
Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-8-2015

Mobile Music: a musical therapy assistance device
Alex Hildebrand
Santa Clara University

Tanner Malkoff
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/idp_senior

Part of the Electrical and Computer Engineering Commons, and the Mechanical Engineering
Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Hildebrand, Alex and Malkoff, Tanner, "Mobile Music: a musical therapy assistance device" (2015). Interdisciplinary Design Senior
Theses. Paper 15.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/idp_senior/15?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

MOBILE MUSIC: A MUSICAL THERAPY ASSISTANCE DEVICE

By

Alex Hildebrand, Department of Mechanical Engineering

Tanner Malkoff, Department of Electrical Engineering

SENIOR DESIGN PROJECT REPORT

Submitted to
the Departments of Mechanical Engineering and Electrical Engineering

of

SANTA CLARA UNIVERSITY

in Partial Fulfillment of the Requirements for the
 Bachelor of Science Degree in

Mechanical Engineering and Electrical Engineering in the School of Engineering
Santa Clara University

Santa Clara, California

2015

iii

Abstract

Children suffering from Cerebral Palsy often undergo gait therapy in order to

strengthen and coordinate their trunks and legs. The patients often feel unmotivated to

perform their gait training because the physical movements associated with it are difficult

and there is no immediate reward. Physical therapists (PT) will often play music as an

incentive to get the children focused on their physical therapy, but this is inefficient and

impedes the PT from analyzing and tuning the patients’ gait. Mobile Music is a small device

designed for automating musical therapy during gait training. In this paper, we go through

several design iterations in order to create a cheap, ergonomic device that will sense

motion and use musical stimulation in order to encourage active participation in gait

training. While we had some difficulties implementing the motion sensing algorithm in the

final device, testing done in the prototype phase showed promising results in accurately

detecting participation in physical therapy. We have determined that the problems

associated with these are likely due to timing issues in the microcontroller unit due to

multiple reasons and the lack of feedback to the device of the audio streaming state. With

the addition of a mobile application and some slight changes to the code implementation of

the motion sensing algorithm, we believe that these problems can be fixed. Because of the

improvement in media player control that a mobile app enables, a newer, lower powered

system configuration can be implemented that reduces audio output noise as well as

reduce power consumption. These improvements combined with the low cost and simple

interface could make Mobile Music into a very viable product with the potential to help

children with movement disorders improve their gaits.

iv

Acknowledgements

We would like to thank the following people and entities for their help during the

process of this design project:

Santa Clara University, School of Engineering

The Avalon Academy

Dr. Shoba Krishnan

Dr. Timothy Hight

Dr. Radhika Grover

Anup Navare

Sam Pollock

Ethan Head

SCU Maker Lab

v

Table of Contents
Page

Abstract ... iii
Acknowledgements ... iv
1 Introduction .. 1

 1.1 Research .. 1
 1.2 Customer Overview .. 4
 1.3 Project Motivation... 4

2 System Overview ... 6
 2.1 System Functions .. 6
 2.2 Design Specifications ... 6

 2.3 Similar Products .. 8
 2.4 Initial Design Ideas ... 9

 2.5 System Communications ... 12
 2.6 Calibration Algorithm ... 13
 2.7 Motion Sensing Algorithm .. 15

3 Prototype .. 18
 3.1 Hardware ... 18
 3.2 Software ... 24
 3.3 Testing and Feedback ... 26

4 Final Build .. 32
 4.1 Hardware ... 32
 4.2 Software ... 40
 4.3 Current Testing and Possible Changes .. 44

5 Engineering Standards .. 47
 5.1 Manufacturability Analysis ... 47
 5.2 Economic Analysis ... 49
 5.3 Intellectual Property Analysis ... 50
 5.4 Ethics Analysis ... 54
 5.5 Social Analysis ... 55

6 Final Thoughts and Future Developments ... 56
 6.1 New System Configuration ... 56
 6.2 Mobile App Integration .. 57
 6.3 Mechanical Design Updates .. 58
 6.4 Conclusions ... 58

References ... 60
Appendices .. 61

 Prototype BOM ..A
 Prototype Schematic ... B
 Prototype Pictures .. C
 Prototype Code ... D
 Final Build BOM ... E
 Final Build Schematic .. F
 Final Build Layout... G
 Final Build Drawings .. H
 Final Build Code ... I
 Senior Design Conference Presentation ... J

1

Chapter 1 – Introduction

1.1 – Research
For our research we wanted to look into Cerebral Palsy and the various therapy

methods. We also wanted to do research about music therapy, and how music has been

used to help people with neurological disorders. Lastly, our research needed to include a

look into other similar products in order to see if there is a viable market for this product.

1.1.1 – Cerebral Palsy

Cerebral Palsy, or CP, is a general term under which numerous neurological

disorders are placed. The commonality between these disorders is that they develop in

infancy or early childhood, they do not worsen over time, and they leave their sufferers

with limited mobility. CP is the most common motor disability in children, with estimates

ranging from 1.5 to 4 cases per 1000 births (CDC, Data and Statistics for CP, 2008). The

extent of a CP patient’s disability can vary greatly, from people who are able walk with a

slight limp to people who have no ability move their arms or legs. 30.6% of children with

CP have very limited or no walking abilities (Autism and Developmental Disabilities

Monitoring CP Network, 2008). Because of these mobility issues, people with CP often

undergo rigorous physical therapy in order to gain mobility of their extremities. Therapy,

however, can be tedious and boring, and many children with CP feel no motivation to

perform their therapy. Our goal is to create a device that will utilize music as a reward

system to help motivate these children suffering from CP.

Our device will be used to help adolescents with their gait therapy. Gait therapy is

used to help the patients develop muscle and control in the legs. This type of therapy is

performed in specialized walkers, many of which support the patient’s body weight while

still allowing free movement of the legs. It is to these walkers that the device will be

mounted. One consideration that must be made is how to mount the device on the various

styles of tubing used to build the structure of these walkers.

2

1.1.2 – Music Therapy

There have been multiple studies on the benefits of music during physical therapy.

It has been seen that Rhythmic Auditory Stimulation has been effective in physical

therapies for both gait and arm function. The article of the study published in the Journal

of Music Therapy is titled "Effect of Rhythmic Auditory Stimulation on Gait Performance in

Children with Spastic Cerebral Palsy," and was written by Dr. Eunmi Emily Kwak. Results

from this study show significant improvements in stride length, velocity and symmetry

(Kwak, 198). RAS works by attempting to synchronize the body’s walking movements

rhythmically with the music. Rather than random music and melody in traditional music

therapy, RAS targets the rhythm of an individual’s gait, which can be a complicated motion.

The tempo of the music is then raised or reduced for each patient, in an attempt to control

his or her gait. Over the three week experiment, the therapist-guided training (TGT) group

increased 5% in cadence, 29.48% in stride length, 36.49% in velocity, and 16.97% in

symmetry, beating the control group in every category (206-208). Results of this study can

be found in Figure 1.1.

3

 Another device which we found was D-Jogger. D-Jogger was designed as a running

device, but using music tempo to help runners keep pace. The creators of this device have

begun to look into its use on patients with Parkinson’s disease (smcnetwork.org).

Figure 1.1 - RAS Gait Therapy Results (reproduced without permission)

4

1.2 – Customer Overview
Our customer for this project is The Avalon Academy in Burlingame, CA. They are a

school which caters to the needs of children with CP and similar neurological diseases. To

do this they use a teaching program called MISTS, which stands for Motion Integrated

Special Teaching System, developed by their own Kinga Czegini. This system allows the

school to provide their students with not only a standard education, but also time during

the day to perform the movement therapy that they need. The system also takes into

consideration students with speech or auditory difficulty as well

The Avalon Academy has been a wonderful resource for us about these patients and

the disease. They also provide us a great test facility, because we are able to utilize the

device on different patients and walkers to see what works and what does not work. Our

device will be used to help the students with gait therapy, which in turn helps the patients

develop muscle and control in the legs. This type of therapy is performed in specialized

walkers which support the patient’s body weight but still allows free movement of the legs.

It is to these walkers that the device will be mounted.

The children at The Avalon Academy vary in the level of their disability. Some of the

children are able to perform their gait therapy at a strong pace, while others have difficulty

taking even the first steps. This was something that we needed to consider for the project,

as we want our device to be universally effective for any patient who desires to use it.

We hope that upon completion of the project and the device, that The Avalon

Academy will be able to implement it into their daily routines. If they are able to find

success with the product, we hope that it could be taken further, to children and adults all

over the world who need motivation to help them with their gait training.

1.3 – Project Motivation
The original motivation behind the project came from three things we wanted to

accomplish with our senior design project. First, we wanted to create a physical device,

which could easily be used by anyone. Second, we wanted to be able to help the

community and those less fortunate. And lastly, we wanted to create a project that involved

music. After finding The Avalon Academy, one initial idea was to create a musical

5

instrument for these children, but upon seeing their movement abilities it was deemed

something that they would probably be unable to use, unless the instrument was

customized for each child.

From here the motivation for this project came from The Avalon Academy. The

physical therapists at the school, showed us gait therapy, and had noticed that their

students were more motivated to do their physical therapy (i.e. walking) when there was

music playing in the room. They realized that they could use the music as a reward for

actively performing physical therapy tasks, and asked us to develop a device that would

automate when the music would play. Our motivation for this project is to help the

community and these children in any way we can. We had a clear goal to work towards

with the size and scope of the project already given.

6

Chapter 2 – System Overview

2.1 – System Functions
The main goal of this project is to design and build a device that will motivate a patient

of CP to perform their walking physical therapy by rewarding them with music while they

are actively walking. Figure 2.1 shows how the device will fit into its larger system. When

the device detects activity, it will send a command to the media player telling it to begin

streaming audio. The audio stream will then go from the media player, to the Mobile Music

device, and out of a standard phone jack into a speaker or headphone. This music will

encourage the participant to continue performing their physical therapy and therefore

continue to hear the music. When the device detects inactivity, it will send a command to

the media player to pause the audio stream. This will halt the music so that the participant

will want to return to performing their physical therapy, so that the music will turn back

on.

Figure 2.1 - System Block Diagram for Activity (left) and Inactivity (right)

2.2 – Design Specifications
Our device will be different from others we have researched in that it is the only thing

on the market designed specifically for music therapy. The device will need to be small and

it will need to easily mount on any patient’s walker. Mobile Music will also need to be able

7

to link with each patients preferred music player, regardless of manufacturer. The device

settings, such as gait speed, should be able to be customized for each patient by the

therapist to account for different preferences in music selection and different walking

styles and levels of mobility.

Table 2.1 – Project Design Specification

ELEMENTS/ PARAMETERS

REQUIREMENTS UNITS DATUM TARGET - RANGE

PERFORMANCE

Accuracy of motion detection % 100 95-100

Speed of music play/pause sec 1-2, longer if device

goes to sleep mode

<1

Number of individual patients which are

affected

number 1 therapist can

control music for one

patient

Each device controls

music for each individual

patient

Range of music travel Ft 20-50 2-3 for each device

Performance tracking No Yes

Battery Life Hours 7-10 3-5

Connectivity N/A Bluetooth, WiFi

Connectivity Range ft 5-6 20-30

Data Record kb 0 10

Product Cost $ 50 100

Manufacturing Processes Hours 1 2

Size Cu.in 50 <10

Weight Oz. 16 <10

Testing

Shock G 5 20-30

Water- resistance No Yes

Installation Time sec 60 30

Tubing Sizes Fit In. N/A ¾-1-1/2

8

2.3 – Similar Products
 During our research we were able to find three products that functioned similarly to

our idea. These were the Yamaha BODiBEAT and the Philips Activa. Both of these products

are designed to help runners with their exercise.

Figure 2.2 - Yamaha BODiBEAT (reproduced without permission)

 The Yamaha BODiBEAT is designed for all types of work out, and the idea is that the

device can select music for you to listen to, based on the intensity of your workout. To

measure this intensity, the BODiBEAT uses an ear clip heart beat monitor and

accelerometers within the device to decide what tempo of music should be played.

Figure 2.3 – Philips Activa (reproduced without permission)

 The Philips Activa works similarly to the BODiBEAT in that its purpose is to select

music base on the intensity of your workout. However, the Activa is meant specifically for

running, and uses GPS to monitor the speed and intensity of the run.

9

 During our research we were unable to find anything related to Cerebral Palsy or

gait therapy the utilized music. Because of this we believe that there could be a market and

a need for our type of device. People who need to perform this type of therapy, and feel

unmotivated, all over the world could benefit from a simple device like this.

2.4 – Initial Design Ideas
As we began our initial design, we knew that we needed a relatively small device

that could accurately detect the motion of the walker. This led to the testing of various

methods available to accomplish these tasks.

2.4.1 – Gait Detection

For gait detection we considered and tested two methods. The first method was a

Pololu wheel encoder. This component uses photo resistors to sense calibrated notches on

the attached wheel. By counting the notches, the program is able to get a sense if the wheel

is moving, and how far it has moved. The second component tested was an Accelerometer.

This device measures accelerations in 3-axis and allows the programmer to measure

various accelerations experienced by the device. Table 2.2 shows the various pros and

cons we found with each gait detection method.

10

Table 2.2 – Detection Methods

Detection Method Pros Cons

Accelerometer

-Low Cost

-Internal Device

-Easily Configurable

-Accurate

-Requires Calibration

-Noisy

-Measures Acceleration

Wheel Encoder

-Measures Distance

-Reliable

-Accurate

-Expensive

-Externally Mounted

- Presents Tripping

Hazard

 During initial testing, we discovered that both devices had a few negative traits. The

biggest problem with the accelerometer was that it would require calibration once

mounted on the device. It is also a very sensitive sensor, so the data received from it can be

a bit noisy. The problems with the wheel encoder were that it was an expensive assembly

of hardware pieces, and it needed to be mounted separately from the main Mobile Music

device. This would present a tripping hazard to the patient and those around them.

 It is for these reasons that we ended up going with the accelerometer. Because of

this decision, the programming became very important, and mechanically we were able to

build a smaller and simpler device.

2.4.2 – Mechanical Structure

Mechanically, the main goal of the structure is to hold and protect the necessary

electrical components. Additionally, the structure acts as a user interface, holding the

buttons, lights, and component jacks in place. Initial designs for the structure focused on

protection and mounting of the device, as electrical components had not been chosen and

the PCB had not been designed.

11

2.4.3 – Mounting Options

Because of the requirement for an adjustable mount, various designs were initially

created. A spring loaded clip was considered and tested, but it was found that the spring

fatigued far too quickly, and the clip was useless after a few days of use. Other design ideas

included a “halo” style system with screws to grip the tube shown in the sketch of Table 2.3.

These initial ideas eventually led us to the final sliding design that will be covered later.

Table 2.3 – Mounting Styles

Mount Type Pros Cons

Clip On

• Universally

Mountable

• Quick Installation

• Off the Shelf

• Unstable

• Requires

Adhesive

• Quickly Weakens

Adjustable

• Universally

Mountable

• Stable

• Durable

• Off the Shelf

• Slower

Installation

• Requires a Tool

• Can Damage Paint

Figure 2.4 – Halo Style Mount Sketch

12

2.5 – System Communications
 As an embedded electronic device, Mobile Music requires the transfer of data

between multiple transmitters and receivers. In order to interface these different

components, different types of communications are used, as shown in Figure 2.5 These

specific communications were each chosen for different advantages with speed and

number of pins required being the two main tradeoffs.

 The digital communication protocol SPI is used between the MCU and the

accelerometer in order to transfer acceleration data. SPI is a synchronous, master-slave

protocol that requires 4 pins: a Master In Slave Out (MISO) pin, a Master Out Slave In

(MOSI) pin, a clock (SCLK) pin, and a chip select (CS) pin. While we had the option to use

the I2C protocol which only requires two pins, we decided to use SPI because we can

operate at a higher clock frequency. SPI can operate at 5MHz as opposed to a maximum of

400kHz with I2C, so we can transmit more data, faster.

 The digital communication protocol UART is used to send commands and configure

the BlueTooth module. UART is a common and well supported asynchronous, serial

communication that can operate with a baud rate of 115,200 symbols per second. Since the

command frequency will be much slower than the collection of acceleration data, the speed

of the communication protocol is sacrificed for the benefit of only requiring two pins: a

Receive (RX) pin and a Transmit (TX) pin.

 The wireless communication protocol BlueTooth is used to connect Mobile Music to

the media player, stream audio, as well as to receive and interpret commands from the

MCU. The specific profiles used in our device are the Advanced Audio Distribution Profile

Figure 2.5 - Block Diagram Displaying Communications Used between Components

13

(A2DP) for streaming digital audio signals, the Audio/Video Remote Control Profile

(AVRCP) for basic media player control, and the Serial Port Profile (SPP) for sending and

receiving data. These profiles can run simultaneously which means that sending data over

SPP will not affect the A2DP music stream. BlueTooth also has a range of roughly 10m

which is greater than our target specification of 20ft.

 The final communication is the analog audio signal that transmits music from the

BlueTooth module to the speaker or headphone. Because this is an analog signal, it is very

susceptible to noise that can distort the intended sounds. In order to help eliminate noise

coupled into the transmission lines, differential audio signals can be used for both the left

and right channels. By ensuring that the differential audio signal pair is kept as close as

possible in layout, we can assume that the noise coupled into both of them is equal. This

means that when we subtract them to recover the full audio signal, we effectively eliminate

any common noise leaving us with a much cleaner output signal. This method, however,

requires and additional differential to single-ended output audio amplifier, since standard

3.5mm phone jacks use single-ended channel outputs.

2.6 – Calibration Algorithm
The calibration algorithm is used to ensure that no matter how the device is

oriented, the device will only read the acceleration magnitude orthogonal to the

acceleration vector of gravity. This also helps to eliminate any accelerations upwards and

downwards due to bouncing. Before calibration is started, the device is on standby for one

second so that any acceleration from the push of the button is not included in the

calibration data. The device then proceeds to collect 200 samples for each axis and take the

average of them to help filter out any high frequency noise, giving us x_avg, y_avg, and

z_avg. Assuming that there was no or little external acceleration during calibration time,

the resulting averages should represent the vector of gravity. From this reading, we can

mathematically determine the rotational offset of our accelerometers recorded axes to the

real world axes with the vector of gravity acting as the negative z axis, as shown in Figure

2.6.

14

This angular offset can be determined by converting the measured gravity vector

from Cartesian coordinates into spherical coordinates. We can then determine the

parameter 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑡𝑡 between the negative z axis of the accelerometer and the measured

vector using the following equations:

�̅�𝑟 = ��̅�𝑥2 + 𝑦𝑦�2 + 𝑧𝑧̅2 (eq. 1)

 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑡𝑡 = arccos � �̅�𝑧
�̅�𝑟

 � (eq. 2)

where �̅�𝑥, 𝑦𝑦�, and 𝑧𝑧̅ represent the average acceleration values measured for each respective

axis and the spherical coordinate parameter �̅�𝑟 represents the radius vector of these

Cartesian coordinates.

Having gone through calibration and determined the rotational offset, we will be

able to determine the calibrated acceleration in the XY-Plane. To do this, we must first

know how to equate the magnitude in the XY-Plane in spherical coordinates. This can be

equated by the equation �𝑋𝑋𝑋𝑋�����⃑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒� = 𝑟𝑟 ∗ sin(𝜃𝜃). All that we need to do now is replace θ with

the calibrated angular offset subtracted from the measured angular offset, given by the

equation �𝑋𝑋𝑋𝑋�����⃑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒_𝑐𝑐𝑝𝑝𝑝𝑝� = 𝑟𝑟 ∗ sin �arccos � 𝑧𝑧
𝑟𝑟

 � − 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑡𝑡�. With this equation and a successful

calibration, we are able to measure only acceleration values orthogonal to the vector of

gravity, regardless of mounting orientation.

Figure 2.6 - Rotational Offset between Measured Axes (red) and Real Axes (black)

15

2.7 – Motion Sensing Algorithm
 Once the data measurements have been adjusted for the calibration, we can begin

the motion sensing algorithm. The main function of this algorithm is to interpret the

calibrated acceleration data and control whether the device will play or pause the audio

stream. Due to the cyclical accelerations of a walking motion, there is often a lot of jitter in

the measurements where the values can fluctuate rapidly. This jitter is further enhanced by

jerky motion patterns that are common to people suffering from Cerebral Palsy. In order to

help filter out jitter, the motion sensing algorithm incorporates two methods of noise

reduction: a hysteresis and a timing delay.

 A hysteresis is the dependence of an output based on both the current and past

inputs. This effect is utilized in our algorithm in the form of two thresholds, as shown in

Figure 2.7. The upper and lower thresholds are represented in blue and yellow,

respectively. The red and green areas represent inactivity and activity, respectively.

Assuming that the previous acceleration value was below the lower threshold, an

acceleration value must be greater than or equal to the upper threshold in order to trip the

hysteresis and tell the device that activity is detected, represented by the transition from

red to green in Figure 2.7. Once this threshold has been tripped, the acceleration value

must go below the lower threshold to trip the hysteresis again and tell the device that

inactivity is detected. The reason that the hysteresis does not trip when this occurs in

Figure 2.7 is due to the inactivity timing delay.

16

 The timing delay is used to further prevent jitter by filtering out the inherently high

fluctuations in acceleration values associated with a walking movement. An example of this

can easily be seen in the green area of Figure 2.8, which represents activity. The yellow

area represents the inactivity delay during which time the device is still considered in the

“active” state, but a watchdog timer is counting down. If an acceleration value is not greater

than or equal to the lower threshold before the watchdog times out, the device will be

considered in the “inactive” state, represented by the red region of Figure 2.8. If an

acceleration value is greater than or equal to the lower threshold before the watchdog

times out, the timer turns off and will not be reset until the acceleration value drops below

the lower threshold again. It is important to note that during the green activity region the

watchdog timer was being set and reset numerous times, but for the sake of best showing

how the timing delay functions, only the last timing delay (during which the watchdog

times out) is shown in Figure 2.8.

Figure 2.7 - Motion Sensing Algorithm Detecting Activity

17

Figure 2.8 - Motion Sensing Algorithm Detecting Inactivity

18

Chapter 3 – Prototype
3.1 – Hardware
 For the prototype of our design, we tried to use as many “off the shelf” parts as

possible in order to cut down on processing and fabrication time and to allow for easy

interchangeability between device components. Using readily available parts was also

advantageous in that it allowed for easy software debugging and code updates, unlike a

truly embedded device.

Figure 3.1 – Outside View of the Prototype

19

3.1.1 – MCU

 The Microcontroller Unit (MCU) is the central processor for the embedded device. It

is responsible for all communications, all state machines, and the execution of the

calibration and motion sensing algorithms. In order to focus on determining the viability of

the algorithms and state machines, we chose to use the Arduino Pro Mini for the prototype,

as shown in Figure 3.3. This brand of MCU “break out” board is very well documented and

has a large online community support, so many of the functions to interface with the other

components have already been written. This allows for much easier debugging of the

communications with peripheral components and much quicker validation of the internal

data processing. The Arduino Pro Mini uses an ATmega328P MCU that can use an internal

Figure 3.2 – Inside View of the Prototype with Corresponding Block Diagram

20

clock frequency of 8MHz and can operate off of a voltage supply of 3.3V with a current

draw of roughly 5mA. It can also be programmed through an FTDI USB to UART chip and

has dedicated pins for SPI communication as well as interrupt capabilities for interfacing

with other components.

3.1.2 – Accelerometer

 The accelerometer is responsible for collecting acceleration data for each of the

three Cartesian axes and relaying that information to the MCU for processing. We chose to

use the ADXL345 from Analog Devices, because it can be bought as a ready to use “break

out” board and has a high acceleration sensing resolution of 4 milligravity/LSB for a range

of ±16 gravity. It is also capable of running at a sampling rate of 200Hz with a very low

current draw of 140µA at a supply voltage of 3.3V. The ADXL345 communicates through

the SPI digital protocol as well as two programmable interrupt pins. These pins can be set

to trigger for many things, but we only use one of the pins to trigger when there is a new

set of acceleration data available. The interrupt will only reset after the MCU requests data

through the SPI interface. This allows some flexibility with possible timing conflicts due to

extra processing because the most recent data will be sent when requested, even if the

previously held data was never read.

Figure 3.3 - Arduino Pro Mini 3.3V Microcontroller (reproduced without permission)

Figure 3.4 - Analog Devices ADXL345 (reproduced without permission)

21

3.1.3 – BlueTooth Module

The BlueTooth module is responsible for streaming audio from and transmitting

audio control commands to the media player over a wireless connection. The BlueTooth

module that we chose for this specific application was the RN-52 by Microchip Technology.

We chose to use this component because it is capable of using the A2DP, AVRCP, and SPP

BlueTooth profiles mentioned earlier so that it can stream audio, send audio controls, and

transmit and receive data, respectively. The BlueTooth module also has a built in DAC and

DSP, so that it can directly output an analog music signal, instead of the digital audio signal

that is sent over BlueTooth. The RN-52 outputs the analog audio signal as differential pairs

for both the left and right channels. While this is great for noise reduction, standard 3.5mm

phone jacks are single ended outputs. This coupled with the lack of easy access to a

differential to single ended amplifier means that only one of the differential outputs can be

connected to the audio jack output, resulting in half the intended audio signal (-6dB) and a

much worse signal to noise ratio. This device also has a GPIO pin that can be toggled in

order to send the play/pause command through the AVRCP profile. This pin is connected to

a GPIO pin on the Arduino board that is used to control the audio stream through the

BlueTooth module. The RN-52 also has a current draw of roughly 30mA at a supply voltage

of 3.3V while streaming audio through the A2DP profile, which makes it the largest power

consumer of the three main components.

Figure 3.5 - Microchip Technology RN-52 (reproduced without permission)

22

3.1.4 – Power Management

 For the prototype, the power management was limited to a battery pack and a 3.3V

regulator located on the Arduino board, as shown in Figure 3.6. The battery pack holds

three AAA batteries in series, providing roughly 750mAh at 4.5V. For the current draw of

the prototype, this equates to roughly 15 hours of battery life. The raw battery voltage of

4.5V is greater than some of the components maximum supply voltages, and therefore must

be regulated down to 3.3V by a fixed output LDO linear regulator. The output of this

regulator provides power to all of the components in the prototype.

3.1.5 – Peripherals

 The 3.5mm phone jack is a standard part that is used to connect the audio from our

device to the speaker or headphone. We chose to use a stereo, panel mounted jack from

RadioShack because it fit our needs for a right and a left channel and was readily available.

We also incorporated an LED with a current limiting resistor into the prototype. It is

controlled by a GPIO pin of the Arduino so that it can act as a visual confirmation that the

algorithm is working. The LED is also used to indicate that the device is calibrating and can

be very helpful in quickly trying to test new code. The SPST power switch is connected

between the positive output from the battery pack and the unregulated supply voltage pin

on the Arduino board. It enables the device to be turned off when not in use, which saves

power, and reset the device in case the software stops working or the device gets out of

sync.

Figure 3.6 - 3.3V LDO Regulator (reproduced without permission)

23

3.1.6 – Structural Components

The main structure of our prototype is a medium project enclosure purchased from

RadioShack. The reason that this part was chosen was because it provided plenty of room

for all of the necessary electrical components, and it is easy to modify the enclosure with

holes for switches and mounts. For this prototype we tested both the clip style mount and

an adjustable pipe clamp. The clip, shown in Figure 3.7, needed to be attached to the

enclosure using a hardening putty adhesive. This was a small problem because it meant

that once attached, the mount could not be adjusted further.

Figure 3.7 – Clip Style Mount

Figure 3.8 – Adjustable Pipe Clamp

 The pipe clamps proved to be much more useful, as they were mounted with

machine screws, and did not have any spring components to fail. The metal clamp did

however scratch the paint on one of the walkers. To prevent this from happening again, we

purchased some rubberized tape to protect the tubing. The clamps were able to provide a

24

tight fit on the tube, and allowed us to test the various electrical components necessary for

the system.

3.2 – Software
 The software of the prototype runs on the MCU of the Arduino Pro Mini and creates

an autonomous machine that requires little human interaction to operate. The software for

the prototype consists mainly of two parts: the algorithm implementation and the

communications with external components.

3.2.1 – Algorithm Implementation

 In order to implement the calibration and motion sensing algorithms effectively,

three state machines are used. The SYSstate machine is used to switch between the

calibration state and the motion sensing state of the device. For the prototype, the SYSstate

variable is initially set to the calibration state. Once the calibration algorithm is successfully

executed, the SYSstate variable is set to the motion sensing state where it will remain

unless the device is reset by toggling the power switch, as shown in Figure 3.9. If the device

is in the motion sensing state, then it will execute the motionSense function. This function

reads the acceleration values from the ADXL345, computes the calibrated acceleration

value, and implements the hysteretic threshold of the motion sensing algorithm through

controlling the MVMNTstate machine, as shown in Figure 3.9. The MVMNTstate machine

has no direct outputs, but is used in the control of the PPstate machine which switches

between play and pause states for the audio stream. If the MVMNTstate is in the motion

state, then the PP state is in the play state and the watchdog timer resets. If the

MVMNTstate is in the no motion state and the polled watchdog timer expires, then the

PPstate switches into the pause state. This functionality can be seen in Figure 3.9. Because

the AVRCP profile only allows us to toggle the play or pause of the audio stream and not

directly control its state, the toggle signal is only sent when the PPstate switches states. The

PPstate also controls whether the indication LED is on or off, depending on whether it is in

the play or pause state, respectively.

25

Figure 3.9 - State Diagrams for Prototype Device

3.2.2 – Communications

 In the prototype, the only external communications that the MCU is responsible for

are toggling a GPIO pin to control the play/pause command of the RN-52 and

communicating with the ADXL345 using SPI and an interrupt. For SPI communication some

setup was required, such as declaring a Chip Select pin and choosing a clock phase and

polarity, but besides that only a read register and a write register function are needed to

properly communicate with the accelerometer. Since Arduino already has predefined SPI

byte transfer functions in its IDE, these two functions mostly consist of manipulating the

Chip Select pin and adjusting bits specific to performing certain tasks only on ADXL345

registers such as read and multibyte read. A DATA_READY interrupt is used to inform the

MCU that the accelerometer has new data waiting to be read. This process will happen 200

26

times per second, the sampling rate of the accelerometer, so that there are plenty of clock

cycles in between to perform the required mathematical and logical analyses.

3.3 – Testing and Feedback
 For testing our prototype, we visited our customer, Avalon Academy, in order to

validate the calibration and motion sensing algorithm by testing the device on some of their

students with varying ranges of limited mobility. We also wanted to get any quantitative

feedback regarding the functionality of the algorithms as well as the rest of the device.

 For mechanical testing we wanted to ensure that our mounting methods were both

functional with different tubing sizes, and strong enough to keep the device from moving

on the walker. The feedback from these tests would provide us with the necessary

information to choose a mount for the final design.

3.3.1 – Test Procedure

 The prototype was dropped off to Avalon Academy for two weeks so that they could

demo it. During this time, the faculty was instructed to note if, when, and how the device

stopped working ideally. While this worked for collecting quantitative data, we needed to

construct a different method of collecting acceleration data as well as when the PPstate

switches from PLAY to PAUSE and vice versa. In order to accomplish this, a simpler set up

using only an ADXL345 accelerometer, an Arduino Pro Mini board, and an FTDI USB to

UART board for connecting the Arduino to a laptop. The code was kept exactly the same as

the prototype, but some Serial.print() statements were added in order to acquire data for

analysis. First, the calibrated angular offset is printed in degrees. This is followed by a

stream of x, y, and z acceleration values that have not been adjusted for calibration. Finally,

if the PPstate ever changes from PLAY to PAUSE or PAUSE to PLAY, an ‘A’ or a ‘B’ are

printed to the laptop, respectively.

 Once we have the raw acceleration values and the calibration offset, a program like

Microsoft Excel can be used to do the same processing that occurs in the MCU to determine

the PPstate and effectively control the audio stream. We then graph this data with the

printed PPstate state change markers mentioned earlier to obtain the graphs in Figure

27

3.10. By visually inspecting the graphs, we can determine the effectiveness of the motion

sensing and calibration algorithms.

 While the device was on location, we had the users try out both mounting styles on

the same box. We asked them to note how long the various methods took to install or

uninstall, and any issues they ran into with the stability, or functionality of the mount.

There were two different individuals at The Avalon Academy who tried to do installs, and

we performed them ourselves during our multiple visits to the school.

3.3.2 – Test Results and Feedback

 The results of our quantitative testing can be seen in Figure 3.10. Each of these

graphs represents the calculated acceleration values for four different children with

Cerebral Palsy over a ten second period, measured at 200 samples per second. It is

important to note that much more data was taken – an average of 40,000 sample points per

patient, and all of this data was analyzed, but for the sake of simplicity and to have the total

sample numbers normalized, we look at only a selection of this data to demonstrate the

testing process and analysis. The x and y axes represent the sample number and the

magnitude of acceleration in the XY-Plane in scaled by milligravity, respectively. The upper

and lower thresholds of the hysteretic threshold are represented by the horizontal blue

and yellow lines, respectively. A switch in PPstate from PAUSE to PLAY or PLAY to PAUSE is

represented by a vertical orange or grey line. The remaining light blue lines represent the

accelerations of the students as they were working on their gait training.

28

These graphs give us valuable insight into the effectiveness of both the calibration and

motion sensing algorithms. If the calibration function determines the correct angular offset

and it gets successfully integrated into the motion sensing algorithm, then we would expect

the acceleration values to tend towards zero as motion stopped. If any of this process was

interfered with, for example a lot of movement occurs during the calibration data

collection, then we would expect to see some kind of static offset to the acceleration offset.

This offset is due to the constant vector of gravity having an impact on the final

acceleration readings; the measurement plane is no longer orthogonal to the gravity vector.

The magnitude of this offset id dependent on how off the calibrated offset is from the actual

offset. As we can see from the graphs in Figure 3.10, especially graph C from sample 600 to

1600, this was not the case. Our calibration algorithm and the implementation of its

calculated offset into the motion sensing algorithm appears to work successfully.

 With the ideal functionality of the motion sensing algorithm as a reference, we

analyzed the accuracy of the motion sensing algorithm outputs (play and pause) with

A B

C D

Figure 3.10 - Results from Prototype Testing

29

respect to the collected data. In Figure 3.10, graphs B, C, and D all have no errors in them,

performing identically with our ideal motion sensing algorithm, but graph A presents a

problem. There are two PLAY commands back to back when there should be a PAUSE

command somewhere in between them. A likely cause of this issue is that the device tried

to quickly change states from PLAY to PAUSE and back to PLAY again, due to a watchdog

timeout shortly followed by an acceleration value greater than the higher threshold. This

guess is reasonable since the number of samples between the last acceleration value

greater than the lower threshold and the second “accidental” play signal appears to be

equal to the timing delay. However, it could also be possible that a timing error was

encountered and the MCU simply didn’t have enough processing time to send the PLAY

marker. If were able to directly control the playing and pausing of the audio stream from

the media player, this problem wouldn’t be a big deal as the device would just continue to

stream the audio and ignore the second play signal since it is already playing.

Unfortunately this is not the case, and our only control over the media player is a

play/pause toggle command. This means that the only way of knowing the state of the

audio stream is to make an assumption that the device is paused during initialization and

then to keep track of PPstate changes. With the kind of error that occurred in graph A, the

device would send the second play/pause toggle command with the intent of streaming the

audio, but the media player only sees it as a command to toggle from its current state, play,

to its opposite state, pause. This effectively makes audio command communications

between the MCU and the media player out of sync so that now when the MCU tries to play

music, it will actually pause it and vice versa.

 For the qualitative feedback on the prototype after two weeks of use, the faculty at

Avalon Academy tended to agree with our findings on synchronicity issues with the motion

sensing algorithm. They didn’t explicitly note that the device and the media player were

getting out of sync, but they did note that sometimes the device would play music instead

of pausing it or pause music instead of playing it. They also had some feedback on the

quality of the audio signal. Their feedback suggests that the audio gain is too low out of the

BlueTooth module and that the signal is very noisy, making it difficult to hear the music

playing during the gait training sessions.

30

 As for mechanical feedback, we learned that the spring inside of the clip on mount

degraded very quickly. After only a couple of days of use, the clip mount was essentially

useless, as there was not enough force applied to the tube to stop the device from rotating.

It was this result that pushed us towards an adjustable style mount. We decided that by

avoiding springs entirely, we do not have to worry about the fatigue of the part and its

possible lifespan.

 The major complaint about the pipe clamp used as an adjustable mount was that it

was time consuming to install. To install the pipe clamp, either a hex head or a flat head

screw driver is needed, and it takes a while just to get to a point where you are putting

tension on the clamp. It was for this reason that we knew a mount would need to be

designed and built by us.

3.3.3 – Corrections

 In order to try to ameliorate these problems in the final design of the board, some

hardware and software corrections needed to be made. First was the issue of synchronicity.

As mentioned earlier, this problem is inherent to the toggle interface that the AVRCP profile

provides between the device and the media player. The best solution to this problem would

be to use a mobile app to create an audio streaming state in the media player and control

that with predefined symbols sent over the standard SPP profile. Unfortunately, we do not

have access to an app so we cannot eliminate the problem, but we can help make it less

often. In the prototype, the AVRCP command was went by toggling a GPIO pin on the

BlueTooth module. This process requires various delays to ensure proper operation, which

can increase that risk of running into timing problems. By sending the command via UART

to the device, we can greatly reduce this delay time and therefore reduce the likelihood of

the PLAY/PAUSE states getting out of sync between the device and the media player.

 From the feedback about the quality of the audio output, it is obvious that an audio

amplifier is needed for this device. As mentioned in Chapter 2, the use of an audio

amplifier would help both eliminate noise and increase signal gain. By taking advantage of

the differential outputs that the BlueTooth module outputs, we can subtract the differential

lines from each other, effectively eliminating any noise common to both transmissions as

31

well as doubling the amplitude of the signal. On top of this, the audio amplifier also uses

filtering and applies its own additional gain, eliminating even more noise and delivering

even more gain to the desired signal.

 To correct the experiences of the user in regards to the mounting system, we knew

that we would have to design something that did not need tools, was sturdy, and was quick

to install. A few different ideas were looked into, including the previously mentioned

“halo” mount. The simplest design idea involves two rounded pieces which clamp around

the walker tubing, and could be hand tightened. Because it needed to be expandable, we

chose to use a slider design which will be shown in the next chapter.

32

Chapter 4 – Final Build
4.1 – Hardware
 Hardware for the final design was made using almost entirely custom made parts.

The main components of the final build are the printed circuit board (PCB) and the shell

and mounting assemblies.

4.1.1 – Unchanged Components

 From the prototype to the final build, only two of the components remained the

same: the ADXL345 and the RN-52, as shown in Figure 4.1. The ADXL345 was kept because

it provided adequate acceleration measurement resolution while requiring very little

power. The RN-52 was kept because it was capable of using the A2DP and AVRCP profiles

necessary for the BlueTooth communication to work. It is also important that it has a built

in DSP and DAC so that it outputs analog audio signals. A common benefit of keeping these

components in the final build is that the configuration and communication function can be

Figure 4.1 - Inside View of the Final Build with Corresponding
Block Diagram

33

kept relatively the same. The only difference the final build and the prototype is that they

are now being used as discrete components wired appropriately via a PCB instead of

breakout boards wired together, as shown in Figure 4.1.

4.1.2 – MCU

 For the final build, we decided to use the MSP430G2553 MCU from Texas

Instruments, as shown in Figure 4.1. This MCU has a 16 bit, RISC architecture and can run

at up to 16MHz. We chose to use this MCU instead of the ATmega328P from the prototype

because of its low power capabilities, lower cost, and additional external interrupt

capabilities. The MSP430G2553 is capable of running off of slightly more than 4mA of

current, roughly 20% less power than the ATmega328P. It also only costs $2.80 while the

other MCU cost $3.70, giving a roughly 25% price reduction. On top of all of this, every

GPIO pin of the MSP430G2553 can be used as an interrupt while the Arduino board was

only capable of using two pins as external interrupts. With the added features of the final

build, it is necessary to have more than two interrupt capable pins.

4.1.3 – Audio Amplifier

 As mentioned in the feedback from the prototype, there was a need in the final

design for an audio amplifier in order to have loud, noiseless music. For this purpose, we

chose to use the TPA6112A2 150mW Audio Amplifier from Texas Instruments. We chose to

use this part because it was the most compatible with the device requirements. First, it has

two channels for stereo audio. It also takes a differential signal input and has a single ended

output, which helps prevent noise and acts as a conversion from the differential output of

the RN-52 to the single ended outputs of the 3.5mm phone jack. As an added bonus, it can

run off of supply voltage of 3.3V, so there are no special power requirements.

Unfortunately, as seen in Figure 4.1, there were difficulties in assembling this component

so it was left off in order to test the rest of the device. This will be further addressed in the

“Current Testing and Possible Changes” section to follow.

34

4.1.4 – Power Management

 The power management portion of the design consisted of three components: a

battery, a charge controller, and a voltage regulator. The battery used is a rechargeable

Lithium Ion Polymer (LiPo) Single Cell from Adafruit Industries, as seen in Figure 4.1. We

chose this battery because of its high energy capacity of 1200mAh as well as its compact

size of 1.3” x 2.4”. It is also important that it has a nominal voltage of 3.7V, since this can

easily be regulated down to the device supply voltage of 3.3V by a linear regulator without

thermal considerations given our current draw is never more than 100mA. For reference,

the calculated current draw should be around 80mA RMS when all components are

operating at maximum current draw. This current draw also implies that the device should

have at least a 15 hour battery life, which greatly surpasses our target of 3-5 hours. This

component also includes built in voltage protection circuity to ensure that the battery can

be overcharged and possibly have a catastrophic failure.

 The charge controller acts as the voltage/current regulator for charging the LiPo

battery. For the final design, we chose to use the BQ24253 charger from Texas Instruments,

as shown in Figure 4.1. One advantage of this part is that it is a switch mode power supply

(SMPS), so it has a high efficiency of 95% and there are little thermal concerns. It is also

important to note that the BQ24253 has a switching frequency of 3MHz, meaning that

smaller value LC filter components can be used in the design. Because these components

are smaller, they generally cost less and require less space on the PCB, which is also

valuable. The BQ24253 is capable of charging a single cell LiPo battery as well as powering

the rest of the device from the standard 5V USB power. An additional feature is that it has

outputs that can control LEDs that will give an indication of the charging status, which is

useful information to the customer.

 The final component of the power management is the voltage regulator that

supplies power to every other component on the device. For this responsibility, we chose

to use the TLV113333D LDO linear regulator from Texas Instruments, as shown in Figure

4.1. This component consists of two channels that each regulate to 3.3V, each with its own

enable pin. This can be used to turn off the power supply of the BlueTooth module and

audio amplifier when they are not in use, while the rest of the device can still function. This

35

component is also thermally rated for two times our estimated current draw and has a

nominal efficiency of 89%, so heat should not be a problem.

4.1.6 – Peripherals

 The peripherals of the final design are the components that interface between the

PCB and the enclosure. There are several peripherals that exist on the device, such as the

micro USB jack, the 3.5mm phone jack, and the button, as well as indicator LEDs. The micro

USB jack is solely used as the charger input for the BQ24253, effectively charging the

battery and simultaneously powering the device. This plug does not need to be used in

order for the device to properly operate, but the device should be charging whenever

possible to ensure that it will not run out of charge while in use. The 3.5mm phone jack is

used as an audio output for the device that can connect with most speakers or headphones.

The specific audio jack that we chose contains a switch pin, which allows the device to

detect whether an auxiliary cord is plugged in. While designing the PCB, we had to consider

how the user was going to interact with these items. The audio jack and micro USB were

placed on the thinner side of the PCB in order to ensure easy access for the user, as shown

in Figure 4.1. This positioning also allows the cords to be more readily wrapped around the

tubing that the device is mounted on, creating a much lesser potential for tripping due to

dangling wires. Near the micro USB jack, there is an RGB LED with a small window in the

case that indicates the charging status of the battery. This LED operates off of the voltage

provided by the micro USB jack, so it will only work when the battery is being charged. If

the battery is not fully charged, both the red and green LEDs will be on making an orange-

yellow light. When the battery is done charging, the red LED will turn off, leaving only the

green LED on to shine through the window in the enclosure.

36

Figure 4.2 – Micro USB and Audio Jack Locations

Figure 4.3 - Charging LED

The last peripheral, the button, is actually three in one. When used, the button

presses down on a momentary switch which sends a signal to the MCU for it to decode,

based on time held and current states. Beside the micro switch, there are two LEDs on the

PCB. A red LED informs the user whether the device is calibrating, on, or asleep, while a

blue LED shows the BlueTooth connectivity of the device. In order for the LEDs to be seen

by the user and add some aesthetics to the device, we created a translucent button from an

epoxy resin mold. This allows the light from the indication LEDs to shine through the

button, so the user can get feedback as to what the devices current operating state and

BlueTooth connectivity are.

37

Figure 4.4 – Button LEDs, Red and Blue

The button fits into the shell based on an interference between itself, the top of the

case, and the micro switch. This allows the button to stay in place and remain functional

after multiple presses, despite having no permanent connections with any part of the

assembly or PCB.

Figure 4.5 – Button Fit Solid Model

38

4.1.7 – External Shell Designs

During final design stages, two shell styles were considered to house the electronic

components. Both of these designs had similar shape and size, and both are two piece

designs. The first style was very simple in design, just a top and a bottom piece that slid

together.

Figure 4.6 – Shell Design Style 1

 It can be seen that this design style was created while the device was still going to

have two buttons. The second button was deemed unnecessary once we decided that sleep

mode would be a sufficient way to maintain the battery on the device. This design served

as a base for Style 2, which was what we ended up putting into production.

Figure 4.7 – Shell Style 2

39

 Shell Style 2 uses a similar two piece design, but here, two of the walls are attached

to the bottom and two are attached to the top. This helps with assembly, as there is no

need to worry about being able to slide the USB and audio jacks into their proper holes.

This design also gave us much more open access to the PCB while it was installed. This was

very helpful for any debugging or hardware repair that needed to occur.

4.1.8 – Mount Design

 From the prototype we decided that an adjustable style mount was the best choice.

However, we did not want to continue using the hose clamps because of how long the

installation took, and it required tools to mount to the walker. To combat these problems,

we decided to design our own mount, which would be easily hand tightened to a secure fit

on the walker tubing.

Figure 4.8 – Final Mounting Design Assembly

40

The final mount design comes in two pieces, a device side and a clamping side. As

can be seen in Figure 4.8 the mount device side hold two carriage bolts in place. These

bolts are 1.75” apart, and provide the channel that holds the walker tubing.

Once the tubing is within the channel, the outside half of the mount can be slid along

the bolts until the outer edge of the tubing is reached. From here the user simply spins the

wing nuts on, and then tightens until they feel that the device is securely attached to the

walker. With this mount design we believe that we have solved most of the issues that

plagued the other style mounts. This mount provides a very secure connection with the

device as well through the use of two machine screws.

4.2 – Software
 The software for the final design was very different than that of the first design. The

main reason for this is the switch from the Atmel MCU to the Texas Instruments MCU.

These two components use completely different IDEs and code styles, so most of the code

either had to be modified or rewritten. Only the more logic and math oriented functions

such as motion sensing and calibration algorithms remained relatively unchanged.

4.2.1 – Algorithm Implementation

 Many parts of the algorithm implementation for the prototype were simply copied

over from the Arduino code. The state flows of the MVMNTstate and PPstate in the final

build are equivalent to those of the prototype. Despite this, we are still experiencing

difficulties in successfully implementing the motion sensing algorithm. These bugs can be

attributed to problems with the inactivity delay portion of the algorithm. Instead of polling

the elapsed time for the inactivity delay like the prototype code, the final build code uses a

timer interrupt that acts much more similarly to a true watchdog timer.

The only other big change from the prototype was the SYSstate variable which

includes a SLEEP state and a new state flow. In the SLEEP state, the MCU disables power to

the audio amplifier and the BlueTooth module and then enters a low power mode. The two

audio components require the most current out of any device at roughly 60mA combined.

In the low power mode the MCU consumes roughly 0.6µA of current, making the total

41

system current usage in the SLEEP state roughly 1mA when accounting for the

accelerometer, and quiescent currents. With a battery capacity of 1200mAh, the device

should theoretically be able to remain in sleep mode for fifty days from a full charge until

shutdown.

Whereas in the prototype the user had no control over the flow of SYSstate, they are

now capable of controlling it via the button. The system initializes the SYSstate variable to

the CAL state, where the device will execute the calibration algorithm. After calibration is

done, the device will enter the ON state and begin executing the motion sensing algorithm.

The device will remain in this state until user input is received. If the user quickly presses

the button, the state will change to CAL until calibration is finished and then back again to

the ON state. If the button is pushed and held, the device will enter the SLEEP mode where

it will stay until given further input. In order to exit the SLEEP state, the user must press

and hold the button until the device enters the CAL state again, followed by the ON state.

This entire process is illustrated in Figure 4.9. The code to implement this multifunctional

button took advantage of the MSP430s interrupt capabilities. It only requires one external

interrupt and one timer interrupt, which saves one pin on the MCU if the device were to use

two buttons and two external interrupts. This may not seem like it is worth the effort, but

even with one button in the final design the MCU had no available GPIO pins. This means

that the final design would not have been possible without this dual purpose button.

Figure 4.9: SYSstate State Diagram for the Final Build

42

4.2.2 – Communications

 The final design requires many more communications between the MCU and other

components than the prototype did. On top of this, the libraries that allowed for simple

communications on the Arduino platform are not available on the MSP430 platform. This

means that each communication function was made from scratch at the register level.

These communications include interactions with the indication LEDs, SPI with the

ADXL345, UART with the RN-52, multiple interrupts and multiple GPIO pins.

 In order to lower power consumption, the indicator LEDs are never fully on, but are

instead flashed in different patterns to signify different states to the user. These patterns

are created by utilizing the MSP430’s timer interrupts. The red LED is used to indicate the

state of the SYSstate variable. When the state is SLEEP, the red LED is completely off. When

the device enters the CAL state, the light will initially be on and dimmed by PWM to

represent the initial timing delay followed by rapid flashing with a 50% duty cycle. When in

the ON state, the LED will flash at a slower rate and at a much smaller duty cycle, in order

to further help conserve power. Ideally the blue LED would be controlled by the MCU as

well, but as of now it is controlled by the BlueTooth module itself. This light is meant to

show whether the device is connected, disconnected, or in the process of connecting with

similar light patterns to the red LED.

 In order to implement the SPI communication with the accelerometer, all of the read

and write functions had to be written from scratch. This was accomplished by manipulating

the RX and TX buffers as well as polling the flag registers. These inform the MCU of the

status of the communication to ensure that information is not lost in between. Once these

functions were written to initialize the digital communications protocol, the actual

communication with the ADXL345 was virtually equivalent to the prototype.

 All of the read and write functions for the UART communication with the BlueTooth

module had to be written from scratch as well. Through a similar process of manipulating

RX and TX buffers and polling flag registers, these basic communication functions were

created. Even though the software currently only requires the MCU to send the play/pause

command, we tried to generalize the communication functions in order to allow for

43

flexibility in the future. Unfortunately, this implementation was running into timing

problems sometimes. If the device was trying to send two commands to the RN-52 within a

short time span, only the first command is registered. This is causing the device to easily

get out of sync with the media player, as mentioned with the prototype. In an attempt to

prevent this from happening, a delay was added to the end of the read and write functions

but it was unsuccessful in solving the problem

For the final build code, there are three new interrupts in addition to the

DATA_READY interrupt already used in the prototype code. The BUTTON interrupt is used

to help control the functionality of the button, as mentioned in the previous section. This

interrupt works in conjunction with a timing interrupt to allow for the button to be used

for two functions instead of one. Another interrupt is the JACK interrupt, which informs the

MCU whether the 3.5mm phone jack is being used. This interrupt also makes it so that the

audio amplifier will automatically shut down when there is no audio output present, so the

interrupt is meant mainly to update the MCU instead of affecting any of the state flows.

Lastly there is the GPIO2 interrupt, which is connected to the GPIO2 pin of the RN-52. This

interrupt lets the MCU know that there has been a change in the BlueTooth connectivity

state. We did not have time to work on the code to query the connection status, but the

hardware is still implemented.

 Lastly, there are two GPIO pins that the MCU uses. The first is connected to the

GPIO9 pin of the BlueTooth module. The output state of this pin determines the

communication mode of the RN-52. When the pin is high, the UART sent to the module is

relayed over the SPP profile to the media player. When the pin is low, AVRCP commands

and configuration data can be sent and received from the RN-52. This functionality is

integrated into the UART communication functions. The other GPIO pin is connected to the

enable pin of the LDO channel that supplies power to the audio amplifier and the

BlueTooth module. As mentioned earlier, this pin is only pulled low during the SLEEP state

otherwise it is left high.

44

4.3 – Current Testing and Possible Changes
 Unfortunately, we were unable to completely finish debugging and testing the new

device, meaning that many problems were left unresolved. Although we were unable to

solve them completely, we did have time to hypothesize about what was causing them and

how they can be resolved. This section will consist of the issues that we have or have not

entirely figured out, as well as their solutions or possible solutions, respectively.

4.3.1 – Electrical Testing and Changes

 For the electrical hardware, we were almost able to get the device completely

functional with the exception of the audio amplifier. It is still unclear whether this is due to

a design error or an assembly error. It is unlikely that it is due to a design error, as it is

based off of a reference design. Since the audio amplifier has an exposed pad on the bottom

of it and a very small pitch, it is very difficult to tell if the connections are soldered properly

since we had to hand assemble the device. In order to check the design of the audio

amplifier, we would likely have to get the PCB assembled professionally in order to ensure

it is properly connected. From here, we can determine the validity of the amplifier design.

 Through testing the board we have also come across many smaller changes that

could be made to the PCB and design. First, there is a pull up resistor required between the

VCC and RST pins of the MSP430G255, in order for the MCU to function properly as an

embedded device. Also, the shutdown pin for the audio amplifier was accidentally

connected to the wrong output of the Schmitt trigger, so that it was controlled by the

button instead of the audio jack. There is also an extra trace coming off of one of the

Schmitt trigger pins. While this has no effect electrically, it is still good practice to avoid

unconnected traces as they can act like antennae. By shorting out the Schmitt trigger and

looking at the interrupt signals on an oscilloscope, it was obvious that the RC constant of

the switch circuit was capable of filtering out all of the jitter. This means that the Schmitt

trigger can be completely eliminated from the design. Lastly, the external 32.678kHz

crystal connected to the MCU never ended up being used in the code. This component can

be eliminated in order to free up two GPIO pins that can instead be connected to the

45

UART_RTS and UART_CTS pins of the RN-52. This pins will allow us to have more control

over the flow of the UART communication.

4.3.2 – Software Testing and Changes

 The software provided the most difficulty in terms of debugging. Overall, the biggest

problem that remains with the software involves timing issues. For this reason, all of the

possible suggestion in this section are related to eliminating or ameliorating this problems.

The first issue was the problem regarding the functionality of the timing delay. A possible

change to the code would be to base the inactivity delay on the number of acceleration

samples that have passed since the last MOTION state instead of a time value. This would

isolate this function from any sort of timing and therefore eliminate any sort of timing

complications associated with it.

 Another issue that arose during the initial testing of the software was UART timing

conflict. A possible solution to this would be to utilize the UART_CTS and UART_RTS pins of

the BlueTooth module. These pins allow the devices to know when each other are busy, so

that data transmission can be delayed until both are ready to communicate. I do not know

exactly how we would go about implementing the code associated with this, but it has the

potential to eliminate miscommunications due to a component being busy with a different

process. Another method of reducing timing conflicts is to make the processing time

shorter. This could be accomplished by using more efficient floating point operations

during the motion sensing algorithm. This would likely involve writing code at the

assembly code level in order to fully optimize the calculations performed. This combined

with the first solution would hopefully lead to a functional device, but it is likely that more

debugging would still be required.

4.3.3 – Mechanical Testing and Changes

 The original plan for mechanical testing is shown in the figure below, titled

Experimental Protocol. We initially wanted to test 11 different aspect of the project, but

were unable to complete all of them.

46

Table 4.1 – Experimental Protocol

Evaluation Equipment Accuracy Trials Expected

Outcome TESTED?

Drop Testing Mobile Music, Measuring
Tape, Speaker 1ft 10

Survive drop
from 5ft w/o
cracks or loss of
function Yes

Water Resistance
Water, Spray bottle, Mobil
Music, Stopwatch,
Batteries

 N/A 5

Water
Resistance from
spray and
splash No

Battery Life Stopwatch, Mobile Music,
Speaker, Batteries 10 min 3 3-5 hours Yes

Installation Time Stopwatch, Screwdriver,
Mobile Music, Walker 1s 5 30s Yes

Weight Scale, Mobile Music 0.1 lb 4 <4 oz Yes

Size Measuring tape, Mobile
Music 1 cu.in. 4 < 30 cu. In. Yes

Manufacturing Time 3D printer, PCB
Components 10s 4 2 hours No

Motion Detection
Accuracy

2 Stopwatch, walker,
Mobile Music, Speaker 0.5s 5 95% No

Tubing Size Fit Screwdriver, Mobile Music 0.1in 5 3/4" to 1-1/2" Yes

Assembly Time
Screwdriver, Mobile Music
components, hardware,
stopwatch

10s 5 5 min. No

Range Measuring Tape, Mobile
Music, Speaker 1ft 5 15-20 ft No

 By the end of our time with this project, we have been able to complete six of our

desired tests. These were the drop test, battery life, installation time, tubing size fit, size,

and weight. We were unable to complete some of the originally planned tests because of

problems with the software and the audio amplifier.

47

Chapter 5 – Engineering Standards

5.1 – Manufacturability Analysis
 The shell that has currently been built was rapid prototyped using a MakerBot 2.0,

located in the Santa Clara University Maker Lab. The various pieces of the shell and mount

were printed using the standard PLA filament, designed for use with the MakerBot. This

method of manufacturing was chosen because we knew that only one or two devices would

need to be built over the course of the project. Because the MakerBot was readily available

to us, and provided very quick production time, it was the perfect choice for the project.

 However, this manufacturing method would not be ideal for mass production of this

product. The printed pieces have a relatively high cost of production when compared to

other methods such as injection molding. The speed of these processes is also much

quicker than the MakerBot. The main reason injection molding was an unrealistic goal for

us is the initial cost to design and build molds. Despite the device being a simple shape,

there are small details which would need to be machined in after the mold was created.

For the span of our project, it would have been very difficult to design mass production

methods for this product.

 Having to hand solder all of the components to the PCB was extremely time

consuming and was the cause of several malfunctions during the initial testing. If this board

were to be reproduced again, it is highly recommended that the device be assembled

professionally with the use of reflow ovens and solder paste. While this will add some costs

to the final product, the amount of time and stress that it saves is worth it. If the device is

going to be mass produced, then it is recommended that the dimensions of the PCB be

optimized for panelization. This will help to ensure the lowest cost per board. Is it is also

important to note that the more devices that are created and assembled, the more money is

saved on the per unit price. These savings can then be passed on to customers.

 Another part of our manufacturing process that was challenging was creating the

clear button. Initially we thought that this would be something easily made on a lathe out

of acrylic. However upon further research we learned that acrylic would be too brittle for

the dimensions we needed on the button. From here we looked into rapid prototyping the

48

button along with the shell. The issue here was that only colored translucent filament is

available, not clear as we would have liked.

 The final method we found was to cast the piece from a mold. In order to create the

mold, we first printed a version of the button on the MakerBot, with regular filament,

shown below.

Figure 5.1 – Printed PLA Button Model

With this, we used EasyMold Silicone Putty, which is a two part mold creating putty,

to build our mold for the resin. We were able to get a pretty good mold with this product,

but would probably use something different for final production of this piece.

Figure 5.2 – EasyMold Silicone Mold

The epoxy resin we used was two part EasyCast resin. This is a clear resin, which is

supposed to degas as it hardens, and become clear as glass. Our molded piece did not come

49

out completely degassed, which led to some problems. We believe that this is because of

the size of the mold, and how little area there was for the gas to dissipate.

Figure 5.3 – EasyCast Resin Button

For future manufacturing, we would move to a machined mold for this part, and a

different mold design which would allow the resin to reach its proper end form. The main

reason for the poor quality of the button is the rushed timeline over which it was

redesigned and created. After we realized that machining a button would not work, we

only had about two weeks to redesign for it to be molded.

5.2 – Economic Analysis
 One of the original goals of the project was to make sure that the device could be

manufactured at a cost of $100 or less. The reasoning for this is to keep price relatively

low, especially if the device was being made in low production quantities to ensure that it

will still be readily available to those who need it. We know that the market for this device

is not huge, as there are only certain facilities that would have a need for this product, but

even for low production this device can be economically viable. As shown in Figure XX, at a

production quantity of ten, we were able to produce the device for less than our target

price of $100.

50

Table 4.1 – Simplified BOM for Different Order Quantities2

Component Part Number Unit Price: QTY 1 Unit Price: QTY 10

Micro Controller MSP430G2553 $2.80 $2.25

Accelerometer ADXL345 $7.32 $6.58

BlueTooth Module RN-52 $23.30 $19.42

Audio Amplifier TPA6112A2 $2.40 $1.63

Power

Management

1200mAh LiPo

BQ24253

TLV7113333D

$14.01 $12.58

Misc. Components $17.05 $13.18

PCB Fabrication $33.00 $26.56

Shell 3D Printed $2.75 $2.75

Mount 3D Printed $1.00 $1.00

Misc. Hardware $6.70 $5.36

 TOTAL $110.33 $91.31

Also, by making the device universal, users will not need to purchase more Mobile

Music devices if multiple students do not perform gait training at the same time. We saw at

The Avalon Academy that they usually only conduct therapy sessions with three or four

students at a time. Therefore, the school could use four or five devices to cover the needs

of more than twenty students.

5.3 – Intellectual Property Analysis
 The first part which this patent analysis focuses on is the adjustable mounting

system that was designed for use with this part. The mount is a two piece bracket, which

uses off the shelf carriage bolts and wing nuts for its adjustability. The brackets are

51

adjustable through their ability to slide along the bolts. This can also be helpful for oval or

rectangular tubing, as the mount does not need to be excessively sized in the direction of

the minor diameter/side.

The title of this invention would be “Sliding Adjustable Tubing Clamp.” The purpose

of the invention is to allow a single structure or device to mount to multiple tubing sizes or

shapes. The invention was developed for a musical therapy device, which needed to be

attached to walkers of different shapes and sizes. The reason for creating a sliding style

clamp was to allow for complete opening of the mount to ease installation. The mount was

also designed to be low cost, using off the shelf parts along with two simple rapid

prototyped parts. These parts could be easily adapted to an injection molding process to

lower costs at large volumes. The clamp was designed on February 20, 2015 by Alex

Hildebrand, and built and tested during the months of March, April and June of 2015.

Figure 5.4- Initial Sketch (Drawn By Alex Hildebrand)

52

Figure 5.5 – Outside Clamp CAD Model

Figure 5.6 – Inside Clamp Model

The two most relevant U.S. classifications found during the patent search were 403

and 248. Class 403 is defined as “the generic class of connections between two or more

rigid or semi rigid members at substantially a single locus.” Sub-classes that apply are 398,

399, and 290. These subclasses represent the adjustability, yoke-style connection and open

end of the design. Class 248 “provides for devices which carry the weight of an article or

articles or otherwise hold or steady it or them against the pull of gravity.” This is the

primary purpose of any mounting device, and the subclass for tubing is 74, specifically

74.4, which is about separable clamps.

 Similar patents found include, US 7179010 B2 – Adjustable pipe clamp assembly.

53

This patent is the most similar in style to our clamp. The primary difference is that only

one end is adjustable, where ours uses two adjustment points. This mount is also used U-

shaped support channel, commonly called Unistrut. This is another limiting factor for the

adjustability of the design. Also found was WO 20060077326A3 – Adjustable Mounting

bracket. This patent application is quite vague, but it describes two L-shaped bracket

members which slide along mounting plates. Also required are mounting Jaws, placed on

the brackets to hold the pipe, or member in place. This design is much more complicated

than ours, and likely designed for a different purpose than ours.

Overall, it seems like this mounting style could be patented. All sorts of DIY robotics

or computer systems builders could use a simple and cheap mount for almost anything in

their projects. This could help to bring costs down on these one off machines, as they

would not need to spend money on expensive prototyping materials, like 80/20 and

similar. Claims that could be made about the clamp are that it uses very inexpensive parts,

it could be built by anyone with access to a 3D printer and a hardware store if the files were

available online, and how it could easily be scaled to almost any size necessary.

In addition to this, the calibration could be eligible for a patent because it meets the

Patent Acts qualifications of a novel, useful, and nonobvious process. After a brief patent

search, there have been no previous patents for processes that calibrate the rotational

offset of three dimensional accelerometer using gravity as a reference for the sake of

measuring accelerations orthogonal to gravity. While a more thorough search would need

to be conducted before filing this patent, it initially appears as though the algorithm

qualifies as novel. The calibration algorithm is clearly useful as seen by its role in Mobile

Music and is not obvious due to its lack of prior implementation. All of these reasons

qualify the calibration algorithm for a patent, contingent on a more thorough patent search.

 Finally, the entirety of the code for the final build itself is actually protected as

intellectual property. Because all of the code used for programming the MCU was either

obvious or original, it is protected under the Copyright Act. The code is protected by

copyright because it is considered a tangible form of expression. Copyright is not

dependent on any paperwork being filed with the U.S. Copyright Office, but is assumed as

54

soon as it is created. However, if the code is registered with the Copyright Office, then there

would be legal advantages should infringement ever be filed.

5.4 – Ethics Analysis

As a whole, Mobile Music has very little potential to be used unethically. Any tool

has the potential to be indirectly used for immoral purposes. For example, it would

technically be possible for someone to hack this device and use it to administer shocks to

someone else when they stop performing a repetitive movement. In reality, the amount of

effort required to do this would be impractical. The potential benefits of this device far out

way the potential harm.

 That being said, we still have ethical obligations to Avalon Academy as well as other

potential customers. We have an ethical obligation to create a product that can be useful to

as many children with cerebral palsy as possible. This responsibility holds precedence over

any legal rights we may have that would sacrifice the universality of my product. For

example, we have an obligation to design a low cost system, as per the request of Avalon

Academy, so that the devices can be readily available to all children with Cerebral Palsy

regardless of their family’s economic situation. This obligation outweighs our legal freedom

to mark up the price of the product so that we could make a larger profit.

We also have an ethical obligation to create a useable product. This means that the

final product needs to be functional, cheap, reliable, and user friendly. The most important

of these is that the device is functional. We define that the device is functional if it causes a

noticeable increase in physical therapy participation for the students at Avalon Academy.

This is the essence of the project; the other three categories are secondary, but still of great

importance to the success of the project.

Finally, we have an ethical duty to ensure that my device doesn’t cause any harm to

its users. Since this device is primarily being used by people with special needs, we have a

duty to make the device as hardy and as fail-proof as possible. Most of this responsibility is

taken care of in the development of the case and connector for the device to ensure that the

device will not shatter if dropped or cause a tripping hazard. There were also extra

55

precautions taken to reduce the thermal emissions of the device to prevent overheating of

the LiPo battery which could potentially burn users.

5.5 – Social Analysis

The need for our project is rooted in social equity in that it provides a cost effective

benefit to a disadvantaged group of people. This type of technology is even more important

in the niche market of assistive technologies. Because it is such a small market, most of the

technology used is either out of date or are generally more expensive than general

consumer technologies. Our project provides an economically viable product, so that

hopefully more people suffering from limited mobility will have access to our assistive

technology. As a social benefit, our project helps to ameliorate the gap in physical ability

between those afflicted with movement disorders, such as Cerebral Palsy, and those with

typical mobility.

Our device makes physical therapy sessions more efficient by providing musical

encouragement to the participants, creating motivation to complete sometimes difficult

physical activities while simultaneously allowing the physical therapist to spend more time

focusing on the patient’s progress instead of convincing them to participate. These factors

are even more exemplified when the patient is a child, where physical therapy can be more

successful in that the muscle memory for gait is still forming, but patients are more

unmotivated to provide continual participation due to loss of focus. Our device will provide

a beneficial stimulus that will help maintain the patient’s focus on their necessary gait

training exercises. By aiding in physical therapy and effectively increasing the mobility of

the patients, our device helps enable independence for a group of people that are generally

dependent on someone else for basic human needs.

56

Chapter 6 – Future Developments and Final Thoughts

6.1 – New System Configuration
 One possible development for a future group would be to implement a new, lower

power system configuration. The difference between this configuration and the original

configuration is that the device is now wireless and the media player is now connected to a

headphone or speaker, as seen in Figure 6.1.

Figure 6.1 - Comparison between the New Configuration and the Old Configuration

 This new configuration has multiple benefits for device operation. Since the audio

amplifier is not being used in this configuration, it can be kept in shut down mode for the

duration of operation. Since the audio amplifier sinks an estimated 30mA, this will greatly

increase the battery life of the device from 15 hours to 24 hours. Also, since the BlueTooth

player will no longer be streaming audio, it will require slightly less power, further

increasing the battery life. Another benefit is that there would not need to be any cords

57

attached to the device during operation. This would greatly reduce the risk of tripping due

to a hanging wire. The only downside to this configuration is that the media player will

have to be physically connected to a headphone or speaker.

 Because of the jack detect, the current hardware is capable of both system

configurations depending on the presence of an audio output in the 3.5mm phone jack. The

code to do this, however, has not been developed. It would essentially be another state

machine that would use the interrupt from the switch of the 3.5mm phone jack as an input.

It would then control how the play or pause command is communicated to the media

player. In the old configuration, this was done by sending a UART command to the RN-52 to

send a play/pause toggle command to the media player over the AVRCP profile. This

method would not work with the new configuration because the AVRCP profile is only

active when the A2DP profile is active and the device is no longer streaming music. Instead,

the device would send a symbol to the player through the SPP profile that it would decode

as either a play command or a pause command. In order to receive and decipher the

symbol, a mobile app would be needed for the media player.

6.2 – Mobile App Integration
 Another future development is to incorporate a mobile app the device. This would

greatly help to improve the accuracy of the motion sensing algorithm. Because we would

no longer be confined to preset functions of the AVRCP profile, we could send commands to

play and pause, not just a play/pause toggle. Since the device would be able to have exact

control of the play/pause state of the media player, it would help correct, if not eliminate

some of the errors that arise from never exactly knowing what state the media player is in.

The app could also include a way for users to download custom threshold and delay values

to the code. This would help physical therapists fine tune the motion sensing algorithm and

increase it efficacy.

 A mobile app would also enable data collection from the device. It could possibly use

a graphical user interface to display acceleration data for the physical therapists to analyze

and adjust the patient’s gait training accordingly. The device could also record activity and

inactivity times for a given therapy session. This could give the physical therapist feedback

58

as to how efficient the training session was as well as a quantitative way of looking at

patient progress over time.

Ideally, the app would be multiplatform meaning that it would work with both

Android and iOS devices. However, due to licensing required for Apple apps, most

prototyping and testing would be done on the android platform. Unfortunately, most of the

media players used by Avalon Academy run iOS so they would be incompatible with the

first revisions of the app. Towards the end of the project, we began working with a

Computer Engineering Masters student, Anup Navare, on developing this application. So

far, the app is only capable of sending and receiving UART communications sent through

the BlueTooth SPP profile.

6.3 – Mechanical Design Updates
 Future updates on the mechanical design are not really necessary, but could be a

nice way to add an ergonomic touch. If we were to redesign the device, it would be nice to

round the corners and edges with a small filet. This would make the device more pleasant

to hold, and would prevent the cords from catching on the sharp edges. In the future, it

would also be beneficial to finish the product in some sort of rubberized coating. The

purpose of this coating would be to add to the shock protection of the device as well as to

make the enclosure more water resistant by sealing up the spaces between the shell halves

and the button. This coating would also make Mobile Music easier to grip, and less likely to

slip from the user’s hand and get broken.

 From a manufacturing standpoint, this product would be better of being molded and

machine finished. This would likely lead to a much more consistent product, which could

more easily modified in terms of material choice and quantity produced. The parts are

simple enough that molds could be fairly inexpensive to machine.

6.4 – Conclusions
 Overall, Mobile Music has turned out to be a partially successful Senior Design

Project. We were not able to complete all of our initial goals, but we were able to

successfully implement and test many different aspects of our design. The parts which we

59

were unable to complete were in the finer details with the exception of the bugs with the

motion sensing algorithm and AVRCP commands.

 That being said, a lot was accomplished over the course of the project. We designed

and built a case to house the electrical components, and provide the user with an easy

interface. We were not able to get to a point where the shell was water resistant, as the

joints were not sealed, and the tolerance on the button was slightly off. In regards to the

mounting system, we were essentially completely successful. We were able to design a

mount that can work on almost any product, is totally scalable, and works quickly and

effectively. The use of 3D printed parts also makes the design accessible to anyone who

needs a solid pipe mounting system. Being only a two person team, we are happy with the

progress that we made during the year.

60

References
“Data and Statistic.” Centers for Disease Control and Prevention. N.p., 2008. Web. 22 Oct.

2014. <http://www.cdc.gov/ncbddd/cp/data.html>

Moens, Bart, Leon Van Noorden, and Marc Leman. D-Jogger: Syncing Music With Walking.

smcnetwork.org. N.p., 2010. Web. 15 Feb. 2015.

<http://smcnetwork.org/files/proceedings/2010/66.pdf>.

Kwak, Eunmi Emily. "Effect of Rhythmic Auditory Stimulation on Gait Performance in

Children with Spastic Cerebral Palsy." Journal of Music Therapy 44.3 (2007): 198-

216. Oxford Journals. Web. 28 Oct. 2014.

61

Appendices

A-1

Appendix A – Prototype BOM
DESCRIPTION QUANTITY PRICE/UNIT SUPPLIER
AAA Battery 3 $ 1.00 Amazon
3x AAA Battery Holder 1 $ 2.00 RadioShack
SPST Power Switch 1 $ 3.50 RadioShack
Arduino Pro Mini 3.3V 1 $ 10.00 Sparkfun Electronics
FTDI Breakout Board 1 $ 15.00 Sparkfun Electronics
ADXL345 Breakout Board 1 $ 18.00 Sparkfun Electronics
RN-52 Breakout Board 1 $ 45.00 Sparkfun Electronics
3.5mm phone Jack 1 $ 1.75 RadioShack
LED and Resistor 1 $ 1.50 Amazon
Wires 1 $ 5.00 Amazon
Project Enclosure 1 $ 4.99 RadioShack
2" Hose Clamps 2 $ 1.83 Home Depot
#6 1/2" Machine Screw 2 $ 1.67 Home Depot
#6 Lock Nut 2 $ 1.70 Home Depot
 TOTAL $ 120.14

B-1

Appendix B – Prototype Schematic

C-1

Appendix C – Prototype Pictures

Prototype with Pipe clamps

Peripherals

C-2

Mounted Position

C-3

Prototype Testing

C-4

Final Mount Prototype

D-1

Appendix D – Prototype Code
#include <SPI.h>
#include <math.h>
#include <Timer.h>

// TESTING
#define BUTTON_DELAY 50

// GENERAL
#define PLAYPAUSE_DELAY 100
#define CAL_DELAY 500
#define CAL_SAMPLES 200
#define HI_THRESH 30 // WILL NEED TO BE VARIABLE
#define LO_THRESH 8 // WILL NEED TO BE VARIABLE
#define INACT_DELAY 1000 // WILL NEED TO BE VARIABLE

// ADXL345 REGISTERS
#define BW_RATE 0x2C //Data Rate Register
#define POWER_CTL 0x2D //Power Control Register
#define INT_ENABLE 0x2E //Interrupt Enable Register
#define INT_MAP 0x2F //Interrupt Mapping Register
#define INT_SOURCE 0x30 //Interrupt Source Register
#define DATA_FORMAT 0x31 //Data Formatting Register
#define DATAX0 0x32 //X-Axis Data 0
#define DATAX1 0x33 //X-Axis Data 1
#define DATAY0 0x34 //Y-Axis Data 0
#define DATAY1 0x35 //Y-Axis Data 1
#define DATAZ0 0x36 //Z-Axis Data 0
#define DATAZ1 0x37 //Z-Axis Data 1

// PINS
#define CS 10 //Chip Select pin
#define GPIO13 9
#define LED 8

// INTERRUPTS
volatile int DATA_INT = 1;
volatile int FLAG = 0;

// FLAGS & QUEUES // NEED TO BE IMPLEMENTED TO PREVENT PLAY/PAUSE TOGGLE
MISHAPS
int playPauseFlag = 0;
int playPauseQueue = 0;

// TIMERS // NEED TO BE IMPLEMENTED (SEND INFO OVER SPP)
unsigned long activeTime = 0;
unsigned long inactiveTime = 0;
unsigned long startTime = 0;

// STATES
enum MVMNTstate_t {MOTION, NO_MOTION} MVMNTstate = NO_MOTION;
enum PPstate_t {PLAY, PAUSE} PPstate = PAUSE;
enum SYSstate_t {ON, CAL, SLEEP} SYSstate = CAL;
enum BTstate_t {OFF, DISCONNECTED, /*PAIRING,*/ CONNECTED} BTstate =
DISCONNECTED;

D-2

// OTHER
double deltaTheta;
Timer t;

void setup(){
 // initiate SPI.
 SPI.begin();
 SPI.setDataMode(SPI_MODE3);

 Serial.begin(115200);

 pinMode(CS, OUTPUT);
 digitalWrite(CS, HIGH);
 pinMode(GPIO13, OUTPUT);
 digitalWrite(GPIO13, HIGH);
 pinMode(LED, OUTPUT);
 digitalWrite(LED, LOW);

 attachInterrupt(0, dataAvail, RISING);

 writeRegister(DATA_FORMAT, 0x0B); // +/- 16G range w/ full res
 writeRegister(BW_RATE, 0x0B); // RATE: 200 Hz
 writeRegister(INT_ENABLE, 0x80); // enable DATA_READY INT
 writeRegister(INT_MAP, 0x00); // map DATA_READY to INT1
 writeRegister(POWER_CTL, 0x08); // measurement mode
}

void loop()
{
 if(SYSstate == CAL) // switch statement instead of if statements
 {
 deltaTheta = calibration();
 SYSstate = ON;

 //Serial.print("Delta Theta = "); // for testing/debug
 //Serial.println(deltaTheta); // for testing/debug
 }
 if(SYSstate == ON)
 {
 // Serial.println("DATA"); // for testing/debug
 // Serial.println(getXYMag(deltaTheta)); // for testing/debug
 motionSense(deltaTheta);

 switch(MVMNTstate) // could get rid of global enum; make local to loop(),
motionSense() output 1 for motion 0 for no motion
 {
 case NO_MOTION:
 if((PPstate == PLAY) && (millis() - startTime > INACT_DELAY))
 {
 PPstate = PAUSE;
 //playPause();
 t.pulse(GPIO13, PLAYPAUSE_DELAY, HIGH);
 digitalWrite(LED, LOW);
 //Serial.println("PAUSE");
 }
 break;

D-3

 case MOTION:
 if(PPstate == PAUSE)
 {
 //playPause();
 digitalWrite(LED, HIGH);
 t.pulse(GPIO13, PLAYPAUSE_DELAY, HIGH);
 //Serial.println("PLAY");
 }
 PPstate = PLAY;
 startTime = millis();
 break;
 default:
 MVMNTstate = NO_MOTION;
 break;
 }
 }

 t.update();
}

void writeRegister(char registerAddress, char value){
 // set CS pin low to start a SPI packet
 digitalWrite(CS, LOW);
 // transfer the register address over SPI
 SPI.transfer(registerAddress);
 // transfer the desired register value over SPI
 SPI.transfer(value);
 // set the CS pin high to end the SPI packet
 digitalWrite(CS, HIGH);
}

void readRegister(char registerAddress, int numBytes, unsigned char *
values){
 // set bit 7 to read
 char address = 0x80 | registerAddress;
 // if multibyte read, set bit six
 if(numBytes > 1)
 address = address | 0x40;
 // set the CS pin low to start a SPI packet
 digitalWrite(CS, LOW);
 // transfer starting address
 SPI.transfer(address);
 // read specified registers
 for(int i=0; i<numBytes; i++)
 values[i] = SPI.transfer(0x00);
 // set the CS pin high to end the SPI packet
 digitalWrite(CS, HIGH);
}

void dataAvail(void)
{
 DATA_INT = 1;
}

double calibration(void)
{
 double calX = 0.0;

D-4

 double calY = 0.0;
 double calZ = 0.0;
 double calR = 0.0;
 int count = 0;
 unsigned char values[6];
 unsigned long startTime = millis();

 while((millis() - startTime) < CAL_DELAY); // possible problem when
millis() resets...

 while(count < CAL_SAMPLES)
 {
 if(DATA_INT)
 {
 DATA_INT = 0;
 count++;
 readRegister(DATAX0, 6, values);
 calX += ((int)values[1]<<8)|(int)values[0];
 calY += ((int)values[3]<<8)|(int)values[2];
 calZ += ((int)values[5]<<8)|(int)values[4];
 //Serial.println(count);
 }
 }

 calX = (double)calX/CAL_SAMPLES;
 calY = (double)calY/CAL_SAMPLES;
 calZ = (double)calZ/CAL_SAMPLES;
 calR = sqrt((calZ*calZ) + (calY*calY) + (calX*calX));
 return acos(calZ/calR);
}

double getXYMag(double deltaTheta)
{
 double XYMag = 0.0;
 double x = 0.0;
 double y = 0.0;
 double z = 0.0;
 double r = 0.0;
 unsigned char values[6];

 while(!DATA_INT);

 DATA_INT = 0;
 readRegister(DATAX0, 6, values);
 x = (double)(((int)values[1]<<8)|(int)values[0]);
 y = (double)(((int)values[3]<<8)|(int)values[2]);
 z = (double)(((int)values[5]<<8)|(int)values[4]);
 r = sqrt((x*x) + (y*y) + (z*z));
 XYMag = r*sin(acos(z/r) - deltaTheta);
 return abs(XYMag);
}

double motionSense(double deltaTheta)
{
 double XYMag;

 XYMag = getXYMag(deltaTheta);

D-5

 if(((XYMag >= HI_THRESH) && (PPstate == PAUSE)) || ((XYMag >= LO_THRESH) &&
(PPstate == PLAY)))
 MVMNTstate = MOTION;
 else
 MVMNTstate = NO_MOTION;
 return XYMag;
}

void playPause(void)
{
 digitalWrite(GPIO13, LOW);
 delay(BUTTON_DELAY);
 digitalWrite(GPIO13, HIGH);
 delay(BUTTON_DELAY);
}

E-1

Appendix E – Final Build BOM
PART NUMBER QUANTITY PRICE/UNIT REFERENCE DESCRIPTION

258 1 $ 9.95 B1
LiPo Battery, 3.7V
1200mAh

587-1253-1-ND 1 $ 0.13 C1 2.2uF 10V X5R 0603

490-1532-1-ND 6 $ 0.10
C11, C13, C16, C18,
C21, C24 0.1uF 16V X7R 0603

712-1307-1-ND 2 $ 0.50 C14, C15 10pF 250V NPO 0603
490-7207-1-ND 4 $ 0.26 C17, C22 , C23, C25 10uF 6.3V X5R 0805

1276-1946-1-ND 15 $ 0.04

C2, C5, C6, C7, C8, C9,
C10, C12, C19, C20,
C26, C27, C28, C29,
C30 1uF 10V X7R 0603

1276-2042-1-ND 1 $ 0.10 C3 33nF 50V X7R 0603
490-4539-1-ND 4 $ 0.81 C31, C32, C33, C34 100uF 6.3V X5R 1206
490-1719-1-ND 1 $ 0.27 C4 22uF 6.3V X5R 0805
MSL0201RGBW1CT-ND 1 $ 1.80 D1 RGB LED
160-1830-1-ND 1 $ 0.43 D2 RED LED
511-1589-1-ND 1 $ 0.50 D3 BLUE LED
609-4616-1-ND 1 $ 0.46 J1 USB power jack
CP1-3514SJCT-ND 1 $ 1.70 J2 Headphone jack w/ switch
AE9998-ND 1 $ 0.29 J3 20 pin DIP socket
587-2164-1-ND 1 $ 0.28 L1 1uH 2.2A 51.6mOhm
300-8742-1-ND 1 $ 0.96 Q1 32.768kHz Crystal
RMCF0603FT402RCT-ND 1 $ 0.10 R1 402 1% 1/10W 0603
MCT0603-10.0K-CFCT-ND 1 $ 0.08 R11 10K 1% 1/8W 0603
MCT0603-100K-CFCT-ND 1 $ 0.08 R12 100k 1% 1/8W 0603
MCT0603-1.00K-CFCT-ND 1 $ 0.08 R13 1k 1% 1/8W 0603
MCT0603-22.0K-CFCT-ND 4 $ 0.08 R16, R17, R18, R19 22k 1% 1/8W 0603
P576HCT-ND 1 $ 0.10 R2 576 1% 1/10W 0603
P499HCT-ND 1 $ 0.10 R3 499 1% 1/10W 0603

MCT0603-47.0K-CFCT-ND 6 $ 0.08
R4, R5, R20, R21,
R22, R23 47k 1% 1/8W 0603

MCT0603-0.0-ZZCT-ND 5 $ 0.13 R6, R9, R10, R14, R15 0.0 Jumper 1/8W 0603
P24.9HCT-ND 1 $ 0.10 R7 24.9 1% 1/10W 0603
P71.5HCT-ND 1 $ 0.10 R8 71.5 1% 1/10W 0603
CKN10290CT-ND 1 $ 0.33 S1 Momentary switch
296-36446-1-ND 1 $ 3.32 U1 LiPo charge regulator
296-28766-1-ND 1 $ 0.74 U2 2 CH LDO
296-28429-5-ND 1 $ 2.80 U3 MSP430 MCU
ADXL345BCCZ-ND 1 $ 7.32 U4 ADXL345
RN52-I/RM-ND 1 $ 23.30 U5 RN-52
296-10848-1-ND 1 $ 2.40 U6 Audio Amplifier
296-27365-1-ND 1 $ 0.55 U7 Schmitt trigger, 2CH
UM6K1NTNCT-ND 1 $ 0.56 U8 2 CH. NFET
MOBILE_MUSIC_PCB_REV1 1 $ 33.00 N/A PCB
B20001 1 $ 2.60 B1 Shell Base Style 2
T20001 1 $ 2.24 T1 Shell Top Style 2
C20001 1 $ 0.85 N/A Battery Cover Style 2
M20001 1 $ 1.15 N/A Sliding Mount, Inside
M20002 1 $ 1.15 N/A Sliding Mount, Outside

M20003 4 $ 0.20 N/A
Sliding Mount, Carriage
Bolt

M20004 4 $ 1.18 N/A Sliding Mount, Wing Nut
B20002 1 $ 0.25 N/A Button, Style 2
S20001 5 $ 0.29 N/A #4 Self Tapping Screws
 TOTAL $ 115.07

F-1

Appendix F – Final Build Schematic

G-1

Appendix G – Final Build Layout

H-1

Appendix H – Final Mechanical Drawings

H-2

H-3

H-4

H-5

H-6

H-7

H-8

I-1

Appendix I – Final Build Code
/**
* MOBILE MUSIC - main.h *
**/

#include <msp430.h>
#include "config.h"
#include "RN52_UART.h"
#include "ADXL345_SPI.h"
#include "BlueTooth_Commands.h"
#include "motion_sense.h"
#include "LEDs.h"

#define BUTTON_TIME 12000

volatile float deltaTheta = 0.0;
volatile float mag_float = 0.0;
volatile unsigned int mag_int = 0;
volatile unsigned int redLEDCounter = 0;
volatile unsigned int blueLEDCounter = 0;

const unsigned int threshUpper = 125;//30;
const unsigned int threshLower = 30;//8;
unsigned long inactivityDelay = 30000;

int main(void) {
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 // Initialize
 clockConfig();
 timerConfig();
 IOConfig();
 SPIConfig();
 UARTConfig();
 initMotionSense();

 __enable_interrupt(); // Enable all interrupts

 beginCMDMode();

 while(1)
 {
 switch(SYSstate)
 {
 case SLEEP:
 if(prevSYSstate != SLEEP)
 {
 P1OUT &= ~LDO_EN;
 P2OUT &= ~(RED_LED | BLUE_LED);
 blueLEDstate = LED_OFF;
 prevSYSstate = SLEEP;
 }
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/
interrupt
 break;

E-2

 case CAL:
 prevSYSstate = CAL;
 redLEDstate = LED_ON;
 TA1CCTL1 &= ~CCIFG;
 TA1CCR1 = TA1R + 50;
 TA1CCTL1 |= CCIE;
 calibrationDelay();
 redLEDstate = RAPID;
 TA1CCTL1 &= ~CCIFG;
 TA1CCR1 = TA1R + 50;
 TA1CCTL1 |= CCIE; // CCR1
interrupt enabled
 deltaTheta = calibration();
 SYSstate = ON;
 break;
 case ON:
 if(prevSYSstate != ON)
 {
 prevSYSstate = ON;
 redLEDstate = BLIP;
 P1OUT |= LDO_EN;
 TA1CCTL1 &= ~CCIFG;
 TA1CCR1 = TA1R + 50;
 TA1CCTL1 |= CCIE; //
CCR1 interrupt enabled
 }

 motionSense(deltaTheta, threshUpper, threshLower);

 switch(MVMNTstate)
 {
 case NO_MOTION:
 if(prevMVMNTstate == MOTION)
 {
 prevMVMNTstate = NO_MOTION;
 playPause();
 //TA1CCTL0 &= ~CCIFG;
 //TA1CCR0 = TA1R + inactivityDelay;
 //TA1CCTL0 |= CCIE;
 //
 //for(k = 0; k < 100; k++)
 // __delay_cycles(1000);
 }
 break;
 case MOTION:
 if(prevMVMNTstate == NO_MOTION)
 {
 prevMVMNTstate = MOTION;
 playPause();
 TA1CCTL0 &= ~CCIFG;
 TA1CCTL0 &= ~CCIE;
 }
 //if(PPstate == PAUSE)
 //{
 // playPause();
 // PPstate = PLAY;
 //}

E-3

 break;
 default:
 MVMNTstate = NO_MOTION;
 break;
 }
 break;
 default:
 SYSstate = SLEEP;
 break;
 }
 }
}

// Port 2 interrupt service routine
#pragma vector=PORT2_VECTOR
__interrupt void PORT2_ISR(void)
{
 if(P2IFG & BUTTON) // P2.0: CAL/PWR pushbutton
 {
 if(P2IES & BUTTON)
 {
 TA0CCTL0 &= ~CCIFG;
 TA0CCR0 = TA0R + BUTTON_TIME; // Reset CCR0 to
current time,;
 TA0CCTL0 |= CCIE; // CCR0 interrupt
enable,
 //
add button hold delay
 }
 else
 {
 TA0CCTL0 &= ~CCIE; // CCR0 interrupt disabled
 if(SYSstate != SLEEP)
 SYSstate = CAL;
 else
 redLEDstate = LED_OFF;
 }
 P2IFG &= ~BUTTON; // P1.3 IFG cleared
 P2IES ^= BUTTON; // Toggle the interrupt edge,
 // the interrupt vector
will be called
 // when P1.3 goes from
HitoLow as well as
 // LowtoHigh
 }
 if(P2IFG & JACK) // P2.1: Headphone jack detect
 {
 P2IFG &= ~JACK;
 }
 if(P2IFG & DATA_INT) // P2.5: Accelerometer data ready
 {
 dataFlag = 1;
 P2IFG &= ~DATA_INT;
 }
}

// Timer0_A0 interrupt service routine

E-4

#pragma vector = TIMER0_A0_VECTOR
__interrupt void TIMER0_A0_ISR (void)
{
 TA0CCTL0 &= ~CCIE; // CCR0 interrupt disabled
 if(SYSstate == SLEEP)
 {
 _BIC_SR_IRQ(LPM0_bits); // Exit LPM0
 SYSstate = CAL;
 P2IES |= BUTTON;
 }
 else
 {
 redLEDstate = LED_ON;
 SYSstate = SLEEP;
 P2IES &= ~BUTTON;
 }
 P2IFG &= ~BUTTON; // P1.3 IFG cleared
}

// Timer1_A0 interrupt service routine
#pragma vector = TIMER1_A0_VECTOR
__interrupt void TIMER1_A0_ISR (void)
{
 TA1CCTL0 &= ~CCIE; // CCR0 interrupt disabled
 if(SYSstate == CAL)
 stillCALDelay = 0; // Calibration delay is over
 if(SYSstate == ON)
 {
 playPause();
 PPstate = PAUSE;
 }
}

// Timer1_A1 interrupt service routine
#pragma vector = TIMER1_A1_VECTOR
__interrupt void TIMER1_A1_ISR (void)
{
 switch(__even_in_range(TA1IV, TA1IV_TAIFG))
 {
 case TA1IV_TACCR1: // CCR1
 switch(redLEDstate)
 {
 case LED_ON:
 redLEDOn();
 break;
 case LED_OFF:
 redLEDOff();
 break;
 case BLIP:
 redLEDBlip();
 break;
 case RAPID:
 redLEDRapid();
 break;
 default:
 TA1CCTL1 &= ~CCIE;
 // CCR0 interrupt enabled

E-5

 break;
 }
 break;
 case TA1IV_TACCR2: // CCR2
 switch(blueLEDstate)
 {
 case LED_ON:
 blueLEDOn();
 break;
 case LED_OFF:
 blueLEDOff();
 break;
 case BLIP:
 blueLEDBlip();
 break;
 case SLOW:
 blueLEDSlow();
 break;
 default:
 TA1CCTL2 &= ~CCIE;
 // CCR0 interrupt enabled
 break;
 }
 break;
 }
}

E-6

/**
* MOBILE MUSIC - config.h *
**/

// Port 1
#define LDO_EN BIT0 // P1.0
(GENERAL OUTPUT) BlueTooth and audio amp LDO enable
#define RXD BIT1 // P1.1
(PERIPHERAL INPUT) BlueTooth UART RX (CMD and SPP)
#define TXD BIT2 // P1.2
(PERIPHERAL OUTPUT) BlueTooth UART TX (CMD and SPP)
#define GPIO9 BIT3 // P1.3
(GENERAL OUTPUT) BlueTooth CMD/SPP switch (LO/HI, respectively)
#define GPIO2 BIT4 // P1.4
(INTERRUPT INPUT) BlueTooth status change interrupt
#define SPI_CLK BIT5 // P1.5
(PERIPHERAL OUTPUT) Accelerometer SPI clock
#define MISO BIT6 // P1.6
(PERIPHERAL INPUT) Accelerometer SPI output
#define MOSI BIT7 // P1.7
(PERIPHERAL OUTPUT) Accelerometer SPI input

// Port 2
#define BUTTON BIT0 // P2.0
(INTERRUPT INPUT) CAL/PWR pushbutton
#define JACK BIT1 // P2.1
(INTERRUPT INPUT) Headphone jack detect
#define RED_LED BIT2 // P2.2
(GENERAL OUTPUT) Drives red LED
#define BLUE_LED BIT3 // P2.3 (GENERAL
OUTPUT) Drives blue LED
#define CS BIT4 // P2.4
(GENERAL OUTPUT) Accelerometer SPI chip select
#define DATA_INT BIT5 // P2.5
(INTERRUPT INPUT) Accelerometer data ready interrupt

// Combinations
//#define BT_ON LDO_EN + GPIO9

// STATES
enum SYSstate_t {ON, CAL, SLEEP};
enum BTstate_t {BT_OFF, DISCONNECTED, CONNECTED};
enum LEDstate_t {LED_OFF, LED_ON, BLIP, SLOW, RAPID};
// enum CONFIGstate_t {WRLSS_PLYR, WRLSS_DVC} CONFIGstate = WRLSS_DVC;

// STATE VARIABLES
enum SYSstate_t SYSstate = CAL;
enum SYSstate_t prevSYSstate = ON;
enum BTstate_t BTstate = BT_OFF;
enum BTstate_t prevBTstate = DISCONNECTED;
enum LEDstate_t redLEDstate = LED_OFF;
enum LEDstate_t blueLEDstate = LED_OFF;

void clockConfig(void)
{
 BCSCTL1 = CALBC1_16MHZ; // Set DCO
to 16MHz

E-7

 DCOCTL = CALDCO_16MHZ; // Set DCO
to 16MHz
 BCSCTL2 = SELM_0 + DIVM_0 + DIVS_1;
}

void timerConfig(void)
{
 TA0CTL = TASSEL_1 + MC_2 + ID_2; // ACLK, continuous mode
 TA1CTL = TASSEL_1 + MC_2 + ID_2; // ACLK, continuous mode
 TA0CCR0 = 0;
 TA0CCR1 = 0;
 TA0CCR2 = 0;
 TA1CCR0 = 0;
 TA1CCR1 = 0;
 TA1CCR2 = 0;
}

void IOConfig(void)
{
 P1OUT |= LDO_EN;
 P1DIR |= LDO_EN;

 P2IES &= ~BUTTON; // Set trigger LO-HI
 P2IFG &= ~BUTTON; // P1.3 IFG cleared
 P2IE |= BUTTON; // P1.3 interrupt enabled

 P2DIR &= ~JACK;
 P2IES |= JACK; // Set trigger LO-HI
 P2IFG &= ~JACK; // P1.3 IFG cleared
 P2IE |= JACK; // P1.3 interrupt enabled

 P2OUT &= ~RED_LED;
 P2DIR |= RED_LED;

 P2OUT &= ~BLUE_LED;
 P2DIR |= BLUE_LED;
}

E-8

/**
* MOBILE MUSIC - RN52_UART.h *
**/

void UARTConfig(void)
{
 // Pin Config
 P1SEL |= RXD | TXD; //
USCI_A0 config for UART
 P1SEL2 |= RXD | TXD; // USCI_A0
config for UART
 P1OUT &= ~GPIO9; //
GPIO9 HIGH
 P1DIR |= GPIO9; //
GPIO9 HIGH

 // Peripheral Config
 UCA0CTL1 |= UCSWRST; // Disable
USCI_A0
 UCA0CTL1 |= UCSSEL_2; // Select
UART clock as SMCLK (8MHz)
 UCA0BR0 = 69; // Set UART
baud rate to 115200 (SMCLK = 8MHz)
 UCA0BR1 = 0; //
Set UART baud rate to 115200 (SMCLK = 8MHz)
 UCA0MCTL = UCBRS_4; // Set UART
baud rate to 115200 (SMCLK = 8MHz)
 UCA0CTL1 &= ~UCSWRST; // Enable
USCI_A0
}

unsigned char UARTRead(void)
{
 while (!(IFG2 & UCA0RXIFG)); // USCI_A0 TX
buffer ready?
 return UCA0RXBUF;
}

void UARTWrite(unsigned char tx)
{
 while (!(IFG2 & UCA0TXIFG)); // USCI_A0 TX
buffer ready?
 UCA0TXBUF = tx;
 while (UCB0STAT & UCBUSY); //
Transmission completed?
 __delay_cycles(1000);
 return;
}

void sendCMD(unsigned char* tx, unsigned int txSize)
{
 unsigned int i;
 for(i = txSize; i > 0; i--) // Loop for
number of reads required
 {
 UARTWrite(tx[txSize - i]);
 }

E-9

}

void sendSPP(unsigned char* tx, unsigned int txSize)
{
 unsigned int i;
 for(i = txSize; i > 0; i--) // Loop for
number of reads required
 {
 UARTWrite(tx[txSize - i]);
 }
}

void receiveCMD(unsigned char* rx, unsigned int rxSize)
{
 unsigned int i = 0;
 for(i = rxSize; i > 0; i--) // Loop for
number of reads required
 {
 rx[rxSize - i] = UARTRead();
 }
}

void receiveSPP(unsigned char* rx, unsigned int rxSize)
{
 unsigned int i = 0;
 for(i = rxSize; i > 0; i--) // Loop for
number of reads required
 {
 rx[rxSize - i] = UARTRead();
 }
}

E-10

/**
* MOBILE MUSIC - BlueTooth_Commands.h *
**/

#include <stdlib.h>
//#include "RN52_UART.h"

#define STATUS_CMD "Q\r\n"
#define PLAY_PAUSE_CMD "AP\r\n"
#define AOK_CMD "AOK\r\n"

unsigned char BTStatusRX[4];

unsigned int getBTStatus(unsigned char* rxString, unsigned int rxSize)
{
 if(rxSize != 4)
 return 0;
 sendSPP(STATUS_CMD, sizeof(STATUS_CMD));
 receiveCMD(rxString, rxSize);
 return 1;
}

unsigned int beginCMDMode(void)
{
 unsigned char rx0[] = "CMD";
 unsigned int rxSize = sizeof(rx0) - 1;
 unsigned char* rx1 = (unsigned char*)malloc(rxSize * sizeof(unsigned
char));
 unsigned int i;
 P1OUT &= ~GPIO9;
 receiveCMD(rx1, rxSize);
 for(i = rxSize; i > 0; i--) // Loop for
number of reads required
 {
 if(rx1[rxSize - i] != rx0[rxSize - i])
 return 0;
 }
 return 1;
}

unsigned int playPause(void)
{

 sendCMD(PLAY_PAUSE_CMD, sizeof(PLAY_PAUSE_CMD));
// receiveCMD(AOK_CMD, sizeof(AOK_CMD));
 return 1;

}

E-11

/**
* MOBILE MUSIC - motion_sense.h *
**/

#include <math.h>

#define CAL_DELAY 20000
#define CAL_SAMPLES 300

enum MVMNTstate_t {MOTION, NO_MOTION};
enum PPstate_t {PLAY, PAUSE};
enum MVMNTstate_t MVMNTstate = NO_MOTION;
enum MVMNTstate_t prevMVMNTstate = NO_MOTION;
enum PPstate_t PPstate = PAUSE;

volatile unsigned int dataFlag = 0;
volatile unsigned int stillINACTDelay = 0;
volatile unsigned int stillCALDelay = 0;

void initMotionSense(void)
{
 SPIWrite(POWER_CTL, 0x00); // standby mode
 SPIWrite(INT_ENABLE, 0x00); // disable DATA_READY
interrupt
 SPIWrite(DATA_FORMAT, 0x0B); // +/- 16G range w/ full res
 SPIWrite(BW_RATE, 0x0B); // BW: 200 Hz
 SPIWrite(INT_MAP, 0x00); // set DATA_READY to INT1
 SPIWrite(POWER_CTL, 0x08); // measurement mode
 SPIWrite(INT_ENABLE, 0x80); // enable DATA_READY
interrupt
}

void calibrationDelay(void)
{
 stillCALDelay = 1;
 TA1CCTL0 &= ~CCIFG;
 TA1CCR0 = TA1R + CAL_DELAY;
 TA1CCTL0 |= CCIE; // CCR0 interrupt enabled
 while(stillCALDelay);
}

float calibration(void)
{
 float calX = 0;
 float calY = 0;
 float calZ = 0;
 float calR = 0;
 unsigned int count = CAL_SAMPLES;
 unsigned char values[6];

 while(count > 0)
 {
 if(dataFlag)
 {
 dataFlag = 0;
 count--;
 SPIMBRead(DATAX0, values, 6);

E-12

 calX += (float)(((int)values[1]<<8)|(int)values[0]);
 calY += (float)(((int)values[3]<<8)|(int)values[2]);
 calZ += (float)(((int)values[5]<<8)|(int)values[4]);
 }
 }

 calX = calX/CAL_SAMPLES;
 calY = calY/CAL_SAMPLES;
 calZ = calZ/CAL_SAMPLES;
 calR = sqrt((calZ*calZ) + (calY*calY) + (calX*calX));
 return acos(calZ/calR);
}

float getXYMag(float offset)
{
 float XYMag = 0.0;
 float x = 0.0;
 float y = 0.0;
 float z = 0.0;
 float r = 0.0;
 unsigned char values[6];

 while(!dataFlag);
 SPIMBRead(DATAX0, values, 6);

 x = (float)(((int)values[1]<<8)|(int)values[0]);
 y = (float)(((int)values[3]<<8)|(int)values[2]);
 z = (float)(((int)values[5]<<8)|(int)values[4]);
 r = sqrt((z*z) + (y*y) + (x*x));
 XYMag = r*sin(acos(z/r) - offset);
 if(XYMag > 0)
 return XYMag;
 else
 return -1.0*XYMag;
}

void motionSense(float deltaTheta, unsigned int threshHi, unsigned int
threshLo)
{
 float XYMag = getXYMag(deltaTheta);
 if(((XYMag >= threshHi) && (PPstate == PAUSE)) || ((XYMag >= threshLo)
&& (PPstate == PLAY)))
 MVMNTstate = MOTION;
 else
 MVMNTstate = NO_MOTION;
}

E-13

/**
* MOBILE MUSIC - LEDs.h *
**/

#define LED_TIME_RAPID 500
#define LED_TIME_SLOW 2000
#define LED_TIME_BLIP_ON 600
#define LED_TIME_BLIP_OFF 20000//1500
#define LED_TIME_ON 100

void redLEDBlip(void)
{
 if(P2OUT & RED_LED)
 {
 P2OUT &= ~RED_LED;
 TA1CCR1 = TA1R + LED_TIME_BLIP_OFF;
 }
 else
 {
 P2OUT |= RED_LED;
 TA1CCR1 = TA1R + LED_TIME_BLIP_ON;
 }
}

void redLEDRapid(void)
{
 P2OUT ^= RED_LED;
 TA1CCR1 = TA1R + LED_TIME_RAPID;
}

void redLEDOn(void)
{
 P2OUT ^= RED_LED;
 TA1CCR1 = TA1R + LED_TIME_ON;
}

void redLEDOff(void)
{
 P2OUT &= ~RED_LED;
 TA1CCR1 = TA1R + LED_TIME_SLOW;
}

void blueLEDBlip(void)
{
 if(P2OUT & BLUE_LED)
 {
 P2OUT &= ~BLUE_LED;
 TA1CCR2 = TA1R + LED_TIME_BLIP_OFF;
 }
 else
 {
 P2OUT |= BLUE_LED;
 TA1CCR2 = TA1R + LED_TIME_BLIP_ON;
 }
}

void blueLEDSlow(void)

E-14

{
 P2OUT ^= BLUE_LED;
 TA1CCR2 = TA1R + LED_TIME_SLOW;
}

void blueLEDOn(void)
{
 P2OUT ^= BLUE_LED;
 TA1CCR2 = TA1R + LED_TIME_ON;
}

void blueLEDOff(void)
{
 P2OUT &= ~BLUE_LED;
 TA1CCR2 = TA1R + LED_TIME_SLOW;
}

J

Appendix J – Senior Design Conference Presentation

	Santa Clara University
	Scholar Commons
	6-8-2015

	Mobile Music: a musical therapy assistance device
	Alex Hildebrand
	Tanner Malkoff
	Recommended Citation

	Signature Page FINAL
	Mobile Music Thesis FINAL TOC with pres
	MOBILE MUSIC: A MUSICAL THERAPY ASSISTANCE DEVICE
	SENIOR DESIGN PROJECT REPORT
	Abstract

	Thesis Core FINAL
	1.1 – Research
	1.1.1 – Cerebral Palsy
	1.1.2 – Music Therapy

	1.2 – Customer Overview
	1.3 – Project Motivation
	Chapter 2 – System Overview
	2.1 – System Functions
	2.2 – Design Specifications
	2.3 – Similar Products
	2.4 – Initial Design Ideas
	2.4.1 – Gait Detection
	2.4.2 – Mechanical Structure
	2.4.3 – Mounting Options

	2.5 – System Communications

	PARAMETERS
	TARGET - RANGE
	Chapter 3 – Prototype
	3.1 – Hardware
	3.1.1 – MCU
	3.1.2 – Accelerometer
	3.1.3 – BlueTooth Module
	3.1.4 – Power Management
	3.1.5 – Peripherals
	3.1.6 – Structural Components

	3.2 – Software
	3.2.1 – Algorithm Implementation
	3.2.2 – Communications

	3.3 – Testing and Feedback
	3.3.1 – Test Procedure
	3.3.2 – Test Results and Feedback
	3.3.3 – Corrections

	Chapter 4 – Final Build
	4.1 – Hardware
	4.1.1 – Unchanged Components
	4.1.2 – MCU
	4.1.3 – Audio Amplifier
	4.1.4 – Power Management
	4.1.6 – Peripherals
	4.1.7 – External Shell Designs
	4.1.8 – Mount Design

	4.2 – Software
	4.2.1 – Algorithm Implementation
	4.2.2 – Communications

	4.3 – Current Testing and Possible Changes
	4.3.1 – Electrical Testing and Changes
	4.3.2 – Software Testing and Changes
	4.3.3 – Mechanical Testing and Changes

	Chapter 5 – Engineering Standards
	5.1 – Manufacturability Analysis
	5.2 – Economic Analysis
	5.3 – Intellectual Property Analysis
	5.5 – Social Analysis

	Chapter 6 – Future Developments and Final Thoughts
	6.1 – New System Configuration
	6.2 – Mobile App Integration
	6.3 – Mechanical Design Updates
	6.4 – Conclusions

	References
	Appendices

	Appendix A - Prototype BOM FINAL
	Appendix B - Prototype Schematic FINAL
	Appendix C - Prototype Pictures FINAL
	Appendix D - Prototype Code FINAL
	Appendix E - Final Build BOM FINAL
	Appendix F - Final Build Schematic FINAL
	Appendix G - Final Build Layout FINAL
	Appendix H - Final Build Drawings FINAL
	Appendix I - Final Build Code FINAL
	Appendix J Title
	Appendix J

