n
// use MODEn, where n i s 0−3, and
#d e f i n e MODE0 mode unarmed ()
#d e f i n e MODE1 mode manual ()
#d e f i n e MODE2 mode leve l ()
#d e f i n e MODE3 m o d e f a i l s a f e () // always s e t mode3 to f a i l s a f e ()

#e n d i f /∗ SETTINGS H ∗/

/∗
∗ s t r u c t s . h
∗
∗ Created on : Jun 1 , 2015
∗ Author : m i l l s a p s k i
∗/

/∗
∗ Publ ic s t r u c t u r e s a v a i l a b l e f o r c r e a t o r s o f new f l i g h t modes . Updated every 50ms in main run loop .
∗/

#i f n d e f STRUCTS H
#d e f i n e STRUCTS H

#inc lude ”tm stm32f4 pwmin . h”
#inc lude ” tm stm32f4 servo . h”

TM SERVO t ServoRol l , ServoPitch , ServoYaw , ServoThrott l e ;
TM PWMIN t PWMIN Roll , PWMIN Pitch , PWMIN Yaw, PWMIN Throttle , PWMIN Mode;

s t r u c t imu raw data{
i n t 1 6 t acc [3] ; //x , y , z
i n t 1 6 t gyro [3] ; //x , y , z
i n t 1 6 t compass [3] ; //x , y , z
i n t 1 6 t temp ;

} ;
s t r u c t imu proces sed data {

f l o a t r o l l , p itch , yaw ;
i n t 1 6 t temp ;
u i n t 8 t f a i l s a f e ;

} ;
s t r u c t rc raw data {

f l o a t r o l l , p itch , yaw , t h r o t t l e , mode ;
u i n t 8 t f a i l s a f e ;

34

} ;

s t r u c t imu raw data imu raw ;
s t r u c t imu proces sed data imu proc ;
s t r u c t rc raw data rc raw ;

#e n d i f /∗ STRUCTS H ∗/

/∗
∗ f l i g h t m o d e s . h
∗
∗ Created on : Jun 1 , 2015
∗ Author : m i l l s a p s k i
∗/

#i f n d e f FLIGHT MODES H
#d e f i n e FLIGHT MODES H

void mode unarmed () ;
void mode manual () ;
void mode leve l () ;
void m o d e f a i l s a f e () ;
void c l e a r f a i l s a f e () ;

#e n d i f /∗ FLIGHT MODES H ∗/

35

	Santa Clara University
	Scholar Commons
	6-9-2015

	Pilot-1: autonomous fixed-wing aircraft control system
	Chris Millsap
	Nathan Garvey
	Faisal Hayat
	Recommended Citation

	Introduction
	Motivation
	Solution

	System Overview
	Vehicle
	The Sky Surfer
	Other Supported Aircraft

	Requirements
	Functional Requirements
	Non-Functional Requiremets

	Hardware
	Hardware Component Overview
	Microcontroller Protocols
	Prototypes
	Main Flight Board
	Current And Voltage Sensor Board
	High-Power Accessory Board
	Device Compatibility
	Current Protocol Compatibility

	Flight Modes
	Mode 0 - Unarmed
	Mode 1 - Manual Control
	Mode 2 - Angle
	Mode 3 - Failsafe

	Use Cases
	Cases
	Use Case - Flying to a Specific Location

	Testing
	Benchtop Tests
	Hardware Test
	Manual Mode Verification
	Future Testing

	Societal Issues
	Outcome and Future Expansion
	Source Code
	Main Source
	Flight Modes Source
	Header Files

