
Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-5-2015

UAVino
Matthew Belesiu
Santa Clara University

Aaron Chung
Santa Clara University

Kirby Linvill
Santa Clara University

Nathan Carlson
Santa Clara University

Phillip Coyle
Santa Clara University

See next page for additional authors

Follow this and additional works at: http://scholarcommons.scu.edu/idp_senior

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
and the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Belesiu, Matthew; Chung, Aaron; Linvill, Kirby; Carlson, Nathan; Coyle, Phillip; and Peekema, Megan, "UAVino" (2015).
Interdisciplinary Design Senior Theses. Paper 9.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior/9?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Author
Matthew Belesiu, Aaron Chung, Kirby Linvill, Nathan Carlson, Phillip Coyle, and Megan Peekema

This thesis is available at Scholar Commons: http://scholarcommons.scu.edu/idp_senior/9

http://scholarcommons.scu.edu/idp_senior/9?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

by

Matthew Belesiu

Nathan Carlson

Aaron Chung

Phillip Coyle

Kirby Linvill

Megan Peekema

Submitted in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering

Bachelor of Science in Mechanical Engineering

Bachelor of Science in Computer Science and Engineering

School of Engineering

Santa Clara University

Santa Clara, California

5 June 2015

 iii

Matthew Belesiu

Nathan Carlson

Aaron Chung

Phillip Coyle

Kirby Linvill

Megan Peekema

Department of Electrical Engineering

Department of Mechanical Engineering

Department of Computer Science and Engineering

Santa Clara University

2015

UAVino is a drone solution that uses aerial imagery to determine the overall plant health

and water content of vineyards. In general, the system focuses on automating crop

inspection by taking aerial imagery of a vineyard, conducting post-processing, and

outputting an easily interpreted map of the vineyard’s overall health. The project’s key

innovation is an auto-docking system that allows the drone to automatically return to its

launch point and recharge in order to extend mission duration. Long term, UAVino is

envisioned as a multi-year, interdisciplinary project involving both the Santa Clara

University Robotics Systems Laboratory and local wineries in order to develop a fully

functional drone agricultural inspection service.

 iv

The team would like to thank the following people for their help in making UAVino a

reality:

 Professors Christopher Kitts and Shoba Krishnan for their constant guidance

throughout the year as project advisors.

 The many members of the Santa Clara University Robotics Systems laboratory

for providing the team with generous grant money, lab space to work in, and

constant mentorship in a variety of fields. In particular, Thomas Adamek was

instrumental in helping the team with hardware and software needs as well as

serving as a general mentor over the course of the year.

 Santa Clara University’s Undergraduate Engineering Programs department for

their generous grant money. Specifically, Shane Wibeto for coordinating team

reimbursements and logistical needs for a variety of presentations throughout

the year.

 American Society of Mechanical Engineers Silicon Valley Section for their

generous grant money.

 Jeff Ota and the Intel Corporation for sponsoring the team with Edison

microcontroller boards, the multispectral imaging camera, and other hardware

components that were critical to the system’s success.

 John Aver of Aver Family Vineyards for providing the team with the opportunity

to conduct real-world field deployments throughout the year, and for lending

insight into current vineyard inspection techniques.

 Don MacCubbin in Santa Clara University’s machine shop for his assistance and

guidance in creating and manufacturing a variety of parts.

 The many friends, family, and faculty members who supported the team in a

variety of capacities throughout the year.

 v

1. Introduction ... 1

1.1 Drone Background .. 1

1.2 Agricultural Inspection Techniques .. 2

1.3 Agricultural Inspection Systems ... 4

1.4 Agricultural Inspection Needs .. 5

1.5 Problem Statement .. 7

2. Systems-Level Design .. 8

2.1 Design Overview ... 8

2.2 Customer Needs ... 9

2.3 System Requirements .. 11

2.4 System Sketch .. 12

2.5 Functional Analysis ... 13

2.5.1 Functional Decomposition .. 13

2.5.2 Summary of System Inputs, Outputs, and Constraints 15

2.6 Product Competition .. 15

2.7 Key Systems Issues ... 17

2.7.1 Docking Station Charging Method .. 17

2.7.2 Docking Mechanism .. 18

2.8 System-Level Design Layout ... 19

2.9 Team and Project Management ... 21

2.9.1 Project Challenges and Constraints .. 21

2.9.2 Budget ... 22

2.9.3 Timeline... 22

2.9.4 Design Process .. 23

2.9.5 Risks and Mitigations .. 24

2.9.6 Team Management ... 25

3. Docking Station .. 27

3.1 Overview .. 27

3.2 Requirements ... 27

3.3 Options and Tradeoffs .. 28

3.4 Design ... 29

3.4.1 Docking Station Frame .. 29

3.4.2 Docking Station Platform .. 32

3.4.3 Guidance Cones .. 33

3.4.4 Contact Plates ... 35

 vi

3.5 Recharging Circuitry ... 36

3.5.1 Overview ... 36

3.5.2 Wireless Network .. 39

3.5.3 Charging Routine ... 40

3.5.4 Power Delivery .. 41

3.5.5 Safety .. 43

3.6 Testing and Verification ... 44

3.7 Charging Future Work .. 45

3.8 Summary .. 47

4. Octocopter Additions .. 48

4.1 Overview .. 48

4.2 Requirements ... 49

4.3 Ring Mounting System ... 50

4.3.1 Finite Element Analysis Overview ... 51

4.3.2 Finite Element Analysis Expectations ... 52

4.3.3 Finite Element Analysis Results .. 52

4.4 Vibration Isolation Camera Mount .. 53

4.5 Charging Feet ... 55

4.6 Landing Algorithm Hardware ... 58

4.7 Summary .. 59

5. Landing Algorithm .. 61

5.1 Overview .. 61

5.2 Requirements ... 62

5.3 Hardware .. 63

5.3.1 Mobius Vision Camera .. 63

5.3.2 Intel Edison.. 63

5.3.3 Pixhawk Autopilot Board .. 65

5.4 Landing Algorithm Stages ... 66

5.4.1 Overview ... 66

5.4.2 Locate Docking Station ... 67

5.4.3 Movement Calculation .. 69

5.4.4 Flight Command Execution ... 73

5.5 Summary .. 74

6. Data Processing .. 76

6.1 Overview .. 76

6.2 Requirements ... 77

 vii

6.2.1 Customer Requirements ... 77

6.2.2 Image Resolution Requirements... 77

6.2.3 Image Overlap Requirements ... 77

6.3 Key Components .. 78

6.3.1 Multispectral Camera ... 78

6.3.2 Image Mosaicking Software .. 78

6.3.3 Image Processing Software ... 79

6.4 Post Processing Approach .. 79

6.4.1 Flight Parameters and Camera Settings.. 79

6.4.2 Image Mosaicking ... 81

6.4.3 Vegetation Index ... 84

6.5 Post Processing Review .. 85

6.6 Verification ... 87

6.6.1 Proof of Concept ... 87

6.6.2 Verification of Crop Health Data ... 87

6.7 Long Term Monitoring ... 89

6.8 Summary .. 89

7. System Testing ... 91

7.1 Overview .. 91

7.2 Vehicle Weight Tests .. 91

7.3 Coverage Capability Tests .. 93

7.4 Recharging Capability Tests ... 94

7.5 Vision Recognition Tests .. 95

7.6 Summary .. 96

8. Costing Analysis .. 97

8.1 Budget and Costs .. 97

9. Commercialization Plan .. 98

9.1 Executive Summary .. 98

9.2 Background ... 98

9.3 Goals and Objectives .. 99

9.4 Key Technologies .. 99

9.5 Customers and Marketing .. 100

9.6 Manufacturing .. 100

9.7 Service Cost and Price .. 101

 viii

10. Engineering Standards and Realistic Constraints... 102

10.1 Ethics Analysis .. 102

10.2 Legal Analysis ... 103

10.3 Health and Safety Analysis ... 104

10.4 Manufacturability Analysis ... 104

10.5 Social Impact Analysis .. 105

10.6 Arts ... 107

11. Summary and Conclusions ... 108

11.1 Project Summary .. 108

11.2 Future Work ... 109

References .. 111

A. Product Design Specification ... 114

B. Customer Interview Questions .. 115

C. Decision Matrices .. 117

D. Product Sketches ... 121

E. Project Timeline .. 126

F. Project Budget ... 128

G. System Inputs, Outputs, and Constraints ... 129

H. Detailed Assembly and Parts Drawings .. 130

I. Determining Ground Sample Distance Constant .. 166

J. Product Datasheets .. 168

K. UAVino Charge Control Source Code .. 179

L. UAVino Landing Control Source Code ... 184

M. Senior Design Conference Slides ... 219

 ix

1.1 Modern Drone Application Examples .. 2

1.2 Multispectral Image and NDVI Example ... 3

1.3 Tree Grading Analysis Example .. 4

1.4 California Drought .. 6

2.1 System Requirements Flowchart .. 11

2.2 System Sketch ... 12

2.3 Functional Decomposition .. 14

2.4 Competing Platforms .. 16

2.5 Docking Mechanism ... 19

2.6 System Block Diagram .. 20

2.7 Project Timeline .. 23

2.8 Team Structure ... 25

3.1 Completed Docking Station .. 30

3.2 Docking Station Frame ... 30

3.3 Adjustable Foot Detail .. 31

3.4 Docking Station Drawer .. 32

3.5 Docking Station Platform .. 32

3.6 Docking Station Platform Alignment Bars .. 33

3.7 Initial Guidance Cone Design .. 34

3.8 Final Guidance Cone Design ... 34

3.9 Docking Station Contact Plates .. 35

3.10 Docking Station Contact Plates with Octocopter ... 36

3.11 Octocopter Battery ... 36

3.12 Revolectrix CellPro Multi-4 Charger ... 37

3.13 Raspberry Pi Microcontroller ... 38

3.14 Netis AV1200 Wireless USB Adaptor .. 39

3.15 Charging Routine Software Flowchart.. 40

3.16 Docking Station Circuit Diagram ... 42

3.17 Docking Station Components ... 43

3.18 Docking Station Charging Performance ... 45

4.1 3D Robotics X8 Ococopter .. 48

4.2 Ring Mounting Bracket Detail .. 50

4.3 Ring Mounting Bracket Loading Conditions ... 51

 x

4.4 Bracket Horizontal Load Stress Distribution... 52

4.5 Ring Horizontal Load Stress Distribution .. 53

4.6 Vibration Isolation Camera Mount CAD Rendering ... 54

4.7 Vibration Isolation Camera Mount ... 54

4.8 Charging Foot CAD Rendering .. 55

4.9 Charging Foot Bottom Detail .. 56

4.10 Charging Foot Top Detail .. 56

4.11 Octocopter Circuit Diagram .. 57

4.12 Mobius Camera Detail .. 58

4.13 Intel Edison Detail ... 59

5.1 Vision Guided Landing System Components .. 61

5.2 Docking Station Alignment Pattern .. 62

5.3 Mobius Action Cam .. 63

5.4 Intel Edison ... 64

5.5 Pixhawk Autopilot ... 65

5.6 Landing Algorithm Logic Flow... 66

5.7 Separation of Onboard Processing and Flight Control 66

5.8 Landing Algorithm Error ... 67

5.9 Docking Station Location Example ... 68

5.10 Landing Algorithm Movement Types ... 69

5.11 Movement Type Selection Process .. 70

5.12 Ground Distance Calculation Example ... 71

6.1 Tetracam ADC Micro .. 78

6.2 Blurry Multispectral Image ... 80

6.3 Overexposed Multispectral Image ... 81

6.4 Agisoft Orthomosaic Example .. 82

6.5 Photoshop Orthomosaic Example .. 83

6.6 Reflectance vs. Wavelength ... 85

6.7 Data Processing Method Overview .. 86

6.8 Diseased Plant NDVI Example .. 87

6.9 NDVI Week-to-Week Comparison .. 88

7.1 Mission Planning Software Flight Path ... 93

7.2 Docking Station Charge Curves .. 94

7.3 Landing Algorithm Error ... 95

 xi

C.1 System Requirements Prioritizing Matrix... 117

C.2 Enclosure Concepts Decision Matrix .. 118

C.3 Position Method Decision Matrix ... 119

C.4 Charging Method Decision Matrix.. 120

D.1 Contact Plate Charging Concept .. 121

D.2 Induction Charging Concept .. 122

D.3 Guidance Cone Docking Concept .. 123

D.4 Magnet Guidance Docking Concept .. 124

D.5 Gravity Guidance Docking Concept ... 125

J.1 Intel Edison Datasheet (Page 1) ... 168

J.2 Intel Edison Datasheet (Page 2) ... 169

J.3 Pixhawk Datasheet (Page 1) .. 170

J.4 Pixhawk Datasheet (Page 2) .. 171

J.5 Mobius Datasheet (Page 1) ... 172

J.6 Mobius Datasheet (Page 2) ... 173

J.7 Pixhawk Datasheet (Page 1) .. 170

J.8 Revolextrix CellPro Multi-4 Datasheet .. 174

J.9 Raspberry Pi Datasheet ... 175

J.10 Netis AC1200 Wireless Adaptor Datasheet (Page 1) 176

J.11 Netis AC1200 Wireless Adaptor Datasheet (Page 2) 177

J.12 Tetracam ADC Micro Datasheet ... 178

 xii

2.1 UAVino Competitor Specifications ... 16

3.1 Intel Edison and Raspberry Pi Features Comparison ... 38

4.1 Octocopter and Additional Component Weights ... 49

5.1 Intel Edison, Raspberry Pi, and Beaglebone Black Comparison 64

5.2 Movement Type Selection Process .. 70

5.3 Velocity Control Methods... 74

7.1 Vehicle Weights .. 92

8.1 UAVino Cost Breakdown .. 97

9.1 UAVino Cost Breakdown .. 101

10.1 Arts Requirement ... 107

A.1 Product Design Specification .. 114

F.1 UAVino Donations .. 128

F.2 UAVino Expenses .. 128

G.1 Inputs .. 129

G.2 Outputs ... 129

G.3 Constraints .. 129

I.1 Average GSD Constant Values .. 167

 1

Over the past few years, personal use drones have surged in popularity due to a

dramatic increase in their capabilities. Together, the efforts of casual hobby enthusiasts

and professional developers have resulted in the creation of advanced control systems

and sensors that have opened the doors to this new technology; drone research and

experiments that used to require funding on a professional level are now available to

the everyday civilian. Although personal drones have come under criticism because of

potential safety and privacy issues, many industries stand to benefit from this emerging

technology, provided it is applied in a safe and sensible way.

Already, drones have been modified to meet a wide variety of needs and scenarios, as

shown in Figure 1.1. One of the first notable drone applications occurred in 2013 when

the Seattle Police Department considered their use for a wide variety of tasks, including

crowd monitoring [1]. Ultimately, the Department was forced to abandon its plans due

to public concern over privacy, but not all potential drone applications have met this

same fate [2]. In September 2014, the Federal Aviation Administration granted

regulatory exceptions to several video production companies, paving the way for drone

use in the film industry [3]. One application that has actually garnered public excitement

is Prime Air, a drone package delivery service currently being developed by Amazon.com

[4]. Although somewhat futuristic, the benefits resulting from such a system with

regards to reduced carbon emissions, faster delivery times, and lower overall costs are

intriguing.

While drones are certainly poised to increase profits for well-established industries, they

are also well-suited for social benefit applications. In late 2014, a graduate student at

Delft University of Technology in the Netherlands equipped a quadcopter with a

defibrillator in order to create a concept drone that could be used to enhance

 2

emergency response services [5]. Additionally, drones have been deployed for animal

tracking and poaching prevention in the developing world, including rural Africa [6, 7].

Figure 1.1: Left: Prototype drone for Amazon’s planned Prime Air delivery service. Photo
courtesy of amazon.com. Right: Conceptual defibrillator-equipped drone developed by
Delft University of Technology. Photo courtesy of tudelft.nl.

Provided that the Federal Aviation Administration is able to meet its 2015 deadline to

integrate drones into the National Airspace System, it is estimated that the unmanned

aerial vehicle industry will create 70,000 new jobs and make $13.6 billion in economic

impact by 2018. By 2025, those numbers reach over 100,000 new jobs and over $80

billion in economic impact [8]. Given the number of applications towards which drones

have already being applied, this technology has an exciting future with the potential to

positively affect the world.

In particular, the agricultural industry stands to benefit from the use of drones due to

the relative ease with which an aerial vehicle can cover the large land area occupied by

crops. One potential application is crop monitoring, as drones are ideal for modern field

inspection methods that involve multispectral and infrared aerial imaging. Although

these advanced inspection techniques are still actively being developed, research has

shown that, with the correct post processing, these image types can be used to

accurately yield information about crop health.

One processing method uses multispectral images to generate a Normalized Difference

Vegetation Index (NDVI), which provides information about differing chlorophyll levels

 3

in crops in order to examine their health. The NDVI is determined with two multispectral

bands: near-infrared reflectance and visible reflectance. Dividing the difference in these

two quantities by their sum yields a fraction that indicates vegetation in a particular

area as well as the concentration of chlorophyll in the leaves of plants. A larger NDVI

indicates dense vegetation, while a smaller value suggests poor crop health [9]. An

example multispectral image and its processed NDVI version are shown in Figure 1.2.

Figure 1.2: Example of a raw multispectral image and its processed counterpart. Green
indicates vegetation in good health, yellow indicates moderate health, and red indicates
poor health or areas of non-vegetation.

Additionally, the temperature information returned in infrared images can be used to

determine the water content of soil and the water stress in crops. In general, colder

temperatures of surrounding soil and plant canopies indicate higher water content and

lower water stress, and vice versa [9]. In some cases, fractional vegetation coverage

obtained through the NDVI can also be used to conduct more detailed soil moisture

analysis using a technique called the ‘triangular method’ [10]. Thermal imaging has also

been used to detect pathogens and disease within plants with methods that also utilize

overall canopy and leaf temperatures [11, 12].

Research involving these imaging techniques for agricultural use includes a 2003 NASA

study, in which a small drone equipped with multispectral and hyperspectral imaging

cameras was used to conduct research flights at California vineyards. Ultimately, the

test flights showed that these imaging techniques could provide accurate information

 4

and high resolution data regarding percentage vegetation cover [13]. A similar 2003

study conducted by California State University Monterey Bay and NASA AMES Research

Center used the NDVI to determine the leaf area of vineyards and concluded that these

methods showed promise with regards to indicating vegetation cover and plant canopy

health [14]. Additional multispectral imaging experiments with successful results include

a 2001 study at Adelaide University that determined wine grape varieties based on

chlorophyll level calculations and a 2005 study at the University of Georgia that

differentiated field types based on vegetation density information [15, 16].

In industry, determining crop health with multispectral and infrared imaging data has

largely been conducted with satellites, as a variety of companies offer the required

services at competitive prices. An example of such services is shown in Figure 1.3.

Figure 1.3: Example of Tree Grading analysis on a 0.6m resolution satellite imaging using
DigitalGlobe’s AgroWatch™ custom software. Image courtesy of Satellite Imaging
Corporation.

Some satellite imaging companies advertise resolutions of up to 0.5m at costs on the

order of $20 per acre per year [17]. Although satellite imagery is an attractive option,

the image resolution, while impressive, may not be sufficient to yield the required

 5

health data. Additionally, satellite images can only be taken on days with no cloud cover,

which may be difficult depending upon a particular field’s location. Moreover, farmers

must contract with external companies in order to obtain satellite imaging data,

meaning that crop health information is not always immediately accessible. Therefore,

while satellites may be suitable for some crop monitoring situations, they do not

provide a perfect solution.

Drone platforms are able to take image data at ground resolutions on the order of

centimeters per pixel, much greater than any available satellite. Additionally, such

systems are highly flexible, as they can be purchased directly by an individual farmer

and deployed at will. This precise, versatile, and on-demand nature makes drones ideal

for crop monitoring. This potential has already been recognized, as many small drone

platforms are available for aerial imaging applications. One such product is the Precision

Hawk Lancaster Platform, which is a highly customizable drone that can be tailored for a

wide variety of industries, including agricultural monitoring, mining, and infrastructure

surveying. While this system is extremely advanced and highly capable, its base price is

$25,000 and therefore is prohibitively expensive to many smaller farmers [18]. More

recently, 3D Robotics released their Aero-M and XM-8 aerial mapping platforms, which

are in the $5,000 range. These products are clearly trying to meet the demand for a

cheaper drone solution, but they require technological knowledge in order to build and

operate [19].

Ultimately, multispectral and infrared imaging technology has proven to be a promising

method of measuring crop health, and drones have been recognized as an ideal aerial

imaging platform. However, these two technologies have yet to be mated into a

complete crop monitoring system that is both affordable and straightforward to

implement.

The need for effective and efficient crop inspection methods has recently been

highlighted in California, where water conservation is paramount due to severe levels of

 6

drought. In 2013, California had the driest year in recorded state history and Governor

Jerry Brown declared a drought emergency, including asking the state to voluntarily cut

waste water usage by 20 percent [20]. This unprecedented drought, shown graphically

in Figure 1.4, has forced farmers into a state of duress and placed added pressure on

their crops.

Figure 1.4: Graphical depiction of the extent of California’s drought as of January 2015.
The U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center
at the University of Nebraska-Lincoln, the United States Department of Agriculture, and
the National Oceanic and Atmospheric Administration. Map courtesy of NDMC-UNL.

Particularly under stress are California’s small vineyard owners, who operate with

relatively low excess capital and are having difficulty coping with extremely high water

costs. If an inexpensive and easy-to-use drone crop monitoring system was developed, it

could greatly help these vintners by providing information regarding where and how to

most efficiently water their fields. Winemaking is a staple of California’s economy and

local, family-run vineyards are a hallmark of the wine industry. Therefore, an

 7

opportunity exists to meet a customer need as well as make a positive social impact

using drone technology.

The long-term vision of UAVino is to develop a fully autonomous drone crop inspection

system. The objective in this first year of the project was to demonstrate that

multispectral imaging is a viable method of determining crop health using drones and to

lay the foundations for autonomous docking and recharging. In order to accomplish this

goal, a docking station with recharging capability was designed and constructed,

computer vision algorithms were researched and implemented, and multispectral data

processing techniques were tested. Additionally, a variety of octocopter modifications

were made in order to allow the vehicle to take multispectral images, dock precisely and

recharge with the station, and fly autonomously using a computer vision algorithm.

Although the system is not yet fully autonomous, the end result of this year’s work is a

successful proof-of-concept with a built and tested docking and recharging station, an

in-progress landing algorithm, and tested data processing techniques. Thus, future

teams are well-positioned to continue developing UAVino in order to meet its ultimate

goal of bringing valuable crop health information to real world vineyard customers.

 8

UAVino is envisioned as a multi-year project that Santa Clara University students can

continually build upon and develop as new drone technologies become available. The

project in its current state represents one academic year of effort aimed at developing a

proof-of-concept agricultural inspection system capable of photographing crops and

yielding plant health data. Long term, the goal is to reach a level of autonomy where

UAVino is capable of operating without any human monitoring. Such a system might

include features such as multiple octocopters, collision detection and avoidance, and

real-time post-processing. Thus, there are numerous educational and business benefits

associated with continued project development.

The key technological innovation developed in this system proof-of-concept is a

portable station that the octocopter automatically returns to, docks with, and then

recharges from in order to extend mission duration. The need for this station arises

from the relatively low flight time of octocopter vehicles, which is typically under 15

minutes per flight battery. Therefore, inspecting large farms requires multiple flights in

order to complete. Typically, this limitation has required the vehicle operator to

manually replace or recharge the flight battery multiple times in order to continue a

mission. However, UAVino’s docking station mitigates this need, as it greatly increases

system autonomy and reduces operator workload.

Ultimately, UAVino is imagined as a crop inspection service that students in the Santa

Clara University Robotics Systems Laboratory will be able to provide to local farmers on

an as-needed basis. Via this service-type implementation, individual farmers will not

need to invest significant capital to purchase the system outright or spend time training

and familiarizing themselves with how to operate complicated technology. Instead,

interested farmers will simply request the service when needed and benefit from the

 9

crop health information produced. Additionally, this service model allows Santa Clara

University students to gain an understanding of business fundamentals and experience

real-world customer interaction.

After developing the idea for UAVino, interviews were conducted with relevant

stakeholders and consumers to gather more information about the potential uses and

scope of the project and thus further refine its initial concept. Professor Kitts and

Thomas Adamek, who serve in advisory roles on the project and are akin to investors

and long-term operations managers, were interviewed for their interest and concerns

regarding UAVino’s long-term viability. Lindsay Kalkbrenner, Director for Sustainability

at Santa Clara University, was interviewed in order to research what type of tasks

UAVino might be applied towards besides agricultural inspection. Lastly, UAVino’s real

vineyard customer, John Aver of Aver Family Vineyards, was interviewed in order to

understand more about how vineyard inspections are currently performed and what

type of final data product would most help in determining vine health. Overall, these

interviews yielded a list of priorities that aided in setting goals and deliverables

throughout the year. Actual interview questions are available in Appendix C.

As a stakeholder in the project, Professor Kitts reinforced his belief that UAVino would

best be implemented as a service provided by the Robotics Systems Laboratory to local

customers, rather than as a product sold at market. Ultimately, his long-term goal is to

make the project self-sustainable financially so that it can benefit engineering

education, seed real-world research projects, and provide a real benefit to real people.

Although there are several other companies currently working on developing drones for

agricultural use, Professor Kitts stated that this competition serves as good motivation

and that he is not concerned UAVino will fail to make an impact. Instead, his major

concerns lie with developing and using the product in a safe and professional manner in

order to maintain strong customer relationships.

 10

Thomas Adamek shared similar thoughts as those of Professor Kitts, as he also believes

UAVino would best be implemented as a service instead of a product. This view stems

from the likelihood that teaching a farmer who is inexperienced with robotics and

remote controlled aircraft would prove difficult. Therefore, it would be easier for that

farmer to simply contract with a service provider rather than learn an entirely new

platform. Because Thomas is one of the stakeholders who will continue working

firsthand with this project in future years, he is particularly interested in ensuring that

progress is well documented so that it is easy for others to transition onto the project.

Lindsay Kalkbrenner was excited to discuss the potential applications of UAVino on the

Santa Clara University campus, as such deployments are planned long term expansions

of the project beyond agricultural monitoring. When asked where and how the system

could help, she highlighted field water content monitoring as a primary need. Currently,

the University uses both recycled water and drinking water for fields and landscaping.

Because water in general, particularly potable water, is expensive, it is critical to use this

resource efficiently. Kalkbrenner felt that UAVino could help monitor water usage on

campus, especially places that use expensive drinking water, such as the Mission

Gardens and Buckshaw Stadium, to help develop more sustainable watering practices.

The insight provided by John Aver was used to identify specific needs and requirements

for UAVino’s final data product when monitoring agricultural field health. Because Aver

Family Vineyards is a small and local business, it was not surprising to learn that the

typical method of inspection for these types of vineyards is very time consuming and

labor intensive, as it typically involves literally walking up and down vineyard rows and

inspecting individual vines by sight. While Aver felt that this type of inspection is

invaluable and would always be required on some level, he welcomed any additional

data provided by UAVino that could help identify problem areas so that he could more

easily focus manual inspections. In this regard, providing both vegetation indices and

water content measurements would be extremely beneficial in order to help ensure the

health of each grape vine.

 11

Using this customer feedback in conjunction with the initial design concept, a series of

requirements, shown in Figure 2.1, were created to guide future decisions.

Figure 2.1: UAVino system requirements flowchart.

 12

Putting system requirements in flowchart format allowed for easy determination of root

level system requirements, which are shown in green boxes in the Figure. These items

are:

 The docking station must be able to recharge the octocopter battery within 1

hour.

 The octocopter must have a flight time of at least 15 minutes.

 The overall setup time of the system must take less than 30 minutes.

 The octocopter must be able to carry the necessary camera payload in addition

to an Intel Edison microcontroller and recharging electronics.

 The final data product must have a ground resolution of at least 0.5cm/pixel.

Figure 2.2 shows the process by which UAVino inspects an agricultural field.

Figure 2.2: Sketch showing the process by which UAVino inspects an agricultural field

 13

In general, a UAVino mission begins with setting up the docking station and ground

station at the desired field site and then sending flight path coordinates to the

octocopter via a command uplink. When ready, the octocopter departs from the

docking station, flies to the desired field, and then overflies it in a grid-like pattern to

collect imaging data. When the octocopter’s battery reaches a specified level, the

vehicle stops flying the grid pattern and returns to the docking station in order to

recharge. Once the battery is full, the octocopter takes off, returns to the vineyard, and

resumes mapping. After the entire mission is complete, the octocopter once again

returns to the docking station to transfer image data to the ground station for analysis.

During the mission, the ground station receives flight telemetry data so that mission

operators are aware of the vehicle’s position, height, speed, flight mode, and other

parameters. Additionally, the octocopter is linked to GPS in order to determine

positional data.

After the mission is complete, the multispectral images are processed to yield a

vegetation index, which determines overall crop health, and the infrared imagery is

interpreted to find a field’s water content. This data product is provided to the

agricultural customer in the form of an easily interpreted aerial map depicting a

particular field’s health

UAVino is divided into three main components: the octocopter docking station, the

octocopter vehicle, and the ground control station. These subsystems must seamlessly

work together to ensure a successful result, as the project relies on the octocopter’s

ability to successfully fly in a grid pattern over an agricultural field and then

automatically dock with and recharge via the docking station. Figure 2.3 shows the key

features of each system component.

 14

Figure 2.3: Functional decomposition of UAVino.

Because of its limited battery life, the octocopter must be able to recharge during its

mission so that it can ultimately map an entire agricultural field. This need is

accomplished via a docking station that the octocopter automatically returns to and

lands on. The docking station contains a commercial battery charger and power source

to autonomously recharge the octocopter’s flight battery after the vehicle has docked.

The station also features mechanical components that aid in precisely positioning the

octocopter during landing so electrical contact between the vehicle and station is

established.

The octocopter is responsible for collecting imaging data via multispectral and infrared

imaging cameras as well as flying in a grid-like pattern over fields via a GPS-linked

autopilot. Additionally, the vehicle carries a microcontroller and vision camera coupled

with the autopilot in order to precisely control the drone while landing on the docking

station. This software-driven landing solution is augmented by mechanical components

that ensure custom fitted electrical contacts on the vehicle’s feet properly mate with

components on the docking station to enable recharging capability.

While flying, a ground control station connected to the octocopter via a telemetry link

provides positional data and flight mode parameters to the operator. Additionally, this

Docking Station

Recharging
Mechanism

Precision Landing
System

Octocopter

Aerial Imaging

Autopilot

Precision Landing
System

Ground Station

Telemetry Downlink

Command Uplink

Mission Planning
Software

 15

ground station is equipped with mission planning software that allows for the

development of flight path coordinates that are uploaded to the vehicle before a

mission.

For the docking station, octocopter, and ground station to function together and create

a functioning system, a variety of data are obtained from and shared between

components in the form of inputs, outputs, and constraints. In general, the octocopter

uses GPS positional data to follow a predefined flight path and visual cues from a

camera to precisely land on the docking station. While charging, the docking station

takes power from an external source to recharge the octocopter’s battery as well as

monitors the individual voltage of each flight battery cell to ensure a safe, balanced

charge takes place. During the mission, the ground control station monitors the status

of the octocopter using telemetry. Specific inputs, outputs, and constraints for UAVino

are listed in Appendix G.

Aerial mapping, particularly for agricultural use, is a quickly growing field with regards to

small drones. Therefore, it is not surprising that numerous platforms for aerial crop

monitoring already exist and several more are likely to be released in the near future.

Two of the most prominent platforms and their competitive offerings are described

below and photographs are available in Figure 2.4.

 3D Robotics XM-8

o Includes Pix4Dmapper LT 3DR Edition software

o 14 minute flight time

o 0.7in/pixel maximum ground resolution

 Precision Hawk Lancaster Platform

o Highly customizable for a wide variety of applications

o On-board diagnostics

 16

o Fixed wing platform; not a multirotor drone

o Water landing capability

o All-in-one package

 Precision Drone PaceSetter

o Real-time video streaming

o Telemetry

o Route scouting software

Figure 2.4: Top-Left: 3D Robotics X8-M multirotor platform. Photo courtesy of
3drobotics.com. Top-Right: Precision Hawk Lancaster fixed wing platform. Photo
courtesy of precisionhawk.com. Bottom-Center: Precision Drone Pacesetter platform.
Photo courtesy of precisionhawk.com.

Table 2.1 summarizes the key specifications of these competitors’ platforms and

compares them to UAVino’s offerings.

Table 2.1: Specifications for several agricultural drone competitors.

Feature 3D Robotics
Precision

Hawk
Precision

Drone
UAVino

Price $5,400 $25,000 $17,500 $6,050

Weight 5.4lbs 3lbs 4.5lbs 7.0lbs

Flight Time 14mins 5hrs 20mins 10mins

Camera 12MP Multiple 11MP Multispectral

Autopilot Yes Yes Yes Yes

Notable
Features

Hobby-style,
Entry Level

System

Fixed Wing
Platform

Real-Time
Video

Streaming

Autonomous
Docking

Capability

 17

After researching competitors’ offerings during the initial system design, it was

determined that the main areas UAVino could capitalize on were price, simplicity, and

the addition of a docking station. With the exception of 3D Robotics' octocopter, the

platforms are extremely expensive—well above the upfront investment a small scale

vineyard owner might be willing to pay for a new, complicated, and largely unproven

technology. Thus, UAVino’s service style-implementation with low upfront cost and

minimal risk to the vineyard owner is a key marketing opportunity for the system.

Also, while some of the competing models are sold as all-in-one packages, they all

appear fairly complicated to set up and actually use. One of the goals of UAVino was to

lessen the time required to actually begin collecting data after the system is deployed

on location. In order to accomplish this task, development focused on making the

system straightforward and intuitive to use.

Finally, none of the competitors offer the use of a docking station or platform to

recharge the system, which is critical due to the somewhat remote location of

agricultural fields and the relatively low flight time of octocopters. Therefore, being able

to successfully develop and implement a remote charging station was identified as a

major competitive advantage for UAVino.

Three options were considered for the method by which the octocopter would recharge

after landing on the docking station: inductive charging, charging via electrical contact

plates, and charging via a battery connector. Concepts drawings for each of these

charging methods and how they would integrate with the docking station and

octocopter are available in Appendix E. While each of these designs had merits, charging

via contact plates was ultimately selected because of its balance between ease of

manufacturing and robust charging. The major concern with this design centered on the

safety risk of exposed electrical plates, but it was decided that this risk could be

 18

sufficiently mitigated by installing protective covering over the contacts and

programming the charging software such that current only flows from the station when

the octocopter is properly docked with it.

Inductive charging was particularly attractive because it would not require extremely

precise landing capability, thus greatly simplifying the docking challenge. Additionally,

inductive charging is currently being explored in a wide variety of industries and has

even been demonstrated in drone recharging applications, so more resources would be

available regarding how to create such a system. However, this method was not

selected because although it has benefits, manufacturing the required electrical

components would have proven difficult and the end results would not have been

capable of transmitting enough current to recharge the octocopter battery in a

reasonable amount of time.

Using a regular battery connector to recharge the octocopter would have been the

safest option, as it would not include any exposed electrical connections. However, the

precision of the docking algorithm required to mate the male and female ends of a

battery connector prohibited it from being practical with regards to UAVino.

The requirement of the docking mechanism was to ensure that the octocopter could

reliably and safely land on the station platform such that the recharging mechanism

engaged. Because the contact plate charging method selected required an accuracy of 2

inches, it was determined that a computer vision system alone could not deliver the

precision needed. Thus, the final docking solution involves both a computer vision

algorithm to bring the octocopter to the approximate position of the docking station

and a mechanical mechanism to precisely position the vehicle on the recharging

platform.

A wide variety of mechanical possibilities were considered that are available in Appendix

E. However, because of a limited build time, the final solution needed be

 19

straightforward. This fact helped focus design solutions towards strategies that involved

simple, passive elements. The final design selected uses a set of guidance poles that

extend from the base of the docking station in a tapered fashion. A pair of rings

attached to the octocopter position themselves around these poles, locking the vehicle’s

lateral position, and the vehicle then descends onto the platform in a precise location.

This design is illustrated in Figure 2.5.

Figure 2.5: Overview of the octocopter ring and cylindrical cone docking method.

This mechanical docking system was extremely easy to manufacture and implement and

proved reliable, provided that the computer algorithm positions the octocopter properly

for the rings and tapered cones to mate. One initial concern with this method was the

potential for vehicle propellers to accidentally strike the poles while the autopilot was

working to correctly position the octocopter. However, this risk was mitigated in the

landing algorithm software by ensuring that the vehicle does not descend below a

height that would allow propellers to contact the poles until the correct lateral position

is achieved.

Figure 2.6 shows a block diagram of UAVino’s system components.

Octocopter

Docking Station Platform

 20

Figure 2.6: UAVino block diagram.

In general, the system is divided into the octocopter, the docking station, and the

ground control station. The octocopter is treated as the hub of the system, which is

powered by a lithium polymer flight battery and is centered upon an Intel Edison

 21

microprocessor, which handles landing algorithm computation, and the Pixhawk

Autopilot, which is responsible for flight control. When landed, the octocopter connects

to a Raspberry Pi microcontroller on the docking station via WiFi in order to initiate

charging. The station is powered independently by a 12V marine battery. During flight,

the ground station sends and receives data via a telemetry radio and the operators are

able to take manual control in an emergency via a 2.4Ghz radio system.

Of the many challenges associated with creating UAVino, one of the most difficult and

crucial elements was how to automatically dock the octocopter with the docking

station. While the team had several promising ideas for how to complete this mission

task, there were no professional drone recharging stations that UAVino could draw from

or compare against. Additionally, while the equipment and code for flying drones in

predetermined paths is fairly advanced, these default sensors and algorithms were not

precise enough to dock the octocopter consistently and reliably. Therefore, the degree

to which the docking station and associated landing algorithms needed to be built and

tested from scratch meant significant time and effort had to be budgeted for their

development.

Beyond the design scope of the project, the physical distance of the vineyard customer

and complicated setup required to conduct octocopter flights on Santa Clara

University’s campus made testing relatively difficult to conduct. In general, test flights

required at least one week of preparation with and notice to the involved parties.

Therefore, advanced planning and strict adherence to project deadlines was required in

order to ensure that test flights were not wasted opportunities. Ultimately, the ability of

all team members to pace their individual tasks and bring the required items together

for test flights helped ensure success of the project.

 22

With regards to the team in general, a major challenge was working together to manage

the schedules of six individual team members taking classes for three different majors.

Because of the limited times during which all members could meet and discuss team-

wide issues, maintaining effective communication through email and cell phones was

critical to ensure that individual items were progressing as needed. When all-team

meetings were held, they focused on ensuring seamless integration between the

different designs of computer, mechanical, and electrical engineers. Throughout

development, it was imperative to review bottlenecks and resource contention to verify

that one group’s progress or lack thereof did not hinder another’s.

Although team members were generally friendly and worked well together, great care

was taken in electing team leaders and delegating tasks. The immense work associated

with creating UAVino needed to be distributed in a way that made sense and remained

fair to all members. Ultimately, the goal was to allow everyone to take ownership of

specific parts of the project so that they could feel proud of the final product delivered

at the end of the year.

UAVino’s $3,750 budget is comprised of grants from Santa Clara University’s School of

Engineering and the Silicon Valley Section of the American Society of Mechanical

Engineers. Large expenses, such as the base 3D Robotics X8 octocopter and

multispectral imaging cameras, were provided by the Santa Clara University Robotics

Systems Laboratory and Intel Corporation, respectively. More budget details and

specific cost breakdowns are available in Chapter 8 and Appendix F.

Figure 2.7 shows an overview of UAVino’s project timeline over the course of the

academic year.

 23

Figure 2.7: Overview of UAVino project timeline.

In general, the fall academic quarter was spent brainstorming docking solutions,

researching current drone autopilot capabilities, experimenting with vision recognition

software, and building a relationship with the vineyard customer. Following

Thanksgiving, a major team meeting was held to finalize the conceptual design,

particularly the docking station solution, so that a complete system picture was in place

leading into winter break. Docking station manufacturing, landing algorithm

development, and recharging circuit design and bench testing began immediately upon

return in January. These build phases and core project development lasted through

February, at which point system integration began. Basic test flights at local parks were

conducted in early March and lasted until the end of the winter academic quarter.

Actual vineyard test flights began in April, immediately at the beginning of spring

quarter, and lasted through the remainder of the year as the system continued to be

refined and developed. A detailed project Gantt chart is available in Appendix F.

Because of UAVino’s interdisciplinary nature involving both mechanical and computer

engineers, component design tasks were delegated to the group of engineers best

geared towards creating a solution. At this level, members were responsible for

December

• Conceptual
Design
Finished

January

• Begin
Prototyping

March

• Begin
Test
Flights

April

• Final
Testing

• Data
Collection

May

• Senior Design
Conference

• Project Thesis

 24

individually brainstorming solutions and then scheduling a meeting with impacted team

members to discuss the merits of each idea. From these meetings, a final solution was

created that tried to combine the positive aspects of each individual design. For

solutions that required input from both computer and mechanical engineers, the entire

team came together to discuss how well individual ideas would integrate. Typically,

these individual and all-team brainstorming sessions were conducted weekly to

streamline communication and ensure all options were considered before choosing a

final design.

Some aspects of UAVino, such as the docking station and landing algorithm, were

extremely complicated systems to develop, so the design process was a highly

interactive one. Tweaks and adjustments occurred well into the prototyping phase,

especially for the mechanical docking mechanism, in order to achieve an optimum

solution.

Public safety is of the upmost importance when developing any engineering project.

With regards to UAVino, safety is a particularly important consideration since drone

malfunctions run the serious risk of damaging property or causing injury. To help

mitigate hazards, significant effort was directed towards equipping the octocopter with

both passive and active safety features. Ultimately, it is the team’s responsibility to

uphold safety as the project’s most important concern and do what is necessary to

ensure that the final product is as safe as possible.

Beyond the risks associated with system design, human error increases the possibility of

malfunctions during operation. UAVino requires a series of complex steps for proper

operation, and failure to follow these procedures greatly increases the chances of an

accident. To reduce the potential error incurred by human operation, detailed flight

procedures and checklists were developed so that a safe operation exists and can be

followed during every deployment.

 25

This year’s UAVino team was led by a student manager responsible for ensuring that key

deadlines were met and that the overall project was progressing as needed. This

manager also allowed for a single point of contact between team members, and the

project’s academic advisor, and the real-world customer. Below the student manager,

UAVino was broken down into software and hardware teams, with one member

overseeing each area. In order to complete the various tasks within the project, all team

members were assigned various responsibilities and were tasked with working at an

appropriate pace to complete the required work on time. Figure 2.8 shows the task

breakdown of UAVino’s team.

Figure 2.8: Breakdown of UAVino’s team structure.

In general, meetings with the entire team occurred twice per week in order to review

any matters relating to the project as a whole and resolve any concerns. One of these

Student
Manager

Software

Autopilot

Docking
Algorithm

Post
Processing

Hardware

Docking
Station

Vibration
Isolation

Project
Advisor

Vineyard
Customer

 26

weekly meetings included the project advisor to provide feedback and guidance as

necessary. Meetings within the software and hardware sub-teams of the project

occurred as needed and typically took place at least once per week. Conflicts were

resolved by gathering those affected by the decision in question, discussing the matter

in detail, and then voting on an appropriate solution.

Team dynamics played a crucial role in the way UAVino was managed. It was the

responsibility of all team members to work towards creating an open and non-

judgmental environment where everyone felt comfortable sharing ideas. To help meet

this goal, effective communication between members was critical, meaning that all

team members needed to respect and allow others to voice their opinions.

 27

The docking station is an extremely important aspect of UAVino, as it is the component

that most separates the system from competitors. Unlike other drone crop inspection

systems, which are limited in battery life, the docking station allows UAVino’s

octocopter to repeatedly recharge until the mission is complete, thus greatly expanding

range and duration. Ultimately, it is the centerpiece that enables UAVino to

autonomously map a vineyard and provide customers with the agricultural information

necessary to make logical decisions.

The docking station serves as a major technological innovation for UAVino because no

comparable product is currently available that allows both precise drone landing and

recharging capability. Over the past few years, a variety of companies have made great

strides towards achieving both of these goals independently, but rarely have the two

technologies been paired together. By combining both landing and recharging functions,

UAVino acts as a stand-alone system that offers easy and affordable access to

agricultural crop monitoring.

The key requirement of the docking station is that it allows the octocopter to land

precisely such that an electrical connection between the station and octocopter is

established and the flight battery is able to recharge consistently and reliably. To

accomplish this goal, a computer vision based landing algorithm on the octocopter

works in conjunction with mechanical devices on the docking station to properly orient

and land the vehicle on the charging platform. The mechanical docking mechanism

consists of tapered cones on the charging platform and a pair of rings on the octocopter.

When landing, the vision guided algorithm works to align the octocopter’s rings with the

 28

tapered cones, effectively fixing the lateral position of the vehicle, so that it can then

descend smoothly onto the platform in the precise location needed.

Recharging the octocopter’s battery means that high levels of current must flow

between the docking station and octocopter, which give rise to a variety of safety

requirements. To ensure that the docking station is safe, master safety switches,

warning lights, and fuses are built into the charging circuity to help reduce the risk of

electrical shock and general component damage. Also, due to the flammability risk

associated with charging lithium polymer batteries, safety algorithms are included in the

charging software that shut off current flow to the battery should any anomalies occur.

Finally, the docking station must be rugged enough to withstand its intended

operational environment. Although the station is not designed to be permanently

situated in a field, it does spend extended periods of time outside and thus must be able

to withstand repeated exposure to the elements. This requirement is met largely by

material choice. For example, the docking station is made almost entirely from wood so

that it does not experience rust and other deteriorating effects that upset non-natural

materials. Although certain elements of the station, such as the charging contacts, are

more susceptible to the elements, the station as a whole is designed to endure the

climate it experiences on a day to day basis.

One of the most important options for the docking station is the method by which it

recharges the flight battery, as the design for many subsequent components are derived

from this decision. During the conceptual design phase, the two most logical options

considered were charging via induction with a custom charge controller or via a series of

contact plates interfaced with an off-the-shelf battery charger. While each of these

methods had benefits, the contact plate option was chosen because it was the most

practical to implement and sustain. Inductive charging did offer a variety of attractive

options, namely a decreased reliance on landing accuracy since connecting small

 29

electrical plates on the octocopter and docking station would no longer be required.

However, inductive charging would be slower than contact charging and since a fast

recharging time was a goal to maximize mapping capability, this option was bypassed.

Once the charging plate option was chosen, an additional decision arose regarding how

to best facilitate battery charging. One option involved mounting a charge controller on

the drone itself, while another simply used a commercial battery charger housed in the

docking station. A drone-mounted charging controller seemed promising, as it would

allow for fewer contacts and a larger surface area, therefore reducing the accuracy

required for landing. However, this option was ultimately avoided because of electrical

circuit complexity and added vehicle weight. The final solution uses a programmable

commercial battery charger located inside the docking station to facilitate charging and

the only additional weight to the drone are five 20-gauge wires soldered onto the

contact feet that lead directly into the balancing plug of the flight battery.

Lastly, the general docking station design included a high level tradeoff regarding overall

complexity. Having components such as the docking station frame professionally

manufactured and assembled was an option to increase the overall appearance of the

design and ensure functionality. However, contracting with professional machine shops

would increase cost and take longer to construct compared to team members building

on-site during spare time. Given the extremely short timeframe of the project and the

necessary functionality of the docking station, it was concluded that designing and

manufacturing all components in-house would be more conducive to meeting design

and build deadlines. Therefore, design also focused on using easily purchased off-the-

shelf parts to reduce cost and increase ease of manufacturing.

At its most basic level, the docking station is a rectangular table with a drawer to house

charging electronics and a platform for the octocopter to land on. Although relatively

 30

simple, the station is well-suited to deliver the functionality required. Figure 3.1 shows

an overview of the completed docking station.

Figure 3.1: Completed docking station

Figure 3.2 shows a CAD model of the docking station frame, the sides and floor of which

are made from 3/4” maple plywood. The frame also contains a 3/4” square alignment

bar made from poplar that runs across the top and mates with a corresponding

alignment bar on the platform. The entire frame is supported by four 18” high legs made

from 4” square Douglas fir. Standard wood screws hold the frame together.

Figure 3.2: Docking station frame CAD rendering

 31

A pivot foot mounted on a length of 1/4-20 all-thread is screwed into a matching

threaded insert on the bottom of each station leg. The height of each individual foot can

be adjusted and this feature, combined with the fact that each foot rests on a pivot

swivel, helps level the station if it rests on uneven ground. A detail of the adjustable foot

is shown in Figure 3.3.

Figure 3.3: Docking station adjustable foot detail

Although the leveling feature is useful, its effect is minimized by the small size of the

feet, which sink into loose soil due to the station’s weight. Thus, while the general

design is correct, a future improvement needed is to increase the surface area of each

foot in order to mitigate this effect.

The drawer, shown in Figure 3.4, measures 22” x 22.5” x 8” and is made from the same

3/4" maple plywood as the docking station frame. It is equipped with a handle for easy

operation and is held together with standard wood screws. The drawer is not mounted

on drawer hinges, but does slide in and out of the frame freely so that it can be

completely removed in the event that total access is required to the electronics inside.

Figure 3.4 displays a CAD image of the drawer along with a picture showing the interior

electronics.

 32

Figure 3.4: Docking station drawer and interior electronics

The station platform is made from a 2’ x 3’ piece of 3/4" maple plywood and is painted a

distinct red and black target shape so that the octocopter’s vision camera is able to

recognize the station from the air. The platform dimensions are derived from what

space is required to comfortably accommodate the octocopter, the cone mechanism,

and charging plates. Shown in Figure 3.5, the platform is fully removable and serves as a

secondary means of accessing the charging and safety circuitry inside the station should

the operator not wish to remove the drawer.

Figure 3.5: Docking station platform CAD rendering

To allow for proper alignment each time the platform is placed on the station, alignment

bars are attached to the underside of the platform that mate with the inside surfaces of

 33

the station frame. This allows the platform to be placed in the exact same location each

time and not experience lateral motion during operation. A detail of this feature is

shown in Figure 3.6.

Figure 3.6: Docking station platform alignment bars

The purpose of the guidance cones are to mate with the rings on the octocopter so that

the vehicle’s lateral position becomes locked and it can then land on the station

platform in the proper orientation. The motivation behind locking the vehicle’s position

arises from ground effect, which adversely affects the flight characteristics of the vehicle

as it comes close to the ground and makes it difficult to land precisely. Additionally,

depending upon how hard of a landing the flight controller makes, the octocopter may

land where desired but then bounce off target. By ensuring that the octocopter always

lands in the same position and in the same configuration, the cone mechanism helps

create a reliable system that ensures the vehicle correctly engages the charging contact

plates with each landing.

The initial cone design called for hard plastic soccer cones to be mounted atop ABS pipe,

as the smooth plastic finish would minimize friction between the octocopter’s rings and

the cones during docking. However, attaching these cones to the ABS pipe in an

acceptable manner proved difficult, as there was little surface area on the cones to work

 34

with and the glue used created a lip at the joint. During testing, this lip caused the

octocopter rings to catch and therefore did not allow for a smooth landing or takeoff.

This initial design is shown in Figure 3.7.

Figure 3.7: Initial docking station cone design using hard plastic soccer cones.

Ultimately, the plastic cones were abandoned in favor of a redesign. The final version,

shown in Figure 3.8, uses open cell Styrofoam cones.

Figure 3.8: Docking station guidance cone

 35

Styrofoam is ideal for this application because it is strong enough to hold shape and

combat the loads experienced by the ocotcopter’s rings, yet weak enough that should

the octocopter accidentally hit the cones while docking, the propellers would slice

through the cone cleanly rather than become lodged in it and likely cause a crash. Each

cone is glued atop a 9” long section of 4” diameter ABS pipe, which is then connected to

the platform via two right angle brackets and wood screws. The Styrofoam is coated

with epoxy resin to help smooth the rough Styrofoam finish and to prevent general wear

and tear over time.

Recharging is facilitated through eight copper plates that the octocopter rests on after

landing. These plates are made from copper and measure 2” x 1.5” x 0.125”. Each plate

is glued to four small steel compression springs to ensure that it remains in contact with

the corresponding electrical connection on the octocopter. A set of two contact plates

rest in a wood bracket that is fastened to the docking platform with wood screws. Figure

3.9 shows a detailed view of a contact plate pair and Figure 3.10 shows the same

contact plate with the octocopter foot resting on it.

Figure 3.9: Two docking station contact plates fastened to compression springs and
attached to the station via a wood bracket.

 36

Figure 3.10: Octocopter foot resting on docking station contact plates.

Each copper plate is connected electrically to a wire via a crimp-on connector and small

machine screw. These wires then run through the platform and into the charger housed

within the station.

The octocopter is powered by a 4 cell 14.8V 6000mAh lithium polymer battery, as

shown in Figure 3.11.

Figure 3.11: Octocopter battery

 37

Lithium polymer batteries require balancing, meaning that each cell needs to be

charged independently in order to allow for safe, even charging. This method requires a

specially designed “smart” balance charger that is capable of monitoring the voltage and

current of each cell. Such charging is facilitated in the docking station through the

Revolextrix CellPro Multi-4 battery charger, which is shown in Figure 3.12.

Figure 3.12: Revolectrix CellPro Multi-4 battery charger

This charger was selected because it provides serial input and output using UART

communication at a 19200 BAUD rate. This protocol is used to programmatically start,

stop, and provide status regarding battery charging. The contact plates to each of the

contact feet on the drone are connected directly to this commercial charger. This

charging solution is ideal, as housing the CellPro Multi-4 in the docking station

eliminates the need for any additional hardware on the drone and thus helps minimize

the weight of the vehicle.

Two microprocessor options were considered to interface with the CellPro Multi-4 and

control the docking station: the Intel Edison and the Raspberry Pi. Details of both

processors are available in Table 3.1.

 38

Table 3.1: Intel Edison and Raspberry Pi features comparison.

 Intel Edison Raspberry Pi

USB Ports 1 4

GPIO Pins 20 40

Processor Architecture Dual-Core x86 @500mhz Single-Core ARM @ 700mhz

Random Access Memory 1GB 512MB

WiFi Integrated External USB (Separate)

Display Out None HDMI

Ultimately, the Raspberry Pi was chosen for its ease of use, as it features a well-

supported package manager that allows for easy installation of required drivers and

subcomponents. Additionally, the Raspberry PI is geared more towards the operational

needs of controlling the docking station, as it acts as a centralized hub. The Intel Edison,

on the other hand, is more suitable as a powerhouse computational device. A Raspberry

Pi is shown in Figure 3.13.

Figure 3.13: Raspberry Pi microcontroller.

The Raspberry Pi microcontroller interfaces and communicates with the CellPro Multi-4

charger via Revolectrix’s FUMI-3 FTDI USB interface. This solution is straightforward

because the Raspberry Pi natively supports FTDI virtual COM port drivers. The Raspberry

Pi connects to the FTDI interface via USB, and the FTDI interface is connected directly to

the charger. When connected, the Raspberry Pi is able to send commands to and

 39

retrieve responses from the charger. The charger regularly sends a status string, which

contains various information about the charger and the charge status so that the

Raspberry Pi can check for anomalies and terminate charging if needed.

In order to facilitate communication between the octocopter and docking station, the

Raspberry Pi is configured as a wireless access point. This feature enables the Intel

Edison microcontroller on the octocopter to establish communication via WiFi after

landing in order to begin charging. The Raspberry Pi uses a Netis WF2190 AC1200

Wireless USB adapter, shown in Figure 3.14, which eliminates the need for an external

wireless router.

Figure 3.14: Netis WF2190 AV1200 Wireless USB Adaptor

The Raspberry Pi is configured to function as a WiFi access point by acting as a router

following Dynamic Host Configuration Protocol (DCHP). The microcontroller runs a DCHP

client called uDCHP and has a static IP address on which the client listens for

connections. A client called hostAPD sets up a wireless access network with a secure

WPA encryption. The Raspberry Pi also runs software called iptables, which enables

Network Address Translation (NAT) to allow for multiple devices to connect to the

 40

Raspberry Pi without individual devices fighting for resources that would otherwise be

bottlenecked by atomic availability.

Figure 3.15 shows the software flowchart for the recharging procedure.

Figure 3.15: Charging routine software flowchart.

 41

The ideal scenario is for the Intel Edison on the octocopter to automatically connect to

the Raspberry Pi's wireless hotspot and then request charging to be initiated. However,

this automated wireless connection has not yet been implemented. The remaining

charge routine procedures as described in Figure 3.15 are implemented in a Python

recharging script. Once the script is invoked, the Raspberry Pi interfaces with the CellPro

Multi-4 charger through the USB FTDI serial interface to begin charging. Initially, the

code attempts to establish a connection with the USB FTDI serial interface. If

communication fails, it repeats up to ten attempts before entering a failsafe state.

Once communication with the charger is established, the Raspberry Pi sends a series of

commands that selects the desired charge preset. The charge preset ensures that the

charger operates within the required specifications, such as number of cells and overall

capacity, for the octocopter’s flight battery. Afterwards, the charger sends the

commands that initialize charging. While the charger is not finished charging, the

Raspberry Pi checks the status of the charger every ten seconds. Each time the

Raspberry Pi checks the charger status, it monitors for an error code, which is signaled

by the battery in the event an anomaly occurs. An error code can be generated for a

number of reasons, such as if docking station contacts become shorted or disconnected,

or if the charger's supply voltage or current falls outside of acceptable parameters.

When the Raspberry Pi detects that the charger is finished charging, the Python script

ends in the success state. In the future, this success state will need to signal the

octocopter to perform its takeoff routine. However, the Python script terminates in the

failsafe state if it detects an error status from the charger’s status string at any point

during charging. Whenever the system enters the failsafe state, the charger becomes

inactive and the octocopter remains on the docking station indefinitely. The charging

source code is available in Appendix K.

The entire docking station is designed as a standalone system: one that can operate

independently of external power sources and wireless network requirements. This

 42

capability arises from the fact that the station is meant for deployment in remote and

unaccommodating locations, namely agricultural fields. The system is powered by a 12V

60AH marine battery, which is spill-proof, high capacity, and ultimately maintenance

free. 2-gauge wires connect the marine battery to the docking station, where power is

divided using two four-point power distribution blocks. All parallel connections to the

marine battery have fuses in the event of a short circuit or other anomaly.

Figure 3.16 shows an overview of the charging station circuity.

Figure 3.16: Docking station circuit diagram

Although the CellPro Multi-4 charger and LED warning lights can be powered directly

from the 12V marine battery supply, the Raspberry Pi requires a steady 5V supply with a

max current draw of 2A. In addition, this source must reach the Raspberry Pi via a USB

cable with microUSB connector. This requirement is met using a Drok DC/DC buck

converter with USB output, which is capable of providing a regulated 5V output across a

 43

4.5V-40V input range. The particular buck converter used contains a digital display

indicating the marine battery voltage and thus allows for visual voltage monitoring

without any additional equipment.

Figure 3.17 shows the docking station electronics with annotations identifying each

component.

Figure 3.17: Docking station electronics with each component identified.

Current levels near 3A are needed to recharge the octocopter quickly and therefore

electrical safety of the docking station is paramount. A wide variety of precautionary

systems have been installed to allow for safe operation. One such system is a master

switch that instantly shuts off power to the entire station in the event of an emergency.

Before the 12V marine battery is able to supply any power to the station, this switch

must be physically engaged, which helps serve as a reminder to users whether or not

the system is live. Along with the safety switch, two large red LED lights are located on

the docking station platform. These lights power on when the octocopter is charging so

Revolectrix CellPro Multi-4 Raspberry Pi

Buck Converter Netis WiFi Adaptor

FTDI Interface Shut Down Button

Fuse Box Marine Battery Leads

 44

that operators know the contact plates are not safe to touch. These lights are activated

using the Raspberry Pi and a 5V SPDT relay in conjunction with a 2N3904 transistor.

Lastly, each power line running in parallel between the two contacts of the marine

battery is protected with a fuse.

Autonomous landing tests were not conducted due to difficulties with the vision landing

algorithm, which are discussed in Chapter 5. However, manual flight tests were

conducted in an attempt to gauge the effectiveness of the cone and ring system. For

these tests, the octocopter was placed on the station and a series of trials were

conducted in which the octocopter took off from the station platform. To gauge the

success of each of these trials, team members closely observed the rings as they slid up

the cones upon takeoff. If the rings did not get caught at any point during the takeoff,

the trial was considered a success. Out of the five trials conducted, four were successful.

There was one trial where the octocopter briefly got stuck, but was able to recover and

continue its liftoff. In general, the octocopter was easily and smoothly able to ascend up

the cones and lift off from the station platform. These successful tests were able to

demonstrate the proper functionality of the cone and ring mechanical docking

mechanism.

To determine charging performance of the docking station, a test was conducted to

compare two charging scenarios. In one setup, the octocopter’s battery was charged via

the docking station’s contact plates and the built-in CellPro Multi-4 charger, which was

powered via the deep cell marine battery. In the second scenario, both the contact

plates and marine battery were eliminated. Instead, the octocopter’s battery was

charged by plugging it directly into the CellPro Multi-4 commercial charger, which was

plugged into a standard wall outlet for power. The goal of this test was to compare the

charging time of the docking station to a more traditional charging method that would

be employed if the system were operated manually by humans instead of

 45

autonomously. The results of these test are shown in Figure 3.18, which depicts charge

curves using each method.

Figure 3.18: Docking station charge performance results.

The fact that the charge curves for the docking station and the control test are nearly

identical verifies that the docking station can effectively act as a stand-alone system and

charge the octocopter’s battery just as efficiently as if it was charged via an at-home

setup using a standard wall outlet. Although charge time varies based on the initial

voltage level of the battery, Figure 3.18 demonstrates that charge times using the

docking station are close to 60 minutes, which is under the 90 minute goal set as

success criteria. This relatively fast recharge time allows for increased coverage

capability and data collection and agricultural crop monitoring. Ultimately, the insight

gained in these charge tests substantiate the design choices made when creating the

charging method for the docking station and prove that the docking station can act as a

high performance stand-alone platform for UAVino’s autonomous operation.

Although the charging routine has been written, the Intel Edison is not yet programmed

to automatically connect to the Raspberry Pi's WiFi hotspot and request charging.

Future teams will need to implement a network socket server on the Raspberry Pi to

 46

constantly listen to a network port for any incoming socket connections. Then the Intel

Edison can be programmed to connect to the Raspberry Pi’s listening socket to establish

communication between the octocopter and docking station. The socket server on the

Raspberry Pi should be integrated with the Cellpro Multi-4 serial communication and

charging code. Ideally, it should also be implemented in Python so that the serial

communication code can be imported as a module and the charging script can be

directly embedded within the socket server code itself. The socket server should also

constantly monitor the socket connection and halt the charge on detection of a lost

connection. An easy option would be for the Python script to manage a Linux process

control system such as Supervisor, which would launch the script when the Raspberry Pi

is powered on. The Supervisor process control system also provides logging and

automatic process restarting in the event that the Python socket server code crashes.

The charging system has been tested, but not with the drone powered on. When flight

battery is connected and the vehicle is idle on the docking station, it still draws 500mA

of current. The system may still work with the discharge leads connected, but the

CellPro Multi-4 Charger will likely need a preset set to a lower charge voltage in the

event that the battery voltage drops lower as a result of the power drawn. Additionally,

if the leads are still connected, the battery might never hit 100% capacity as seen from

the charger, unless the stopping float voltage is set lower. This problem may also be

solved by having a docking station controlled relay placed in series with a discharge

leads on the battery. In this situation, the docking station can activate the relay via the

extra contact feet on the drone, enabling the octocopter to effectively be turned off

while charging.

Furthermore, the charge time may be improved by using an alternate commercial

battery charger. One such option is the Revolextrix CellPro PowerLab 8 serial charger,

which has the ability to charge from the battery’s discharge leads as well as from its

balancing cable. The PowerLab 8 charger has a much higher charge rate, but longevity

concerns and limited heat dissipation of the battery must be taken into consideration.

 47

The docking station is a stand-alone platform that provides a unique solution for

UAVino’s autonomous docking and recharging. The station uses a static, mechanical

cone mechanism that mates with rings on the octocopter to allow the vehicle to

smoothly descend onto the station’s platform. Once landed, the octocopter rests on

spring loaded copper contact plates, which allow the octocopter’s onboard battery to

establish an electrical connection with the docking station to facilitate recharging.

In its current state, the docking station has demonstrated functional recharging

capability that is comparable to recharging performance from a standard wall outlet.

Additionally, WiFi communication framework between the docking station and

octocopter has been laid out in order to initiate charging, although this system has yet

not been fully implemented and tested. The mechanical ring and cone mechanism has

successfully been manually tested, although the system is not yet capable of

autonomous flight.

 48

Although a variety of off-the-shelf multirotor vehicles are available that provide a wide

range of capabilities, no platform was suitable for UAVino that did not require

modifications and additions. In order to allow for autonomous landing and recharging

capability as well as multispectral data collection, a variety of components have been

designed and added to the octocopter’s main frame. In general, these additions include

a set of rings that mate with the cone system on the docking station, a mounting plate

for the multispectral imaging camera, electrical contact feet that enable battery

recharging, and a vision camera and microprocessor that handle automated landing

capability. The overarching goal with these modifications and additions was to provide

the required functionality while keeping added weight to a minimum. Most multirotor

drones have a flight time near 15 minutes and in order to maximize UAVino’s mapping

capability, minimizing vehicle weight was critical.

The base flight vehicle is 3D Robotics’ X8 octocopter, which is shown in Figure 4.1.

Figure 4.1: 3D Robotics X8 octocoper drone

This octocopter is widely popular as a hobby-style multirotor drone because it is highly

modular and is based upon software that is open source. The drone comes equipped

with a Pixhawk autopilot board, GPS and compass modules, and built-in telemetry so

 49

that it is nearly ready-to-fly when received and very little assembly is required. These

built-in functions made the X8 the ideal choice for UAVino, as it allowed development to

focus on the required modifications rather than on trying to include basic radio and

autopilot functionality.

Table 4.1 lists the major components added to the vehicle and their weights, as well as

the total weight of the flight-ready octocopter.

Table 4.1: Octocopter and additional component weights

Item Quantity Item Weight (g) Total Weight (g)

Unloaded Octocopter 1 1965 1965

Flight Battery 1 605 605

Multispectral Imaging Camera 1 90 90

Vision Camera 1 40 40

Ring Bracket 2 40 80

Vibration Isolation Camera Mount 1 195 195

Charging Foot 4 35 140

Intel Edison Microprocessor 1 75 75

Total Octocopter Weight 3190

The modification with the most stringent requirements is the set of guidance rings, as

this component is critical for automated docking. These rings mate with corresponding

cones on the docking station in order to fix the lateral position of the vehicle and allow it

to descend smoothly onto the platform. When the octocopter lands and takes off,

asymmetric thrust or external factors such as wind cause the rings to push or pull

against the cones and it is crucial that the design of this system withstand these loads,

which are somewhat unpredictable. Materials with both lightweight and high strength

characteristics are used in the ring mounting system, but finite element analysis was

conducted in order to verify the design.

In addition to attaching the multispectral imaging camera to the octocopter, the camera

mounting requirement is that it damps out vehicle vibrations so that the camera is able

to take clear, high quality pictures. As they rotate, the octocopter’s motors are a source

 50

of high frequency vibrations that travel through the vehicle’s frame and inherently

affect anything connected to it. In order to quell these frequencies, the camera mount

includes passive vibration isolation components that act to stabilize the camera and

limit the motion it experiences.

The key requirement for the octocopter’s contact feet is that the component

successfully establishes an electrical connection with corresponding contacts on the

docking station. This connection must be established consistently and reliably with each

landing. Due to the high levels of current that are needed to charge the octocopter’s

battery, the contact feet are made from a material with a high electrical conductivity

and that will not fail due to excessive heat.

Figure 4.2 shows an overview of the ring mounting bracket.

Figure 4.2: Ring mounting bracket detail.

The ring itself is made from a 5” diameter bamboo embroidery hoop and is connected

to a 1/4" square carbon fiber rod via two aluminum angle brackets and a plated steel

M4 screw. The carbon fiber rod is epoxy set in a custom machined acrylic block that is

attached to the octocopter frame via two stainless steel M3 screws.

 51

The choice of materials for the ring system was crucial in order to provide the required

strength without adding unnecessary weight. Carbon fiber and bamboo were ideal for

this application, as it provides a sturdy structure that weighs just 40g.

Since the ring mounting system is so critical to the success of UAVino’s autonomous

docking capability, detailed analysis was conducted on the bracket system to determine

how it would perform in operation. Loading situations for the ring assembly were

selected based upon what types of forces the actual octocopter might experience when

landing. In reality, these forces are hard to predict when considering how environmental

factors, such as wind and ground effect, might influence the vehicle’s flight. Ultimately,

it was decided to test a horizontal and vertical load applied on the bamboo ring, as well

as a rotational torque applied at the joint of the ring and carbon fiber rod. These

situations are shown in Figure 4.3.

Figure 4.3: Loading conditions applied for ring mounting bracket finite element analysis.

During UAVino’s operation, most loading phenomena on the ring bracket are a

combination of these three conditions. By testing each situation individually, the intent

was to determine which areas of the structure are weakest and what types of loading

scenarios are cause for concern.

For each of the two directional force loading conditions, a 2 pound force was applied.

This load was determined based on the worst case scenario that the ring structure

would need, which is half the entire weight of the vehicle, approximately 7 pounds.

Because there are two ring brackets, this load is assumed to be shared equally.

 52

It was expected that the analysis would show the most critical joint is the connection

between the bamboo hoop and carbon fiber rod, as the aluminum brackets and bolts

joining these two components bear the brunt of any load applied to the bamboo hoops.

In particular, the corner of the bend in the aluminum brackets is an area of concern, as

stress concentrations resulting from such geometry are likely to magnify the stresses

seen in this area.

The failure criteria for the ring and carbon fiber rod joint was set as any stress exceeding

the yield strength of the aluminum bracket, as such a stress would permanently deform

the bracket and prevent the ring from properly aligning with the rest of the docking

system.

Figure 4.4 shows the stress distribution in the assembly when the ring is subjected to a

2lb horizontal load applied towards the acrylic mounting bracket. This loading scenario

results in a maximum compressive stress of 1674psi and a maximum tensile stress of

6905psi. Figure 4.5 shows the same stress distribution, but is focused on the joint

between the bamboo ring and the carbon fiber rod.

Figure 4.4: Stress distribution in the ring bracket resulting from a 2lb horizontal load.

 53

Figure 4.5: Stress distribution in the ring joint resulting from a 2lb horizontal load.

Similar finite element analysis was conducted for the other two loading conditions.

When the ring is subjected to a 2lb vertical load directed upwards, it results in a

maximum compressive stress of 1015psi and a maximum tensile stress of 8761psi. The

areas of highest tensile stress in this scenario are located on the bottom corner fibers of

the carbon fiber rod. When the ring is subjected to a 2in-lb counterclockwise torque

applied about the axis parallel to the carbon fiber rod, the result is a maximum

compressive stress of 106psi and a maximum tensile stress of 618psi.

After testing the three key potential loading conditions that the ring mounting system

could experience in operation, it was determined that the system would be able to

withstand the loads and function properly. The highest stress observed in the three

tested models was a tensile stress of 8761psi, which is well below the yield strength of

any material used in the ring mount. These results validate the strength and safety of

the ring mounting system.

Figures 4.6 and 4.7 show theoretical CAD and actual manufactured versions of the

vibration isolation multispectral camera mount.

 54

Figure 4.6: Vibration isolation camera mount CAD rendering

Figure 4.7: Vibration isolation camera mount.

The camera mount consists of two laser cut acrylic plates held together by 12 small

vibration damping pads, which have been repurposed from an industry grade gimbal.

The entire mount is attached to the octocopter frame using four 2.5” long aluminum

 55

standoffs and 6-32 machine screws. Including the standoffs, the vibration isolation

camera mount weighs 195g.

During testing, the multispectral camera attached to this vibration isolation mount was

able to provide suitable photographs for post processing and therefore this component

is viewed as successful. However, performance of this vibration isolation mount

compared to industry counterparts or the lack of a vibration isolation device altogether

has not been characterized. Future work is required in this area to provide better insight

into whether or not this design can be improved and the degree to which it is actually

needed.

The charging foot concept is shown in Figure 4.8.

Figure 4.8: Charging foot CAD rendering.

One charging foot is connected to the bottom of each of the four legs of the octocopter.

Each foot is made from a piece of 5” x 1.25” x 0.3” poplar which has two copper plugs

press fit and then glued into it. These copper plugs have a machined flat bottom so that

they rest flat against the contact plates on the docking station. Additionally, a small lip

on each plug, shown in Figure 4.9, allows it to sit just below the bottom of the wood

piece so that just the plug is in contact with the station, meaning that the full weight of

the octocopter rests on these connections points to help ensure a solid electrical

connection.

 56

Figure 4.9: Charging foot bottom detail

While the main purpose of the feet is to enable charging, an added benefit is that they

provide added stability for the octocopter as it lands. Each foot is connected to one of

the octocopter’s legs via right angle brackets and M3 machine screws, which is shown in

Figure 4.10.

Figure 4.10: Charging foot detail

20-gauge wire is soldered into each copper plug and then routed up the octocopter legs

to the flight battery’s balancing plug. In this way, the feet act as an extension of the

lithium polymer battery’s balancing node that the off-the-shelf charger housed in the

docking station is then able to charge through. Figure 4.11 shows a wiring schematic

depicting how the contact feet are connected to the octocopter flight battery.

 57

With two copper plugs per foot and four feet total, the octocopter has a total of eight

connection points. Currently, only five of these points are being used. The remaining

three could be used in the future to support batteries with more cells or faster charging

rates.

Figure 4.11: Octocopter circuit diagram

Note that Figure 4.11 shows that the multispectral camera and Intel Edison are powered

independently from 9V batteries. In the future, these components should ideally be

powered from the octocopter’s flight battery. Such a system could be implemented

through a buck converter connected to the flight battery and that is in parallel with the

rest of the octocopter's electronics. In this way, the buck converter would act as a

voltage regulator as well as a voltage step-down or step up. However, the buck

converter would need to be inserted after the power module, as this component sends

important battery voltage remaining and current draw information to the Pixhawk

 58

autopilot. If the buck converter were connected before the power module, the Pixhawk

autopilot may underestimate the battery life remaining and cause the vehicle to enter a

failsafe state.

In addition to the ring brackets required for the mechanical docking system, hardware

elements are also required for the vision landing system. These components are the

Mobius vision camera, shown in Figure 4.12, and an Intel Edison microprocessor, shown

in Figure 4.13. The Mobius camera is a compact video camera that is mounted to the

bottom of the octocopter using Velcro. This camera takes pictures at a regular interval

and sends them to the Intel Edison, which then runs software to identify the docking

station and maneuver the octocopter towards it. The Intel Edison rests on the top of the

octocopter and is loosely held in place with zip ties. Detail on these two components

and how they specifically work to control the octocopter is discussed in Chapter 5.

Figure 4.12: Detail of Mobius vision camera, boxed in red, mounted to the octocopter.

 59

Figure 4.13: Detail of Intel Edison, boxed in red, mounted to the octocopter.

To allow for UAVino’s autonomous mapping operation, certain modifications had to be

made to the octocopter vehicle. In general, these additions include a set of guidance

rings that mate with the cone system on the docking station, a mounting plate with

vibration isolation for the multispectral imaging camera, electrical contact feet that

enable battery recharging, and a vision camera and computing platform that handle

automated landing capability. Since multirotor drones have a relatively short flight time,

it was crucial to consider the weight of each component during design and the impact it

would have on the system’s flight time and, by extension, its coverage capability.

Testing these added components has proved that they function properly. Finite element

analysis was conducted on the ring mounting system for a variety of loading conditions,

and results show that the system can withstand its intended operation. Additionally,

recharging testing has verified that octocopter’s charging feet can establish and

 60

maintain an electrical connection between the octocopter’s battery and the docking

station. Lastly, the vibration isolation camera mount experienced field tests and was

able to yield clear and useful multispectral imaging data, therefore lending confidence in

its performance. Overall, these octocopter additions allow for the successful

implementation of UAVino’s unique method for the autonomous mapping capability.

 61

A critical part of UAVino’s autonomous operation is the ability of the octocopter to land

itself precisely on the docking station, as this task enables the vehicle to recharge and

ultimately extend mission duration and range. Although GPS helps the octocopter

return to the general vicinity of the docking station, it does not provide the accuracy

needed to align the ring and cone guidance system. In order to achieve precision

landing, UAVino uses a vision-guided landing system that involves a standard video

camera and co-processing board, both of which are mounted to the octocopter. The

interaction between these components and the octocopter’s built-in control system is

shown in Figure 5.1.

Figure 5.1: Vision guided landing system components.

When operating, the vision camera sends pictures to the processing board, which

identifies the docking station via its distinct painted surface. Using the picture, an

algorithm calculates the movement required to center the vehicle over the station and

Co-Processor

(Intel Edison)

Autopilot

(Pixhawk)

Landing Camera

(Mobius)

ESCs (x8) GPS

Motors (x8)

Landing Instructions

 62

then sends commands to the vehicle’s autopilot board in order to make those

movements. This algorithm is repeated until the vehicle is hovering directly above the

docking station, at which point it begins descending. The two steps of centering and

descending are periodically repeated so that the vehicle can adjust its position and

ensure it remains centered. Ultimately, the vehicle engages the docking rings and cones

that allow precise landing on the station’s charging terminals.

In order for the octocopter to successfully dock and recharge, the landing algorithm

must be able to orient the octocopter within 2.5in of center so that the vehicle’s

guidance rings engage the station’s cones. Achieving this level of accuracy hinges upon

the landing algorithm consistently detecting the docking station in various orientations

and lighting conditions so that it can continually send movement commands to correctly

position the vehicle.

To facilitate consistent recognition, the docking station is painted with recognizable red

and black concentric squares. This pattern is shown in Shown in Figure 5.2 and was

selected because it minimizes reflectance, yet remains visually distinct.

Figure 5.2: Docking station alignment pattern

 63

Lastly, the entire vision algorithm relies on the autopilot’s ability to position itself

correctly and precisely given the direction commands it receives from the landing

algorithm software.

The need for a lightweight vision camera that produces high quality images for image

recognition is fulfilled by the Mobius Action Camera 1080P HD Mini Sports Cam, which is

shown in Figure 5.3.

Figure 5.3: Mobius Action Cam vision camera

Figure 5.3 shows the Mobius converted via a GoPro Form Factor kit, which allows for

easier mounting and also reduces the component’s weight to 30g. The Mobius was

selected because it offers a wide range of features, including still image capture, time-

lapse image capture, video capture, and video streaming. Of these modes, the Mobius’

streaming ability is particularly important to UAVino, as it allows the co-processing

board to pull still frames for analysis on demand.

The landing algorithm requires processing speed and power in order to analyze images

and compute new flight commands easily. In order to deliver these requirements, the

Intel Edison, shown in Figure 5.4, was selected as the co-processing board.

 64

Figure 5.4: Intel Edison computing platform

The Edison was chosen over similar competitors, such as the Raspberry Pi, due to its

processing power and low energy consumption. Table 5.1 compares the Intel Edison to

competing Raspberry Pi B+ and Beaglebone Black microcontrollers.

Table 5.1: Comparison between the Intel Edison, Raspberry Pi B+, and Beaglebone Black

Microprocessor Pros Cons

Intel Edison Dual-core processor;

 Integrated Wi-Fi,
Bluetooth LE

 Support for Yocto
Linux Arduino and
Python

 Lower Power
consumption (3.3V -
4.5V @ <1W)

 1 USB port

 Expensive

 No video output
(HDMI, Direct LCD,
Composite)

 I/O connectors require
extra boards

Raspberry Pi B+ Broadcom VideoCore
IV GPU

 4 USB ports

 Video output (HDMI,
Direct LCD, Composite)

 Inexpensive

 No Integrated Wi-Fi or
Bluetooth.

 Higher power
consumption (5V @
600 mA)

 Less processing power

Beaglebone Black ARM® Cortex-A8
Processor

 4GB Onboard Flash

 USB, Ethernet, micro

HDMI ports

 1 USB port

 Expensive

 No Integrated Wi-Fi or
Bluetooth.

The Intel Edison is offered as computing platform for internet-of-things products. It is

designed to be fast, powerful, efficient, and easily connectable to other devices via WiFi

 65

and Bluetooth. This processor provides a fast and powerful platform for processing

images and translating the results into useful data that is sent to the octocopter’s

autopilot. The Edison also gives the ability to establish a wireless hotspot, which is

useful for communicating with the docking station to initiate or stop charging as well as

for operators to remotely login to run or monitor scripts.

The need for low power consumption is critical in a system where power is a limited

resource and is crucial to system success. The less energy the octocopter uses powering

the co-processor, the more flight time the octocopter has. In addition to its low power

consumption, the Intel Edison’s dual-core CPU easily handles the tasks of image

recognition and flight command generation at a fast enough speed to allow for efficient

octocopter flight.

UAVino uses the Pixhawk autopilot board, shown in Figure 5.5, to control the

octocopter.

Figure 5.5: Pixhawk autopilot board. Photo courtesy of 3drobotics.com.

The Pixhawk is built by 3D Robotics and is included as the default autopilot for their X8

octocopter, which is the platform upon which UAVino is based. The autopilot runs the

NuttX Real Time operating system over a PX4 driver layer and is built with integrated

multithreading. It also provides numerous ports for serial communication and PWM

control, which allows it to power the octocopter and communicate with motors, sensors

and ground control stations.

 66

The vision-guided algorithm that lands the octocopter is composed of three stages:

locating the docking station, determining the steps needed to move to the octocopter

towards the docking station, and sending commands to execute these movements to

the vehicle’s autopilot. The overall landing algorithm flow is shown in Figure 5.6.

Figure 5.6: Landing algorithm logic flow

In general, the docking station is first located using images from the Mobius camera

processed using a Haar Cascade classifier. Then, the distance to the docking station is

calculated and commands for the octocopter are created. Finally, these commands are

sent to the octocopter’s autopilot and executed. As shown in Figure 5.7, the execution

of these stages is split between the autopilot board, which directly controls the

octocopter, and the Intel Edison co-processor, which executes the computations for

target location and movement calculation.

Figure 5.7: Separation of onboard processing and flight control

Locate

Docking

Station

Calculate

Next

Move

Execute

Next

Move

Not Landed

Landed

(End)
Start

Companion Computer

(Intel Edison)

 Target Location

 Movement Calculation

 Sends Landing

Commands

Autopilot Board

(Pixhawk)

 Runs Autopilot

o Controls Motors

o Reads flight sensors

 Executes Landing

Commands

Commands

Flight Sensor Info

 67

In the first phase of the landing algorithm, the location of and distance to the docking

station relative to the drone is determined using computer vision. The need for

computer vision became apparent after exploring other positioning devices. GPS, which

is included by default with the Pixhawk autopilot, is an excellent asset for locating the

general position of the docking station, but is only accurate to within approximately

1.5m. Differential GPS (DGPS) could be used, which is accurate to about 4in, but

requires the use of a reference station and differential GPS locators. Although DGPS can

deliver close to UAVino’s accuracy requirement of 2.5in, it can only be used for latitude

and longitude determination. Therefore, while DGPS could be used to accurately center

the octocopter over the docking station, auxiliary systems would be required to orient

the drone’s yaw axis and calculate its altitude, resulting in added system complexity.

Figure 5.8 shows the maximum error of UAVino’s computer vision system

Figure 5.8: Error between estimated lateral distance using UAVino’s computer vision
algorithm and the true lateral distance versus altitude. In a lab setting, the error at each
altitude was calculated by taking the maximum difference between the estimated and
true distance over a series of five trials at each altitude.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250

M
ax

 D
if

fe
re

n
ce

(i
n

)

Altitude (in)

Y Error

X Error

 68

Computer Vision offers the best solution for vehicle orientation because it can adapt to

a dynamically changing environment and still provide the accuracy required to dock. Via,

Figure 5.8 it is clear that the maximum error of UAVino’s computer vision system is well

within the 2.5in margin of error. It also shows that as the drone descends towards the

docking station, the error between measured distance and actual distance decreases,

thus improving the likelihood of a successful dock.

Once the Intel Edison obtains images from the Mobius camera, the microprocessor uses

a Haar Cascade classifier to locate the docking station within the image, which is shown

in Figure 5.9.

Figure 5.9: Example of docking station being located (green box) and the octocopter
orientating itself over the located target.

The Haar Cascade classifier was trained and run using a computer vision library called

OpenCV, which was selected due to its reliability, open source license, cross platform

support, and excellent supporting documentation. Haar Cascade classifiers are created

using a supervised learning approach, meaning that they are trained on a series of

positive images containing the target object and negative images without the target

object. A large and diverse set of positive and negative images, particularly with regards

to lighting conditions and image orientation, is required to train an accurate classifier

that works well in various environments.

Red and black were chosen as the colors for the docking station due to their

distinctness, their lack of resemblance to nature, and their ability to flood the color

 69

spectrum, all of which made classifier training easier. During testing, these colors

yielded promising results in a lab environment. However, field testing revealed that the

classifier recognized a large number of false positives. These results are likely due to the

fact that black closely resembles shadows, which were present in nearly all images.

UAVino’s landing algorithm was originally developed in C++ for performance reasons,

but was later ported to Python since DroneKit, the API used to control the octocopter, is

written for Python.

After locating the docking station in an image, the Intel Edison calculates the drone

movement required to center the drone over the station. There are three different kinds

of movement the octocopter must make in order to properly orient itself: lateral

movement, yaw rotation, and vertical movement, which are illustrated in Figure 5.10.

Figure 5.10: The three movement types generated by UAVino’s landing algorithm.

First, horizontal movement is used to center the octocopter over the docking station.

Then, yaw rotation is used to align the rings on the octocopter with the cones on the

docking station. Finally, vertical movement is used to descend the octocopter and mate

the guidance rings with the station’s cones. UAVino is programmed to execute only one

kind movement in each iteration of the landing algorithm to make the system simple to

 70

debug, as it is easier for the operator to visualize the thought process of the octocopter.

The process by which the octocopter chooses which kind of movement to make is

described in Table 5.2 and further illustrated in Figure 5.11.

Table 5.2: Movement type selection process

If the vehicle is… Then execute…

Not centered over the docking station Horizontal move

Centered over the docking station, the hoops are not
aligned with the station’s cones

Yaw rotation

Centered over the station and properly aligned with the
station’s cones

Vertical move

Figure 5.11: Movement type selection process

Horizontal movement is calculated by finding the distance in pixels from the center of

the detected docking station to the center of the landing camera, which is shown in

Figure 5.12.

Horizontal

Move

Yaw

Rotation

Vertical

Move

Not Centered Over

Docking Station

Centered

Not Oriented

Correctly

Oriented

Correctly

 71

Figure 5.12: Calculating distance in pixels from Mobius camera image

The pixel distance is converted to ground distance by calculating the Ground Sample

Distance (GSD), which is the ground distance represented by a pixel. The GSD is linear

with respect to the camera’s distance from the ground and is calculated by

𝐺𝑆𝐷 = 𝑐𝑟

where 𝐺𝑆𝐷 is the ground sample distance, 𝑐 is a constant, and 𝑟 is the relative altitude.

The constant can theoretically be calculated from the camera’s sensor size and focal

length, but experimental methods were used to determine 𝑐 in UAVino’s landing

algorithm because the sensor size and focal length of the Mobius camera are not readily

available. Appendix I discusses the experimental process by which this constant was

determined.

Because the GSD is calculated using altitude, any error in determining relative altitude

decreases landing accuracy. However UAVino’s landing algorithm constant is roughly

0.0025, so an altitude error of 30 feet is required to introduce a lateral position error on

the order of 1in. Therefore, effects of altitude error are minimal. UAVino’s onboard

barometer is used to determine relative altitude since it is accurate enough for this

application and can be used without adding complexity to the system. Should more

precision be needed in the future, a radar or sonar altimeter could be used to more

accurately determine altitude.

X

Y

 72

It is also possible for the landing algorithm to determine drone altitude using the GSD

constant and the known distance between two detected objects in the analyzed image.

The relevant equation is

𝑟 =
(

𝑑
𝑝)

𝑐

where 𝑟 is the relative altitude, 𝑑 is the known distance, 𝑝 is the known distance

represented in pixels, and 𝑐 is the constant. Determining drone altitude using this

equation and the known width of the docking station proved less accurate than the

onboard barometer because the detected width of the station fluctuates with factors

such as camera angle or lens distortion.

The distances and directions of movement calculated from the analyzed image are

represented in the camera’s frame of reference. However, the drone’s Pixhawk

autopilot only supports navigation in the North East Down (NED) frame of reference.

The movements are converted from the octocopter’s body frame to the NED frame

using the following transformation, where yaw is 𝜙 roll is 𝜓, and pitch is 𝜃.

[
𝑁
𝐸
𝐷

] =

[

cos(𝜙) cos(𝜃) cos(𝜙) sin(𝜓) sin(𝜃) − sin(𝜙) cos(𝜓) sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃)

sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜓) sin(𝜃) sin(𝜙) cos(𝜓) cos(𝜃) − cos(𝜙) sin(𝜓)

− sin(𝜃) sin(𝜓) cos(𝜃) cos(𝜓) cos(𝜃)
] [

𝑋
𝑌
𝑍

]

The movements are passed to the flight command execution stage after they have been

transformed into the NED frame. Note that this transformation requires the Z

commands to be given in the camera’s frame of reference. If the Z commands are given

in the Down axis, the transformation instead becomes

[
𝑁
𝐸
𝐷

] = [
cos(𝜙) cos(𝜃) cos(𝜙) sin(𝜓) sin(𝜃) − sin(𝜙) cos(𝜓) 0

sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜓) sin(𝜃) 0
0 0 1

] [
𝑋
𝑌
𝑍

]

 73

Yaw rotation has not yet been implemented in UAVino, but groundwork has been laid

for this feature to be added using the center of the detected docking station and

another fiducial marker.

The vertical movement algorithm is designed to descend half of the drone’s altitude

with each iteration. In order for this method to become fully operational, it needs to be

supplemented with a stage to descend a fixed distance once the octocopter is close

enough to the docking station that the ring and cone mechanism is engaged.

After the Intel Edison correctly calculates and translates the required movement vector

of the drone, a command corresponding to this vector is sent to the Pixhawk autopilot.

Ultimately, communicating between the Edison and Pixhawk requires encoding,

transmitting, and decoding a message. However, this detail is abstracted away by the

Pixhawk’s ArduPilot software and DroneKit, an API that supports both sending

commands to and receiving flight information from an autopilot board running

ArduPilot software. Thus, the only task the Intel Edison must focus on is actually

generating the movement command to send to the autopilot board.

UAVino relies on two main commands for vehicle movement: changing the octocopter’s

lateral position and changing the octocopter’s yaw orientation. DroneKit and ArduPilot

provide a function that instructs the vehicle to change its position; however, this

function is only as precise as the autopilot’s return-to-home method, which is

approximately 1m. Because UAVino requires accurate movement to within 2.5in, the

algorithm instead uses a function provided by DroneKit and ArduPilot to instruct the

vehicle to change its velocity.

There are a two main approaches to accurately controlling a vehicle by velocity. One

method is a camera-polling approach, which sets a vehicle velocity and then

continuously analyzes images from a camera to determine whether the vehicle needs to

continue moving, readjust course, or stop. The main disadvantage of this method is the

 74

relatively long time it takes to obtain and process an image, as any delays in the

algorithm reduce accuracy. However, one key advantage of camera-polling is that the

stopping position is determined dynamically. Thus, if a gust of wind were to blow the

vehicle off course, the algorithm would naturally adjust itself and continue towards the

correct stopping position. Another advantage of a camera-polling approach is that only

the direction of travel is required; no distance measurement is needed.

A second approach to controlling a vehicle by its velocity is a time-polling approach,

which sets a specified velocity, uses time to estimate the distance travelled, and stops

the vehicle once the desired distance has been reached. The main advantage of this

approach is that it can be executed more quickly than a camera-polling approach, but it

comes at the cost of the stopping position being determined statically at the beginning

of the movement. Thus, the vehicle is not be able to effectively respond to a disturbance

during movement. Another disadvantage of the time-polling method is that it requires

both a velocity and accurate distance to execute. Table 5.3 shows a comparison

between the camera-polling and time-polling methods.

Table 5.3: Velocity control methods

 Camera-Polling Method Time-Polling Method

Pros Dynamically determines
course

 Only requires a direction

 Quick response

Cons Slow response Statically determines course

 Requires both a direction and a
distance

UAVino’s landing algorithm combines the time-polling method with a repeated

approximation approach to provide both a quick movement calculation and mild course

correction.

In order for the octocopter to recharge, it must be able to precisely land on and

establish an electrical connection with the docking station. GPS cannot deliver the level

 75

of precision required, so UAVino uses a vision landing system for guidance. This

algorithm relies on visually locating the docking station using an onboard camera and a

Haar Cascade classifier. Once the docking station has been located, the octocopter

navigates to the docking station, centers over it, and then descends onto the landing

platform. Although there has been some success with recognizing the docking station

and flying towards it, the system is currently unable to achieve autonomous landing.

These difficulties are linked to the Haar Cascade classifier being inadequately trained,

leading to either a low detection rate or a high false positive detection rate. Future work

needs to be done to either better train an accurate Haar Cascade classifier or to change

the overall method of locating the docking station, such as using infrared beacons.

Additionally, a proportional-integral-derivative control system needs to be implemented

to more precisely execute the landing commands sent to the octocopter. Overall, the

landing algorithm has a modular framework, so these future implementations can easily

be integrated into the existing platform.

 76

This year, a straightforward processing method has been developed to convert

multispectral images collected by the octocopter into crop health information that is

useful to real-world customers. In general, this data conversion is accomplished by

running the multispectral images through various software packages that return

vegetation indices, which are numerical values that provide an indication of plant

health. Ultimately, the goal is for this data to augment a customer’s existing knowledge

to help determine overall crop health, as well as locate areas of stress or concern.

The first step in post processing the multispectral data is to manually review the

collected images and remove ones with defects such as blurriness or overexposure.

Additionally, the general set of pictures is examined to ensure that it contains sufficient

coverage of the inspected agricultural field. The images are then used to create a photo-

mosaic map of the agricultural field, which is processed to depict a vegetation index.

The final data product is an aerial map of the inspected fields showing color-coordinated

crop health information that is accessible and easy to interpret.

This year, UAVino focused on providing the foundational methods for post processing

and succeeded in creating a proof of concept. However, the most powerful results from

multispectral data come from long term monitoring, which has yet to be implemented.

This type of monitoring creates a well-established standard against which new data is

compared, thus making it easier to determine if crop behavior is unusual or indicative of

water stress or disease. It is through monitoring vineyards over a longer period of time

that UAVino will be able to warn customers about changes in plant health before crops

show physical signs of disease.

 77

The most important requirement for image post processing is that the final data product

be presented in an easy to interpret and accurate form for the customer. This

requirement includes the following elements:

 The customer should not have to perform any additional processing on the data

after it is received in order to determine health information.

 The collected data needs to be presented with an easily accessible overview so

that the customer is not overwhelmed by the amount of information received.

 A method of interpreting the data needs to be presented along with the data

itself to ensure that the customer understands the implications of the data,

particularly what it does and does not depict and to what accuracy it can be

trusted.

Although not an explicit requirement to obtain vegetation index data, obtaining aerial

pictures with a 1.0cm per pixel resolution is UAVino’s image requirement. Achieving this

level of precision is one key reason why a multirotor flight vehicle was chosen, as such

platforms can fly lower and slower than fixed wing drones to obtain better resolution

data. A 1.0cm per pixel image resolution is at least double the resolution of fixed wing

platforms, which is typically around 2cm per pixel, and many times greater than satellite

imagery, which is typically around 0.5m per pixel.

Agisoft, the orthographic photo-mosaicking software used, requires 80% forward

overlap and 60% side overlap between multispectral images in order to successfully

create an aerial map of the inspected agricultural fields. At a minimum, 50% forward

overlap and 40% side overlap is required to create an aerial map using Adobe

Photoshop, although this software does not provide orthographic mapping capability.

 78

Multispectral data is gathered using a Tetracam ADC Micro multispectral camera, which

is mounted to the bottom of the octocopter and takes pictures at a regular interval as

the vehicle flies over agricultural fields. The camera, shown in Figure 6.1, is ideal for

UAVino’s application because it is both lightweight and compact.

Figure 6.1: Tetracam ADC Micro multispectral imaging camera.

Measuring 2.97” x 2.33” x 1.29” and weighing only 90g, the ADC Micro takes images in

the red, green, and near infrared multispectral bands and saves composite false color

images in a proprietary format on a removable micro-SD card.

In order to provide data in an easy to interpret format, image-mosaicking software is

required to convert the multispectral images into an aerial map of the entire agricultural

field of interest. This map provides the customer with a single image from which to

interpret data, instead of hundreds, and thus allows for quick understanding of the

information gathered.

 79

Image-mosaicking is conducted using two software packages: Agisoft and Adobe

Photoshop. Agisoft creates a single orthomosaic map from a set of images, meaning that

individual images are shifted and scaled by the program so that each pixel in the final

output represents the same amount of land area. Achieving the level of precision

required to create such a map is difficult, so Photoshop is also used as a more basic

image-mosaicking package that simply stitches images together without creating an

even perspective. Although Photoshop results are less accurate, it is a faster and easier

way of getting data and serves as a point of comparison when orthographic data is able

to be obtained through Agisoft.

After creating a single aerial map from the gathered image data, it is processed into a

vegetation index map using Pixelwrench2, a software package provide by Tetracam. This

program also converts Tetracam’s proprietary image format into more cross-compatible

versions and provides the ability to control multispectral camera settings through a file

stored on the camera’s micro-SD card.

The quality of multispectral images taken during flight depends upon a number of

vehicle parameters, which were optimized by conducting a series of test flights with

different settings and comparing the resulting data.

Achieving the necessary image overlap requirements is primarily a function of flight

speed, altitude, and image capture rate. However, due to internal data processing, the

ADC Micro camera has a maximum capture rate of one photo every three seconds.

Therefore, this capture rate is treated as fixed so that image overlap becomes

dependent upon vehicle speed and altitude only. Flying at a higher altitude allows for

faster flight speed and increased area coverage, but comes at the cost of decreased

image resolution. Because one key interest with UAVino is the increased resolution

 80

capabilities of multirotor drones compared to their fixed wing counterparts, image

resolution was generally favored over vehicle flight time during testing for optimal flight

parameters.

Ultimately, test flights were conducted at an altitude of 20m to provide a final image

resolution of approximately 20mm per pixel. At this altitude, the flight speed required to

obtain the desired forward overlap is 2m/s or less. A lateral speed of 1.75m/s was used

in order to achieve the desired 80% forward coverage without sacrificing the

octocopter’s ability to map a reasonable amount of land area per flight battery.

One recurring problem encountered when gathering data was blurry pictures, which

could still be included in the final image mosaic but caused decreased performance in

the mapping software. Typically, blurry photos occurred when the octocopter

experienced sudden movements due to turbulence or oversensitive corrective inputs by

the flight controller. This behavior was most prevalent on windy days and short of re-

tuning the control software, little could be done to prevent such motion. Flying

excessively fast could also cause motion blur, but the selected 1.75m/s lateral speed

was slow enough that blurriness was not a problem during normal flight on days with

relatively calm air. Figure 6.2 shows an example of a blurry multispectral image.

Figure 6.2: Blurry multispectral image

 81

A much more severe problem prevalent throughout early testing was overexposure,

which rendered images unusable and created gaps in the final data product. Figure 6.3

shows an example of an overexposed image.

Figure 6.3: Overexposed multispectral image

Overexposure is a photography phenomenon that occurs when too much light is let into

a camera’s aperture while taking a photo. During initial test fights, the ADC Micro’s

automatic exposure setting was used, which yielded overexposure rates as high as 40%

in some data sets. Initially, overexposure was thought to be caused by excessive sunlight

and flight speed, but changing both of these variables had little impact on overexposure

rates. Eventually, it was determined that the camera’s automatic exposure setting was

changing the exposure with each image and would occasionally select an incorrect

setting due to lighting conditions, thus yielding overexposed images. This problem was

eliminated by selecting a manual exposure setting that remained constant during flight.

With some experimentation, a 5ms exposure setting was selected, which yielded less

than 4% overexposed images and greatly decreased the severity of data loss.

Unfortunately, successful ortho-mosaicking has not yet been implemented with UAVino

due to software difficulties. However, meaningful results have been generated using

 82

Photoshop, which presents images in a mosaicked form that can still be effectively

communicated to customers.

The ortho-mosaicking software, Agisoft, has very strict overlap requirements in order to

create a complete aerial map. During initial flight tests, no useful data could be

extracted due to the extreme number of overexposed and blurry images reducing the

amount of overlap to the point where Agisoft could not successfully complete mapping.

An example of these poor initial results is shown in Figure 6.4. As the amount of overlap

increased with adjusted flight speeds, the quality of the maps produced also increased,

but results were still well short of a complete map of the vineyard capable of being

processed with a vegetation index.

Figure 6.4: Agisoft orthomosaic example

Once the problem with overexposure in the multispectral images was addressed, there

was another marked improvement in the quality of the maps being produced due to the

increased data being provided to Agisoft. However, these results were still

unsatisfactory for vegetation index processing.

 83

Because of these problems, Photoshop was employed as an alternative photo-

mosaicking software package and produced far better results. Even using data where a

number of photos had to be removed due to overexposure, Photoshop could still

produce a complete aerial map of the vineyard, an example of which can be seen in

Figure 6.5. Although Photoshop does not provide orthographic capability, it is sufficient

for demonstrating a proof-of-concept using vegetation index analysis.

Figure 6.5: Photoshop mosaic example

 84

There are a variety of equations and vegetation indices which can be used to obtain

crop health information from multispectral data, such as the Normalized Difference

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Green NDVI.

UAVino uses the Normalized Difference Vegetation Index (NDVI) because it is based on

spectral bands which the Tetracam ADC Micro camera collects and is currently the most

widely used vegetation index in the application of multispectral data. Additionally,

UAVino began with no knowledge of agricultural monitoring or the processing of

multispectral imaging, so it was prudent to experiment with the most well-documented

and understood post processing method in order to develop a proof-of-concept.

The NDVI is based on the equation

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅

where 𝑁𝐷𝑉𝐼 is the Normalized Difference Vegetation Index returned on a scale

between +1 and -1, NIR is the near infrared channel reflectance, and 𝑅 is the red

channel reflectance.

The near infrared channel is used in the NDVI because healthy and unhealthy vegetation

have very different levels of reflectance within this band. This difference is caused by

photosynthesis, which occurs much more in healthy vegetation and reflects a greater

amount of the near infrared spectrum. In contrast to near infrared reflectance, the red

reflectance of healthy vegetation is lower than that seen in unhealthy vegetation. This

phenomenon leads to a normalized number, as the high levels of NIR reflectance seen in

healthy vegetation result in an NDVI value close to +1. As the amount of NIR reflection

decreases with a decrease in plant health, the NDVI correspondingly decreases towards

a more neutral value of 0. If the multispectral image contains an area with no

vegetation, the NDVI is close to a minimum value of -1 since -𝑅/𝑅 dominates the

equation.

 85

Figure 6.6 depicts how the reflectance of these two channels change between healthy

and unhealthy vegetation.

Figure 6.6: Graph of reflectance values across the visible and near infrared spectrum for
healthy versus unhealthy vegetation. Photo courtesy of tetracam.com.

UAVino generates NDVI data via Tetracam’s Pixelwrench2 software, which looks at the

red, green, and NIR reflectance values stored on a per-pixel basis.

Figure 6.7 provides a more general overview of UAVino’s post processing methods.

These steps were discussed in detail in Section 6.4, but are shown in a more abbreviated

view for simplicity.

 86

Figure 6.7: Overview of the entire data processing method.

 87

In order to verify that multispectral data could show failing crop health and that the

correct post-processing methods were being employed, testing was conducted to

identify a known problem area within the vineyard. Ultimately, UAVino’s goal is to

locate problem areas before they become known to a customer, but conducting a proof

of concept test was critical in proving the feasibility of this data collection process and

the authenticity of the results. Figure 6.8 shows the results of this test.

Figure 6.8: Raw multispectral image of a diseased vine and its NDVI processed
counterpart. The yellow-green colors in the center of the scale at the right side of the
NDVI processed image correspond to NDVI values of 0.0 to 0.4.

The vine in Figure 6.8 was identified by a vineyard owner as suffering from leaf-roll

disease, which is clearly visible in the NDVI processed image. The leaves towards the top

of the image exhibit a yellow-green color, which correspond to an NDVI of 0.0 to 0.4.

These leaves are clearly less healthy than those towards the bottom of the processed

image, which are bright green, corresponding to an NDVI near 1.0.

Although a limited amount of data has been obtained thus far, a week-to-week

comparison of growth provides an interesting sample of how the NDVI changes with

time in a particular field. Figure 6.9 shows the development of the same vineyard over a

three week span, during which the vines are undergoing their spring growth spurt.

 88

Figure 6.9: NDVI processed images showing the change in a vineyard over the course of
three weeks. The uppermost image corresponds to week 1, the middle image
corresponds to week 2, and the lower image corresponds to week 3.

 89

Via Figure 6.8, it is clear that a significant amount of growth occurs from the first to the

second week, particularly in the bottom six rows of vines. These six rows also show a

higher NDVI value, indicating a higher level of photosynthetic activity taking place.

Although the change from the second to the third week is not as marked, it is still clear

that growth is happening, as the percentage of vegetation falling within the higher NDVI

ranges continues to increase. Continuing data collection in this manner would help

provide an understanding of how this particular field should develop over the course of

the spring, and any deviation from this pattern in future years could be easily noticed.

While successfully identifying problems already known to a vineyard owner and showing

vineyard growth over time serves as a proof of concept, the real motivation behind

UAVino is to help customers identify unhealthy crops before physical evidence is found

on the plants themselves. In order to achieve this goal, it is necessary to maintain long

term monitoring of an agricultural field. By watching crops over time, it is possible to

create a health standard that can be used as a comparison point for future tests.

Ultimately, knowing what a particular field should look like at different points

throughout the season leads to early detection of anomalies as new data is collected.

Unfortunately, UAVino’s short development cycle did not provide enough time to

generate a well-established standard upon which to base long term monitoring, as the

drone vehicle was not ready to fly until April, at which point plant growth was minimal.

Additionally, this early spring timeframe was dedicated towards determining how to

best collect data and minimize overexposed and blurry images. However, with data

collection and post processing methods now largely functional, future UAVino teams are

excellently positioned to begin long term monitoring.

The post processing phase of UAVino is a series of steps that takes images collected

during flight and turns them into a final data product showing crop health. First, images

 90

are examined and blurry or overexposed photos not suitable for processing are rejected.

Second, the remaining images are mosaicked using Photoshop in order to create a single

image depicting the acreage mapped. Once a complete photomosaic has been obtained,

the resulting image is then processed using Pixelwrench2 software in order to obtain the

NDVI, which gives actual crop health data. While a foundation has been set for post

processing using this technology, there is still work to be done, as future teams must

continue gathering multispectral data to implement long term monitoring. Additionally,

work is required to obtain orthomosaicked images using Agisoft software, which

provides a more accurate mapping result than Photoshop.

 91

To gauge the effectiveness of UAVino’s various subsystems, a variety of tests were

conducted to characterize performance. The results of these tests were then compared

to goals set during the project’s conceptual design phase, which are listed in Appendix A

as the Product Design Specification. Ultimately, the build timeline did not allow for

sufficient testing of each individual goal. Instead, a few high level tests were conducted

in order to confirm key areas of the Product Design Specification and show that

although UAVino is only one year into a multi-year development phase, the project is

making progress towards becoming a fully autonomous system.

The main performance areas analyzed were octocopter weight, octocopter coverage

capability, docking station recharging capability, and vision recognition system accuracy.

Assessing whether or not the goals for these major components are met lends insight

into the current status of the project and which areas require the most focus of future

teams in order to ensure that the project ultimately becomes a viable solution for

autonomous crop monitoring.

Octocopter and various component weights were measured and compared to

predictions because these values heavily impact the flight time and coverage capability

of UAVino. Significant design effort went towards creating components that are

lightweight, yet durable, and assessing the results of these designs helps define whether

or not they are successful at performing their intended functions.

Table 7.1 shows the weights of the various components of the octocopter as well as the

weight of the flight-ready vehicle, all of which were measured using a traditional gram

scale.

 92

Table 7.1: Vehicle Weights

Item Quantity Item Weight (g) Total Weight (g)

Unloaded Octocopter 1 1965 1965

Flight Battery 1 605 605

Multispectral Imaging Camera 1 90 90

Vision Camera 1 40 40

Ring Bracket 2 40 80

Vibration Isolation Camera Mount 1 195 195

Charging Foot 4 35 140

Intel Edison Microprocessor 1 75 75

Total Octocopter Weight 3190

In the Product Design Specification, 7 pounds was set as the predicted flying weight of

the vehicle given the empty weight of the base octocopter and the planned additions.

As seen in Table 7.1, the actual vehicle weight is very close to this expected value and

thus this design criteria is met.

More important than the final vehicle weight value is whether or not this weight allows

sufficient flight time to map an agricultural field. Therefore, tests were conducted during

operation to gauge an average flight time over a series of flights and battery levels. The

predicted flight time goal was 10 minutes, and the fully loaded octocopter was able to

achieve this goal in several successive tests. Although this 10 minutes flight time is a

decrease from the advertised 12-13 minutes of the empty octocopter, these tests

confirm that the added weight of the components does not affect the flight time of the

octocopter to the extent that it hinders mapping capability.

It is important to note that the 12-13 minute advertised flight time is an approximate

number, as actual results depend up factors such as weather, aerodynamics, and overall

piloting ability. Therefore, an additional test not conducted, but that would be

appropriate to lend more insight into flight time, would be to conduct drone inspections

without the precision docking components. Such a configuration would result in over

300g of weight being removed from the octocopter, leading to an increased flight time.

Flight time data could then be compared between flights with and without the

 93

automated docking components in order to more precisely determine the flight time

penalty for seeking a fully autonomous system versus a system with a manual operator

responsible for takeoff and landing.

The octocopter weight directly affects flight time, which directly affects the coverage

capability of the octocopter. In order to determine how much land area UAVino is able

to map per unit time, multiple tests were conducted at Aver Family Vineyards in which

the drone repeatedly flew the same pre-defined flight path comprising an area of

approximately 0.5 acres. This test flight path is shown in Figure 7.1. The flight

parameters, such as altitude and lateral speed, were adjusted until viable multispectral

data was obtained, and then measurements were taken to see how many times the

drone could fly the path on a single battery. This information was then used to extract

coverage area per unit time.

Figure 7.1: Mission planning software depicting flight path.

With the octocopter flying the path shown in Figure 7.1 at a height of 20m and a lateral

speed of 1.75m/s, the drone was able to cover the 0.5 acre area flight path twice with

each battery. These two flights, lasting nearly 10 minutes in total, indicate that UAVino

has a coverage capability of approximately 1 acre per flight battery, which equates to 6

acres per hour, assuming continuous flight. Adjusting for recharging using the docking

station, which takes approximately 60 minutes to recharge a battery that has been

 94

flown for 10 minutes, UAVino is able to cover approximately .85 acres per hour.

Although this number is lower than desired, it is sufficient to handle small-scale

vineyards and allow for practical and timely vineyard crop inspection.

Another factor determining how much land area UAVino can cover is the time it takes to

recharge the octocopter’s battery. The goal is to minimize charging time while still

remaining safe, as doing so increases the time that the drone is able to spend mapping.

To quantify the performance of the docking station’s recharging capability, tests were

conducted to compare the charging rate of the station versus conventional recharging

methods.

For the docking station test, recharging was facilitated via the station’s housed

commercial charger and power was supplied from the system’s 12V marine battery. The

octocopter was placed on the station’s charging contacts and the charge sequence was

initiated. The conventional charging method test was facilitated by the same

commercial charger, but plugged into a standard wall outlet as the power source and

the battery was connected directly to the charger rather than via the station’s contact

plates. Figure 7.2 shows charge curves depicting both of these tests.

Figure 7.2: Charge curves for docking station and standard commercial charger.

 95

As Figure 7.2 shows, it is clear that the two charge curves are nearly identical and

therefore the recharging performance of the docking station is as good as conventional

recharging methods. Additionally, the docking station is able to recharge a battery in

under 90 minutes, which is a goal set forth in the Product Design Specification. Although

battery recharge time does depend upon the level of discharge within the battery, both

of these tests were conducted with batteries that had been flown for approximately 10

minutes with the octocopter, which is close to the flight time that the system will

actually experience during operation.

The automated landing system is not yet functional and therefore it is not possible to

conduct tests regarding this subsystem as a whole. However, it is known that at least a

2.5 inch accuracy is required for the octocopter to successfully dock with the station.

Therefore, lab tests were conducted to compare the landing algorithm’s estimated

lateral error against an actual known value at varying altitudes. Figure 7.3 shows these

test results, which ultimately prove whether vision recognition is capable of meeting the

2.5 inch requirement.

Figure 7.3: Lab tests showing the error between the landing algorithms’ estimated
lateral distance and the true lateral distance versus altitude.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250

M
ax

 D
if

fe
re

n
ce

(i
n

)

Altitude (in)

Y Error

X Error

 96

Figure 7.3 shows that UAVino’s vision recognition algorithm is able to deliver the

required accuracy at all altitudes. Furthermore, the system becomes more precise as the

octocopter descends towards the station, thus proving that this system is a promising

method of allowing the octocopter to achieve automated landing.

To ensure that all of the subsystems of UAVino are able to work in harmony and

eventually allow for fully autonomous crop monitoring, it is crucial to conduct tests to

measure their performance. Testing was primarily conducted on vehicle weight, system

coverage capability, docking station recharging, and vision recognition algorithms. These

key subsystems have their respective challenges, but each is critical to the full

integration and autonomous functionality of UAVino.

Ultimately, tests for octocopter weight, docking station charging, and vision recognition

proved satisfactory. While the coverage capability of .85 acres per hour is lower than

desired, it is sufficient for a proof-of-concept system geared for small-scale vineyards.

The major limitation to coverage capability is the recharging time of the octocopter, as it

must spend nearly six times as long recharging as it does flying. Therefore,

improvements to this this system are the most likely way to increase coverage capability

in the future.

 97

UAVino’s allocated budget comprises of a $3,000 grant from the Santa Clara University

School of Engineering and a $750 grant from the Silicon Valley Section of the American

Society for Mechanical Engineers. Additional support for UAVino comes from the Santa

Clara University Robotics Systems Laboratory, which has supplied the team with the

base 3D Robotics X8 octocopter and a variety of tools to work with. The multispectral

camera and Edison microcontroller boards have been donated by Intel Corporation.

UAVino is grateful to these sponsors for their support of the project.

Table 8.1 shows the cost of UAVino’s major components. More detailed budget analysis

is available in Appendix F.

Table 8.1: General UAVino cost breakdown

Component Cost Notes

Multispectral Imaging Camera $2,500 Donated by Intel

Octocopter with Telemetry $1,500 Provided by SCU RSL

Octocopter Hardware and Electronics $450 Intel Edison Donated by Intel

Docking Station Hardware $300

Docking Station Electronics $600

Travel $350

Bench testing Electronics $350

Total $6,050

 98

Over the past few years, a dramatic increase in the capabilities of small aerial drones has

created a potential for their use in a wide variety of commercial applications. In an

attempt to enter this market, UAVino seeks to utilize octocopters in the field of vineyard

inspection to monitor overall crop health using multispectral and infrared imaging

technology. Long term, UAVino is envisioned as a multi-year, interdisciplinary project

involving both the Santa Clara University Robotics Systems Laboratory and local wineries

in order to develop a fully functional drone agricultural inspection service.

The goal of UAVino is to develop a fully autonomous drone agricultural inspection

system that is offered by the Santa Clara University Robotics System Laboratory as a

service to local wineries and other agricultural operations. In general, the system

focuses on automating crop inspection by taking aerial imagery of a vineyard,

conducting post-processing, and outputting an easily interpreted map of the vineyard’s

overall health. The project’s key innovation is an auto-docking system that allows the

drone to automatically return to its launch point and recharge in order to extend

mission duration.

Aside from drones, the primary methods for obtaining crop health include sensor

networks and satellite imagery, both of which are lacking. For example, sensor networks

are generally unavailable to small scale agricultural operations due to their complexity

and upfront cost. Instead, owners of small wineries typically resort to manual inspection

techniques, which are labor intensive and far from ideal. Similarly, satellite imagery is

problematic due to the need to contract with an external imaging service as well as

weather and data resolution limitations.

 99

Although agricultural-use drones are a quickly growing field and a number of companies

are looking to offer systems similar to UAVino, there is no company that currently offers

a fully autonomous, easy-to-deploy contract service to determine crop health.

Therefore, UAVino stands to offer a unique service to the agricultural industry.

UAVino is imagined as a crop inspection service that students in the Santa Clara

University Robotics Systems Laboratory will be able to provide to local farmers on an as-

needed basis. Via this service-type implementation, individual farmers will not need to

invest significant capital to purchase UAVino outright or spend time training and

familiarizing themselves with how to operate complicated technology. Instead,

interested farmers will simply request the service when needed and benefit from the

crop health information produced.

From a monetary standpoint, the goal of UAVino is to have the system break even so

that it can be self-sustaining and continue to serve as a base for future educational

projects associated with the Robotics Systems Laboratory. Any profit gained from

conducting agricultural inspection would likely be reinvested into the system for future

improvements. Thus, the goal is not to make the system profitable to the extent that it

could be implemented as a full scale business with several employees, although such an

implementation might be possible. Instead, the objective is to create a solid educational

platform that pays for itself and allows future Santa Clara University students to gain an

understanding of business fundamentals and experience real customer interactions.

The key technological innovation developed in UAVino is a portable station that the

octocopter automatically returns to, docks with, and then recharges from in order to

extend mission duration. The need for this station arises from the relatively low flight

time of octocopter vehicles, which is typically under 15 minutes per flight battery.

Therefore, inspecting large amounts of acreage requires multiple flights in order to

 100

complete. Typically, this limitation has required the vehicle operator to manually

replace or recharge the flight battery multiple times in order to continue a mission.

However, UAVino’s docking station mitigates this need, as it greatly increases system

autonomy and reduces operator workload.

UAVino’s target customers are small California vineyard owners who operate with

relatively low excess capital therefore are on a tight budget. Currently, these vineyards

are experiencing added difficulty due to high water costs associated with California’s

drought. If an inexpensive and easy-to-use drone crop monitoring system was

developed, it could greatly help these vintners by providing information regarding

where and how to most efficiently water their fields.

UAVino has already established a working relationship with one vineyard near Gilroy, CA

in order to conduct testing. There are over 25 local vineyards in the Santa Clara Valley

alone, and some of these vineyards have already expressed interest in UAVino should

the system become fully-functional. Additionally, given that Napa and Sonoma Valleys,

which are the epicenter of winemaking in California, are both within reasonable driving

distance from Santa Clara University, the potential market for UAVino is vast.

Because the goal of UAVino is to maintain a close and personal relationship with

customers in order to provide them with meaningful data while using their vineyards as

a means of testing an educational project, any project expansion would likely occur

slowly and by word of mouth amongst local vineyard owners. No extensive advertising

or marketing campaigns are anticipated in widening the project.

Given the relatively simple service that the Robotics Systems Laboratory would offer to

local vineyards and the fact that a small number of docking stations and octocopters

would actually need to be built and modified, manufacturing could likely take place in-

 101

house by students to minimize overhead. The required components to build a drone and

docking station pair are listed in Table 9.1.

Table 9.1: General UAVino cost breakdown

Component Cost

Multispectral Imaging Camera $2,500

Octocopter with Telemetry $1,500

Octocopter Hardware and Electronics $450

Docking Station Hardware $300

Docking Station Electronics $600

Travel $350

Bench testing Electronics $350

Total $6,050

Although the upfront cost of $6,050 per drone and docking station pair is relatively

significant, very little maintenance is required long-term and therefore the system

would become profitable after recouping the initial investment. Given that UAVino will

remain a project that rotates on annually, collecting sufficient funds to replace the

system on an annual basis would make it sustainable from an educational standpoint.

Testing revealed that UAVino can map approximately 10 acres in one day. Given that

most small scale vineyards are less than 20 acres, it is reasonable to assume that UAVino

could map one vineyard per week, given that testing would typically need to occur on

weekends to minimize impact on student academic workloads. Due to Santa Clara

University’s 10-week quarter system, assuming one vineyard mapping trip per week

would equate to 30 trips per year. Therefore, garnering $200 from each trip would yield

an annual income of $6,000, which would be sufficient to purchase a new drone and

docking station combination each year.

After a sufficient clientele is built up and more data is collected on how many acres each

vineyard is on average, the $200 per visit could better be broken down into an hourly or

per acre rate.

 102

As UAVino was developed, several important ethical considerations were held

paramount. These same considerations must be adhered to as the project progresses in

future years. First, intellectual property is of importance due to the rapidly growing field

of unmanned aerial vehicles. Both entrepreneurs and well-established companies are

working to develop technology for drones, and therefore it is UAVino’s responsibility to

thoroughly research and understand what possible ideas and solutions are claimed as

intellectual property by these parties. Because so much energy is currently being

directed towards drones for agricultural research, special attention must be paid to

these types of projects in particular to ensure that UAVino’s design solutions do not

inadvertently infringe upon any approved patents. Beyond intellectual property, it is

also the responsibility of UAVino to analyze the research conducted by other universities

and institutions to ensure that the team does not accidentally claim any previously

published findings regarding agricultural drones as unique to UAVino.

Another major ethical consideration is to ensure that the finished system delivers

accurate and reliable information. The real-world customers who contract with UAVino

trust that the information provided regarding crop health is accurate. Supplying these

customers with false data, even if done so inadvertently, could lead to significant crop

and profit loss. Therefore, the system must be subject to rigorous testing to verify that it

works as intended and is able to provide the best possible data.

Thirdly, it is the responsibility of UAVino operators to keep in mind the privacy of others

while the drone is flying. Although agricultural fields are somewhat remote, the camera

equipment on board the octocopter could capture individuals who do not wish to be

photographed. Care must be taken to ensure that the system is operated in such a

manner that respects the privacy of others by censoring parts of images that

 103

accidentally depict individuals. Invasion of privacy is currently one of the biggest

criticisms of personal drones, so giving special consideration to this seemingly remote

possibility is critical, as failing to do so might negatively contribute to the drone privacy

argument.

Provided that these considerations are carefully monitored during all phases of the

project, UAVino can be an ethically justified system given the positive impact it stands to

make on the agricultural industry. California is currently in a state of severe drought and

small scale farmers are hard pressed to reduce water usage. UAVino has the potential to

help these individuals more accurately monitor the condition of their crops and

therefore better cope with this challenge. Because of the major benefits UAVino can

bring to an industry in need and the ability to mitigate the ethical risks associated with

doing so, the project is justified in its cause.

The United States Federal Aviation Administration (FAA) is beginning to implement a

series of drone regulations to help integrate this new technology into the National

Airspace System. While the exact details of these regulations might seem vague in some

areas and excessive in others, they are in place to keep the general public safe.

Therefore, UAVino developers and operators must become familiar with these laws in

order to prevent an inadvertent violation and ensure that all activity is conducted

legally. Ensuring continued compliance with these regulations is of particular

importance to future teams who wish to take UAVino’s design further, as government

regulations are expected to change significantly over the next few years as unmanned

aerial drones continue to be safely introduced into the nation’s airspace.

Aside from FAA restrictions, future UAVino applications might involve flights at Santa

Clara University, meaning that University-specific guidelines must also be read and

understood. Therefore, it is necessary for the team to communicate and coordinate with

the University’s Facilities and Health and Safety departments to ensure that operations

are conducted in compliance with all relevant parties.

 104

Safety is a primary concern for UAVino, as drone malfunctions have the very real

possibility of damaging property or causing injury, particularly if the vehicle is airborne

when a failure occurs. To minimize the risk of such an incident, detailed flight

procedures have been developed and are strictly adhered to during operation. Although

it is not possible to completely eliminate the safety risks of operating an aerial drone,

ensuring that the same checklist is followed in the same way during every deployment

reduces the possibility of human error causing an accident.

Beyond following checklists and procedures, it is the team’s responsibility to use

common sense when operating and conduct thorough testing to ensure that the system

is safe to the fullest extent possible. To operate UAVino knowing that a potential safety

flaw exists would be a serious ethical violation, as customers must be able to trust that

the system can be used without seriously risking injury. To see physical or monetary

harm result from the manifestation of such a flaw would be truly awful, especially if

something could have been done to prevent the issue.

Given that the centerpiece of UAVino, the octocopter, is based upon a commercially

available drone vehicle with fairly straightforward modifications, the system is easily

manufactured should it ever need to be massed produced or should other parties be

interested in replicating it for academic use. All system components, including the

docking station, were manufactured using basic machine shop tools; no professional

knowledge or manufacturing was required.

Although it was not an overarching goal during manufacturing, design effort was put

into using off-the-shelf parts in order to reduce cost and make the system easily

modifiable for future system developers. Combined, the modified octocopter, without

the multispectral camera, and the docking station cost less than $2,500. Therefore, the

system is an extremely affordable base platform that can be extended for other aerial

 105

applications. For example, UAVino could easily be applied towards heat mapping or

videography applications with the implementation of the proper camera system.

Overall, UAVino is a straightforward, easy-to-manufacture system that embodies the

current open source movement of personal use drones so that others can build and

improve upon its design in the future.

With regards to social impact, one major goal of UAVino is to help vintners reduce water

usage through more efficient practices. Vineyard health and crop yield are highly

dependent upon the amount of water stress within the crops and a significant amount

of the growing effort goes towards achieving a correct water stress balance.

Within California, water usage is a focal point due to severe levels of drought, and the

agriculture industry has been targeted the state’s largest water consumer. Overall,

California’s agricultural industry accounts for 80% of the state’s water consumption, yet

only 2% of its economic activity [21]. Therefore, a huge gap exists between the impact

agriculture causes on the state’s water budget versus the benefit it brings in terms of

money. A particularly interesting fact surrounding this statistic, however, is that if

California’s agricultural businesses could reduce water usage by just 12.5%, it would

allow for statewide residential and industrial use to increase by 50% [22]. This

considerable increase in availability for water in residential and industrial applications

would be able to relieve significant stress associated with California’s current drought.

Given how a relatively small reduction in agricultural water usage can yield a significant

amount of relief on the wider population, a method of judging UAVino’s potential is

whether or not the system might be able to provide a 12.5% reduction in water usage

on a small, per vineyard basis. If so, this reduction could prove significant if similar

agricultural drone solutions were implemented on a larger scale statewide. Although a

12.5% reduction is ambitious, analysis shows that UAVino and similar systems can make

 106

a meaningful impact, perhaps 6%, by helping with efficient watering methods called

irrigation scheduling and regulated deficit irrigation.

A recent study by the Natural Resources Defense Council looked at potential efficient

watering techniques, defined as “measures that reduce water use without affecting the

benefits water provides” [23]. Overall, the article discussed three methods which, when

combined, could reduce water usage by 5.6-6.6 million acre-feet per year, or 17-22% if

implemented statewide in California. Of the methods discussed, UAVino could greatly

aid with two: irrigation scheduling and regulated deficit irrigation. Irrigation scheduling

relies on careful planning involving local weather predictions, soil water content, and

plant water requirements to most efficiently water crops. Regulated deficit irrigation is a

technique applied towards crops which have periods in which they are drought

resistant, such as almonds, pistachios, and wine grapes. The idea with regulated deficit

irrigation is that during drought resistant periods, these crops can undergo a significant

reduction in watering without causing detrimental effects to their health. If these two

practices were adopted on a large scale, they could account for a savings of up to 4.8

million acre-feet during a dry year in California. Based on the statistics cited in the

Natural Resources Defense Council study, employment of these methods could amount

to water savings of roughly 15%, even more than the 12.5% required to cause a 50%

relief in residential and industrial usage.

Both irrigation scheduling and regulated deficit irrigation involve closely monitoring crop

growth in order to conserve water. One article on the subject stresses that “Regardless

of the type of irrigation program used, there is a need to develop scientific irrigation

scheduling procedures. In particular, if [deficit irrigation] is used, monitoring the soil or

plant water status is even more critical for minimizing risk, given the uncertainties in

determining the exact water requirements” [24]. The remote data which can be

provided by drones, such as multispectral and infrared imaging, could be particularly

helpful in this process and is cited by the same article as a method of monitoring that

could help with the application of deficit irrigation. Ultimately, multispectral crop

 107

monitoring systems such as UAVino can give an indication of crop vigor, which has a

direct correlation to plant water stress. Providing farmers with this information could

help them better schedule their irrigation and provide them with a higher level of

comfort in adopting these reduced watering practices. Although the presence of remote

monitoring systems such as UAVino may not lead to widespread adoption of these

practices, if the increased information provided could even result in a 30% adoption of

irrigation scheduling and deficit irrigation, it would result in a 5% agricultural water

savings.

As part of satisfying the Santa Clara University Core Arts and Humanities requirements,

members of UAVino have contributed original drawings, sketches, and CAD models to

the project. Table 10.1 lists a sampling at least one such artifact, and a reference to it,

for each of the team members.

Table 10.1: Arts requirement

Team Member Description Location

Matthew Belesiu Landing algorithm error and movement types.
Figure 5.8
and Figure
5.10.

Nathan Carlson
Recharging sketches and docking station CAD
drawings.

Figure D.4
and Appendix
H.

Aaron Chung Docking station and octocopter circuit diagrams.
Figure 3.16
and Figure
4.11.

Phillip Coyle Recharging and docking concept sketches.
Figure D.1
and Figure
D.3.

Kirby Linvill
Landing algorithm logic flow and movement selection
process.

Figure 5.6
and Figure
5.11.

Megan Peekema Recharging and docking concept sketches.
Figure D.2
and Figure
D.5.

 108

The long term goal of UAVino is to create and offer a fully autonomous drone crop

inspection system to small-scale, local vineyards. Although that goal has not yet been

met, significant progress has been made during this project’s first year, which was

geared towards creating a proof-of-concept. Currently, the system consists of an

octocopter vehicle that has been modified with guidance rings for precision docking and

equipped with a multispectral imaging camera to take specialized photographs.

Automated landing has not yet been implemented, but significant progress has been

made, including the creation of a computer vision landing algorithm that identifies the

docking station and navigates the vehicle towards it. Despite the lack of precision

docking, the octocopter has collected numerous multispectral images, allowing for the

creation of post processing methods that output an easily interpreted data product

depicting crop health. Additionally, UAVino consists of a docking station that has

demonstrated capability of recharging the octocopter’s flight battery to extend mission

duration and range. In the future, wireless communication between this station and the

octocopter will be tested in order to allow for completely autonomous recharging. Once

functional, UAVino will be a complete system that seamlessly integrates with current

vineyard practices, meaning that it is a cost effective solution with minimal

infrastructure required for deployment.

By working in conjunction with a real-world customer to develop the UAVino, the end

result is one that is practical and has been demonstrated in actual application. Through

this type of verification, the system stands to make a real-world impact on the

agricultural industry. More generally, UAVino contributes to the growing field of

commercial drone applications by pushing the boundaries of autonomous drone

operations. Through its demonstration of precise automated landing capability, the

 109

project will hopefully stand as an inspiration for others to develop and expand similar

drone technology.

Although the system is not yet complete, a solid foundation has been laid for future

teams to continue developing UAVino and ultimately reach fully autonomous mapping

capability. Undoubtedly, the system which is most difficult to develop and still requires

the largest amount of work to complete is autonomous docking. This year, the team

made solid progress towards using a vision camera and microprocessor to recognize and

navigate the drone towards the docking station, although actual autonomous landing

was not completed. Future teams will inherit the basic capability of controlling the

drone via this vision recognition algorithm, but will need to further develop consistent

and more accurate forms of judging the drone’s location in relation to the docking

station. A potential solution to this problem may include augmenting the current vision

system with infrared beacons or modulated lights in order to decrease false positive

identifications. Such a system may also help with yaw orientation control to align the

octocopter’s hoops with the docking station cones, which has yet to be implemented.

Additionally, more work is required to create and then tune a proportional-integral-

derivative control system to more accurately fly the octocopter with the vision guided

algorithm and reduce phenomena such as overshoot when attempting to center over

the station. Future teams will also need to implement the flight management algorithm

that controls overarching drone decisions, such as at what point the drone must stop

mapping and return to the docking station to recharge, as well as what sections of the

desired fields still require mapping during a mission. Finally, although framework for

wireless communication between the drone and docking station has been implemented,

this system still requires testing and debugging. Ultimately, these features are the key

elements that must be solved before a fully autonomous system is possible.

A great strength of UAVino is that the system is highly modular and therefore future

teams can augment the initial functionality to provide better crop health data. For

 110

example, a straightforward expansion is to collect infrared data in addition to

multispectral data, which would allow for direct measurement of soil and plant water

content in addition to overall health. The combination of these two monitoring

techniques could give vineyard owners a much more powerful picture of their field’s

health and provide insight on how to more effectively use water resources. Infrared

imagery would also open the doors to entirely different monitoring systems, such as

inspecting buildings for sources of heat loss.

UAVino is just a small subset of a much broader and more exciting movement towards

implementing drones for commercial applications. Therefore, this system is likely to be

presented with new opportunities as others work to develop new capabilities and make

drones more adept at completing complex tasks. In the future, UAVino could evolve into

a complex and comprehensive crop monitoring system that uses multiple drones

interacting on a real-time basis in order to more efficiently map larger areas of crops.

Overall, the future of drones and, with it, the future of UAVino, is a thrilling and ever-

expanding horizon that should be closely watched in the years to come.

 111

[1] Warwick, Graham. "Sky Patrol." Aviation Week & Space Technology 174.32 (2012):

55. Web. 29 Nov. 2014.

[2] Marks, Paul. "Drone Backlash Begins." New Scientist 217.2906 (2013): 24. Web. 29

Nov. 2014.

[3] Dorr, Les Jr. and Alison Duquette. “U.S. Transportation Secretary Foxx Announces

FAA Exemptions for Commercial UAS Movie and TV Production.” Federal

Aviation Administration, 25 Sep. 2014. Web. 29 Nov. 2014.

[4] “Amazon Prime Air.” Amazon.com, n.d. Web. 8 Dec. 2014.

[5] Hallewas, Claire. “TU Delft's ambulance drone drastically increases chances of

survival of cardiac arrest patients.” Delft University of Technology, 27 Oct. 2014.

Web. 8 Dec. 2014.

[6] Goodyer, Jason. "Drone Rangers." Engineering & Technology (17509637) 8.5 (2013):

60-61. Web. 7 Jan. 2015.

[7] Marks, Paul. "Flying Conservationist." New Scientist 220.2938 (2013): 19. Web. 7 Jan.

2015.

[8] Dillow, Clay. “What is the drone industry really worth?” Fortune, 12 Mar. 2013. Web.

8 Dec. 2014.

[9] Carlson, Toby N., Gillies, Robert R., and Eileen M. Perry. "A Method to Make Use of

Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil

Water Content and Fractional Vegetation Cover." Remote Sensing Reviews 9.1-2

(1994): 161-73. Web 8 Dec. 2014.

 112

[10] Carlson, Toby. "An Overview of the "Triangle Method" for Estimating Surface

Evapotranspiration and Soil Moisture from Satellite Imagery." Sensors 7.8 (2007):

1612-1629. Web 8 Dec. 2014.

[11] Vadivambal, R., and Digvir S. Jayas. "Applications of Thermal Imaging in Agriculture

and Food Industry—A Review." Food and Bioprocess Technology 4.2 (2011): 186-

99. Web 8 Dec. 2014.

[12] Stoll, M., Schultz, H.R., and Berkelmann-Loehnertz, B. “Exploring the sensitivity of

thermal imaging for Plasmopara viticola pathogen detection in grapevines under

different water status.” Functional Plant Biology 35.4 (2008): 281–288. Web. 9

Jan. 2015.

[13] Johnson, L., Herwitz, S., Dunagan, S., Lobitz, B., Sullivan, D., and Slye, R. "Collection

of Ultra High Spatial and Spectral Resolution Image Data over California

Vineyards with a Small UAV." International Symposium on Remote Sensing of

Environment. 2003.

[14] Johnson, L., Roczen, D., Youkhana, S., Nemani, R., and D. Bosch. "Mapping Vineyard

Leaf Area with Multispectral Satellite Imagery." Computers & Electronics in

Agriculture 38.1 (2003): 33. Web. 10 Jan. 2015.

[15] Lacar, F., Lewis, M., and Grierson, I. "Use of Hyperspectral Imagery for Mapping

Grape Varieties in the Barossa Valley, South Australia." Institute of Electrical and

Electronics Engineers. 6 (2001). Web. 18 Nov. 2014.

[16] Ashish, D., McClendon, R., and Hoogenboom, G. "Land-Use Classification of

Multispectral Aerial Images Using Artificial Neural Networks." International

Journal of Remote Sensing: 30.8 (2009). Web. 18 Nov. 2014.

[17] Cropio. Web. 18 Nov. 2014.

[18] Precision Hawk. 1 Jan. 2014. Web. 18 Nov. 2014.

 113

[19] 3D Robotics. Web. 18 Nov. 2014.

[20] Bernstein, Lenny. "California Drought Hits Farmers Hardest." The Washington Post.

N.p., 9 Feb. 2014. Web. 17 Nov. 2014.

[21] "The Drying of the West." The Economist. The Economist Newspaper, 22 Feb. 2014.

Web. 19 Apr. 2015.

[22] Tabarrok, Alex. "The Economics of the California Water Shortage." Marginal

Revolution. 19 Mar. 2015. Web. 19 Apr. 2015.

[23] Cooley, Heather. "Agricultural Water Conservation and Efficiency Potential in

California." Natural Resources Defense Council (2014).

[24] Fereres, Elias and Marı´a Auxiliadora Soriano. "Deficit Irrigation for Reducing

Agricultural Water Use." Journal of Experimental Botany 58.2 (2007): 147-59.

Web. 21 Apr. 2015.

 114

Revision: 5

Date: 26 May 2015

Datum: 3D Robotics X8 Octocopter

Table A.1: Product Design Specification

Elements / Requirements Units Datum Target / Range

System Cost Dollars 5,400 8,000

Octocopter Weight Pounds 5.4 7

Flight Time Minutes 12-13 10

Recharging Time Minutes 60 90

Setup Time Minutes 20

Octocopter Digital Storage Gigabytes 128

Multispectral Camera Battery Life Minutes 120

Vision Camera Battery Life Minutes 120

System Mapping Capability Acres/Hour 2

Thermal Range Degrees Fahrenheit 32-104 30-105

Vision Algorithm Accuracy Inches 2.5

Octocopter Size Inches 24”x24”x8” 30”x24”x12”

Docking Station Size Inches 36”x24”x60”

 115

Below are the interview questions asked to Professor Christopher Kitts.

 Because you envision UAVino as a possible multi-year project, what is the

ultimate long term value or goal of it? Is the idea simply to make money by

providing a service or product to vineyard owners, or is the return on investment

instead in the networking opportunities that might stem from developing

UAVino and gaining name recognition as a knowledgeable drone developer?

 Is the ultimate end result of UAVino a product that you would ultimately sell to

vineyard owners to make a profit, or would you instead create a service using

that product and then rely on vineyard owners to contract with you when they

need vineyards inspected? Whether it's a product you sell, a service you provide,

or a combination, what's the motivation behind your answer?

 As a stakeholder or investor, what are the primary concerns you have that might

result in UAVino being unsuccessful. Among these potential concerns, is there

any fear that UAVino might be 'white noise' given that the number of companies

seeking to make a profit via aerial mapping drones is growing rapidly?

 Given that aerial mapping drones are aimed at a fairly niche market, how much

of that market would UAVino need to capture in order to be successful? If it will

ultimately be a product that you sell, how many units would need to be sold to

justify development costs? If it will be a service that you provide, how many

customers would you need in order to make it justifiable as a business venture?

Below are the interview questions asked to Thomas Adamek.

 Do you see this product being more viable as a service which someone can rent,

or something to be bought and operated by the customer. Why?

 116

 What do you think is the potential long term value of this project as it may be a

multi-year project? What do you think future groups could expand upon?

 Does this project have any elements that stand out to you as fulfilling a unique

need in the field? If yes—what? If no—do you think it has potential to develop

in that direction?

 Is there anything we could do as a group to make a transition of this project to a

future team easier for you?

 Do you have any concerns that may keep this project form being successful?

Below are the interview questions asked to Lindsay Kalkbrenner.

 How can our project help on campus?

 How often do you do field inspections on campus?

 What are the safety restrictions and regulations for flying a UAV on campus?

 What types of data do you want collected?

 Would you be interested in working exclusively with future senior design teams?

 If we were selling our product, would you like to purchase the system for Santa

Clara University and be responsible for performing inspections, or would you

rather the Robotics System Laboratory provide field inspections as a service and

then contract this service as needed?

Below are the interview questions asked to John Aver of Aver Family Vineyards.

 What are the current methods you use for vineyard inspection?

 How often do you inspect the vineyard?

 Conceptually, what types of data would be useful to you in order to augment

current inspection techniques and help determine vineyard health information?

 Would you be willing to buy and then train yourself on the system we develop,

or would you prefer to have it available as a service provided by a company that

you could then call in on a regular basis?

 In general, what is the yearly cycle of your vineyard?

 117

Figure C.1: Prioritizing matrix of system requirements.

 118

Figure C.2: Ranking of enclosure design concepts using decision matrix.

 119

Figure C.3: Ranking of positioning method concepts using decision matrix.

 120

Figure C.4: Ranking of charging method concepts using decision matrix.

 121

Figure D.1: Charging concept design using contact plates. Drawing by Phillip Coyle.

 122

Figure D.2: Charging concept design using induction. Drawing by Megan Peekema.

 123

Figure D.3: Docking concept using cones for guidance. Drawing by Phillip Coyle.

 124

Figure D.4: Docking concept using magnet for guidance. Drawing by Nathan Carlson.

 125

Figure D.5: Docking concept using gravity for guidance. Drawing by Megan Peekema.

 126

 127

 128

Expenses and donations for UAVino and any relevant notes regarding specific items are

listed in the tables below.

Table F.1: UAVino Donations

Component Cost Notes

Multispectral Imaging Camera $2,500 Donated by Intel

Octocopter with Telemetry $1,500 Provided by SCU RSL

Edison Microcontroller $99 Intel Edison Donated by Intel

Santa Clara University School of Engineering $3000

ASME Silicon Valley Section $750

Total $7,849

Table F.2: UAVino Expenses

Component Cost Notes

Multispectral Imaging Camera $2,500 Donated by Intel

Octocopter with Telemetry $1,500 Provided by SCU RSL

Octocopter Hardware and Electronics $450 Intel Edison Donated by Intel

Docking Station Hardware $300

Docking Station Electronics $600

Travel $350

Bench testing Electronics $350

Total $6,050

 129

Table G.1: Inputs

Docking Station: External power source used for charging

Octocopter: GPS position data used by the vehicle’s autopilot

Flight plan coordinates from mission planner

Rate of image capture

Height from radar altimeter

Battery Power

Visual positioning data from onboard camera

Ground Control Station: Coordinates for mission planner in order to control flight
path of octocopter

Image Data

Battery Power

Table G.2: Outputs

Docking Station: Power to lithium polymer battery on octocpoter

Passive positioning assistance for octocpter as it lands

Octocopter: Thermal/multispectral images

Ground Control Station: Normalized Vegetation index

Water content data

Flight path for octocopter generated by algorithm based on
waypoint data

Table G.3: Constraints

Docking Station: Charging rate of chosen charging method

Cannot interfere with propellers of octocopter as it is landing

Needs to be able to be carried by two people easily

Contacts must be protected so station is electrically
safe/isolated

Must provide level surface on which the octocopter can land

Octocopter: Weight of payload octocopter is able to carry

Limited accuracy of positioning based on GPS coordinates

Flight time based on battery life

Memory for data storage of images

Ground Control Station: Processing Power of system used

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

 166

Ground Sample Distance (GSD) is the ground distance represented by a pixel in an

image. It is roughly linear with respect to the distance between the camera and the

ground, which is approximated by the octocopter’s altitude. The GSD is calculated by

multiplying the relative altitude by a constant, 𝑐, where

𝑐 =
Pixel Size

Focal Length

Reliable details for the pixel size and focal length of the Mobius vision camera were not

readily available. Therefore, this constant was determined experimentally by setting the

camera at a known fixed distance away from a target, measuring the true distance from

the target to a secondary marker, and then measuring the pixel distance from the target

to the marker. The constant is calculated as

𝑐 =
True Distance

(Pixel Distance)(Camera distance)

The pixel distance was calculated using OpenCV to detect the target using a Haar

Cascade classifier and measuring the distance between the center of the detected target

and the marker. The measurement was repeated for four different positions of the

target at each distance and was repeated ten times for each position. The target was

positioned:

 Above the center of the camera frame

 Below the center of the camera frame

 To the left of the center of the camera frame

 To the right of the center of the camera frame

The calculated constant for each position and camera distance is shown in Table I.1

 167

Table I.1: Average GSD Constant values for each camera distance and position

Camera Distance
(inches)

Target Above
Center

Target Below
Center

Target Left of
Center

Target Right of
Center

72 0.00206214 0.002142313 0.002374061 0.002518516
108 0.002048804 0.002132202 0.002300974 0.002465543
144 0.002179538 0.000930099 0.000749191 0.00240162
180 0.002145062 0.002242788 0.002283587 0.002437097
216 0.002083795 0.002336668 0.002235786 0.002481399

The constants calculated for the Y positions (above and below) and for the X positions

(left and right) resulted in different GSD constants. This is likely due to the Mobius’

fisheye lens, which causes some distortion. The variance in measurements grew as

camera distance increased, so the final GSD x and GSD y constant was calculated using

only the measurements at distances 72 inches and 108 inches. The final constants are

𝐺𝑆𝐷𝑥 = 0.002414773

𝐺𝑆𝐷𝑦 = 0.002096365

 168

Figure J.1: Intel Edison datasheet (Page 1)

 169

Figure J.2: Intel Edison datasheet (Page 2)

 170

Figure J.3: Pixhawk datasheet (Page 1)

 171

Figure J.4: Pixhawk datasheet (Page 2)

 172

Figure J.5: Mobius datasheet (Page 1)

 173

Figure J.6: Mobius datasheet (Page 2)

 174

Figure J.7: Revolextrix CellPro Multi4 datasheet

 175

Figure J.8: Raspberry Pi datasheet

 176

Figure J.9: Netis AC1200 Wireless Adaptor datasheet (Page 1).

 177

Figure J.10: Netis AC1200 Wireless Adaptor datasheet (Page 2).

 178

Figure J.11: Tetracam ADC Micro datasheet.

 179

CellproMulti4.py

#!/usr/bin/env python

import time

import RPi.GPIO as gpio

relayPin = 11

class CellproMulti4:

 def __init__(self, communication_object,charger_number=0):

 self.communication_object = communication_object

 self.charger_number = charger_number

 gpio.setmode(gpio.BOARD)

 print 'Setting up pin %d' % self.pin

 gpio.setup(relayPin, gpio.OUT)

 gpio.output(relayPin, gpio.LOW)

 def SelP(self, preset_num):

 to_send_string = "SelP" + chr(preset_num)

 crc =

self.communication_object.sendStringAndFetchCRC(to_send_string)

 #TODO: calculate CRC

 return True

 def Sel(self, command_letter):

 if(command_letter in ['B']):

 to_send_string = "Sel" + command_letter

 crc =

self.communication_object.sendStringAndFetchCRC(to_send_string)

 return(crc == 0x05DC)

 #print self.communication_object.sendStringAndFetchBytes(

to_send_string, 149)

 else:

 raise Exception("Invalid Command Letter %s" %

command_letter)

 def start_charge(self):

 status = self.get_status()

 if(status["mode"] == 0):

 self.Sel('B') # go to confirm battery phase

 time.sleep(2)

 status = self.get_status()

 time.sleep(2)

 if(status["mode"] == 0): # ensure no error

 180

 self.Sel('B') # start charging battery

 gpio.output(relayPin, gpio.HIGH)

 return True

 def stop(self):

 status = self.get_status()

 if(status["mode"] in [6,7,8,9,11]):

 if(self.Sel('B')):

 time.sleep(1)

 status = self.get_status()

 if(status["mode"] == 0):

 gpio.output(relayPin, gpio.HIGH)

 return True

 return False

 def choose_preset(self, number):

 if(type(number) == type(0) and number >= 0 and number <= 24):

 return self.SelP(number)

 else:

 raise Exception("Invalid preset %d" % number)

 def isError(self, status=None):

 if not status:

 status = self.get_status()

 return status["mode"] == 99

 def clear_error(self, status=None):

 if not status:

 status = self.get_status()

 if(status["mode"] == 99):

 if(self.Sel('B')):

 time.sleep(1)

 status = self.get_status()

 if(status["mode"] == 0):

 return True

 return False

 def isCharging(self, status=None):

 if not status:

 status = self.get_status()

 return True if status["mode"] in [6, 7] else False

 def get_status(self):

 ret = {}

 raw_byte_array =

self.communication_object.sendStringAndFetchBytes(

"Ram"+chr(self.charger_number), 149)

 print raw_byte_array

 print len(raw_byte_array)

 #print raw_byte_array.index(20)

 def word(first_index):

 return

(raw_byte_array[first_index]<<8)+raw_byte_array[first_index+1]

 def dword(first_index):

 return (word(first_index)<<16)+word(first_index+1)

 181

 def sword(first_index):

 ret = word(first_index)

 if(ret >= 32768):

 ret = ret - 65536

 return ret

 ret["mode"] = raw_byte_array[-13]

 ret["loaded_preset"] = raw_byte_array[84]

 ret["version"] = raw_byte_array[0]/100.0

 #TODO: cell voltages calculate incorrectly

 #ret["cell_voltages"] = [x * 5.12 / 65536 for x in

[word(i*2+1) for i in range(0,4)]]

 self.last_status = ret

 return ret

 182

CellproMulti4_Serial.py

#!/usr/bin/env python

#runs on

#inspired by https://github.com/coryrc/battery-cycler

import serial,time

class CellproMulti4_Single_Serial:

 def __init__(self, serialPortFilename):

 self.filename = serialPortFilename

 self.open()

 def sendStringAndFetchCRC(self, some_string):

 result = self.sendStringAndFetchBytes(some_string,2)

 return (result[0]<<8)+result[1]

 def sendStringAndFetchBytes(self, some_string, number_bytes):

 try:

 self.usbSerialInterface.flushInput()

 self.usbSerialInterface.write(some_string)

 self.usbSerialInterface.flush()

 s_ret =

self.usbSerialInterface.read(number_bytes+len(some_string))

 except OSError, e:

 print "Serial port no longer exists"

 self.usbSerialInterface.close()

 self.open()

 return self.sendStringAndFetchBytes(some_string,

number_bytes)

 retList = [ord(x) for x in s_ret]

 for i in range(0, len(some_string)):

 del retList[0]

 return retList

 def open(self):

 attemptNum = 1

 while(attemptNum <= 10):

 try:

 self.usbSerialInterface = serial.Serial(self.filename,

19200, timeout=.2)

 return

 except serial.serialutil.SerialException, e:

 print "Open serial error: " + str(e)

 time.sleep(2)

 attemptNum += 1

 exit(1)

 def close(self):

 self.usbSerialInterface.close()

 183

ChargeRoutine.py

import CellproMulti4

from CellproMulti4_Serial import CellproMulti4_Single_Serial

import time

if __name__ == "__main__":

 communication = CellproMulti4_Single_Serial("/dev/ttyUSB0")

 chargerController = CellproMulti4.CellproMulti4(communication)

 chargerController.clear_error()

 print chargerController.get_status()

 chargerController.start_charge()

 print chargerController.get_status()

 #get status once, no need to constantly keep getting more statuses

 status = chargerController.get_status()

 while chargerController.isCharging(status):

 if chargerController.isError(status):

 chargerController.stop()

 chargerController.clear_error()

 exit(1) #failsafe state, return with error status 1,

overlying script will handle error

 time.sleep(10)

 status = chargerController.get_status()

 exit(0)

 184

DetectObject.py

"""

Contains methods used to detect and display targets using OpenCV

"""

__author__ = 'Kirby'

import cv2

import cv

Returns detected targets

def detect_targets(frame, cascade):

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 cv2.equalizeHist(gray, gray)

 targets = cascade.detectMultiScale(gray, 1.1, 2,

cv.CV_HAAR_SCALE_IMAGE, (30, 30))

 return targets

Displays an image with boxes around the detected targets

def display_targets(frame, targets):

 for (x, y, w, h) in targets:

 # Draws a bounding rectangle around the object and a small

rectangle at the center of the object

 cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 8)

 cv2.rectangle(frame, (x + w/2 - 5, y + h/2 - 5), (x + w/2 + 5,

y + h/2 + 5), (0,255,0), 8)

 cv2.imshow("Detected Objects", frame)

def detect_and_display_targets(frame, cascade):

 targets = detect_targets(frame, cascade)

 display_targets(frame, targets)

Overlays boxes around the detected targets and returns the image

def overlay_targets(frame, targets):

 for (x, y, w, h) in targets:

 # Draws a bounding rectangle around the object and a small

rectangle at the center of the object

 cv2.rectangle(frame, (x, y), (x+w, y+h), (255,0,255), 8)

 cv2.rectangle(frame, (x + w/2 - 5, y + h/2 - 5), (x + w/2 + 5,

y + h/2 + 5), (255,0,255), 8)

 return frame

saves an image to the given file

def save_image(frame, save_file):

 return cv2.imwrite(save_file, frame)

 185

GenerateDirections.py

"""

Contains methods that generate the directions needed to center a camera

over a target

"""

__author__ = 'Kirby'

import Command as cmd

Speed in cm

TODO: figure out good default speeds (maybe tiered system, close and

not close)

default_speed = 20

divide the altitude by this each time until close to the ground

TODO: figure out both this factor and the altitude threshold

altitude_descent_factor = 2

Values used to check to see if the object is "close enough" to

the center of the target (in pixels)

TODO: figure out the desirable center buffer

center_width = 80

center_height = 80

center_width_buffer = center_width / 2

center_height_buffer = center_height / 2

def get_next_command(obj_center_x, obj_center_y, pic_width, pic_height,

current_altitude, GSD_constant_x, GSD_constant_y):

 """

 Generates directions needed to center a camera over a target

 This method generates directions for a mobile camera

 and stationary target. A stationary target is not required but the

camera must be mobile. If instead you want to

 center a target using a stationary camera, the horizontal (xy)

directions generated by this function should be

 reversed.

 :param obj_center_x:

 :param obj_center_y:

 :param pic_width:

 :param pic_height:

 :param current_altitude:

 :param GSD_constant_x:

 :param GSD_constant_y:

 """

 dist_per_pixel_x = GSD_constant_x * current_altitude

 dist_per_pixel_y = GSD_constant_y * current_altitude

 pic_center_x = pic_width / 2

 pic_center_y = pic_height / 2

 x_dist = 0

 y_dist = 0

 z_dist = 0

 186

 # TODO: add in code to orient the drone by rotating if needed

 # Calculate x direction movement (+x is right, -x is left)

 if abs(obj_center_x - pic_center_x) > center_width_buffer:

 x_dist = (obj_center_x - pic_center_x) * dist_per_pixel_x

 # Calculate y direction movement (image y direction which means 0

is at the top)

 if abs(obj_center_y - pic_center_y) > center_height_buffer:

 y_dist = (obj_center_y - pic_center_y) * dist_per_pixel_y

 # Move in the z direction

 if x_dist == 0 and y_dist == 0:

 # TODO: add in positive z direction for the sake of completion

 z_dist = (current_altitude -

current_altitude/altitude_descent_factor)

 next_command = cmd.Command(cmd.CommandKind.Z_TRANSLATION,

frame=cmd.RefFrame.BODY,

 vector=cmd.Vector(x=0, y=0,

z=z_dist), speed=default_speed)

 # Move in the xy plane

 else:

 next_command = cmd.Command(cmd.CommandKind.XY_TRANSLATION,

frame=cmd.RefFrame.BODY,

 vector=cmd.Vector(x=x_dist,

y=y_dist, z=0), speed=default_speed)

 return next_command

 187

c_constructs.py

"""

Contains the class definitions needed to emulate some useful C

constructs

Currently only enums are implemented

"""

__author__ = 'Kirby'

class Enum(set):

 """

 Helper class to mimic C's enumerations

 """

 def __getattr__(self, name):

 if name in self:

 return name

 raise AttributeError('Invalid enumeration value')

 def __setattr__(self, name, value):

 raise AttributeError('Cannot change the value of an

enumeration')

 def __delattr__(self, item):

 raise AttributeError('Cannot delete the value of an

enumeration')

 188

Command.py

"""

Implements the Command class which contains a command to send to a

copter

"""

__author__ = 'Kirby'

from math import radians, cos, sin, pi

from numpy import array, dot

from c_constructs import Enum

For the **body frame**:

+X points **towards the right** side of the copter

+Y points **towards the back** side of the copter

+Z points **up away** from the copter

Rotations are yaw rotations

For the **NED frame**:

+X points **North**

+Y points **East**

+Z points **Down** towards the Earth

Rotations are yaw rotations

Note: at yaw = pitch = roll = 0:

N = -Y

E = X

D = -Z

#: Enumeration that indicates the type of command

CommandKind = Enum(["XY_TRANSLATION", "Z_TRANSLATION", "YAW_ROTATION"])

RefFrame should properly be an enumeration

RefFrame represents the frame of reference of the command

See the comments above CommandKind for explanations of each frame of

reference

#: Enumeration that indicates the frame of reference of the command

RefFrame = Enum(["BODY", "NED"])

class Vector():

 """

 Helper class that contains x, y, and z coordinates for a 3-

dimensional vector

 189

 :param x: x component vector

 :param y: y component vector

 :param z: z component vector

 """

 def __init__(self, x=0, y=0, z=0):

 self._x = x

 self._y = y

 self._z = z

 @property

 def x(self):

 """

 Get x component

 :return: x

 """

 return self._x

 @property

 def y(self):

 """

 Get y component

 :return: y

 """

 return self._y

 @property

 def z(self):

 """

 Get z component

 :return: z

 """

 return self._z

 def __str__(self):

 return "X: {:.2f} \tY: {:.2f} \tZ: {:.2f}".format(self._x,

self._y, self._z)

class Command():

 """

 Class containing a command to send to a copter

 Creates either a translation command, in which case vector should

be set, or a rotation command, in which case

 degrees should be set

 :param command_kind: kind of movement, either a translation or

rotation an attribute of an instance of CommandKind

 :param frame: frame of reference, an attribute of an instance of

Frame

 :param vector: desired movement vector, an instance of Vector,

command_kind must be a translation

 :param degrees: desired yaw rotation in degrees, command_kind must

 190

be a rotation

 :param speed: desired speed in cm/s

 """

 def __init__(self, command_kind, frame, vector=None, degrees=None,

speed=10):

 if command_kind in ([CommandKind.XY_TRANSLATION,

CommandKind.Z_TRANSLATION, CommandKind.YAW_ROTATION]):

 if frame in ([RefFrame.BODY, RefFrame.NED]):

 self._command_kind = command_kind

 self._frame = frame

 self._speed = speed

 if vector is not None and command_kind not in

([CommandKind.XY_TRANSLATION, CommandKind.Z_TRANSLATION]):

 raise ValueError('Error: Tried to pass in a vector

to a non-translational command kind')

 self._vector = vector

 if degrees is not None and command_kind not in

([CommandKind.YAW_ROTATION]):

 raise ValueError('Error: Tried to pass in a degree

rotation to a non-rotational command kind')

 self._degrees = degrees

 else:

 raise ValueError('Invalid reference frame passed in')

 else:

 raise ValueError('Invalid command kind passed in')

 # Set translation parameters

 def set_translation_params(self, vector=Vector(0,0,0), speed=10):

 """

 Set vector and speed, command_kind must be a translation

 :param vector: desired movement vector, an instance of Vector

 :param speed: desired speed in cm/s

 """

 if self._command_kind in ([CommandKind.XY_TRANSLATION,

CommandKind.Z_TRANSLATION]):

 self._vector = vector

 self._speed = speed

 else:

 raise ValueError('Translation params function called for

invalid or non-translation command kind: '

 + self._command_kind)

 def set_rotation_params(self, degrees=0, speed=10):

 """

 Set degrees to rotate

 :param degrees: desired degrees of yaw rotation

 :param speed: desired speed in cm/s

 """

 if self._command_kind in [CommandKind.YAW_ROTATION]:

 191

 self._degrees = degrees

 self._speed = speed

 else:

 raise ValueError('Rotation params function called for

invalid or non-rotation command kind: '

 + self._command_kind)

 @property

 def command_kind(self):

 """

 Get Command Kind

 :return: command kind

 """

 return self._command_kind

 @property

 def frame(self):

 """

 Get Frame of Reference

 :return: frame of reference

 """

 return self._frame

 @property

 def get_vector(self):

 """

 Get the move Vector

 :return: vector

 """

 if self._command_kind not in ([CommandKind.XY_TRANSLATION,

CommandKind.Z_TRANSLATION]):

 raise ValueError('distance value is a translation parameter

but has been requested by invalid or '

 'non-translation command kind: ' +

self._command_kind)

 return self._vector

 @property

 def degrees(self):

 """

 Get the rotation degrees

 :return: degrees

 """

 if self._command_kind in [CommandKind.YAW_ROTATION]:

 raise ValueError('degrees value is a rotation parameter but

has been requested by invalid or '

 'non-rotation command_kind: ' +

self._command_kind)

 return self._degrees

 @property

 def speed(self):

 """

 192

 Get the move/rotation speed

 :return: speed

 """

 return self._speed

 def transform_body_to_NED_yaw_only(self, yawd):

 """

 Transforms Commands in the camera (body) frame to coordinates

in the NED frame but assumes that roll and pitch

 are 0. The transform_body_to_NED_yaw_pitch_roll method should

be used instead since the yaw_pitch_roll method

 is more accurate and the speed difference is negligible

 :param yawd: current yaw in degrees

 """

 if self._frame == RefFrame.NED:

 # Already in NED reference frame

 return

 elif self._frame == RefFrame.BODY:

 # convert from degrees to radians

 yawr = radians(yawd)

 self._vector = Vector(self._vector.x * -sin(yawr) -

self._vector.y * cos(yawr),

 self._vector.x * cos(yawr) -

self._vector.y * sin(yawr),

 -self._vector.z)

 self._frame = RefFrame.NED

 else:

 raise ValueError('Transformation from given reference frame

to NED reference frame not supported')

 def transform_body_to_NED_yaw_pitch_roll(self, yawd, pitchd,

rolld):

 """

 Transforms a Command in the camera (body) frame to a Command in

the NED frame. Use this method

 instead of transform_body_to_NED_yaw_only since this method is

more accurate. Though this method is

 theoretically slower, the difference is negligible in practice

 :param yawd: current yaw in degrees

 :param pitchd: current pitch in degrees

 :param rolld: current roll in degrees

 """

 if self._frame == RefFrame.NED:

 # Already in NED reference frame

 return

 elif self._frame == RefFrame.BODY:

 # convert from degrees to radians

 y = radians(yawd)

 p = radians(pitchd)

 r= radians(rolld)

 193

 # The full transformation matrix, incorporates the yaw,

pitch, and roll matrices all multiplied together

 # This method is the fastest

 ypr_mat = array([[cos(y)*cos(p), cos(y)*sin(r)*sin(p)-

cos(r)*sin(y), sin(r)*sin(y)+cos(r)*cos(y)*sin(p)],

 [sin(y)*cos(p),

cos(r)*cos(y)+sin(r)*sin(y)*sin(p), cos(r)*sin(y)*sin(p)-

cos(y)*sin(r)],

 [-sin(p), cos(p)*sin(r),

cos(r)*cos(p)]])

 # directions: N = -y, E = x, D = -z

 in_vec = ([[-self._vector.y],

 [self._vector.x],

 [-self._vector.z]])

 out_vec = dot(ypr_mat, in_vec)

 # out_vec is a 3x1 vector so N = [0][0], E = [1][0], D =

[2][0]

 self._vector = Vector(out_vec[0][0],

 out_vec[1][0],

 out_vec[2][0])

 self._frame = RefFrame.NED

 else:

 raise ValueError('Transformation from' + self._frame +

'reference frame to NED reference frame not supported')

 def transform_body_to_NED_yaw_pitch_roll_in_rads(self, yawr,

pitchr, rollr):

 """

 Transforms a Command in the camera (body) frame to a Command in

the NED frame. Use this method

 instead of transform_body_to_NED_yaw_only since this method is

more accurate. Though this method is

 theoretically slower, the difference is negligible in practice

 :param yawr: current yaw in radians

 :param pitchr: current pitch in radians

 :param rollr: current roll in radians

 """

 yawd = yawr * 180 / pi

 pitchd = pitchr * 180 / pi

 rolld = rollr * 180 / pi

 self.transform_body_to_NED_yaw_pitch_roll(yawd, pitchd, rolld)

 def __str__(self):

 return_string = "Command Kind: \t" + self._command_kind

 return_string += "\nFrame of Reference: \t" + self._frame

 if self._command_kind in [CommandKind.YAW_ROTATION]:

 194

 return_string += "\nDegrees: \t" + str(self._degrees)

 else:

 return_string += "\n" + str(self._vector)

 return_string += "\nSpeed: \t" + str(self._speed)

 return return_string

 195

CommandToMAVLink.py

"""

Contains methods that convert directions to actionable MAVLink commands

for use with droneAPI

"""

__author__ = 'Kirby'

from numpy import multiply

from numpy.linalg import norm

from time import time, sleep

from geopy.distance import vincenty

from droneapi.lib import VehicleMode

from pymavlink import mavutil

from constants import command_wait

def change_mode(new_mode, vehicle, api):

 """

 Repeatedly attempts to change the mode of the vehicle until the

desired mode is achieved.

 :param new_mode: Name of the mode to switch to

 :param vehicle: A droneAPI vehicle object whose mode is to be

changed

 :param api: A droneAPI instance that can be monitored for exit

requests

 """

 while vehicle.mode.name != VehicleMode(new_mode).name and not

api.exit:

 vehicle.mode = VehicleMode(new_mode)

 vehicle.flush()

 sleep(command_wait)

def move_to(N, E, D, vehicle, api):

 """

 Relative move. Switches to GUIDED mode to make the move and

switches back to LOITER mode after the move is

 completed.

 :param N: North movement component in m

 :param E: East movement component in m

 :param D: Down movement component in m

 :param vehicle: A droneAPI vehicle object to be moved

 :param api: A droneAPI instance that can be monitored for exit

requests

 """

 move_method = "VEL"

 change_mode("GUIDED", vehicle, api)

 if move_method == "VEL":

 # TODO: Dynamically pass in velocity. It's currently set to 0.5

 vel_move(N, E, D, 0.5, vehicle, api)

 196

 elif move_method == "POS":

 pos_move(N, E, D, vehicle, api)

 else:

 change_mode("LOITER", vehicle, api)

 raise ValueError("Move method must be either velocity (VEL) or

position (POS) based.")

 # IMPORTANT NOTE: SWITCHING TO LOITER MODE SETS THE VELOCITY BACK

TO ZERO

 # set mode to loiter mode

 change_mode("LOITER", vehicle, api)

def vel_move(N, E, D, speed, vehicle, api):

 """

 Move accomplished by setting the velocity. This detection method

relies on using time to figure out how far it's

 moved since the GPS we are using is too inaccurate for precise

movements (our GPS' precision is ~ 1.5 m).

 :param N: North movement component in m

 :param E: East movement component in m

 :param D: Down movement component in m

 :param speed: The movement speed

 :param vehicle: A droneAPI vehicle object to be moved

 :param api: A droneAPI instance that can be monitored for exit

requests

 """

 # Calculate the component velocity vector magnitudes using the

overall speed and the position vector

 # The equation used is: vel_vector =

(speed/pos_vector_magnitude)*pos_vector

 pos_vector = [[N], [E], [D]]

 pos_vector_magnitude = norm(pos_vector)

 if pos_vector_magnitude == 0:

 # All components are zero

 vel_vector = pos_vector

 else:

 vel_vector = multiply(speed/pos_vector_magnitude, pos_vector)

 # Movement speed capped at 1 m/s

 velocity_x = vel_vector[0][0] # North direction, in m/s

 velocity_y = vel_vector[1][0] # East direction, in m/s

 velocity_z = vel_vector[2][0] # Down direction, in m/s

 # Update delay in seconds. (This is how frequently the program

checks to see if it should have travelled an

 # appropriate distance)

 update_delay = 0.01

 # Predicted travel time, distance (as the crow flies) / speed

 travel_time = norm(pos_vector) / speed

 msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, #

time_boot_ms (not used)

 197

 0, 0, #

target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0x01C7, #

type_mask (ignore pos | ignore acc)

 0, 0, 0, # x,

y, z positions (not used)

 velocity_x,

velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x,

y, z acceleration (not used)

 0, 0) #

yaw, yaw_rate (not used)

 # send command to vehicle

 vehicle.send_mavlink(msg)

 vehicle.flush()

 # Initial time

 t0 = time()

 while time() - t0 < travel_time and not api.exit:

 sleep(update_delay)

def pos_move(N, E, D, vehicle, api):

 """

 Move accomplished by setting the velocity. Currently this method

waits to complete until the velocity reaches close

 to 0.

 :param N: North movement component in m

 :param E: East movement component in m

 :param D: Down movement component in m

 :param vehicle: A droneAPI vehicle object to be moved

 :param api: A droneAPI instance that can be monitored for exit

requests

 """

 # The home location appears to be stored as the 0th waypoint

 home_location = vehicle.commands[0]

 geo_home = (home_location.lat, home_location.long)

 # Get distance from home

 Ndist = vincenty((vehicle.location.lat, home_location.long),

geo_home).meters

 Edist = vincenty((home_location.lat, vehicle.location.long),

geo_home).meters

 # Correct for the sign of the distance

 if vehicle.location.lat < home_location.lat:

 Ndist = -Ndist

 if vehicle.location.long < home_location.long:

 198

 Edist = -Edist

 Nloc = Ndist + N

 Eloc = Edist + E

 msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, #

time_boot_ms (not used)

 0, 0, #

target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0x01F8, #

type_mask (ignore vel | ignore acc)

 Nloc,

Eloc, D, # x, y, z positions in m

 0, 0, 0, #

x, y, z velocity in m/s (not used)

 0, 0, 0, #

x, y, z acceleration (not used)

 0, 0) #

yaw, yaw_rate (not used)

 # send command to vehicle

 vehicle.send_mavlink(msg)

 vehicle.flush()

 # TODO: Put a conditional check here. I can think of three

possibilities:

 # 1) Use distance calculated via gps

 # 2) Use distance calculated via velocity and time

 # 3) Wait until velocity is about 0

 while vehicle.velocity.vx > 0.01 and vehicle.velocity.vy > 0.01 and

vehicle.velocity.vz > 0.01 and not api.exit:

 sleep(1)

 199

LogFlight.py

"""

Contains methods used to log important flight information along with

images from the landing stage

"""

__author__ = 'Kirby'

import datetime, errno, subprocess

from os.path import join, dirname

from os import makedirs

from cv2 import rectangle

import droneapi.lib

from configure_path import SYSTEM

from DetectObject import save_image, overlay_targets

from EdisonSDCardSetup import setup_sd_card

Creates a csv file with the specified header in the specified

location of the form log_CURRENT-DATETIME.csv

Opens the file in append mode

Returns the log_file

def setup_log_file():

 if SYSTEM == "Edison":

 sd_directory = setup_sd_card()

 log_folder = join(sd_directory, "Logs")

 elif SYSTEM == "Kirby's Mac":

 log_folder =

"/Users/Kirby/Desktop/Senior_Design/SVN/sw/branches/UAVino-

1.0.0/UAVino_Python_Code/UAV_Logging/Logs"

 else:

 raise "Error: no SYSTEM set or unsupported SYSTEM: " + SYSTEM

 # create a new folder for each specific log entry

 log_folder = join(log_folder, datetime.datetime.now().strftime("%Y-

%m-%dT%H_%M_%S_%f"))

 try:

 makedirs(log_folder, 0755)

 except OSError as exception:

 if exception.errno != errno.EEXIST:

 raise

 # double checks that the log folder now exists

 if subprocess.call(["ls", log_folder]):

 raise "Error: Log folder not found at this location: " +

log_folder

 else:

 print ("Logging to " + str(log_folder))

 csv_header = "Targets Detected, Command Kind, Frame of Reference, X

distance, Y distance, Z distance, Degrees, Speed, " \

 "Latitude, Longitude, Altitude (meters), Altitude

Relative?, Pitch (radians), Roll (radians), " \

 "Yaw (radians), Ground Speed (m/s), Flight Mode,

Time, Date"

 200

 filename = "log_" + datetime.datetime.now().strftime("%Y-%m-

%dT%H_%M_%S_%f") + ".csv"

 file_path = join(log_folder, filename)

 log_file = open(file_path, "a+")

 log_file.write(csv_header + "\n")

 return log_file

def close_log_file(log_file):

 log_file.close()

def log_flight_info(log_file, drone, targets_detected=None,

command=None):

 drone.flush()

 # get value of variables to log

 if command is not None:

 command_kind = command.command_kind

 ref_frame = command.frame

 x_dist = command.get_vector.x

 y_dist = command.get_vector.y

 z_dist = command.get_vector.z

 degrees = command.degrees

 speed = command.speed

 else:

 command_kind = ""

 ref_frame = ""

 x_dist = ""

 y_dist = ""

 z_dist = ""

 degrees = ""

 speed = ""

 latitude = drone.location.lat

 longitude = drone.location.lon

 altitude = drone.location.alt

 relative = drone.location.is_relative

 pitch = drone.attitude.pitch

 roll = drone.attitude.roll

 yaw = drone.attitude.yaw

 ground_speed = drone.groundspeed

 flight_mode = drone.mode.name

 time = datetime.datetime.now().time()

 date = datetime.date.today()

 # This is what controls the order of the csv file, make sure it

matches up with the csv_header string

 log_vars = [targets_detected, command_kind, ref_frame, x_dist,

y_dist, z_dist, degrees, speed,

 latitude, longitude, altitude, relative, pitch, roll,

yaw, ground_speed, flight_mode, time, date]

 for var in log_vars:

 log_file.write(str(var))

 201

 if var != log_vars[-1]:

 log_file.write(", ")

 else:

 log_file.write("\n")

img_suffix should be a unique identifier (0, 1, 2, ... is easiest)

logs an unmodified image and calls log_flight_info

def log_landing_stage(log_file, drone, image, targets_detected,

command, img_suffix):

 image_file_name = "landing_img_" + str(img_suffix) + ".jpg"

 image_file = join(dirname(log_file.name), image_file_name)

 save_image(image, image_file)

 # save flight details for context

 log_flight_info(log_file, drone, targets_detected, command)

log two images, one with the object drawn on and one without, then

calls log_flight_info

These images are used for debugging by a human, and further training

a classifier, respectively

def log_landing_stage_for_training(log_file, drone, image,

detected_targets, command, img_suffix):

 image_file_name = "landing_img_" + str(img_suffix) + ".jpg"

 image_file = join(dirname(log_file.name), image_file_name)

 save_image(image, image_file)

 overlaid_image = overlay_targets(image, detected_targets)

 pic_size = overlaid_image.shape

 pic_height = pic_size[0]

 pic_width = pic_size[1]

 rectangle(overlaid_image, (int(pic_width/2 - 40), int(pic_height/2

- 40)),

 (int(pic_width/2 + 40), int(pic_height/2 + 40)), (255, 0,

0), 8)

 image_file_name = "overlaid_landing_img_" + str(img_suffix) +

".jpg"

 image_file = join(dirname(log_file.name), image_file_name)

 save_image(overlaid_image, image_file)

 log_flight_info(log_file, drone, len(detected_targets), command)

 202

failsafes.py

"""

Contains failsafes and safety checks used for UAVino

Note: This functionality has not been fully tested. An error was

occurring when trying to use these methods.

I don't recall what the fix is but it should be easy

"""

__author__ = 'Kirby'

import droneapi.lib

import sys

Monitored Attributes

TODO: Consider adding channels 1-4 (roll, pitch, yaw, thrust) to

monitoring

monitored_attributes = ['mode']

def start_external_command_monitor(vehicle):

 """

 Stops the script whenever the drone receives a command from a

different external source.

 This method prevents multiple control sources from giving the drone

commands at the same time. This function is

 primarily needed to accommodate RC commands and commands from

another GCS.

 :param vehicle: The droneAPI vehicle instance to be monitored

 """

 for attr in monitored_attributes:

 vehicle.add_attribute_observer(attr, lambda: sys.exit("Exiting:

Detected external input from source other than "

"DroneKit"))

def stop_external_command_monitor(vehicle):

 """

 Removes the attribute_observers set by

start_external_command_monitor

 :param vehicle: The droneAPI vehicle instance being monitored

 """

 for attr in monitored_attributes:

 vehicle.remove_attribute_observer(attr, lambda:

sys.exit("Exiting: Detected external input from source other "

 "than

DroneKit"))

 203

pixel_distance_conversions.py

"""

Contains a method that can be used to estimate the distance away a

picture was taken from given the dimensions

of an object and the size in pixels of the object in the picture

"""

__author__ = 'Kirby'

def pix_to_alt(object_width, object_height, detected_width,

detected_height, GSD_constant_x, GSD_constant_y):

 """

 Estimates the altitude a picture was taken from given the width and

height of an object in both ground units

 (such as cm, m, feet, etc.) and in pixels using the Ground Sample

Distance constant for an image.

 :param object_width: The width of the object to be detected in

ground units (such as cm, m, feet, etc.)

 :param object_height: The height of the object to be detected in

ground units

 :param detected_width: The detected width of the object in pixels

 :param detected_height: The detected height of the object in pixels

 :param GSD_constant: The Ground Sample Distance constant for the

image

 :return: average estimated altitude

 """

 dist_per_pixel_x = object_width/detected_width

 dist_per_pixel_y = object_height/detected_height

 alt_est_x = dist_per_pixel_x / GSD_constant_x

 alt_est_y = dist_per_pixel_y / GSD_constant_y

 alt = (alt_est_x + alt_est_y) / 2

 return alt

 204

centering_demo.py

"""

Attempts to center a drone over the docking station

Currently this demo only centers the drone horizontally. It makes no

vertical movements or yaw rotation

"""

__author__ = 'Kirby'

import sys

sys.path.append("/home/root/UAVino_Python_Code")

import cv

import cv2

from time import sleep

from os.path import join, dirname

import droneapi.lib

from pymavlink import mavutil

from CommandToMAVLink import move_to

from DetectObject import detect_targets, overlay_targets

from GenerateDirections import get_next_command

from UAV_Logging.LogFlight import setup_log_file, close_log_file,

log_landing_stage, log_landing_stage_for_training

from failsafes import start_external_command_monitor,

stop_external_command_monitor

from constants import GSD_constant_x, GSD_constant_y

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

Monitor commands from another control source (RC or another GCS) in

order to prevent commands from multiple control

sources at the same time

#start_external_command_monitor(vehicle)

target_cascade_name = "docking5.xml"

load classifier

target_cascade = cv2.CascadeClassifier(target_cascade_name)

if not target_cascade:

 raise RuntimeError('Could not load cascade classifier: ' +

target_cascade_name)

read the video stream

capture = cv2.VideoCapture(-1)

if not capture.isOpened():

 raise RuntimeError("Could not open video stream")

pic_width = capture.get(cv.CV_CAP_PROP_FRAME_WIDTH)

pic_height = capture.get(cv.CV_CAP_PROP_FRAME_HEIGHT)

logfile = setup_log_file()

 205

counter = 0

while not api.exit:

 ret_val, frame = capture.read()

 current_altitude = vehicle.location.alt

 current_attitude = vehicle.attitude

 if ret_val:

 detected_targets = detect_targets(frame, target_cascade)

 # Currently we handle multiple targets being detected by simply

not generating a command

 if len(detected_targets) == 1:

 for (x, y, w, h) in detected_targets:

 next_command = get_next_command(x+w/2, y+h/2,

pic_width, pic_height, current_altitude,

 GSD_constant_x,

GSD_constant_y)

 log_landing_stage_for_training(logfile, vehicle, frame,

detected_targets, next_command, counter)

 # Transform the command to the NED frame so it can

guide the octo, and send it to the octo

next_command.transform_body_to_NED_yaw_pitch_roll_in_rads(current_attit

ude.yaw,

current_attitude.pitch,

current_attitude.roll)

 move_to(next_command.get_vector.x,

next_command.get_vector.y, 0, vehicle, api)

 else:

 log_landing_stage_for_training(logfile, vehicle, frame,

detected_targets, None, counter)

 else:

 print "No captured frame"

 log_landing_stage_for_training(logfile, vehicle, frame, None,

None, counter)

 counter += 1

 print "Completed one move"

 #sleep(0.5)

close_log_file(logfile)

#stop_external_command_monitor(vehicle)

 206

capture_images.py

"""

Continuously writes images captured from a camera to a file using

OpenCV

This technique is useful for gathering positive and negative training

images to train or improve a classifier

"""

__author__ = 'Kirby'

from cv2 import VideoCapture

from os.path import join, dirname

from time import sleep

from DetectObject import save_image

from UAV_Logging.LogFlight import setup_log_file

if __name__ == "__main__":

 capture = VideoCapture()

 capture.open(-1)

 if capture:

 log_file = setup_log_file()

 count = 0

 while True:

 ret, frame = capture.read()

 if ret:

 # save with a 6-digit suffix

 image_file_name = "landing_img_" +

"{0:0>6}".format(str(count)) + ".jpg"

 count += 1

 image_file = join(dirname(log_file.name),

image_file_name)

 save_image(frame, image_file)

 else:

 print "No captured frame"

 sleep(0.5)

 207

landing_algorithm_demo.py

"""

Runs a demo of the vision recognition used for UAVino.

This program is meant to be run on a laptop or desktop. It displays the

detected targets (using a Haar Cascade

classifier) and the center of the camera frame. This demo is great for

presentations and demoing the vision

capabilities.

"""

__author__ = 'Kirby'

import cv

import cv2

from DetectObject import detect_targets, display_targets

from GenerateDirections import get_next_command

from pixel_distance_conversions import pix_to_alt

from constants import GSD_constant_x, GSD_constant_y

if __name__ == '__main__':

 target_cascade_name = "docking5.xml"

 target_width = 15.5 # in cm

 target_height = 17 # in cm

 # TODO: Calculate altitude

 current_altitude = 130

 # load classifier

 target_cascade = cv2.CascadeClassifier(target_cascade_name)

 if not target_cascade:

 raise RuntimeError('Could not load cascade classifier: ' +

target_cascade_name)

 # read the video stream

 capture = cv2.VideoCapture(-1)

 pic_width = capture.get(cv.CV_CAP_PROP_FRAME_WIDTH)

 pic_height = capture.get(cv.CV_CAP_PROP_FRAME_HEIGHT)

 if capture:

 while True:

 ret_val, frame = capture.read()

 if ret_val:

 detected_targets = detect_targets(frame,

target_cascade)

 for (x, y, w, h) in detected_targets:

 # Get estimated altitude from detected object

 current_altitude = pix_to_alt(target_width,

target_height, w, h, GSD_constant_x, GSD_constant_y)

 print "Estimated Altitude: " +

str(current_altitude)

 208

 next_command = get_next_command(x+w/2, y+h/2,

pic_width, pic_height, current_altitude,

 GSD_constant_x,

GSD_constant_y)

 print next_command

 print "\n\n"

 # mark the center of the image for easy visualization

when testing

 cv2.rectangle(frame, (int(pic_width/2 - 40),

int(pic_height/2 - 40)), (int(pic_width/2 + 40),

 int(pic_height/2 + 40)), (255,0,0), 8)

 display_targets(frame, detected_targets)

 else:

 print "No captured frame"

 c = cv2.waitKey(0)

 if c == 'c':

 exit(0)

 209

test_takeoff.py

"""

Causes the vehicle to takeoff in the simulator. Should not be used

outside of a simulator since it overrides

the RC channel input

"""

__author__ = 'Kirby'

import datetime, os

import droneapi.lib

from time import sleep

from pymavlink import mavutil

print "IMPORTANT: DO NOT RUN THIS PROGRAM UNLESS USING THE SIMULATOR.

IT OVERRIDES THE RC CHANNEL INPUT."

SIMULATING = True

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

vehicle.mode = droneapi.lib.VehicleMode("STABILIZE")

if SIMULATING:

 # This command should only be run in a simulator since it overrides

RC channel 3

 vehicle.channel_override = {"3" : vehicle.parameters['RC3_MIN']}

 vehicle.flush()

 sleep(1)

vehicle.armed = True

vehicle.flush()

while not vehicle.armed and not api.exit:

 print "Waiting for arming..."

 sleep(1)

vehicle.mode = droneapi.lib.VehicleMode("GUIDED")

vehicle.flush()

print "Taking off!"

if SIMULATING:

 # This command should only be run in a simulator since it overrides

RC channel 3

 vehicle.channel_override = {"3" : vehicle.parameters['RC3_TRIM']}

 vehicle.flush()

alt = 50

vehicle.commands.takeoff(alt) # Take off to 20m height

while (vehicle.location.alt < (alt-.1) or vehicle.location.alt >

(alt+.1)) and not api.exit:

 sleep(1)

 vehicle.flush()

vehicle.mode = droneapi.lib.VehicleMode("LOITER")

vehicle.flush()

 210

 211

test_alt_descent.py

"""

Causes the vehicle to change altitude

Simply changing the altitude ended up causing the octocopter to also

change its yaw. To avoid this, use the

SET_POSITION_LOCAL_NED Mavlink message instead

"""

__author__ = 'Kirby'

import datetime, os

import droneapi.lib

from time import sleep

from pymavlink import mavutil

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

TODO: CHECK TO SEE IF THIS LOOP INTERFERES WITH CONTROL VIA THE

MISSION PLANNER, RADIO CONTROL, OR FAIL-SAFES

while vehicle.mode.name != droneapi.lib.VehicleMode("GUIDED").name:

 vehicle.mode = droneapi.lib.VehicleMode("GUIDED")

 vehicle.flush()

 print "Switching modes"

 sleep(1)

target_location = vehicle.location

start_location_alt = target_location.alt # used for debugging

if vehicle.location.alt > 10.0:

 target_location.alt = target_location.alt + 5

 commands.goto(target_location)

 vehicle.flush()

 print "Moved up five meters from " + str(start_location_alt)

 print "to " + str(target_location)

 print "Vehicle now at " + str(vehicle.location)

elif 2.0 < vehicle.location.alt <= 10.0:

 target_location.alt = target_location.alt + 5

 commands.goto(target_location)

 vehicle.flush()

 print "Moved up five meters from " + str(start_location_alt)

 print "to " + str(target_location)

 print "Vehicle now at " + str(vehicle.location)

else:

 print "Altitude at less than a meter, too close to ground"

 exit(0)

while (vehicle.location.alt - target_location.alt < -.1 or

vehicle.location.alt - target_location.alt > .1) \

 and not api.exit:

 print "Ascending"

 sleep(1)

 212

vehicle.mode = droneapi.lib.VehicleMode("LOITER")

vehicle.flush()

 213

test_alt_descent_v2.py

"""

Causes the vehicle to change altitude without changing yaw

"""

__author__ = 'Kirby'

import datetime, os

import droneapi.lib

from time import sleep

from pymavlink import mavutil

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

while vehicle.mode.name != droneapi.lib.VehicleMode("GUIDED").name:

 vehicle.mode = droneapi.lib.VehicleMode("GUIDED")

 vehicle.flush()

 print "Switching modes"

 sleep(1)

target_alt = vehicle.location.alt

start_alt = target_alt # used for debugging

def change_alt(h):

 # Note: all distances are in relation to the home location

 pos_z = -h # Down direction, in m

 if h > 0:

 vel_z = -0.5

 else:

 vel_z = 0.5

 # Note: Currently only velocity, position, and acceleration can be

masked as a whole. You can't simply mask out one

 # axis.

 MASK_XYZ_YAW_YAW_RATE_ONLY = 0xF3F8

 MASK_XYZ_ONLY = 0xFFF8

 MASK_Z_ONLY = 0xFFFB

 MASK_VXVYVZ_ONLY = 0xFFC7

 MASK_POS_VEL_XYZ = 0xFFC0

 msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, #

time_boot_ms (not used)

 0, 0, #

target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

MASK_VXVYVZ_ONLY, # type_mask

 0, 0,

pos_z, # z positions in m, x and y ignored

 0, 0,

vel_z, # x, y, z velocity in m/s

 0, 0, 0, #

 214

x, y, z acceleration (not used)

 0, 0) #

yaw, yaw_rate (not used)

 # send command to vehicle

 vehicle.send_mavlink(msg)

 vehicle.flush()

if vehicle.location.alt > 10.0:

 target_alt = target_alt + 5

 change_alt(target_alt)

 vehicle.flush()

 print "Moved up five meters from " + str(start_alt)

 print "to " + str(target_alt)

 print "Vehicle now at " + str(vehicle.location)

elif 2.0 < vehicle.location.alt <= 10.0:

 target_alt = target_alt + 5

 change_alt(target_alt)

 vehicle.flush()

 print "Moved up five meters from " + str(start_alt)

 print "to " + str(target_alt)

 print "Vehicle now at " + str(vehicle.location)

else:

 print "Altitude at less than a meter, too close to ground"

 exit(0)

while (vehicle.location.alt - target_alt < -.1) and not api.exit:

 print "Ascending"

 sleep(0.1)

vehicle.mode = droneapi.lib.VehicleMode("LOITER")

vehicle.flush()

 215

test_pos_move.py

"""

Causes the octocopter to move using the position arguments of the

SET_POSITION_LOCAL_NED Mavlink message

"""

__author__ = 'Kirby'

from time import sleep

from droneapi.lib import VehicleMode, Location

from pymavlink import mavutil

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

vehicle.mode = VehicleMode("GUIDED")

Go to 10 meters above home to start

height = 10;

N_dist = 0;

E_dist = 0;

def move(x, y, h):

 # Note: all distances are in relation to the home location

 pos_x = x # North direction, in m

 pos_y = y # East direction, in m

 pos_z = -h # Down direction, in m

 MASK_XYZ_YAW_YAW_RATE_ONLY = 0xF3F8

 MASK_XYZ_ONLY = 0xFFF8

 MASK_Z_ONLY = 0xFFFB

 msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, #

time_boot_ms (not used)

 0, 0, #

target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

MASK_XYZ_ONLY, # type_mask (ignore vel | ignore acc)

 pos_x,

pos_y, pos_z, # x, y, z positions in m

 0, 0, 0, #

x, y, z velocity in m/s (not used)

 0, 0, 0, #

x, y, z acceleration (not used)

 0, 0) #

yaw, yaw_rate (not used)

 # send command to vehicle

 vehicle.send_mavlink(msg)

 vehicle.flush()

move(N_dist, E_dist, height)

while (vehicle.location.alt < (height - .1) or vehicle.location.alt >

 216

(height + .1)) and not api.exit:

 sleep(1)

print "Reached altitude of " + str(vehicle.location.alt)

Note: all distances are in relation to the home location

N_dist = 10 # North direction, in m

E_dist = 0 # East direction, in m

height = 10

move(N_dist, E_dist, height)

for i in range(0,20):

 sleep(1)

set mode to loiter mode

vehicle.mode = VehicleMode("LOITER")

print "Position move completed"

 217

test_vel_move.py

"""

Causes the octocopter to move using the velocity arguments of the

SET_POSITION_LOCAL_NED Mavlink message

"""

__author__ = 'Kirby'

from time import time, sleep

from droneapi.lib import VehicleMode, Location

from pymavlink import mavutil

api = local_connect()

vehicle = api.get_vehicles()[0]

commands = vehicle.commands

vehicle.mode = VehicleMode("GUIDED")

vel_update_rate = 0.1 # in s or about 1/hz, in this case it's about 10

hz

t0 = time()

velocity_x = 1 # North direction, in m/s, in this case 1 m/s * .1 s

= 10cm travelled North

velocity_y = 0 # East direction, in m/s

velocity_z = 0 # Down direction, in m/s

msg = vehicle.message_factory.set_position_target_local_ned_encode(

 0, #

time_boot_ms (not used)

 0, 0, #

target system, target component

mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame

 0x01C7, #

type_mask (ignore pos | ignore acc)

 0, 0, 0, # x,

y, z positions (not used)

 velocity_x,

velocity_y, velocity_z, # x, y, z velocity in m/s

 0, 0, 0, # x,

y, z acceleration (not used)

 0, 0) #

yaw, yaw_rate (not used)

send command to vehicle

vehicle.send_mavlink(msg)

Currently the velocity update rate doesn't really do anything.

Eventually it will be used to prevent the Edison from

spamming commands to the PixHawk

while (time() - t0) < vel_update_rate:

 sleep(1)

 vehicle.flush()

IMPORTANT NOTE: SLEEPING FOR MORE THAN A COUPLE SECONDS CAUSES A

CESSATION OF THE HEARTBEAT MESSAGES WHICH TRIGGERS

 218

AN IMMEDIATE RETURN TO LAUNCH. INSTEAD, SLEEP SHOULD BE PUT IN

A LOOP TO ALLOW FOR CONTINUOUS HEARTBEAT MESSAGES

TO BE SENT

print "Pausing"

for i in range(0, 10):

 sleep(.5)

IMPORTANT NOTE: SWITCHING TO LOITER MODE SETS THE VELOCITY BACK TO

ZERO

set mode to loiter mode

vehicle.mode = VehicleMode("LOITER")

print "Velocity move completed"

 219

 220

 221

 222

 223

	Santa Clara University
	Scholar Commons
	6-5-2015

	UAVino
	Matthew Belesiu
	Aaron Chung
	Kirby Linvill
	Nathan Carlson
	Phillip Coyle
	See next page for additional authors
	Recommended Citation
	Author

	tmp.1445017685.pdf.3NGCY

