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Abstract 

 

With advancement of research in robotics and computer vision, an increasingly high 

number of applications require the understanding of a scene in three dimensions. A 

variety of systems are deployed to do the same. This thesis explores a novel 3D imaging 

technique. This involves the use of catadioptric cameras in a stereoscopic arrangement. 

A secondary system aims to stabilize the system in the event that the cameras are 

misaligned during operation. The system provides a stark advantage due to it being a cost 

effective alternative to present day standard state-of-the-art systems that achieve the same 

goal of 3D imaging. The compromise lies in the quality of depth estimation, which can 

be overcome with a different imager and calibration. The result was a panoramic disparity 

map generated by the system. 
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1. Introduction 

 

1.1. Background 

Modern day applications in fields of robotics, virtual reality and augmented reality 

systems require a comprehensive perception of their immediate surroundings with the 

highest possible accuracy and resolution, along with robustness across a wide range of 

operating conditions.  

Robotic systems applications extend to warehouse operations, autonomous driving, 

search and rescue, surveillance, building inspection, and remote surgery to name a few. 

In each scenario the robot has to navigate an obstacle-ridden space to perform a complex 

set of tasks. Augmented and VR systems deal with simulating a partial or a completely 

new world that superimposes, or replaces the real world.  

3D vision technology is critical to the aforementioned fields given its ability to generate 

spatial models of the physical world. Consequently, there has been a wide adoption of 

the same. Success in the deployment of 3D vision methods has contributed significantly 

to the growth of these markets, as displayed in Figures 1.1, and 1.2. 

 

Fig 1.1: Industrial and Non-Industrial Robotics Revenue,  

Source: Tractica, “Robotics Market Forecasts”, 2015. 
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        Fig 1.2: Augmented/Virtual Reality Revenue Forecast,  

Source: Digi-Capital, “Augmented/Virtual Reality Report 2016”, 2016. 

 

The purpose of this project is to create a novel panoramic 3D spatial modeling system 

that is robust and serves as a cost effective replacement to current techniques in this 

space, without compromising output quality. The developed system makes use of special 

optics to gain a panoramic field of vision and leverages two points of view to obtain 

stereoscopic scene information, thus gaining a sense of depth for the entire panorama. 

 

1.2. Literature Review 

This section provides an overview of existing state of the art industrial grade solutions 

for panoramic 3D imaging. Note that panoramic 3D is different from general monoscopic 

360 video in the context that, in the former case the viewer is allowed six degrees of 

freedom for observing the scene, as compared to the latter’s three degrees of freedom – 

roll, pitch, and yaw where the scene is projected onto a sphere. 

 

1.2.1. Facebook Surround 360 

The Surround 360 is Facebook’s own design for a panoramic 3D vision system. As an 

open-source design, both hardware and software will be made available for further 
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prototyping. The system is built for stationary camera VR applications, and features 

multiple Point Grey cameras. A global shutter ensures all camera feeds are completely in 

synchronization to preserve the quality of the reconstructions. Each camera in the system 

provides options of 4K, 6K, and 8K video resolutions.  

 

 

 

Fig 1.3: Facebook Surround 360  

Source: Facebook, "Facebook Surround 360”, 2016. [Online]. 

Video feed at 30 FPS requires transfer rates as high as 17Gbps in video transfer rates, 

which is fulfilled by means of an 8-way, level-5 RAID SSD disk system. Frames from 

all cameras are initially in Bayer form, which are then converted to a gamma corrected 

RGB format. Frames are then undistorted, and bundle adjustment is performed for 

rectification of camera misalignments. Stereo correspondence is performed by means of 

optical flow estimation. The advantage of implementing optical flow is a high quality 

disparity map between cameras, but at the cost of an additional order of computational 

complexity. Novel views are then synthesized for multiple viewing positions. Panoramas 

are stitched via software at post production.  
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1.2.2. Lytro Immerge 

 

 

Fig 1.4: Lytro Immerge Light Field Camera 

Source: http://www.lytro.com [Online]. 

 Lytro specializes in developing plenoptic cameras, also known as Light Field cameras. 

These cameras include a microscopic-lens (lenslets) array placed above a high density 

image sensor. This arrangement helps capture the entire light field, by tracking the 

direction and color intensities of bundles of rays from multiple unique points of view. 

With the given information it is then possible to calculate where the bundles of light rays 

originated and where they converge. A virtual image plane can then be generated where 

a particular object is in focus – thus providing refocusing and depth sensing capabilities. 

The Immerge system is a suite that includes a camera, processing hardware, and software 

tools to create a cinematic 3D VR experience that allows the user 6 degrees of freedom. 

The camera has provisions for multiple removable sensor arrays as displayed in Fig. 1.5. 

The primary disadvantage of this system is its need for a special server rack required to 

perform reconstructions, due to the computational complexity of the entire process. 
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Fig 1.5: Multiple perspectives from lenslets in a Light Field Camera, 

Source: Lytro, “The Creative benefits of Light Field”, April 2016. [Online]. 

The secondary disadvantage of the Immerge is that all computations are performed post 

production. The system ideally suited for budgets aimed towards renting the equipment.  

 

1.2.3. Velodyne HDL-64E 

3D Lidar is known to be one of the most reliable source of mapping depth in a scene. 

Lidar is based on the concept of time of flight, in which a transmitter emits a laser signal, 

and based on the time taken to receive the signal, depth is calculated for that particular 

point in space. A scanning Lidar can comprehend a panoramic depth map in each 

rotation. Lidar detection schemes can be classified into two kinds: incoherent, and 

coherent. Incoherent lidar, also known as direct energy detection is primarily an 

amplitude measurement method. The coherent method involves heterodyne detection, 

where pulses are non-linearly mixed with a reference signal, and the received wave 

contains the signature of the original, but at carrier frequency. 
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Fig 1.6: Velodyne HDL-64E LIDAR 

Source: Velodyne, “Velodyne Lidar HDL 64E: High Definition Real-time LIDAR”, January 2016. 

The coherent method of detection is better suited for relatively low power applications, 

and is safer to the human eye. The HDL-64E directs 64 beams of laser into the scene, 

each at a unique vertical angle. Total vertical FOV is 26.8 degrees, and provides over 2.2 

million points per second with a programmable framerate of up to 20Hz. The range of 

measurement of the HDL-64E extends to 120m. Point clouds generated by this module 

are accurate to within 2cm. Fig. 1.7 shows a point cloud generated by the HDL-64E. 

 

Fig 1.7: HDL-64E Point Cloud at an Intersection. 

Source: Velodyne, “Velodyne Lidar HDL 64E: High Definition Real-time LIDAR”, January 2016.  
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1.2.4. Comparison and Summary 

The methods discussed in sections 1.2.1, 1.2.2, and 1.2.3 are unique in terms of the 

technology used to generate spatial models and are effective at their respective fields of 

application. The former two are used in VR content creation, while the HDL-64E is used 

to generate terrestrial maps for robotic applications such as autonomous driving. The 

Surround 360 depends on stereovision from multiple cameras, the Immerge 360 works 

on Lightfield technology, and the HDL64E is a Lidar module. 

Table 1.1: State-of-the-art 3D vision systems comparison chart 

In addition to the contents of table 1.1, it is noted that the Surround 360 and the Immerge 

both have secondary processing units that the camera rigs are connected to, which are 

significantly increase the form factor of the setup – making them better suited for 

Sr. 

No. 
Solution Cost Real-time 

 

Vertical  

Field of View 

(FOV) 

 

Approx. 

Footprint 

Excluding 

Mounts  

(in mm3) 

 

1. 

 

Facebook 

Surround 360 

 

$ 30,000 

 

No 

 

3600 

 

65,098,740 

 

2. 

 

Lytro 

Immerge 

 

Not 

released 

 

No 

 

3600 

 

Not released 

 

 

3. 

 

Velodyne 

HDL-64E 

 

$ 70,000 

 

Yes 

 

26.80 

 

14,617,190 
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stationary camera applications. There currently is no qualitative data on the accuracy and 

resolution of the two aforementioned cameras. The HDL-64E is portable and can be 

connected to any device that possesses an Ethernet interface, but is unable to provide any 

color data from the scene. It has a depth estimation error of less than two centimeters up 

to a range of 120 meters. Thus each method has its own distinct set of advantages and 

limitations.  

   

1.3. Project Statement 

The goal of this research project was to explore an alternative panoramic 3D imaging 

solution with real-time capabilities, and a small form factor of 1,158,162 mm3 – at a low 

cost of implementation (under $2000). This was done by means of stereoscopic vision 

with two catadioptric cameras.  

The advantage of deploying catadioptric cameras over regular cameras is that the former 

takes a panoramic image, thereby not requiring any stitching – thus reducing both 

processing time, as well as the overall hardware requirements of the system. This in turn 

helps reduce the power consumed, and minimizes the costs involved.  

However, the major challenge of such a system is associated a lack of calibration data 

due to unknown intrinsic parameters of the cameras. Without this data, it is not possible 

to extrapolate the real world depth of any point in the scene. Furthermore, unexpected 

changes in camera orientation leads to changes in calibration that adversely affect the 

quality of the resultant disparity map. These two issues have been addressed in this 

project by means of external calibration with a secondary 3D imager, and automated 

stereo rectification respectively. 

The result of this project was a high quality disparity map that can be used to generate a 

spatial model of a scene.  
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2. Hardware and Vision Systems  

    Design 

 

2.1. System Architecture  

The proposed system comprises of two catadioptric cameras. Each camera outputs a live 

video stream over HDMI. HDMI to USB Video Class converters are used to convert each 

camera’s HDMI feed into USB 3.0 compatible webcam feed. The converter output was 

then passed to a laptop, which then implements the algorithm for estimating disparity in 

real-time. Fig 2.1 is a block diagram of the same. 

 
Fig. 2.1: Hardware system block diagram 

 

2.2. Catadioptrics 

A catadioptric optical system refers to the combination of lenses, also known as dioptrics, 

and curved mirrors, known as catoptrics. Catadioptric systems have been traditionally 

deployed in focusing systems of headlamps, telescopes, and microscopes. More recently, 

they have been put into effect in special purpose cameras that aim towards panoramic 

imaging. The feed from a catadioptric camera is displayed in Fig 2.2. There is a 

significant amount of observable radial distortion introduced due to a special lens and 

mirror arrangement.  
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Fig 2.2: Catadioptric Image (radially distorted), 

Source: CAVE Laboratory at Columbia University. 

2.2.1. Central and Non-Central Camera Models 

Catadioptric cameras can be broadly classified into two models: central and non-central 

cameras. In central cameras, all incoming rays of light intersect at a unique viewpoint. 

This condition is also called the single viewpoint condition, and is inherently satisfied by 

perspective cameras. In non-central cameras, the incoming rays do not intersect at one 

unique viewpoint. In case of a hyperbolic mirror, there are two focal points – the rays 

intersect at one focal point (F), and the camera is placed at the second focal point (F’) as 

shown in Fig 2.3(a).  

    

(a)                             (b)  

Fig 2.3: Central (a), and Non-Central (b) Camera models. 

Source: M. Schonbein, Omnidirectional Stereo Vision for Autonomous Vehicles, Karlsruhe, KIT 

Scientific Publishing, 2014. 
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2.2.2. Folded Cameras 

The drawback associated with single mirror systems is that they have a relatively large 

form factor for a given vertical field of view. Optical folding allows for a significantly 

greater vertical FOV with a smaller package size as compared to its single mirror 

equivalent. A folded catadioptric camera primarily involves two conic mirrors – a 

primary and a secondary. One of the nine forms of single viewpoint folded catadioptric 

system described by Benosman and Kang in [1] is displayed in Fig. 2.4(a). It makes use 

of dual hyperbolic mirrors. Alongside Fig. 2.4(a) is a close view of the catadioptrics of 

the camera hardware used in this project, Fig. 2.4(b).  

 

(a)                              (b)  

Fig 2.4: Dual-mirror folded catadioptric camera. (a) One of nine possible forms of dual-mirror single 

viewpoint folded catadioptric cameras. Source: R. Benosman and S. B. Kang, Panoramic Vision: 

Sensors, Theory, and Applications, New York: Springer Science+Business Media, 2001; (b) VSN Mobil 

V.360 camera catadioptrics. Corresponding positions of Primary (1) and secondary (2) mirrors are 

indicated by bounding boxes. 

 

2.2.3. The VSN Mobil V.360 

The VSN V.360 is the camera selected for the panoramic stereovision system in this 

project. It is a catadioptric camera with a folded configuration as indicated in section (c) 

of Fig 2.3. The camera acquires frames of video with a 16-megapixel imager, capable of 

generating resolutions ranging from 1920x320 through 6480x1080. Vertical FOV ranges 
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from +45 degrees to -15 degrees. Fig 2.5(a) is a picture of the camera hardware, and Fig. 

2.5(b) illustrates a still image taken by the camera. 

 

(a) 

 

(b) 

Fig 2.5: VSN V.360 (a) VSN Mobil V.360 Camera, (b) Equi-rectangular (undistorted) image  

As displayed above, the camera accounts for lens distortion and undistorts images and 

frames of video into an equi-rectangular form by means of a Qualcomm Snapdragon 800 

processor. The advantage of this feature is that epipolar lines are made linear by default, 

thus requiring a minimal amount of image warping for stereo rectification. 

 

 

Fig 2.6: Magewell USB Capture HDMI USB-UVC Converter 
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Video feed can be extracted from the V.360 via two methods. The first method is over a 

wifi connection between the camera and a mobile device that is capable of running the 

V.360 app. The app offers a live view as well as recording capabilities. Live feed cannot 

be directly extracted via third-party scripts due to the closed source nature of the product. 

The second method is via a hardware link. Live feed is accessible via an on-board HDMI 

port. In order to connect it to a personal computer, the input needs to be of the form of a 

USB Video Class (UVC) Device. This is possible using a UVC capture card that converts 

HDMI input into USB-UVC feed. The camera’s raw video feed can then be accessed like 

any standard webcam. The capture card deployed is the Magewell USB Capture HDMI. 

 

2.3. Stereovision 

 

Fig 2.7: Scene visualized by a stereoscopic camera.  

Source: Ensenso and IDS Imaging Development Systems GmbH, "Obtaining Depth from Stereo 

Images," Obersulm, 2012. 
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2.3.1. Generic Stereovision Pipeline 

Stereovision is a concept that mimics the human vision system, leveraging two or more 

unique points of view to generate depth information and reconstruct a three-dimensional 

rendering of a scene. Depth is perceived by means of the relative shifts in the perspective 

of different components within the scene. 

 

Fig 2.8: Stereovision Pipeline 

On acquisition of the dual images, the first step of stereovision is to calibrate the cameras. 

This is done to understand the cameras’ pose relation to the external world, as well as to 

the other camera in the system. The object most commonly used for calibration is a 

checkerboard of a known size. The 3D coordinates of the checkerboard pattern, and the 

camera model can be found using their pixel locations in the left and right images. The 

stereo camera model consists of intrinsic matrices of each camera’s distortions and focal 

lengths, as well as the extrinsic matrix – comprising of information regarding the 

cameras’ difference in pose with respect to each other. Stereovision can also be 

performed without camera calibration, but at the cost of additional computational 

complexity. The disadvantage associated with an uncalibrated approach is that the scene 

may only be reconstructed with a sense of scale, but not with the knowledge of real world 

ground distances. 

The next step is of un-distortion and rectification of the camera images. When an image 

is taken with a camera, the scene captured by the imager is distorted – the kind of 

distortion depending on the type of lens and/or mirror arrangement. The type of distortion 

in the case of fisheye lenses and catadioptric cameras is barrel distortion. Barrel distortion 

suggests that that magnification decreases with a change in distance from the optical axis. 

Illustrated in Fig 2.9 is the effect of barrel distortion on a grid pattern. Images and frames 

of video can be undistorted using Brown’s model of distortion [11].  

Calibration
Undistortion 

and
Rectification

Correspondence
Triangulation 

and 
Reconstruction
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(a)     (b) 

Fig. 2.9: Grid pattern (a) and the effect of barrel distortion (b). 

The next stage is stereo-rectification. To perform this, it is necessary to understand the 

epipolar geometry of the camera setup.  Assume I and I’ are camera centers. The baseline 

is the line segment joining the two centers.  

   

                                        (a)             (b) 

Fig 2.10: Frames from a dual camera setup (a), and Rectified frames (b) brought into a parallel image 

plane. Source: Silvio Savarese, “Chapter 6: Stereo Systems Multi-view Geometry”, Stanford University, 

2016. 

P is a point that is viewed by the two cameras, at pixel positions p and p’. I – I’ – P forms 

the epipolar plane. The baseline may or may not intersect the image planes. Fig 2.9(a) 

contains intersections of the baseline with the image planes at points e and e’, also known 

as the epipoles. The line segments passing through pairs (p, e) and (p’, e’) are the epipolar 

lines. The camera matrices found from the calibration stage, along with a rotation matrix 

and a translation vector are then used to warp the images and project them onto a parallel 

image plane, such that the epipoles lie at infinity as displayed in Fig 2.10(b). 

Stereo-correspondence is the stage that comes after rectification. It is comprised of a 

pixel-wise search of every pixel in the left image, for its corresponding match in the right 
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image. This takes O(n2) time to implement. But due to rectification previously performed 

on the images it is possible to implement this search in linear time, thus reducing 

processing time by an order of magnitude. The correspondence problem is fairly open 

ended due to issues of varying degrees of exposure between cameras, multiple 

homogeneous regions that have similar color intensities, occlusions and foreshortening 

to name a few. A commonly used practice is block matching, where blocks of NxN pixels 

are searched, along with normalized cross correlation in order to mitigate issues in 

illumination. The result of the correspondence stage is a disparity map that provides pixel 

displacements – a relative sense of depth of objects in the scene. 

 

Fig 2.11: Disparity map of ‘Cones’ dataset 

Source: Middlebury College Stereo Dataset ‘Cones’ 

The final step in the stereovision process is triangulation and reconstruction – a 

representation of the stereo data into a three-dimensional space. The secondary advantage 

of rectification is that the triangulation process is reduced down to a similar triangles 

problem. The equation that is used to determine the depth of a point in the disparity map 

is z = B.F/d, where z is the depth in meters, B is the baseline in meters, F is the focal 

length in pixels and d is the pixel disparity. Fig 2.12 illustrates the same. 
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Fig 2.12: Point P at a distance Z from camera centers 

Source: Silvio Savarese, “Chapter 6: Stereo Systems Multi-view Geometry”, Stanford University, 2016. 

Also note that the camera’s FOV needs to be taken into account to be able to generate an 

accurate point cloud, again requiring the camera system’s intrinsic matrices. The result 

of this stage is a three-dimensional point cloud as shown in Fig. 2.13.  

 

Fig 2.13: Three dimensional grayscale point cloud from ‘Cones’ Dataset 

Source: Ensenso and IDS Imaging Development Systems GmbH, "Obtaining Depth from Stereo 

Images," Obersulm, 2012. 

2.3.2. Catadioptric Stereoscopy 

The use of catadioptric cameras is ideal for stereo vision when an entire panoramic scene 

is to be captured in 3D. The vertical field of view (+450, -150) makes the V.360 better 

suited for long range imaging applications such as autonomous driving, and aerial terrain 
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mapping. This project studies two arrangements for imaging the scene in 3D. The first 

arrangement places both cameras next to each other in the same horizontal plane as 

shown in Fig 2.14. 

 

Fig. 2.14: Horizontal configuration for catadioptric stereoscopy 

The issue associated with placing cameras side by side is the potential for occlusions on 

the left and right sides of the images as illustrated by Fig 2.15. The angle of occlusion  

is a function of the length of the baseline b and the size of the camera. 

 

Fig 2.15: Occlusions in a horizontal configuration of catadioptric stereovision 

Generic methods for stereovision are aimed at cameras with a horizontal FOV of less 

than or equal to 1800. The first set of tests used these standard techniques with each 

equirectangular panoramic frame split in half, such that a disparity map would be 



19 
 

computed for the parts of the frame pair facing forwards, and a separate disparity 

computation for frame pair facing the rear half of the scene. This setup was thus rejected. 

 

Fig. 2.16: Vertical configuration for catadioptric stereoscopy 

The second setup implemented was placement of the cameras vertically, such that their 

optical axes coincide, as shown in Fig. 2.16. The vertical configuration allows for a better 

horizontal FOV with negligible occlusion caused by the mounting structure. In this case 

vertical disparity is calculated, for the entire frame in a single iteration, contrary to the 

previous configuration. Due to lack of available information about the cameras’ intrinsic 

parameters it is not possible to measure real world distances through the camera system 

alone. The proposed method is extended to make use of an Xbox Kinect to generate 

ground truths of a fraction of the scene, thereby enabling the system to get an anchor 

point in the real world – and disparity values can be accordingly mapped to real world 

depths. 

 

2.4. NVIDIA Jetson TK1 

This project proposal received a hardware grant of a Jetson TK1 from NVIDIA Corp. 

The Jetson TK1 is a single board computer that runs Ubuntu 14.04 with preconfigured 

drivers. It features a Tegra K1 SOC (system on chip) which comprises of a quad core, 
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2.3GHz ARM Cortex-A15 CPU, a GK20A (192 core) GPU based on the Kepler 

microarchitecture, and an ISP on the same chip.  

 

Fig 2.17: Jetson TK1 with a USB to mini-PCIe converter 

The TK1 provides 2 gigabytes of DDR3 Dynamic-RAM, and 16GB of eMMC storage. 

Additional storage can be provided via an external SD/MMC card, a slot for which is 

present on the board. Multiple means of communication are possible using USB 2/3.0, 

or via the RS232 or Ethernet ports available on the TK1. In this project, most of the 

experiments with the TK1 have been with the Kinect, whose open source USB drivers 

have an unresolved issue where the camera needs to be disconnected and reconnected 

every time the TK1 is booted up. A USB to mini-PCIe converter is connected to the 

TK1’s mini-PCIe port to bypass this issue. Figure 2.16 shows the Jetson TK1 with a Syba 

USB to mini-PCIe converter plugged in. The converter draws power from the TK1’s 

onboard power supply.  

The Jetson TK1 was designed to be the target platform for performing stereovision along 

with initial prototyping on a laptop, but compatibility issues were encountered during 

migration from OpenCV 3.1 on the laptop to an OpenCV4Tegra based build environment 

on the Jetson TK1. Hence the final build was implemented on a Dell Inspiron 15 7559 

equipped with an Intel Core i7-6700HQ processor and 8GB RAM.   
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3. Software 

 

3.1. Development with VS2013 and OpenCV  

The software components in this system were built on Visual Studio 2013. OpenCV 

libraries were included. Together they provide a comprehensive platform for rapid 

prototyping, development and testing of computer vision applications.  

Visual Studio was used for its exceptional code editor and debugging capabilities. The 

code editor supports syntax highlighting and automatic code completion suggestions for 

various components that may be included or previously linked. It also supports 

bookmarks, collapsing code blocks and incremental search options, in addition to normal 

text search methods. Other noteworthy functionalities include code refactoring, interface 

extraction and encapsulation. The feature of VS2013’s code editor that proved to be the 

most useful to this project is the background compilation tool, which performs code 

compilation in the background as it is being written, and returns possible 

syntax/compilation errors that would be potentially encountered upon actual compilation. 

The VS2013 debugger is efficient with both source, and machine level debugging 

operations. It features breakpoints, step by step debugging and allows for code to be 

edited as it is being debugged. It can also provide the disassembly if a particular source 

is unavailable, and viewing options for the memory dump. 

OpenCV (Open-source Computer Vision) was the C++ library used to speed up 

development of the stereovision pipeline. It provides functions that aim towards real-time 

computer vision applications that are independent of the hardware, operating system, and 

window-managers, although further GPU acceleration is also possible by means of 

CUDA or OpenCL support. OpenCV offers features spanning image and video frame 

manipulation, I/O, specialized data structures, matrix and vector algebra, structure and 

motion analysis, camera calibration, object recognition, labelling, and UI tools. 
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3.2. Stereo Correspondence with Semi Global  

       Block Matching 

3.2.1. Theory 

Semi global block matching (SGBM) is a stereo correspondence method that depends on 

the concept of Mutual Information, and a global two-dimensional smoothness constraint 

approximation by means of multiple one-dimensional constraints. The algorithm 

presented by H. Hirschmuller [5] computes pixel matching costs based on the Mutual 

Information method. The cost function C(p,d) at pixel p and disparity d is calculated for 

the rectified images IL and IR, as follows: 

𝐶(𝑝, 𝑑) = 𝑚𝑖𝑛(𝑑(𝑝, 𝑝 − 𝑑, 𝐼𝐿 , 𝐼𝑅), 𝑑(𝑝 − 𝑑, 𝑝, 𝐼𝑅 , 𝐼𝐿))          (1) 

Where  

𝑑(𝑝, 𝑝 − 𝑑, 𝐼𝐿 , 𝐼𝑅) =  𝑚𝑖𝑛𝑝−𝑑−0.5≤𝑝−𝑑+0.5|𝐼𝐿(𝑝) − 𝐼𝐿(𝑞)|         (2) 

The SGBM algorithm then minimizes an energy function to get a better quality disparity 

map for a pair of images as illustrated in (3). 

𝐸(𝐷) =  ∑ (𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝐼[|𝐷𝑝 − 𝐷𝑞| = 1]𝑞∈𝑁𝑝
+ ∑ 𝑃2𝐼[|𝐷𝑝 − 𝐷𝑞| > 1]𝑞∈𝑁𝑝

)𝑝    (3) 

E(D) is the disparity image energy, p and q are the pixel locations, and Np is the eight-

connected neighborhood of pixel p. P1 and P2 are penalties for a change of disparity equal 

to 1 and greater than 1 respectively, amongst two neighboring pixels. P2 is always 

externally set by to be greater than or equal to P1. I[x] is a function that returns a 1 if the 

argument x is true, and otherwise returns a 0.  

Performing the aforementioned 2D minimization for an entire image space is an NP-

Complete problem. To reduce complexity SGBM performs multiple 1D minimizations 

in different directions to approximate the 2D minimization. Costs are aggregated by the 

matching function on multiple paths that converge on the corresponding pixel being 
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considered, as illustrated in (4). This multiple path approach is highly advantageous to 

unrectified stereovision methodologies because the pixel search is not purely vertical. 

𝑆(𝑝, 𝑑) =  ∑ 𝐿𝑟(𝑝, 𝑑)𝑟          (4)                                                                         

Where   

       𝐿𝑟(𝑝. 𝑑) = 𝐶(𝑝, 𝑑) + min[𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 𝐿𝑟(𝑝 − 𝑟, 𝑑 + 1) +

𝑃1, 𝑚𝑖𝑛𝑖𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2] − 𝑚𝑖𝑛𝑘𝐿𝑟(𝑝 − 𝑟, 𝑘)   (5) 

In equation (4), S(p,d) is the aggregate cost for pixel p with disparity d. r is the direction 

that pixel p is converged to, and Lr(p,d) is the minimum cost in the r direction. Lr(p,d) is 

computed in (5) where C(p,d) is added to the minimum of the previous pixel’s cost with 

disparity d, previous pixel’s cost with d±1 with an additional penalty P1, and previous 

pixel’s cost with d beyond the range of ±1 with an additional penalty P2. The minimum 

value of the previous pixel’s minimum cost is subtracted to limit the monotonically 

increasing Lr(p,d) for a particular path. The maximum value Lr(p,d) can take is the 

maximum value of C(p,d) + P2. The computational complexity for the algorithm is 

O(width * height * number of disparities). 

 

3.2.2. Implementation and Results 

The original implementation by H. Hirschmuller made 1D minimizations in eight 

directions, and is a two pass algorithm. The OpenCV implementation of the same, in this 

project makes minimizations in 5 directions, and uses the method deployed by Birchfield 

and Tomasi in [7] to compute cost. The program workflow is shown in Fig. 3.1 that 

process subsequent frames of live video feed from both cameras to compute and display 

the disparity map. Note that frames are rotated by 900 in the clockwise direction. This is 

done so that the vertical disparity computation problem is then converted to a horizontal 

disparity computation problem, which the OpenCV implementation is designed to handle 

by default. The disparity map obtained by this operation is then required to be rotated by 

900 in the counter-clockwise direction to align with the original video feed from the 

cameras.  
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Fig. 3.1: Program Workflow 

Fig 3.2(c) Illustrates a snapshot of the disparity map generated from parallel streams of 

size 1920 x 320, from the two cameras in a vertical stereo configuration. The disparity 

map is represented as an RGB image where the objects closer to the camera system are 

represented by the red end of the visible color spectrum, and objects farther away in the 

scene are visible in blue. Note that the disparity map is not of the same height as the 

original frames due to non-overlapping regions in the frames taken by the cameras. 

(a) 

 

(b)

(c) 

  Fig. 3.2: Upper camera image (a), Lower camera image (b), and Disparity Map (c). 

Due to an uncalibrated, and minimally rectified approach to stereovision, it is not possible 

to calculate real world depths from the disparity map. Hence, a Kinect V2 was used to 

set up a set of six calibration points (objects in the scene) and their ground truth depths 

were obtained with an accuracy of 1cm. The calibration points are shown in Fig. 3.3. 



25 
 

 

Fig. 3.3: Calibration Scene 

Sr. Location in Scene Depth in m (Kinect) Disparity in pixels (system) 

1. Whiteboard 5.39 135 

2. Chair Backrest 4.05 153 

3. Quadrotor Enclosure (left) 2.87 184 

4. Quadrotor Enclosure (right) 3.28 171 

5. Monitor 2.75 197 

6. Function Generator 2.06 216 

Table 3.1: Disparity-Depth Calibration 

The depth values were then assigned to the corresponding points in the disparity map, 

hence creating a reference for predicting depth values for any disparity level. This 

predictive reference curve in Fig. 3.4 was then fit, based on the inversely proportional 

relation between the disparity and the z axis distance.  

 

Fig 3.4: Curve fitting with calibration points 

The entire setup was then moved to a second location, where a set of new points were 

selected for testing the prediction model, as displayed in Fig. 3.5. Ground truth depths 

from the Kinect V2 were then compared with predicted depths for corresponding 
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disparities at the test points and the system’s error was computed, as illustrated by Table 

3.2. The system processes video at 1.56 frames per second. 

 

Fig 3.5: Test Scene 

Sr. Location in Scene 

Disparity  

in pixels 

(system) 

Predicted 

Depth  

in m  

(ref. model) 

Ground Truth  

Depth in m 

(Kinect) 

Error 

in m,  

| Predicted Depth 

– Ground Truth | 

1. Monitor  127 4.13 4.18 0.05 

2. 
Quadrotor Enclosure 

(left) 
140 3.75 3.42 0.33 

3. 
Quadrotor Enclosure 

(right) 
134 3.92 3.52 0.40 

4. Chair Backrest 109 4.82 4.29 0.53 

5. Whiteboard 130 4.04 3.63 0.41 

Table 3.2: Test Scene Results 

It was noted that as per the inverse relation between disparity and depth, the disparity 

monotonically decreased for an increase in real world depths. Furthermore, with the 

exception of observation number 1. the prediction error increases with an increase in 

the distance of an object from the camera system. The system could potentially lower 

the error in depth prediction if the cameras’ intrinsic parameters were known, and if the 

stereo camera setup were calibrated.  

 

3.3. Automated Rectification 

Although algorithms such as SGBM perform reasonably well in case of uncalibrated and 

unrectified, and hand rectified stereovision systems, rectification helps reduce the search 

complexity to a nearly unidimensional space.  
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It was noted that the primary sources of non-rigidity in the setup’s position adjustment 

system was a roll in the end grippers of the mounts as displayed in Fig. 3.6. Hence there 

was a need for a method to automatically warp one of the two video feeds, such that 

matching features in the stereo pair would align vertically, thus mitigating the effects of 

non-rigidity from the given sources, and all other possible forms due to factors such as 

vibration, if mounted on a moving platform. Automated rectification was thus the 

preferred next step. 

 

Fig 3.6: Primary sources of non-rigidity in the position adjustment system 

In an uncalibrated system the concept of automated rectification revolves around 

understanding the transformation between the images and then aligning one with respect 

to the other to rectify the pair of frames. The designed pipeline performs the following 

operations on a stereo pair of images or frames of video, as illustrated in Fig 3.7. 

 

Fig 3.7: Automated Rectification Pipeline 

The first step was to detect key features in the pair. A feature detector was used to 

accomplish the same. The next step consisted of finding descriptors of the detected 

SURF Feature 
Extraction

SURF 
Descriptor 
Extraction

KNN 
Descriptor 
Matching

RANSAC and 
Homography

Image 
Warping
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features. The SURF algorithm by Bay et. al. [4] was chosen because of its ability to detect 

features, as well as provide descriptors for those features. After descriptor extraction, the 

descriptors were then matched using the K Nearest Neighbors technique using FLANN 

(Fast Library for Approximate Nearest Neighbors) [6]. The matches are then subject to 

RANSAC (Random Sample Consensus) [8] to retain only the good matches.  

 

Fig. 3.8: Tilted upper camera test for Automated Rectification system 

The homography matrix between the two frames was then calculated to compute the 

perspective transformation between the pair of frames. The top image was then warped 

to be aligned with the lower image, such that the features aligned vertically. The system 

was tested by generating a random tilt in the orientation of the upper camera as shown in 

Fig. 3.8. The results obtained are displayed in Fig. 3.9.  



29 
 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 3.9: Automated Rectification Testing; (a) Tilted upper camera input, (b) Lower camera input,  

(c) Rectified Upper Camera feed. 

The input in this test case was split into two halves; one facing away from the mounting 

apparatus, and the other facing towards it. Since the rotation on one of these halves is the 

exact opposite of that of the other (refer fig. 3.6), the algorithm needs to be applied to 

only one half, until the warp stage. The same homography matrix was then modified to 

reverse the rotation and was applied to the other half, thus decreasing the execution time 

of the pipeline by a factor of two.  

It was noted that the rectification of the central region was rectified to a greater extent as 

compared to the sides. This is because the point of tilt was assumed to be the center of 

the frame, but it could be at any position that may be. To be able to counter this limitation, 

one could implement a motion estimation algorithm between upper and lower frames and 

compute the coordinates of the point around which multiple motion vectors revolve. This 

information could then be used to modify the homography matrix and work adaptively 

because some regions of the image require more warping with regards to the others. 
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4. Conclusion and Future Work 

 

The objective of this project was to explore an alternative means to panoramic 3D 

imaging. The proposed system generates a panoramic depth image of a scene. The 

automated rectification technique presented in this project can potentially solve issues in 

camera position inconsistencies in real time that usually arise in moving camera systems. 

It was noted that the automated rectification method in section 3.3 aligned the upper 

frame to the maximum possible extent with the reference frame (lower frame), thus 

yielding incorrect vertical disparity values. A possible solution to the same would be to 

compare subsequent frames from the same camera (for both feeds of video) using a 

motion estimation algorithm, and establishing smoothness constraints between the two 

feeds of video; the violation of which could indicate and measure a change in the 

orientation of one camera with respect to the other, thereby preventing the need for re-

calibration.  

Additional performance improvements are possible via parallelization of the block 

matching and feature detection sections using a GPU acceleration framework such as 

CUDA. The system can also be scaled to cover larger depth ranges by increasing the 

baseline distance. Furthermore, a high-accuracy point cloud can be generated if the 

intrinsic parameters of the cameras are known, which in turn can enable stereo calibration 

and hence a better means to estimating depth. 

A future implementation of such a system could be equipped with high-speed wireless 

streaming capabilities, and cloud based computing by means of an Amazon EC2-G2 

GPU cluster that could generate and broadcast point clouds in real-time, thus creating a 

truly immersive VR livestreaming experience. 
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Appendix A: Source code for 

computing disparity 

 
#include <iostream> 
#include "opencv2/imgcodecs.hpp" 
#include <opencv2/core.hpp> 
#include "opencv2/calib3d.hpp" 
#include "opencv2/highgui.hpp" 
#include "opencv2/imgproc.hpp" 
#include "opencv2/core/utility.hpp" 
#include <string> 
 
using namespace cv; 
using namespace std; 
bool flag = 0; 
 
Mat disp1, disp1_8, disp2, disp2_8; 
void mystereo(Mat m1, Mat m2); 
 
int main(int argc, char* argv[]) 
{ 
 
 Mat Front_left, Front_right, Back_left, Back_right; 
 
 VideoCapture capL(0);  

// open the video camera no. 0  
//make sure (0) is mentioned in the same line, or cap.open(0) is specified before  
//cap.set, BugFix #948 for OpenCV 

 VideoCapture capR(1);  
 
 if (!capL.isOpened())  // if not success, exit program 
 { 
  cout << "Cannot open the video cam Left" << endl; 
  return -1; 
 } 
 if (!capR.isOpened())  // if not success, exit program 
 { 
  cout << "Cannot open the video cam Right" << endl; 
  return -1; 
 } 
 
 capL.set(CV_CAP_PROP_FRAME_WIDTH, 1920);  
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//set the width of frames of the video // 1920, 2880, 3840, 6480  
 capL.set(CV_CAP_PROP_FRAME_HEIGHT, 320);  

//set the height of frames of the video // 320, 480, 640, 1080 
 
 capR.set(CV_CAP_PROP_FRAME_WIDTH, 1920);  

//set the width of frames of the video // 1920, 2880, 3840, 6480  
 capR.set(CV_CAP_PROP_FRAME_HEIGHT, 320);  

//set the height of frames of the video // 320, 480, 640, 1080 
 
 
 //double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);  

//get the width of frames of the video 
 //double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);  

//get the height of frames of the video 
 
 //cout << "Frame size : " << dWidth << " x " << dHeight << endl; 
 
 //namedWindow("MyVideo", CV_WINDOW_AUTOSIZE);  

//create a window called "MyVideo" 
 //namedWindow("MyVideo", CV_WINDOW_KEEPRATIO); //works 
 //namedWindow("MyVideo", CV_WINDOW_FREERATIO); 
 
 //namedWindow("MyVideo Left", CV_WINDOW_NORMAL); 
 //namedWindow("MyVideo Right", CV_WINDOW_NORMAL); 
 
 namedWindow("MyVideo Top", CV_WINDOW_FREERATIO); 
 
 //namedWindow("MyVideo Left", CV_WINDOW_FREERATIO); 
 namedWindow("MyVideo Bottom", CV_WINDOW_FREERATIO); 
 namedWindow("D1", CV_WINDOW_FREERATIO); 
 namedWindow("D2", CV_WINDOW_FREERATIO); 
 //namedWindow("Front", CV_WINDOW_FREERATIO); 
 int flag = 1; 
 
 while (1) 
 { 
  Mat frameL, frameR; 
 
  capL >> frameL; 
  capR >> frameR; 
 
  frameL = frameL(Rect(0, 380, 1920, 320)); 
  frameR = frameR(Rect(0, 380, 1920, 320)); 
 
  imshow("MyVideo Top", frameL);  

//show the frame in the "MyVideo Left" window 
  imshow("MyVideo Bottom", frameR);  

//show the frame in the "MyVideo Right" window 
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  transpose(frameL, frameL); 
  flip(frameL, frameL, 0); 
  transpose(frameR, frameR); 
  flip(frameR, frameR, 0); 
 
  Front_left = frameL; 
  Front_right = frameR; 
 
  //Back_left = frameR(Rect(frameR.cols / 2, 0, frameR.cols / 2, frameR.rows)); 
  //Back_right = frameL(Rect(frameL.cols / 2, 0, frameL.cols / 2, frameL.rows)); 
 
  mystereo(Front_left, Front_right);  //outwards 
  //works well 
  normalize(disp1, disp1_8, -150, 455, CV_MINMAX, CV_8U); 
  normalize(disp2, disp2_8, -150, 455, CV_MINMAX, CV_8U); 
  //normalize(disp1, disp1_8, 0, 255, CV_MINMAX, CV_8U); 
  //normalize(disp2, disp2_8, 0, 255, CV_MINMAX, CV_8U); 
 
  applyColorMap(disp1_8, disp1_8, COLORMAP_JET); 
  transpose(disp1_8, disp1_8); 
  flip(disp1_8, disp1_8, 1); 
  //disp8 = disp8(Rect(0, 380, disp8.cols, disp8.rows - 375 - 385)); 
  applyColorMap(disp2_8, disp2_8, COLORMAP_JET); 
  transpose(disp2_8, disp2_8); 
  flip(disp2_8, disp2_8, 1); 
 
  imshow("D1", disp1_8); 
  imshow("D2", disp1_8); 
 
  //mystereo(Back_left, Back_right);  //outwards 
  ////normalize(disp, disp8, -135, 455, CV_MINMAX, CV_8U); 
  //normalize(disp, disp8, -90, 455, CV_MINMAX, CV_8U); 
  //applyColorMap(disp8, disp8, COLORMAP_JET); 
  //disp8 = disp8(Rect(0, 400, disp8.cols - 40, disp8.rows - 400 - 300)); 
  //imshow("Back", disp8); 
 
 
 
  if (flag == 1) 
   cout << "rows: " << disp1_8.rows << "\t" << "cols: " << disp1_8.cols  

<< endl; 
  flag = 0; 
 
  if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed,  
                                                                     // break loop 
  { 
   cout << "esc key is pressed by user" << endl; 
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   break; 
  } 
 } 
 return 0; 
 
} 
 
 
void mystereo(Mat m1, Mat m2) 
{ 
 
 //StereoSGBM sbm; 
 //sbm.SADWindowSize = 3; 
 //sbm.numberOfDisparities = 192; //96;  
 //sbm.preFilterCap = 63; 
 //sbm.minDisparity = -39; 
 //sbm.uniquenessRatio = 10; 
 //sbm.speckleWindowSize = 200; 
 //sbm.speckleRange = 32; 
 //sbm.disp12MaxDiff = 1; 
 //sbm.fullDP = false; 
 //sbm.P1 = 216; 
 //sbm.P2 = 864 * 2; 
 //sbm(m1, m2, disp); 
 
 //works decently well 
 //Ptr<StereoSGBM> sbm  

= StereoSGBM::create(-39, 96, 5, 216 * 2, 864 * 2, -1, 63, 10, 100, 2); 
 Ptr<StereoSGBM> sbm  

= StereoSGBM::create(-39, 96, 5, 216 * 2, 864 * 2, -1, 63, 10, 100, 2, 
StereoSGBM::MODE_HH);  //full-scale two-pass dynamic programming algorithm.It 
will consume O(W*H*numDisparities) bytes 

 sbm->compute(m1, m2, disp1); 
 sbm->compute(m2, m1, disp2); 
 
 //cv::StereoBM sbm; 
 //sbm.state->SADWindowSize = 9; 
 //sbm.state->numberOfDisparities = 112; 
 //sbm.state->preFilterSize = 5; 
 //sbm.state->preFilterCap = 1; 
 //sbm.state->minDisparity = 0; 
 //sbm.state->textureThreshold = 5; 
 //sbm.state->uniquenessRatio = 5; 
 //sbm.state->speckleWindowSize = 0; 
 //sbm.state->speckleRange = 20; 
 //sbm.state->disp12MaxDiff = 64; 
 //sbm(m1, m2, disp); 
 //normalize(disp, disp8, 0.1, 255, CV_MINMAX, CV_8U); 
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 //StereoBM sbm; 
 //sbm.state->SADWindowSize = 5; 
 //sbm.state->numberOfDisparities = 112; 
 //sbm.state->preFilterSize = 5; 
 //sbm.state->preFilterCap = 61; 
 //sbm.state->minDisparity = -39; 
 //sbm.state->textureThreshold = 507; 
 //sbm.state->uniquenessRatio = 0; 
 //sbm.state->speckleWindowSize = 0; 
 //sbm.state->speckleRange = 8; 
 //sbm.state->disp12MaxDiff = 1; 
 //sbm(m1, m2, disp); 
 
} 
 
 
 

Appendix – B:  

Source code for automated 

rectification 

 
#include <iostream> 
#include "opencv2/core/core.hpp" 
#include "opencv2/calib3d/calib3d.hpp" 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
#include "opencv2/contrib/contrib.hpp" 
#include "opencv2/nonfree/nonfree.hpp" 
#include "opencv2/features2d/features2d.hpp" 
#include "opencv2/nonfree/features2d.hpp" 
#include <opencv/cv.h> 
 
#include <stdio.h> 
#include <string.h> 
 
#define PI 3.14159265 
 
using namespace cv; 
using namespace std; 
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bool flag = 0; 
 
Mat disp; 
void mystereo(Mat m1, Mat m2); 
 
 
char *windowDisparity = "Disparity"; 
char *windowDisparitySGM = "Disparity of SGM"; 
char *windowMatch = "TP matched"; 
 
void rotate(cv::Mat& originalImage, cv::Mat& rotatedImage, cv::InputArray rotated, 
 cv::Mat& dst) { 
 std::vector<cv::Point2f> original(4); 
 original[0] = cv::Point(0, 0); 
 original[1] = cv::Point(originalImage.cols, 0); 
 original[2] = cv::Point(originalImage.cols, originalImage.rows); 
 original[3] = cv::Point(0, originalImage.rows); 
 
 dst = cv::Mat::zeros(originalImage.rows, originalImage.cols, CV_8UC3); 
 cv::Mat transform = cv::getPerspectiveTransform(rotated, original); 
 cv::warpPerspective(rotatedImage, dst, transform, dst.size()); 
} 
 
 
float angleBetween(const Point &v1, const Point &v2) 
{ 
 float len1 = sqrt(v1.x * v1.x + v1.y * v1.y); 
 float len2 = sqrt(v2.x * v2.x + v2.y * v2.y); 
 
 float dot = v1.x * v2.x + v1.y * v2.y; 
 
 float a = dot / (len1 * len2); 
 
 if (a >= 1.0) 
  return 0.0; 
 else if (a <= -1.0) 
  return PI; 
 else{ 
  int degree; 
  degree = acos(a) * 180 / PI; 
  return degree; 
 }; 
} 
 
int main(int argc, char* argv[]) 
{ 
 
 Mat Front_left, Front_right, Back_left, Back_right; 
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 Mat imgLeft, imgRight; 
 Mat outputLeft, outputRight; 
 Mat descriptors1, descriptors2; 
 Mat img_matches; 
 Mat disp, disp8U; 
 
 VideoCapture capL(0);  
 VideoCapture capR(1);  
 
 if (!capL.isOpened())  // if not success, exit program 
 { 
  cout << "Unable to open video cam Left" << endl; 
  return -1; 
 } 
 if (!capR.isOpened())  // if not success, exit program 
 { 
  cout << " Unable to open video cam Right" << endl; 
  return -1; 
 } 
 

capL.set(CV_CAP_PROP_FRAME_WIDTH, 1920); //set the width of frames of the video 
// 1920, 2880, 3840, 6480  
capL.set(CV_CAP_PROP_FRAME_HEIGHT, 1080); //set the height of frames of the 
//video 320, 480, 640, 1080 

 
capR.set(CV_CAP_PROP_FRAME_WIDTH, 1920); //set the width of frames of the video 
// 1920, 2880, 3840, 6480  
capR.set(CV_CAP_PROP_FRAME_HEIGHT, 1080); //set the height of frames of the 
//video 320, 480, 640, 1080 

 
 
 //double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);  

//get the width of frames of the video 
 //double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);  

//get the height of frames of the video 
 
 //cout << "Frame size : " << dWidth << " x " << dHeight << endl; 
 
 //namedWindow("MyVideo", CV_WINDOW_AUTOSIZE);  

//create a window called "MyVideo" 
 //namedWindow("MyVideo", CV_WINDOW_KEEPRATIO); //works 
 //namedWindow("MyVideo", CV_WINDOW_FREERATIO); 
 
 //namedWindow("MyVideo Left", CV_WINDOW_NORMAL); 
 //namedWindow("MyVideo Right", CV_WINDOW_NORMAL); 
 
 //namedWindow("MyVideo Left", CV_WINDOW_FREERATIO); 
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 namedWindow("MyVideo Top", CV_WINDOW_FREERATIO); 
 namedWindow("MyVideo Bottom", CV_WINDOW_FREERATIO); 
  
 namedWindow("Rectified Top", CV_WINDOW_FREERATIO); 
 //namedWindow("Front", CV_WINDOW_FREERATIO); 
 //namedWindow("Front", CV_WINDOW_FREERATIO); 
 int flag = 1; 
 
 //namedWindow(windowMatch, CV_WINDOW_NORMAL); 
 namedWindow(windowDisparitySGM, CV_WINDOW_FREERATIO); 
 
 waitKey(1000); 
 
 
 while (1) 
 { 
  Mat frameL, frameR; 
 
  capL >> frameL; 
  capR >> frameR; 
 
  imshow("MyVideo Top", frameL);  

//show the frame in the "MyVideo Left" window 
  imshow("MyVideo Bottom", frameR);  

//show the frame in the "MyVideo Right" window 
 
  cvtColor(frameL, frameL, CV_BGR2GRAY); 
  cvtColor(frameR, frameR, CV_BGR2GRAY); 
 
  //transpose(frameL, frameL); 
  //flip(frameL, frameL, 0); 
  //transpose(frameR, frameR); 
  //flip(frameR, frameR, 0); 
 
  //frameL = frameL(Rect(380, 0, frameL.cols - 760, frameL.rows)); 
  //frameR = frameR(Rect(380, 0, frameR.cols - 760, frameR.rows)); 
  //cout << "done" << endl; 
 
  imgLeft = frameL; 
  imgRight = frameR; 
 
  if (!imgLeft.data || !imgRight.data) 
  { 
   std::cout << " --(!) Error reading images " << std::endl; return -1; 
  } 
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Mat char1 = Mat(frameR, Rect(480, 380, frameR.cols - 960, frameR.rows - 
760)); 
Mat image = Mat(frameL, Rect(480, 380, frameL.cols - 960, frameL.rows - 
760)); 

 
  transpose(char1, char1); 
  flip(char1, char1, 0); 
  transpose(image, image); 
  flip(image, image, 0); 
 
  //imshow("bottom", char1); 
  //imshow("topimg", image); 
 
  //waitKey(0); 
 
  //Detect the keypoints using SURF Detector 
  int minHessian = 200; 
 
  SurfFeatureDetector detector(minHessian); 
  std::vector<KeyPoint> kp_object; 
 
  detector.detect(char1, kp_object); 
 
  //Calculate descriptors (feature vectors) 
  SurfDescriptorExtractor extractor; 
  Mat des_object; 
 
  extractor.compute(char1, kp_object, des_object); 
 
  FlannBasedMatcher matcher; 
  std::vector<Point2f> obj_corners(4); 
 
  //Get the corners from the object 
  obj_corners[0] = cvPoint(0, 0); 
  obj_corners[1] = cvPoint(char1.cols, 0); 
  obj_corners[2] = cvPoint(char1.cols, char1.rows); 
  obj_corners[3] = cvPoint(0, char1.rows); 
 
 
 
  //Mat frame; 
  Mat des_image, img_matches; 
  std::vector<KeyPoint> kp_image; 
  std::vector<vector<DMatch > > matches; 
  std::vector<DMatch > good_matches; 
  std::vector<Point2f> obj; 
  std::vector<Point2f> scene; 
  std::vector<Point2f> scene_corners(4); 
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  Mat H; 
  Mat result = Mat(320, 960, CV_8U); 
  Mat char2 = Mat(320, 960, CV_8U); 
  Mat char2_left = char2(Rect(0, 0, 480, 320)); 
  Mat char2_right = char2(Rect(480, 0, 480, 320)); 
 
  Mat(frameR, Rect(1440, 380, 480, 320)).copyTo(char2_left); 
  Mat(frameR, Rect(0, 380, 480, 320)).copyTo(char2_right); 
 
  Mat image2 = Mat(320, 960, CV_8U); 
  Mat image2_left = image2(Rect(0, 0, 480, 320)); 
  Mat image2_right = image2(Rect(480, 0, 480, 320)); 
 
  Mat(frameL, Rect(1440, 380, 480, 320)).copyTo(image2_left); 
  Mat(frameL, Rect(0, 380, 480, 320)).copyTo(image2_right); 
 
  Mat result2;// = Mat(320, 960, CV_8U); 
 
  Mat top = Mat(320, 1920, CV_8U); 
  Mat top_left = top(Rect(0, 0, 480, 320)); 
  Mat top_middle = top(Rect(480, 0, 960, 320)); 
  Mat top_right = top(Rect(1440, 0, 480, 320)); 
 
 
  detector.detect(image, kp_image); 
  extractor.compute(image, kp_image, des_image); 
 
  matcher.knnMatch(des_object, des_image, matches, 2); 
 
  for (int i = 0; i < min(des_image.rows - 1, (int)matches.size()); i++)  

//THIS LOOP IS SENSITIVE TO SEGFAULTS 
  { 
   if ((matches[i][0].distance < 0.6*(matches[i][1].distance)) &&  
                                                ((int)matches[i].size() <= 2 && (int)matches[i].size()>0)) 
   //if ((matches[i][0].distance < 0.6*(matches[i][1].distance)) &&  
                                                   ((int)matches[i].size() <= 5 && (int)matches[i].size()>0)) 
   { 
    good_matches.push_back(matches[i][0]); 
   } 
  } 
 
  //Draw only "good" matches 
 
  if (good_matches.size()> 5) { 
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   drawMatches(char1, kp_object, image, kp_image, good_matches,  
                                            img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(),  
                                            DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); 
 
   for (int i = 0; i < good_matches.size(); i++) 
   { 
    //Get the keypoints from the good matches 
    obj.push_back(kp_object[good_matches[i].queryIdx].pt); 
    scene.push_back(kp_image[good_matches[i].trainIdx].pt); 
    //cout << angleBetween(obj[i], scene[i]) << endl;  
                                                          //angles between images 
   } 
 
   H = findHomography(obj, scene, CV_RANSAC); 
 
   perspectiveTransform(obj_corners, scene_corners, H); 
 
   // cout<<angleBetween(obj[0], scene[0])<<endl; 
   //cout << scene_corners << endl; 
 
   rotate(char1, image, scene_corners, result); 
   transpose(result, result); 
   flip(result, result, 1); 
 
   //second set 
 
   //std::vector<Point2f> scene_corners2(4); 
   //scene_corners2[0] = scene_corners[1]; 
   //scene_corners2[1] = scene_corners[0]; 
   //scene_corners2[2] = scene_corners[2]; 
   //scene_corners2[3] = scene_corners[3]; 
 
   transpose(image2, image2); 
   flip(image2, image2, 0); 
   transpose(char2, char2); 
   flip(char2, char2, 0); 
 
   rotate(char2, image2, scene_corners, result2); 
 
   transpose(result2, result2); 
   flip(result2, result2, 1); 
 
   //transpose(img_matches, img_matches); 
   //flip(img_matches, img_matches, 1); 
   //imshow("Good Matches", img_matches); 
 
   Mat(result2, Rect(480, 0, 480, 320)).copyTo(top_left); 
   result.copyTo(top_middle); 
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   Mat(result2, Rect(0, 0, 480, 320)).copyTo(top_right); 
 
   imshow("Rectified Top", top); 
   //imshow("result2",result2); 
    
   //waitKey(0); 
 
  } 
 
 
 
  int ndisparities = 80; //16 * 2;   /**< Range of disparity */ 
  int SADWindowSize = 3;    /**< Size of the block window. Must be odd */ 
 
  StereoSGBM sgbm; 
 
  sgbm.preFilterCap = 63; 
  sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3; 
 
  int cn = outputLeft.channels(); 
 
  sgbm.P1 = 216 * 2; //8 * cn*sgbm.SADWindowSize*sgbm.SADWindowSize; 
  sgbm.P2 = 864 * 2;//32 * cn*sgbm.SADWindowSize*sgbm.SADWindowSize; 
  sgbm.minDisparity = -39; 
  sgbm.numberOfDisparities = ndisparities; 
  sgbm.uniquenessRatio = 10; 
  sgbm.speckleWindowSize = 100; 
  sgbm.speckleRange = 2; 
  sgbm.disp12MaxDiff = 1; 
 
 
 
  sgbm(top, Mat(frameL, Rect(0, 380, frameL.cols, frameL.rows - 760)), disp); 
 
  double minVal; double maxVal; 
 
  minMaxLoc(disp, &minVal, &maxVal); 
 
  //disp.convertTo(disp8U, CV_8UC1, 255 / (maxVal - minVal)); 
  normalize(disp, disp8U, -50, 255, CV_MINMAX, CV_8U); 
  applyColorMap(disp8U, disp8U, COLORMAP_JET); 
 
  //transpose(disp8U, disp8U); 
  //flip(disp8U, disp8U, 1); 
  //disp8U = disp8U(Rect(0, 380, disp8U.cols, disp8U.rows - 760)); 
 
  imshow(windowDisparitySGM, disp8U); 
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  if (flag == 1) { 

cout << "rows: " << frameL.rows << "\t" << "cols: " << frameL.cols << 
endl; 
cout << "rows: " << frameR.rows << "\t" << "cols: " << frameR.cols << 
endl; 
cout << "rows: " << disp8U.rows << "\t" << "cols: " << disp8U.cols << 
endl; 

  } 
  flag = 0; 
 
  if (waitKey(30) == 27)  
                             //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop 
  { 
   cout << "esc key is pressed by user" << endl; 
   break; 
  } 
 } 
 return 0; 
 
} 
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Appendix – C:  

VSN Mobil V. 360 User’s Guide 
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