
Santa Clara University
Scholar Commons

Computer Science and Engineering Master's Theses Engineering Master's Theses

9-19-2016

Panoramic Stereovision and Scene Reconstruction
Ashish Nair
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_mstr

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Computer Science and Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
Nair, Ashish, "Panoramic Stereovision and Scene Reconstruction" (2016). Computer Science and Engineering Master's Theses. 2.
http://scholarcommons.scu.edu/cseng_mstr/2

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_mstr/2?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Panoramic Stereovision and Scene

Reconstruction

By

Ashish Nair

COEN 497

Master’s Thesis Research

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in Computer Science and Engineering

in the School of Engineering at

Santa Clara University, 2016.

Santa Clara, California.

Date: 9/14/2016

iii

Panoramic Stereovision and Scene

Reconstruction

Ashish Nair

Department of Computer Engineering

Santa Clara University

2016

Abstract

With advancement of research in robotics and computer vision, an increasingly high

number of applications require the understanding of a scene in three dimensions. A

variety of systems are deployed to do the same. This thesis explores a novel 3D imaging

technique. This involves the use of catadioptric cameras in a stereoscopic arrangement.

A secondary system aims to stabilize the system in the event that the cameras are

misaligned during operation. The system provides a stark advantage due to it being a cost

effective alternative to present day standard state-of-the-art systems that achieve the same

goal of 3D imaging. The compromise lies in the quality of depth estimation, which can

be overcome with a different imager and calibration. The result was a panoramic disparity

map generated by the system.

Keywords: Stereovision, SURF, RANSAC, 3D Imaging, Rectification, Stereo

Correspondence

iv

Acknowledgements

I wish to thank Santa Clara University for helping me tailor my academic career to suit

my research goals, as well as helping orient my skillset towards the field of Computer

Vision. I also wish to thank Dr. Nam Ling for bearing with my interdisciplinary research

interests, and guiding me accordingly.

Special thanks to the Robotic Systems Lab and Dr. Christopher Kitts for the amazing

workspace, resources and the after-hours access during which much of my research was

conducted. Thanks to NVIDIA Corp. for the equipment grant of the Jetson TK1

embedded platform. Finally, I wish to thank my parents for their ceaseless support and

encouragement.

v

Table of Contents

Abstract ... iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. vi

List of Tables .. vii

1. Introduction ... 1

1.1 Background .. 1

1.2 Literature Review ... 3

1.2.1 Facebook Surround 360 .. 3

1.2.2 Lytro Immerge .. 4

1.2.3 Velodyne HDL-64E .. 6

1.2.4 Comparison and Summary .. 7

1.3 Project Statement ... 8

2. Hardware and Vision Systems Design ... 9

2.1 System Architecture ... 9

2.2 Catadioptrics .. 9

2.2.1 Central and Non-Central Camera Models 10

2.2.2 Folded Cameras .. 11

2.2.3 The VSN Mobil V.360 .. 11

2.3 Stereovision ... 13

2.3.1 Generic Stereovision Pipeline ... 14

2.3.2 Catadioptric Stereoscopy .. 17

2.4 NVIDIA Jetson TK1 …………….. 19

3. Software .. 21

3.1 Development with VS2013 and OpenCV... 21

3.2 Stereo Correspondence with Semi Global Block Matching 22

3.2.1 Theory ... 22

3.2.2 Implementation and Results .. 23

3.3 Automated Rectification .. 26

vi

4. Conclusion .. 30

References .. 31

Appendix A: Source code for computing disparity ... 32

Appendix B: Source code for automated rectification .. 36

Appendix C: VSN Mobil V.360 Users Guide …………... 45

List of Figures

Figure 1.1: Industrial and Non-Industrial Robotics Revenue .. 1

Figure 1.2: Augmented/Virtual Reality Revenue Forecast .. 2

Figure 1.3: Facebook Surround 360 ... 3

Figure 1.4: Lytro Immerge Light Field Camera ... 4

Figure 1.5: Multiple perspectives from lenslets in a Light Field Camera 5

Figure 1.6: Velodyne HDL-64E LIDAR ... 6

Figure 1.7: HDL-64E Point Cloud at an Intersection .. 6

Figure 2.1: Hardware system block diagram ……... 9

Figure 2.2: Catadioptric Image (radially distorted) .. 10

Figure 2.3: Central and Non-Central Camera models ………………………………... 10

Figure 2.4: Dual-mirror folded catadioptric camera ……………………....................... 11

Figure 2.5: VSN V.360 ………………………………………….................................. 12

Figure 2.6: Magewell USB Capture HDMI USB-UVC Converter ….………….…….. 12

Figure 2.7: Scene visualized by a stereoscopic camera ... 13

Figure 2.8: Stereovision Pipeline ... 14

Figure 2.9: Grid pattern and the effect of barrel distortion ... 15

Figure 2.10: Frames from a dual camera setup, and rectified frames brought into a

 parallel image plane ... 15

Figure 2.11: Disparity map of ‘Cones’ dataset ... 16

vii

Figure 2.12: Point P at a distance Z from camera centers .. 17

Figure 2.13: Three-dimensional grayscale point cloud from ‘Cones’ Dataset 17

Figure 2.14: Horizontal configuration for catadioptric stereoscopy 18

Figure 2.15: Occlusions in a horizontal configuration of catadioptric stereovision 18

Figure 2.16: Vertical configuration for catadioptric stereoscopy 19

Figure 2.17: Jetson TK1 with a USB to mini-PCIe converter 20

Figure 3.1: Program Workflow .. 24

Figure 3.2: Upper camera image, Lower camera image, and Disparity Map 24

Figure 3.3: Calibration Scene .. 25

Figure 3.4: Curve fitting with calibration points ... 25

Figure 3.5: Test Scene ... 26

Figure 3.6: Primary sources of non-rigidity in the position adjustment system 27

Figure 3.7: Automated Rectification Pipeline ... 27

Figure 3.8: Tilted upper camera test for Automated Rectification system 28

Figure 3.9: Automated Rectification Testing; Tilted upper camera input, Lower camera

 input, Rectified Upper Camera feed .. 29

List of Tables

Table 1.1: State-of-the-art 3D vision systems comparison chart...................................... 7

Table 3.1: Disparity-Depth Calibration ... 25

Table 3.2: Test Scene Results ... 26

1

1. Introduction

1.1. Background

Modern day applications in fields of robotics, virtual reality and augmented reality

systems require a comprehensive perception of their immediate surroundings with the

highest possible accuracy and resolution, along with robustness across a wide range of

operating conditions.

Robotic systems applications extend to warehouse operations, autonomous driving,

search and rescue, surveillance, building inspection, and remote surgery to name a few.

In each scenario the robot has to navigate an obstacle-ridden space to perform a complex

set of tasks. Augmented and VR systems deal with simulating a partial or a completely

new world that superimposes, or replaces the real world.

3D vision technology is critical to the aforementioned fields given its ability to generate

spatial models of the physical world. Consequently, there has been a wide adoption of

the same. Success in the deployment of 3D vision methods has contributed significantly

to the growth of these markets, as displayed in Figures 1.1, and 1.2.

Fig 1.1: Industrial and Non-Industrial Robotics Revenue,

Source: Tractica, “Robotics Market Forecasts”, 2015.

2

 Fig 1.2: Augmented/Virtual Reality Revenue Forecast,

Source: Digi-Capital, “Augmented/Virtual Reality Report 2016”, 2016.

The purpose of this project is to create a novel panoramic 3D spatial modeling system

that is robust and serves as a cost effective replacement to current techniques in this

space, without compromising output quality. The developed system makes use of special

optics to gain a panoramic field of vision and leverages two points of view to obtain

stereoscopic scene information, thus gaining a sense of depth for the entire panorama.

1.2. Literature Review

This section provides an overview of existing state of the art industrial grade solutions

for panoramic 3D imaging. Note that panoramic 3D is different from general monoscopic

360 video in the context that, in the former case the viewer is allowed six degrees of

freedom for observing the scene, as compared to the latter’s three degrees of freedom –

roll, pitch, and yaw where the scene is projected onto a sphere.

1.2.1. Facebook Surround 360

The Surround 360 is Facebook’s own design for a panoramic 3D vision system. As an

open-source design, both hardware and software will be made available for further

3

prototyping. The system is built for stationary camera VR applications, and features

multiple Point Grey cameras. A global shutter ensures all camera feeds are completely in

synchronization to preserve the quality of the reconstructions. Each camera in the system

provides options of 4K, 6K, and 8K video resolutions.

Fig 1.3: Facebook Surround 360

Source: Facebook, "Facebook Surround 360”, 2016. [Online].

Video feed at 30 FPS requires transfer rates as high as 17Gbps in video transfer rates,

which is fulfilled by means of an 8-way, level-5 RAID SSD disk system. Frames from

all cameras are initially in Bayer form, which are then converted to a gamma corrected

RGB format. Frames are then undistorted, and bundle adjustment is performed for

rectification of camera misalignments. Stereo correspondence is performed by means of

optical flow estimation. The advantage of implementing optical flow is a high quality

disparity map between cameras, but at the cost of an additional order of computational

complexity. Novel views are then synthesized for multiple viewing positions. Panoramas

are stitched via software at post production.

4

1.2.2. Lytro Immerge

Fig 1.4: Lytro Immerge Light Field Camera

Source: http://www.lytro.com [Online].

 Lytro specializes in developing plenoptic cameras, also known as Light Field cameras.

These cameras include a microscopic-lens (lenslets) array placed above a high density

image sensor. This arrangement helps capture the entire light field, by tracking the

direction and color intensities of bundles of rays from multiple unique points of view.

With the given information it is then possible to calculate where the bundles of light rays

originated and where they converge. A virtual image plane can then be generated where

a particular object is in focus – thus providing refocusing and depth sensing capabilities.

The Immerge system is a suite that includes a camera, processing hardware, and software

tools to create a cinematic 3D VR experience that allows the user 6 degrees of freedom.

The camera has provisions for multiple removable sensor arrays as displayed in Fig. 1.5.

The primary disadvantage of this system is its need for a special server rack required to

perform reconstructions, due to the computational complexity of the entire process.

5

Fig 1.5: Multiple perspectives from lenslets in a Light Field Camera,

Source: Lytro, “The Creative benefits of Light Field”, April 2016. [Online].

The secondary disadvantage of the Immerge is that all computations are performed post

production. The system ideally suited for budgets aimed towards renting the equipment.

1.2.3. Velodyne HDL-64E

3D Lidar is known to be one of the most reliable source of mapping depth in a scene.

Lidar is based on the concept of time of flight, in which a transmitter emits a laser signal,

and based on the time taken to receive the signal, depth is calculated for that particular

point in space. A scanning Lidar can comprehend a panoramic depth map in each

rotation. Lidar detection schemes can be classified into two kinds: incoherent, and

coherent. Incoherent lidar, also known as direct energy detection is primarily an

amplitude measurement method. The coherent method involves heterodyne detection,

where pulses are non-linearly mixed with a reference signal, and the received wave

contains the signature of the original, but at carrier frequency.

6

Fig 1.6: Velodyne HDL-64E LIDAR

Source: Velodyne, “Velodyne Lidar HDL 64E: High Definition Real-time LIDAR”, January 2016.

The coherent method of detection is better suited for relatively low power applications,

and is safer to the human eye. The HDL-64E directs 64 beams of laser into the scene,

each at a unique vertical angle. Total vertical FOV is 26.8 degrees, and provides over 2.2

million points per second with a programmable framerate of up to 20Hz. The range of

measurement of the HDL-64E extends to 120m. Point clouds generated by this module

are accurate to within 2cm. Fig. 1.7 shows a point cloud generated by the HDL-64E.

Fig 1.7: HDL-64E Point Cloud at an Intersection.

Source: Velodyne, “Velodyne Lidar HDL 64E: High Definition Real-time LIDAR”, January 2016.

7

1.2.4. Comparison and Summary

The methods discussed in sections 1.2.1, 1.2.2, and 1.2.3 are unique in terms of the

technology used to generate spatial models and are effective at their respective fields of

application. The former two are used in VR content creation, while the HDL-64E is used

to generate terrestrial maps for robotic applications such as autonomous driving. The

Surround 360 depends on stereovision from multiple cameras, the Immerge 360 works

on Lightfield technology, and the HDL64E is a Lidar module.

Table 1.1: State-of-the-art 3D vision systems comparison chart

In addition to the contents of table 1.1, it is noted that the Surround 360 and the Immerge

both have secondary processing units that the camera rigs are connected to, which are

significantly increase the form factor of the setup – making them better suited for

Sr.

No.
Solution Cost Real-time

Vertical

Field of View

(FOV)

Approx.

Footprint

Excluding

Mounts

(in mm3)

1.

Facebook

Surround 360

$ 30,000

No

3600

65,098,740

2.

Lytro

Immerge

Not

released

No

3600

Not released

3.

Velodyne

HDL-64E

$ 70,000

Yes

26.80

14,617,190

8

stationary camera applications. There currently is no qualitative data on the accuracy and

resolution of the two aforementioned cameras. The HDL-64E is portable and can be

connected to any device that possesses an Ethernet interface, but is unable to provide any

color data from the scene. It has a depth estimation error of less than two centimeters up

to a range of 120 meters. Thus each method has its own distinct set of advantages and

limitations.

1.3. Project Statement

The goal of this research project was to explore an alternative panoramic 3D imaging

solution with real-time capabilities, and a small form factor of 1,158,162 mm3 – at a low

cost of implementation (under $2000). This was done by means of stereoscopic vision

with two catadioptric cameras.

The advantage of deploying catadioptric cameras over regular cameras is that the former

takes a panoramic image, thereby not requiring any stitching – thus reducing both

processing time, as well as the overall hardware requirements of the system. This in turn

helps reduce the power consumed, and minimizes the costs involved.

However, the major challenge of such a system is associated a lack of calibration data

due to unknown intrinsic parameters of the cameras. Without this data, it is not possible

to extrapolate the real world depth of any point in the scene. Furthermore, unexpected

changes in camera orientation leads to changes in calibration that adversely affect the

quality of the resultant disparity map. These two issues have been addressed in this

project by means of external calibration with a secondary 3D imager, and automated

stereo rectification respectively.

The result of this project was a high quality disparity map that can be used to generate a

spatial model of a scene.

9

2. Hardware and Vision Systems

 Design

2.1. System Architecture

The proposed system comprises of two catadioptric cameras. Each camera outputs a live

video stream over HDMI. HDMI to USB Video Class converters are used to convert each

camera’s HDMI feed into USB 3.0 compatible webcam feed. The converter output was

then passed to a laptop, which then implements the algorithm for estimating disparity in

real-time. Fig 2.1 is a block diagram of the same.

Fig. 2.1: Hardware system block diagram

2.2. Catadioptrics

A catadioptric optical system refers to the combination of lenses, also known as dioptrics,

and curved mirrors, known as catoptrics. Catadioptric systems have been traditionally

deployed in focusing systems of headlamps, telescopes, and microscopes. More recently,

they have been put into effect in special purpose cameras that aim towards panoramic

imaging. The feed from a catadioptric camera is displayed in Fig 2.2. There is a

significant amount of observable radial distortion introduced due to a special lens and

mirror arrangement.

10

Fig 2.2: Catadioptric Image (radially distorted),

Source: CAVE Laboratory at Columbia University.

2.2.1. Central and Non-Central Camera Models

Catadioptric cameras can be broadly classified into two models: central and non-central

cameras. In central cameras, all incoming rays of light intersect at a unique viewpoint.

This condition is also called the single viewpoint condition, and is inherently satisfied by

perspective cameras. In non-central cameras, the incoming rays do not intersect at one

unique viewpoint. In case of a hyperbolic mirror, there are two focal points – the rays

intersect at one focal point (F), and the camera is placed at the second focal point (F’) as

shown in Fig 2.3(a).

(a) (b)

Fig 2.3: Central (a), and Non-Central (b) Camera models.

Source: M. Schonbein, Omnidirectional Stereo Vision for Autonomous Vehicles, Karlsruhe, KIT

Scientific Publishing, 2014.

11

2.2.2. Folded Cameras

The drawback associated with single mirror systems is that they have a relatively large

form factor for a given vertical field of view. Optical folding allows for a significantly

greater vertical FOV with a smaller package size as compared to its single mirror

equivalent. A folded catadioptric camera primarily involves two conic mirrors – a

primary and a secondary. One of the nine forms of single viewpoint folded catadioptric

system described by Benosman and Kang in [1] is displayed in Fig. 2.4(a). It makes use

of dual hyperbolic mirrors. Alongside Fig. 2.4(a) is a close view of the catadioptrics of

the camera hardware used in this project, Fig. 2.4(b).

(a) (b)

Fig 2.4: Dual-mirror folded catadioptric camera. (a) One of nine possible forms of dual-mirror single

viewpoint folded catadioptric cameras. Source: R. Benosman and S. B. Kang, Panoramic Vision:

Sensors, Theory, and Applications, New York: Springer Science+Business Media, 2001; (b) VSN Mobil

V.360 camera catadioptrics. Corresponding positions of Primary (1) and secondary (2) mirrors are

indicated by bounding boxes.

2.2.3. The VSN Mobil V.360

The VSN V.360 is the camera selected for the panoramic stereovision system in this

project. It is a catadioptric camera with a folded configuration as indicated in section (c)

of Fig 2.3. The camera acquires frames of video with a 16-megapixel imager, capable of

generating resolutions ranging from 1920x320 through 6480x1080. Vertical FOV ranges

12

from +45 degrees to -15 degrees. Fig 2.5(a) is a picture of the camera hardware, and Fig.

2.5(b) illustrates a still image taken by the camera.

(a)

(b)

Fig 2.5: VSN V.360 (a) VSN Mobil V.360 Camera, (b) Equi-rectangular (undistorted) image

As displayed above, the camera accounts for lens distortion and undistorts images and

frames of video into an equi-rectangular form by means of a Qualcomm Snapdragon 800

processor. The advantage of this feature is that epipolar lines are made linear by default,

thus requiring a minimal amount of image warping for stereo rectification.

Fig 2.6: Magewell USB Capture HDMI USB-UVC Converter

13

Video feed can be extracted from the V.360 via two methods. The first method is over a

wifi connection between the camera and a mobile device that is capable of running the

V.360 app. The app offers a live view as well as recording capabilities. Live feed cannot

be directly extracted via third-party scripts due to the closed source nature of the product.

The second method is via a hardware link. Live feed is accessible via an on-board HDMI

port. In order to connect it to a personal computer, the input needs to be of the form of a

USB Video Class (UVC) Device. This is possible using a UVC capture card that converts

HDMI input into USB-UVC feed. The camera’s raw video feed can then be accessed like

any standard webcam. The capture card deployed is the Magewell USB Capture HDMI.

2.3. Stereovision

Fig 2.7: Scene visualized by a stereoscopic camera.

Source: Ensenso and IDS Imaging Development Systems GmbH, "Obtaining Depth from Stereo

Images," Obersulm, 2012.

14

2.3.1. Generic Stereovision Pipeline

Stereovision is a concept that mimics the human vision system, leveraging two or more

unique points of view to generate depth information and reconstruct a three-dimensional

rendering of a scene. Depth is perceived by means of the relative shifts in the perspective

of different components within the scene.

Fig 2.8: Stereovision Pipeline

On acquisition of the dual images, the first step of stereovision is to calibrate the cameras.

This is done to understand the cameras’ pose relation to the external world, as well as to

the other camera in the system. The object most commonly used for calibration is a

checkerboard of a known size. The 3D coordinates of the checkerboard pattern, and the

camera model can be found using their pixel locations in the left and right images. The

stereo camera model consists of intrinsic matrices of each camera’s distortions and focal

lengths, as well as the extrinsic matrix – comprising of information regarding the

cameras’ difference in pose with respect to each other. Stereovision can also be

performed without camera calibration, but at the cost of additional computational

complexity. The disadvantage associated with an uncalibrated approach is that the scene

may only be reconstructed with a sense of scale, but not with the knowledge of real world

ground distances.

The next step is of un-distortion and rectification of the camera images. When an image

is taken with a camera, the scene captured by the imager is distorted – the kind of

distortion depending on the type of lens and/or mirror arrangement. The type of distortion

in the case of fisheye lenses and catadioptric cameras is barrel distortion. Barrel distortion

suggests that that magnification decreases with a change in distance from the optical axis.

Illustrated in Fig 2.9 is the effect of barrel distortion on a grid pattern. Images and frames

of video can be undistorted using Brown’s model of distortion [11].

Calibration
Undistortion

and
Rectification

Correspondence
Triangulation

and
Reconstruction

15

(a) (b)

Fig. 2.9: Grid pattern (a) and the effect of barrel distortion (b).

The next stage is stereo-rectification. To perform this, it is necessary to understand the

epipolar geometry of the camera setup. Assume I and I’ are camera centers. The baseline

is the line segment joining the two centers.

 (a) (b)

Fig 2.10: Frames from a dual camera setup (a), and Rectified frames (b) brought into a parallel image

plane. Source: Silvio Savarese, “Chapter 6: Stereo Systems Multi-view Geometry”, Stanford University,

2016.

P is a point that is viewed by the two cameras, at pixel positions p and p’. I – I’ – P forms

the epipolar plane. The baseline may or may not intersect the image planes. Fig 2.9(a)

contains intersections of the baseline with the image planes at points e and e’, also known

as the epipoles. The line segments passing through pairs (p, e) and (p’, e’) are the epipolar

lines. The camera matrices found from the calibration stage, along with a rotation matrix

and a translation vector are then used to warp the images and project them onto a parallel

image plane, such that the epipoles lie at infinity as displayed in Fig 2.10(b).

Stereo-correspondence is the stage that comes after rectification. It is comprised of a

pixel-wise search of every pixel in the left image, for its corresponding match in the right

16

image. This takes O(n2) time to implement. But due to rectification previously performed

on the images it is possible to implement this search in linear time, thus reducing

processing time by an order of magnitude. The correspondence problem is fairly open

ended due to issues of varying degrees of exposure between cameras, multiple

homogeneous regions that have similar color intensities, occlusions and foreshortening

to name a few. A commonly used practice is block matching, where blocks of NxN pixels

are searched, along with normalized cross correlation in order to mitigate issues in

illumination. The result of the correspondence stage is a disparity map that provides pixel

displacements – a relative sense of depth of objects in the scene.

Fig 2.11: Disparity map of ‘Cones’ dataset

Source: Middlebury College Stereo Dataset ‘Cones’

The final step in the stereovision process is triangulation and reconstruction – a

representation of the stereo data into a three-dimensional space. The secondary advantage

of rectification is that the triangulation process is reduced down to a similar triangles

problem. The equation that is used to determine the depth of a point in the disparity map

is z = B.F/d, where z is the depth in meters, B is the baseline in meters, F is the focal

length in pixels and d is the pixel disparity. Fig 2.12 illustrates the same.

17

Fig 2.12: Point P at a distance Z from camera centers

Source: Silvio Savarese, “Chapter 6: Stereo Systems Multi-view Geometry”, Stanford University, 2016.

Also note that the camera’s FOV needs to be taken into account to be able to generate an

accurate point cloud, again requiring the camera system’s intrinsic matrices. The result

of this stage is a three-dimensional point cloud as shown in Fig. 2.13.

Fig 2.13: Three dimensional grayscale point cloud from ‘Cones’ Dataset

Source: Ensenso and IDS Imaging Development Systems GmbH, "Obtaining Depth from Stereo

Images," Obersulm, 2012.

2.3.2. Catadioptric Stereoscopy

The use of catadioptric cameras is ideal for stereo vision when an entire panoramic scene

is to be captured in 3D. The vertical field of view (+450, -150) makes the V.360 better

suited for long range imaging applications such as autonomous driving, and aerial terrain

18

mapping. This project studies two arrangements for imaging the scene in 3D. The first

arrangement places both cameras next to each other in the same horizontal plane as

shown in Fig 2.14.

Fig. 2.14: Horizontal configuration for catadioptric stereoscopy

The issue associated with placing cameras side by side is the potential for occlusions on

the left and right sides of the images as illustrated by Fig 2.15. The angle of occlusion

is a function of the length of the baseline b and the size of the camera.

Fig 2.15: Occlusions in a horizontal configuration of catadioptric stereovision

Generic methods for stereovision are aimed at cameras with a horizontal FOV of less

than or equal to 1800. The first set of tests used these standard techniques with each

equirectangular panoramic frame split in half, such that a disparity map would be

19

computed for the parts of the frame pair facing forwards, and a separate disparity

computation for frame pair facing the rear half of the scene. This setup was thus rejected.

Fig. 2.16: Vertical configuration for catadioptric stereoscopy

The second setup implemented was placement of the cameras vertically, such that their

optical axes coincide, as shown in Fig. 2.16. The vertical configuration allows for a better

horizontal FOV with negligible occlusion caused by the mounting structure. In this case

vertical disparity is calculated, for the entire frame in a single iteration, contrary to the

previous configuration. Due to lack of available information about the cameras’ intrinsic

parameters it is not possible to measure real world distances through the camera system

alone. The proposed method is extended to make use of an Xbox Kinect to generate

ground truths of a fraction of the scene, thereby enabling the system to get an anchor

point in the real world – and disparity values can be accordingly mapped to real world

depths.

2.4. NVIDIA Jetson TK1

This project proposal received a hardware grant of a Jetson TK1 from NVIDIA Corp.

The Jetson TK1 is a single board computer that runs Ubuntu 14.04 with preconfigured

drivers. It features a Tegra K1 SOC (system on chip) which comprises of a quad core,

20

2.3GHz ARM Cortex-A15 CPU, a GK20A (192 core) GPU based on the Kepler

microarchitecture, and an ISP on the same chip.

Fig 2.17: Jetson TK1 with a USB to mini-PCIe converter

The TK1 provides 2 gigabytes of DDR3 Dynamic-RAM, and 16GB of eMMC storage.

Additional storage can be provided via an external SD/MMC card, a slot for which is

present on the board. Multiple means of communication are possible using USB 2/3.0,

or via the RS232 or Ethernet ports available on the TK1. In this project, most of the

experiments with the TK1 have been with the Kinect, whose open source USB drivers

have an unresolved issue where the camera needs to be disconnected and reconnected

every time the TK1 is booted up. A USB to mini-PCIe converter is connected to the

TK1’s mini-PCIe port to bypass this issue. Figure 2.16 shows the Jetson TK1 with a Syba

USB to mini-PCIe converter plugged in. The converter draws power from the TK1’s

onboard power supply.

The Jetson TK1 was designed to be the target platform for performing stereovision along

with initial prototyping on a laptop, but compatibility issues were encountered during

migration from OpenCV 3.1 on the laptop to an OpenCV4Tegra based build environment

on the Jetson TK1. Hence the final build was implemented on a Dell Inspiron 15 7559

equipped with an Intel Core i7-6700HQ processor and 8GB RAM.

21

3. Software

3.1. Development with VS2013 and OpenCV

The software components in this system were built on Visual Studio 2013. OpenCV

libraries were included. Together they provide a comprehensive platform for rapid

prototyping, development and testing of computer vision applications.

Visual Studio was used for its exceptional code editor and debugging capabilities. The

code editor supports syntax highlighting and automatic code completion suggestions for

various components that may be included or previously linked. It also supports

bookmarks, collapsing code blocks and incremental search options, in addition to normal

text search methods. Other noteworthy functionalities include code refactoring, interface

extraction and encapsulation. The feature of VS2013’s code editor that proved to be the

most useful to this project is the background compilation tool, which performs code

compilation in the background as it is being written, and returns possible

syntax/compilation errors that would be potentially encountered upon actual compilation.

The VS2013 debugger is efficient with both source, and machine level debugging

operations. It features breakpoints, step by step debugging and allows for code to be

edited as it is being debugged. It can also provide the disassembly if a particular source

is unavailable, and viewing options for the memory dump.

OpenCV (Open-source Computer Vision) was the C++ library used to speed up

development of the stereovision pipeline. It provides functions that aim towards real-time

computer vision applications that are independent of the hardware, operating system, and

window-managers, although further GPU acceleration is also possible by means of

CUDA or OpenCL support. OpenCV offers features spanning image and video frame

manipulation, I/O, specialized data structures, matrix and vector algebra, structure and

motion analysis, camera calibration, object recognition, labelling, and UI tools.

22

3.2. Stereo Correspondence with Semi Global

 Block Matching

3.2.1. Theory

Semi global block matching (SGBM) is a stereo correspondence method that depends on

the concept of Mutual Information, and a global two-dimensional smoothness constraint

approximation by means of multiple one-dimensional constraints. The algorithm

presented by H. Hirschmuller [5] computes pixel matching costs based on the Mutual

Information method. The cost function C(p,d) at pixel p and disparity d is calculated for

the rectified images IL and IR, as follows:

𝐶(𝑝, 𝑑) = 𝑚𝑖𝑛(𝑑(𝑝, 𝑝 − 𝑑, 𝐼𝐿 , 𝐼𝑅), 𝑑(𝑝 − 𝑑, 𝑝, 𝐼𝑅 , 𝐼𝐿)) (1)

Where

𝑑(𝑝, 𝑝 − 𝑑, 𝐼𝐿 , 𝐼𝑅) = 𝑚𝑖𝑛𝑝−𝑑−0.5≤𝑝−𝑑+0.5|𝐼𝐿(𝑝) − 𝐼𝐿(𝑞)| (2)

The SGBM algorithm then minimizes an energy function to get a better quality disparity

map for a pair of images as illustrated in (3).

𝐸(𝐷) = ∑ (𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝐼[|𝐷𝑝 − 𝐷𝑞| = 1]𝑞∈𝑁𝑝
+ ∑ 𝑃2𝐼[|𝐷𝑝 − 𝐷𝑞| > 1]𝑞∈𝑁𝑝

)𝑝 (3)

E(D) is the disparity image energy, p and q are the pixel locations, and Np is the eight-

connected neighborhood of pixel p. P1 and P2 are penalties for a change of disparity equal

to 1 and greater than 1 respectively, amongst two neighboring pixels. P2 is always

externally set by to be greater than or equal to P1. I[x] is a function that returns a 1 if the

argument x is true, and otherwise returns a 0.

Performing the aforementioned 2D minimization for an entire image space is an NP-

Complete problem. To reduce complexity SGBM performs multiple 1D minimizations

in different directions to approximate the 2D minimization. Costs are aggregated by the

matching function on multiple paths that converge on the corresponding pixel being

23

considered, as illustrated in (4). This multiple path approach is highly advantageous to

unrectified stereovision methodologies because the pixel search is not purely vertical.

𝑆(𝑝, 𝑑) = ∑ 𝐿𝑟(𝑝, 𝑑)𝑟 (4)

Where

 𝐿𝑟(𝑝. 𝑑) = 𝐶(𝑝, 𝑑) + min[𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 𝐿𝑟(𝑝 − 𝑟, 𝑑 + 1) +

𝑃1, 𝑚𝑖𝑛𝑖𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2] − 𝑚𝑖𝑛𝑘𝐿𝑟(𝑝 − 𝑟, 𝑘) (5)

In equation (4), S(p,d) is the aggregate cost for pixel p with disparity d. r is the direction

that pixel p is converged to, and Lr(p,d) is the minimum cost in the r direction. Lr(p,d) is

computed in (5) where C(p,d) is added to the minimum of the previous pixel’s cost with

disparity d, previous pixel’s cost with d±1 with an additional penalty P1, and previous

pixel’s cost with d beyond the range of ±1 with an additional penalty P2. The minimum

value of the previous pixel’s minimum cost is subtracted to limit the monotonically

increasing Lr(p,d) for a particular path. The maximum value Lr(p,d) can take is the

maximum value of C(p,d) + P2. The computational complexity for the algorithm is

O(width * height * number of disparities).

3.2.2. Implementation and Results

The original implementation by H. Hirschmuller made 1D minimizations in eight

directions, and is a two pass algorithm. The OpenCV implementation of the same, in this

project makes minimizations in 5 directions, and uses the method deployed by Birchfield

and Tomasi in [7] to compute cost. The program workflow is shown in Fig. 3.1 that

process subsequent frames of live video feed from both cameras to compute and display

the disparity map. Note that frames are rotated by 900 in the clockwise direction. This is

done so that the vertical disparity computation problem is then converted to a horizontal

disparity computation problem, which the OpenCV implementation is designed to handle

by default. The disparity map obtained by this operation is then required to be rotated by

900 in the counter-clockwise direction to align with the original video feed from the

cameras.

24

Fig. 3.1: Program Workflow

Fig 3.2(c) Illustrates a snapshot of the disparity map generated from parallel streams of

size 1920 x 320, from the two cameras in a vertical stereo configuration. The disparity

map is represented as an RGB image where the objects closer to the camera system are

represented by the red end of the visible color spectrum, and objects farther away in the

scene are visible in blue. Note that the disparity map is not of the same height as the

original frames due to non-overlapping regions in the frames taken by the cameras.

(a)

(b)

(c)

 Fig. 3.2: Upper camera image (a), Lower camera image (b), and Disparity Map (c).

Due to an uncalibrated, and minimally rectified approach to stereovision, it is not possible

to calculate real world depths from the disparity map. Hence, a Kinect V2 was used to

set up a set of six calibration points (objects in the scene) and their ground truth depths

were obtained with an accuracy of 1cm. The calibration points are shown in Fig. 3.3.

25

Fig. 3.3: Calibration Scene

Sr. Location in Scene Depth in m (Kinect) Disparity in pixels (system)

1. Whiteboard 5.39 135

2. Chair Backrest 4.05 153

3. Quadrotor Enclosure (left) 2.87 184

4. Quadrotor Enclosure (right) 3.28 171

5. Monitor 2.75 197

6. Function Generator 2.06 216

Table 3.1: Disparity-Depth Calibration

The depth values were then assigned to the corresponding points in the disparity map,

hence creating a reference for predicting depth values for any disparity level. This

predictive reference curve in Fig. 3.4 was then fit, based on the inversely proportional

relation between the disparity and the z axis distance.

Fig 3.4: Curve fitting with calibration points

The entire setup was then moved to a second location, where a set of new points were

selected for testing the prediction model, as displayed in Fig. 3.5. Ground truth depths

from the Kinect V2 were then compared with predicted depths for corresponding

26

disparities at the test points and the system’s error was computed, as illustrated by Table

3.2. The system processes video at 1.56 frames per second.

Fig 3.5: Test Scene

Sr. Location in Scene

Disparity

in pixels

(system)

Predicted

Depth

in m

(ref. model)

Ground Truth

Depth in m

(Kinect)

Error

in m,

| Predicted Depth

– Ground Truth |

1. Monitor 127 4.13 4.18 0.05

2.
Quadrotor Enclosure

(left)
140 3.75 3.42 0.33

3.
Quadrotor Enclosure

(right)
134 3.92 3.52 0.40

4. Chair Backrest 109 4.82 4.29 0.53

5. Whiteboard 130 4.04 3.63 0.41

Table 3.2: Test Scene Results

It was noted that as per the inverse relation between disparity and depth, the disparity

monotonically decreased for an increase in real world depths. Furthermore, with the

exception of observation number 1. the prediction error increases with an increase in

the distance of an object from the camera system. The system could potentially lower

the error in depth prediction if the cameras’ intrinsic parameters were known, and if the

stereo camera setup were calibrated.

3.3. Automated Rectification

Although algorithms such as SGBM perform reasonably well in case of uncalibrated and

unrectified, and hand rectified stereovision systems, rectification helps reduce the search

complexity to a nearly unidimensional space.

27

It was noted that the primary sources of non-rigidity in the setup’s position adjustment

system was a roll in the end grippers of the mounts as displayed in Fig. 3.6. Hence there

was a need for a method to automatically warp one of the two video feeds, such that

matching features in the stereo pair would align vertically, thus mitigating the effects of

non-rigidity from the given sources, and all other possible forms due to factors such as

vibration, if mounted on a moving platform. Automated rectification was thus the

preferred next step.

Fig 3.6: Primary sources of non-rigidity in the position adjustment system

In an uncalibrated system the concept of automated rectification revolves around

understanding the transformation between the images and then aligning one with respect

to the other to rectify the pair of frames. The designed pipeline performs the following

operations on a stereo pair of images or frames of video, as illustrated in Fig 3.7.

Fig 3.7: Automated Rectification Pipeline

The first step was to detect key features in the pair. A feature detector was used to

accomplish the same. The next step consisted of finding descriptors of the detected

SURF Feature
Extraction

SURF
Descriptor
Extraction

KNN
Descriptor
Matching

RANSAC and
Homography

Image
Warping

28

features. The SURF algorithm by Bay et. al. [4] was chosen because of its ability to detect

features, as well as provide descriptors for those features. After descriptor extraction, the

descriptors were then matched using the K Nearest Neighbors technique using FLANN

(Fast Library for Approximate Nearest Neighbors) [6]. The matches are then subject to

RANSAC (Random Sample Consensus) [8] to retain only the good matches.

Fig. 3.8: Tilted upper camera test for Automated Rectification system

The homography matrix between the two frames was then calculated to compute the

perspective transformation between the pair of frames. The top image was then warped

to be aligned with the lower image, such that the features aligned vertically. The system

was tested by generating a random tilt in the orientation of the upper camera as shown in

Fig. 3.8. The results obtained are displayed in Fig. 3.9.

29

(a)

(b)

(c)

Fig. 3.9: Automated Rectification Testing; (a) Tilted upper camera input, (b) Lower camera input,

(c) Rectified Upper Camera feed.

The input in this test case was split into two halves; one facing away from the mounting

apparatus, and the other facing towards it. Since the rotation on one of these halves is the

exact opposite of that of the other (refer fig. 3.6), the algorithm needs to be applied to

only one half, until the warp stage. The same homography matrix was then modified to

reverse the rotation and was applied to the other half, thus decreasing the execution time

of the pipeline by a factor of two.

It was noted that the rectification of the central region was rectified to a greater extent as

compared to the sides. This is because the point of tilt was assumed to be the center of

the frame, but it could be at any position that may be. To be able to counter this limitation,

one could implement a motion estimation algorithm between upper and lower frames and

compute the coordinates of the point around which multiple motion vectors revolve. This

information could then be used to modify the homography matrix and work adaptively

because some regions of the image require more warping with regards to the others.

30

4. Conclusion and Future Work

The objective of this project was to explore an alternative means to panoramic 3D

imaging. The proposed system generates a panoramic depth image of a scene. The

automated rectification technique presented in this project can potentially solve issues in

camera position inconsistencies in real time that usually arise in moving camera systems.

It was noted that the automated rectification method in section 3.3 aligned the upper

frame to the maximum possible extent with the reference frame (lower frame), thus

yielding incorrect vertical disparity values. A possible solution to the same would be to

compare subsequent frames from the same camera (for both feeds of video) using a

motion estimation algorithm, and establishing smoothness constraints between the two

feeds of video; the violation of which could indicate and measure a change in the

orientation of one camera with respect to the other, thereby preventing the need for re-

calibration.

Additional performance improvements are possible via parallelization of the block

matching and feature detection sections using a GPU acceleration framework such as

CUDA. The system can also be scaled to cover larger depth ranges by increasing the

baseline distance. Furthermore, a high-accuracy point cloud can be generated if the

intrinsic parameters of the cameras are known, which in turn can enable stereo calibration

and hence a better means to estimating depth.

A future implementation of such a system could be equipped with high-speed wireless

streaming capabilities, and cloud based computing by means of an Amazon EC2-G2

GPU cluster that could generate and broadcast point clouds in real-time, thus creating a

truly immersive VR livestreaming experience.

31

References

[1] R. Benosman and S. B. Kang, Panoramic Vision: Sensors, Theory, and Applications,

New York: Springer Science+Business Media , 2001.

[2] M. Schonbein, Omnidirectional Stereo Vision for Autonomous Vehicles, Karlsruhe: KIT

Scientific Publishing, 2014.

[3] Ensenso and IDS Imaging Development Systems GmbH, "Obtaining Depth from Stereo

Images," Obersulm, 2012.

[4] H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up Robust Features," 9th

European Conference on Computer Vision, vol. 3951, pp. 404-417, 2006.

[5] H. Hirschmuller, "Stereo Processing by Semi-Global Matching and Mutual Information,"

IEEE Transactions on Pattern Analysis and Machine Iintelligence, vol. 30(2), pp. 328-

341, 2008.

[6] M. Muja and D. G. Lowe, "Fast Approximate Nearest Neighbors with Automatic

Algorithm Configuration," in International Conference on Computer Vision Theory and

Applications , Lisboa, Portugal, 2009.

[7] S. Birchfield and C. Tomasi, "Depth Discontinuities by Pixel-to-Pixel Stereo," in IEEE

International Conference on Computer Vision, Bombay, India, 1998.

[8] M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model

Fitting with Apphcatlons to Image Analysis and Automated Cartography," in

Communications of the ACM, New York, USA , 1981.

[9] B. K. Cabral, "Introducing Facebook Surround 360: An open, high-quality 3D-360 video

capture system," Facebook, 12 April 2016. [Online]. Available:

https://code.facebook.com/posts/1755691291326688/introducing-facebook-surround-360-

an-open-high-quality-3d-360-video-capture-system/.

[10] Lytro, "The Creative benefits of Light Field," Lytro, 5 April 2016. [Online]. Available:

http://blog.lytro.com/post/142305362395/the-creative-benefits-of-light-field.

[11] D. C. Brown, "Decentering Distortion of Lenses," Photogrammetric Engineering, vol. 32,

p. 444–462, 1966.

32

Appendix A: Source code for

computing disparity

#include <iostream>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/core.hpp>
#include "opencv2/calib3d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include <string>

using namespace cv;
using namespace std;
bool flag = 0;

Mat disp1, disp1_8, disp2, disp2_8;
void mystereo(Mat m1, Mat m2);

int main(int argc, char* argv[])
{

 Mat Front_left, Front_right, Back_left, Back_right;

 VideoCapture capL(0);

// open the video camera no. 0
//make sure (0) is mentioned in the same line, or cap.open(0) is specified before
//cap.set, BugFix #948 for OpenCV

 VideoCapture capR(1);

 if (!capL.isOpened()) // if not success, exit program
 {
 cout << "Cannot open the video cam Left" << endl;
 return -1;
 }
 if (!capR.isOpened()) // if not success, exit program
 {
 cout << "Cannot open the video cam Right" << endl;
 return -1;
 }

 capL.set(CV_CAP_PROP_FRAME_WIDTH, 1920);

33

//set the width of frames of the video // 1920, 2880, 3840, 6480
 capL.set(CV_CAP_PROP_FRAME_HEIGHT, 320);

//set the height of frames of the video // 320, 480, 640, 1080

 capR.set(CV_CAP_PROP_FRAME_WIDTH, 1920);

//set the width of frames of the video // 1920, 2880, 3840, 6480
 capR.set(CV_CAP_PROP_FRAME_HEIGHT, 320);

//set the height of frames of the video // 320, 480, 640, 1080

 //double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);

//get the width of frames of the video
 //double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);

//get the height of frames of the video

 //cout << "Frame size : " << dWidth << " x " << dHeight << endl;

 //namedWindow("MyVideo", CV_WINDOW_AUTOSIZE);

//create a window called "MyVideo"
 //namedWindow("MyVideo", CV_WINDOW_KEEPRATIO); //works
 //namedWindow("MyVideo", CV_WINDOW_FREERATIO);

 //namedWindow("MyVideo Left", CV_WINDOW_NORMAL);
 //namedWindow("MyVideo Right", CV_WINDOW_NORMAL);

 namedWindow("MyVideo Top", CV_WINDOW_FREERATIO);

 //namedWindow("MyVideo Left", CV_WINDOW_FREERATIO);
 namedWindow("MyVideo Bottom", CV_WINDOW_FREERATIO);
 namedWindow("D1", CV_WINDOW_FREERATIO);
 namedWindow("D2", CV_WINDOW_FREERATIO);
 //namedWindow("Front", CV_WINDOW_FREERATIO);
 int flag = 1;

 while (1)
 {
 Mat frameL, frameR;

 capL >> frameL;
 capR >> frameR;

 frameL = frameL(Rect(0, 380, 1920, 320));
 frameR = frameR(Rect(0, 380, 1920, 320));

 imshow("MyVideo Top", frameL);

//show the frame in the "MyVideo Left" window
 imshow("MyVideo Bottom", frameR);

//show the frame in the "MyVideo Right" window

34

 transpose(frameL, frameL);
 flip(frameL, frameL, 0);
 transpose(frameR, frameR);
 flip(frameR, frameR, 0);

 Front_left = frameL;
 Front_right = frameR;

 //Back_left = frameR(Rect(frameR.cols / 2, 0, frameR.cols / 2, frameR.rows));
 //Back_right = frameL(Rect(frameL.cols / 2, 0, frameL.cols / 2, frameL.rows));

 mystereo(Front_left, Front_right); //outwards
 //works well
 normalize(disp1, disp1_8, -150, 455, CV_MINMAX, CV_8U);
 normalize(disp2, disp2_8, -150, 455, CV_MINMAX, CV_8U);
 //normalize(disp1, disp1_8, 0, 255, CV_MINMAX, CV_8U);
 //normalize(disp2, disp2_8, 0, 255, CV_MINMAX, CV_8U);

 applyColorMap(disp1_8, disp1_8, COLORMAP_JET);
 transpose(disp1_8, disp1_8);
 flip(disp1_8, disp1_8, 1);
 //disp8 = disp8(Rect(0, 380, disp8.cols, disp8.rows - 375 - 385));
 applyColorMap(disp2_8, disp2_8, COLORMAP_JET);
 transpose(disp2_8, disp2_8);
 flip(disp2_8, disp2_8, 1);

 imshow("D1", disp1_8);
 imshow("D2", disp1_8);

 //mystereo(Back_left, Back_right); //outwards
 ////normalize(disp, disp8, -135, 455, CV_MINMAX, CV_8U);
 //normalize(disp, disp8, -90, 455, CV_MINMAX, CV_8U);
 //applyColorMap(disp8, disp8, COLORMAP_JET);
 //disp8 = disp8(Rect(0, 400, disp8.cols - 40, disp8.rows - 400 - 300));
 //imshow("Back", disp8);

 if (flag == 1)
 cout << "rows: " << disp1_8.rows << "\t" << "cols: " << disp1_8.cols

<< endl;
 flag = 0;

 if (waitKey(30) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed,
 // break loop
 {
 cout << "esc key is pressed by user" << endl;

35

 break;
 }
 }
 return 0;

}

void mystereo(Mat m1, Mat m2)
{

 //StereoSGBM sbm;
 //sbm.SADWindowSize = 3;
 //sbm.numberOfDisparities = 192; //96;
 //sbm.preFilterCap = 63;
 //sbm.minDisparity = -39;
 //sbm.uniquenessRatio = 10;
 //sbm.speckleWindowSize = 200;
 //sbm.speckleRange = 32;
 //sbm.disp12MaxDiff = 1;
 //sbm.fullDP = false;
 //sbm.P1 = 216;
 //sbm.P2 = 864 * 2;
 //sbm(m1, m2, disp);

 //works decently well
 //Ptr<StereoSGBM> sbm

= StereoSGBM::create(-39, 96, 5, 216 * 2, 864 * 2, -1, 63, 10, 100, 2);
 Ptr<StereoSGBM> sbm

= StereoSGBM::create(-39, 96, 5, 216 * 2, 864 * 2, -1, 63, 10, 100, 2,
StereoSGBM::MODE_HH); //full-scale two-pass dynamic programming algorithm.It
will consume O(W*H*numDisparities) bytes

 sbm->compute(m1, m2, disp1);
 sbm->compute(m2, m1, disp2);

 //cv::StereoBM sbm;
 //sbm.state->SADWindowSize = 9;
 //sbm.state->numberOfDisparities = 112;
 //sbm.state->preFilterSize = 5;
 //sbm.state->preFilterCap = 1;
 //sbm.state->minDisparity = 0;
 //sbm.state->textureThreshold = 5;
 //sbm.state->uniquenessRatio = 5;
 //sbm.state->speckleWindowSize = 0;
 //sbm.state->speckleRange = 20;
 //sbm.state->disp12MaxDiff = 64;
 //sbm(m1, m2, disp);
 //normalize(disp, disp8, 0.1, 255, CV_MINMAX, CV_8U);

36

 //StereoBM sbm;
 //sbm.state->SADWindowSize = 5;
 //sbm.state->numberOfDisparities = 112;
 //sbm.state->preFilterSize = 5;
 //sbm.state->preFilterCap = 61;
 //sbm.state->minDisparity = -39;
 //sbm.state->textureThreshold = 507;
 //sbm.state->uniquenessRatio = 0;
 //sbm.state->speckleWindowSize = 0;
 //sbm.state->speckleRange = 8;
 //sbm.state->disp12MaxDiff = 1;
 //sbm(m1, m2, disp);

}

Appendix – B:

Source code for automated

rectification

#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include <opencv/cv.h>

#include <stdio.h>
#include <string.h>

#define PI 3.14159265

using namespace cv;
using namespace std;

37

bool flag = 0;

Mat disp;
void mystereo(Mat m1, Mat m2);

char *windowDisparity = "Disparity";
char *windowDisparitySGM = "Disparity of SGM";
char *windowMatch = "TP matched";

void rotate(cv::Mat& originalImage, cv::Mat& rotatedImage, cv::InputArray rotated,
 cv::Mat& dst) {
 std::vector<cv::Point2f> original(4);
 original[0] = cv::Point(0, 0);
 original[1] = cv::Point(originalImage.cols, 0);
 original[2] = cv::Point(originalImage.cols, originalImage.rows);
 original[3] = cv::Point(0, originalImage.rows);

 dst = cv::Mat::zeros(originalImage.rows, originalImage.cols, CV_8UC3);
 cv::Mat transform = cv::getPerspectiveTransform(rotated, original);
 cv::warpPerspective(rotatedImage, dst, transform, dst.size());
}

float angleBetween(const Point &v1, const Point &v2)
{
 float len1 = sqrt(v1.x * v1.x + v1.y * v1.y);
 float len2 = sqrt(v2.x * v2.x + v2.y * v2.y);

 float dot = v1.x * v2.x + v1.y * v2.y;

 float a = dot / (len1 * len2);

 if (a >= 1.0)
 return 0.0;
 else if (a <= -1.0)
 return PI;
 else{
 int degree;
 degree = acos(a) * 180 / PI;
 return degree;
 };
}

int main(int argc, char* argv[])
{

 Mat Front_left, Front_right, Back_left, Back_right;

38

 Mat imgLeft, imgRight;
 Mat outputLeft, outputRight;
 Mat descriptors1, descriptors2;
 Mat img_matches;
 Mat disp, disp8U;

 VideoCapture capL(0);
 VideoCapture capR(1);

 if (!capL.isOpened()) // if not success, exit program
 {
 cout << "Unable to open video cam Left" << endl;
 return -1;
 }
 if (!capR.isOpened()) // if not success, exit program
 {
 cout << " Unable to open video cam Right" << endl;
 return -1;
 }

capL.set(CV_CAP_PROP_FRAME_WIDTH, 1920); //set the width of frames of the video
// 1920, 2880, 3840, 6480
capL.set(CV_CAP_PROP_FRAME_HEIGHT, 1080); //set the height of frames of the
//video 320, 480, 640, 1080

capR.set(CV_CAP_PROP_FRAME_WIDTH, 1920); //set the width of frames of the video
// 1920, 2880, 3840, 6480
capR.set(CV_CAP_PROP_FRAME_HEIGHT, 1080); //set the height of frames of the
//video 320, 480, 640, 1080

 //double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH);

//get the width of frames of the video
 //double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT);

//get the height of frames of the video

 //cout << "Frame size : " << dWidth << " x " << dHeight << endl;

 //namedWindow("MyVideo", CV_WINDOW_AUTOSIZE);

//create a window called "MyVideo"
 //namedWindow("MyVideo", CV_WINDOW_KEEPRATIO); //works
 //namedWindow("MyVideo", CV_WINDOW_FREERATIO);

 //namedWindow("MyVideo Left", CV_WINDOW_NORMAL);
 //namedWindow("MyVideo Right", CV_WINDOW_NORMAL);

 //namedWindow("MyVideo Left", CV_WINDOW_FREERATIO);

39

 namedWindow("MyVideo Top", CV_WINDOW_FREERATIO);
 namedWindow("MyVideo Bottom", CV_WINDOW_FREERATIO);

 namedWindow("Rectified Top", CV_WINDOW_FREERATIO);
 //namedWindow("Front", CV_WINDOW_FREERATIO);
 //namedWindow("Front", CV_WINDOW_FREERATIO);
 int flag = 1;

 //namedWindow(windowMatch, CV_WINDOW_NORMAL);
 namedWindow(windowDisparitySGM, CV_WINDOW_FREERATIO);

 waitKey(1000);

 while (1)
 {
 Mat frameL, frameR;

 capL >> frameL;
 capR >> frameR;

 imshow("MyVideo Top", frameL);

//show the frame in the "MyVideo Left" window
 imshow("MyVideo Bottom", frameR);

//show the frame in the "MyVideo Right" window

 cvtColor(frameL, frameL, CV_BGR2GRAY);
 cvtColor(frameR, frameR, CV_BGR2GRAY);

 //transpose(frameL, frameL);
 //flip(frameL, frameL, 0);
 //transpose(frameR, frameR);
 //flip(frameR, frameR, 0);

 //frameL = frameL(Rect(380, 0, frameL.cols - 760, frameL.rows));
 //frameR = frameR(Rect(380, 0, frameR.cols - 760, frameR.rows));
 //cout << "done" << endl;

 imgLeft = frameL;
 imgRight = frameR;

 if (!imgLeft.data || !imgRight.data)
 {
 std::cout << " --(!) Error reading images " << std::endl; return -1;
 }

40

Mat char1 = Mat(frameR, Rect(480, 380, frameR.cols - 960, frameR.rows -
760));
Mat image = Mat(frameL, Rect(480, 380, frameL.cols - 960, frameL.rows -
760));

 transpose(char1, char1);
 flip(char1, char1, 0);
 transpose(image, image);
 flip(image, image, 0);

 //imshow("bottom", char1);
 //imshow("topimg", image);

 //waitKey(0);

 //Detect the keypoints using SURF Detector
 int minHessian = 200;

 SurfFeatureDetector detector(minHessian);
 std::vector<KeyPoint> kp_object;

 detector.detect(char1, kp_object);

 //Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;
 Mat des_object;

 extractor.compute(char1, kp_object, des_object);

 FlannBasedMatcher matcher;
 std::vector<Point2f> obj_corners(4);

 //Get the corners from the object
 obj_corners[0] = cvPoint(0, 0);
 obj_corners[1] = cvPoint(char1.cols, 0);
 obj_corners[2] = cvPoint(char1.cols, char1.rows);
 obj_corners[3] = cvPoint(0, char1.rows);

 //Mat frame;
 Mat des_image, img_matches;
 std::vector<KeyPoint> kp_image;
 std::vector<vector<DMatch > > matches;
 std::vector<DMatch > good_matches;
 std::vector<Point2f> obj;
 std::vector<Point2f> scene;
 std::vector<Point2f> scene_corners(4);

41

 Mat H;
 Mat result = Mat(320, 960, CV_8U);
 Mat char2 = Mat(320, 960, CV_8U);
 Mat char2_left = char2(Rect(0, 0, 480, 320));
 Mat char2_right = char2(Rect(480, 0, 480, 320));

 Mat(frameR, Rect(1440, 380, 480, 320)).copyTo(char2_left);
 Mat(frameR, Rect(0, 380, 480, 320)).copyTo(char2_right);

 Mat image2 = Mat(320, 960, CV_8U);
 Mat image2_left = image2(Rect(0, 0, 480, 320));
 Mat image2_right = image2(Rect(480, 0, 480, 320));

 Mat(frameL, Rect(1440, 380, 480, 320)).copyTo(image2_left);
 Mat(frameL, Rect(0, 380, 480, 320)).copyTo(image2_right);

 Mat result2;// = Mat(320, 960, CV_8U);

 Mat top = Mat(320, 1920, CV_8U);
 Mat top_left = top(Rect(0, 0, 480, 320));
 Mat top_middle = top(Rect(480, 0, 960, 320));
 Mat top_right = top(Rect(1440, 0, 480, 320));

 detector.detect(image, kp_image);
 extractor.compute(image, kp_image, des_image);

 matcher.knnMatch(des_object, des_image, matches, 2);

 for (int i = 0; i < min(des_image.rows - 1, (int)matches.size()); i++)

//THIS LOOP IS SENSITIVE TO SEGFAULTS
 {
 if ((matches[i][0].distance < 0.6*(matches[i][1].distance)) &&
 ((int)matches[i].size() <= 2 && (int)matches[i].size()>0))
 //if ((matches[i][0].distance < 0.6*(matches[i][1].distance)) &&
 ((int)matches[i].size() <= 5 && (int)matches[i].size()>0))
 {
 good_matches.push_back(matches[i][0]);
 }
 }

 //Draw only "good" matches

 if (good_matches.size()> 5) {

42

 drawMatches(char1, kp_object, image, kp_image, good_matches,
 img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(),
 DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

 for (int i = 0; i < good_matches.size(); i++)
 {
 //Get the keypoints from the good matches
 obj.push_back(kp_object[good_matches[i].queryIdx].pt);
 scene.push_back(kp_image[good_matches[i].trainIdx].pt);
 //cout << angleBetween(obj[i], scene[i]) << endl;
 //angles between images
 }

 H = findHomography(obj, scene, CV_RANSAC);

 perspectiveTransform(obj_corners, scene_corners, H);

 // cout<<angleBetween(obj[0], scene[0])<<endl;
 //cout << scene_corners << endl;

 rotate(char1, image, scene_corners, result);
 transpose(result, result);
 flip(result, result, 1);

 //second set

 //std::vector<Point2f> scene_corners2(4);
 //scene_corners2[0] = scene_corners[1];
 //scene_corners2[1] = scene_corners[0];
 //scene_corners2[2] = scene_corners[2];
 //scene_corners2[3] = scene_corners[3];

 transpose(image2, image2);
 flip(image2, image2, 0);
 transpose(char2, char2);
 flip(char2, char2, 0);

 rotate(char2, image2, scene_corners, result2);

 transpose(result2, result2);
 flip(result2, result2, 1);

 //transpose(img_matches, img_matches);
 //flip(img_matches, img_matches, 1);
 //imshow("Good Matches", img_matches);

 Mat(result2, Rect(480, 0, 480, 320)).copyTo(top_left);
 result.copyTo(top_middle);

43

 Mat(result2, Rect(0, 0, 480, 320)).copyTo(top_right);

 imshow("Rectified Top", top);
 //imshow("result2",result2);

 //waitKey(0);

 }

 int ndisparities = 80; //16 * 2; /**< Range of disparity */
 int SADWindowSize = 3; /**< Size of the block window. Must be odd */

 StereoSGBM sgbm;

 sgbm.preFilterCap = 63;
 sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;

 int cn = outputLeft.channels();

 sgbm.P1 = 216 * 2; //8 * cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
 sgbm.P2 = 864 * 2;//32 * cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
 sgbm.minDisparity = -39;
 sgbm.numberOfDisparities = ndisparities;
 sgbm.uniquenessRatio = 10;
 sgbm.speckleWindowSize = 100;
 sgbm.speckleRange = 2;
 sgbm.disp12MaxDiff = 1;

 sgbm(top, Mat(frameL, Rect(0, 380, frameL.cols, frameL.rows - 760)), disp);

 double minVal; double maxVal;

 minMaxLoc(disp, &minVal, &maxVal);

 //disp.convertTo(disp8U, CV_8UC1, 255 / (maxVal - minVal));
 normalize(disp, disp8U, -50, 255, CV_MINMAX, CV_8U);
 applyColorMap(disp8U, disp8U, COLORMAP_JET);

 //transpose(disp8U, disp8U);
 //flip(disp8U, disp8U, 1);
 //disp8U = disp8U(Rect(0, 380, disp8U.cols, disp8U.rows - 760));

 imshow(windowDisparitySGM, disp8U);

44

 if (flag == 1) {

cout << "rows: " << frameL.rows << "\t" << "cols: " << frameL.cols <<
endl;
cout << "rows: " << frameR.rows << "\t" << "cols: " << frameR.cols <<
endl;
cout << "rows: " << disp8U.rows << "\t" << "cols: " << disp8U.cols <<
endl;

 }
 flag = 0;

 if (waitKey(30) == 27)
 //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
 {
 cout << "esc key is pressed by user" << endl;
 break;
 }
 }
 return 0;

}

45

Appendix – C:

VSN Mobil V. 360 User’s Guide

46

47

	Santa Clara University
	Scholar Commons
	9-19-2016

	Panoramic Stereovision and Scene Reconstruction
	Ashish Nair
	Recommended Citation

	tmp.1475515380.pdf.UajUg

