Santa Clara University
Scholar Commons

Computer Science and Engineering Senior Theses Student Scholarship

6-5-2015

Wakabi: on-demand ride service for rural Uganda

Michael Brew

Santa Clara University

Bryant Larsen
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_senior

b Part of the Computer Engineering Commons

Recommended Citation

Brew, Michael and Larsen, Bryant, "Wakabi: on-demand ride service for rural Uganda" (2015). Computer Science and Engineering
Senior Theses. Paper 37.

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in Computer

Science and Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior/37?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: June §, 2015

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Michael Brew and Bryant Larsen
ENTITLED

Wakabi: On-Demand Ride Service For Rural Uganda

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

'

o
/b rper—
THESIS ADVISOR

WA

DEPARTMENTCI 1@

R T R

WAKABI: ON-DEMAND RIDE SERVICE FOR RURAL UGANDA

Michael Brew and Bryant Larsen

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California

June 5, 2015

Abstract

In Uganda, the majority of the population lives in rural villages that rely on last-mile distribution
for goods such as vaccines, fresh water, trade goods, and other forms of humanitarian relief.
Last-mile distribution refers to the last mile (or few miles) that goods must be transported in
order to reach their final destination from a main delivery hub. Coordination is one of the
primary issues that exist when trying to solve the last-mile problem. In this paper we present our
solution to this problem: an SMS-based, on-demand ride-sharing service designed to empower
the people of rural Uganda by helping organize the transport of both people and goods.

Our application functions similarly to the popular ride-sharing app Uber or Lyft but does not
require a smart-phone to use. Users text a predefined number to request a ride, get paired with a
nearby boda-boda driver (these motorcycle drivers currently offer ride-sharing services to rural
Ugandans by word-of-mouth), and are transported to their destination. The service also allows
users to specify trailer requirements in case they need to transport goods as well. By building
Wakabi around the existing boda-boda system we are not only helping to coordinate last-mile
distribution efforts, but are also improving the efficiency of the existing boda-boda drivers that
provide transportation to rural Ugandans. Following the 2014-2015 academic year, Fulbright
Scholar and business partner Ty Van Herweg will be responsible for both testing and deploying
Wakabi in Uganda. We hope that our application will help boda-boda drivers better serve their
riders, and provide businesses with an ideal and cost-effective last-mile distribution solution.

Acknowledgments

We would like to acknowledge the following individuals and institutions for helping us reach our
goal of completing a fully functional, on-demand ride service accessible through SMS. They
have provided valuable advice, feedback, ideas, and resources that were necessary to our
mission.

Professor Silvia Figueira

Associate Professor of Computer Engineering and Director of the Frugal Innovation Lab at Santa
Clara Univeristy;

Wakabi Senior Design Advisor

Tyler Van Herweg
Fulbright Scholar, SCU class of 2015 (Economics and Theatre double-degree, English minor);
Original inventor of Wakabi idea

Heidi Williams
Director of Communications, SCU School of Engineering;
Provided publicity through interview and photoshoot with the Wakabi team

Friends and Family
For helping us test our service as well as providing useful feedback for improvements

Table of Contents

1 Introduction 1
1.1 Problem Statement e 1
1.2 Background & Motivation 2
1.3 ODbJECtiVES e 2
1.4 Literature Review 3

2 System Design 4
2.1 Requirements e 4
2.2 Use CaSeS e 5
2.3 Conceptual Model e 9
2.4 Architecture 13
2.5 Technologies Used 14
2.6 Design Rationale 15

3 Testing 17
3.1 TestPlan 17
3.2 TestResults 19
3.3 Future Testing e 19

4 Societal Issues 20
4.1 Ethical 20
4.2 ECONOMIC e 20

4.3 Health and Safety 21

4.4 Usability

Conclusions
5.1 Maintenance Guide
5.2 Suggested Changes

5.3 Lessons Learned

References

Appendices
7.1 Activity Diagram
7.2 Entity-Relationship Diagram

7.3 Component State Diagram

26

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9

Use Case Diagram

Requesting Rides Screenshot
Available Drivers Screenshot
No Available Drivers Screenshot
Positive Feedback Screenshot
Negative Feedback Screenshot
Accepting Request Screenshot
Rejecting Request Screenshot

End Ride Screenshot

2.10 Start Shift Screenshot

2.11 End Shift Screenshot

2.12 Architecture

7.1 Activity Diagram

7.2 Entity-Relationship Diagram

7.3 Component-State Diagram

List of Tables

3.1
32
3.3
34
3.5

Requesting Rides

Reviewing Drivers

Changing Driver Availability
Start/End Rides

Responding to Ride Requests

Chapter 1. Introduction

1.1 Problem Statement

Entrepreneurs recognize that time is money and that any time or effort wasted in last-mile
distribution takes away from their businesses. In Uganda, 85% of the population lives in
rural areas [1] and many people do not have the means to transport either themselves or
their goods to where they need to go. Farmers need to move their produce, business
people may need to work in big cities, and even non-governmental organizations or
charities need to ship their supplies to those in need. These objectives should not be
impeded by lack of transportation or inaccessibility to individuals who live in remote
areas.

In Uganda, there are currently fleets of hireable motorcyclists that will ferry people and
goods between remote villages and big cities, but connecting drivers and riders is a
difficult process that decreases the potential efficiency of the entire system. The service
relies on word of mouth and does not provide a unified interface for riders to request
drivers, leaving many villagers helpless. On the other hand, drivers spend much of their
time waiting around for potential customers because they generally only have access to a
limited pool of clientele.

Our mobile solution allows people needing rides to connect with drivers who are in need
of clients via SMS. Users can text a predefined number with their locations and whether
they need to transport goods or just themselves. A motorcyclist registered with our
service then receives a text if he or she is in a nearby location and responds by either
accepting or rejecting the request. If accepted, the rider’s phone number is sent to the
driver so that a meeting location can be established. These drivers pay a monthly fee to
be registered with our service while collecting their fare directly from the riders.

A system that connects people who have logistical needs with available motorcyclists
through SMS will open the door for many of those that were previously bound by their
lack of transportation. Drivers will spend less time idely waiting, instead receiving texts
whenever someone needs a ride, thereby increasing their profit. With the possibility of
attaching trailers to the motorcycles, large quantities of goods can be easily moved
on-demand. We are not giving the people of Uganda new modes of transportation, but are
connecting them to cooperatively help achieve each other’s goals.

1.2 Background & Motivation

We first found out about this project from our advisor, Professor Figueira. She told us
that a senior business major here at SCU had previously traveled to Uganda and had a
vision to return with an SMS-based on-demand ride service. That business major and
partner, Tyler Van Herweg, had spent the summer in Uganda in 2013 thanks to SCU’s
Global Social Benefit Fellowship. He worked with a local company called BanaPads that
produces women’s sanitary pads from banana fiber. He gathered a great insight into
Ugandan life, especially in Kampala (the capital) and the surrounding rural area. He
noted the transportation situation and the high demand to move people and goods,
whether it be farmers needing to transport their crops to Kampala, or people simply
needing to reach other villages.

Here in the US, we have used similar services offered through smartphone apps, such as
Uber and Lyft. However, we chose not to develop a smartphone app because the people
we are trying to serve in rural Uganda do not generally have access to apps. However,
Tyler noticed that many of the people he worked with and met did have a feature phone
that had SMS and call abilities. Therefore, by creating a service accessible completely
through SMS, we can reach as many people in our target audience as possible.

Rather than providing a completely new service (complete with resources and personnel),
we want to actually help both drivers and potential riders currently in Uganda. Since
there are already hireable motorcyclists called “boda boda” drivers, Wakabi can provide a
simple “funnel” for anyone needing a ride to any available boda drivers. There is a
similar service currently deployed within Kampala called “Safe Boda” that allows you to
request a boda driver from a smartphone app. But as previously mentioned, we want to
have an SMS based service because the people of rural Uganda do not have as many
smartphones as the people of Kampala.

1.3 Objectives

The main objective of our project was to create a robust, easy-to-use application that will
make it easier for individuals to obtain transportation within rural Uganda. The
application’s purpose is to provide a service that will improve the system of ride-sharing
that already exists in Uganda. Our project will achieve this by seamlessly connecting
drivers and riders using a standard communication interface. We are also trying to
achieve maximum accessibility with the project’s distribution, which is why we chose to

implement the project using SMS. Additionally, simple keywords, presented in the native
language of Luganda, allow us to reach users with limited literacy.

Our main objectives can be summarized in the following points:

e Provide an accessible and affordable option for local entrepreneurs to aid in
product delivery
Provide an innovative solution to larger businesses to aid in last-mile distribution
Increase customer traffic for Boda drivers and thereby cut down their idle waiting
time and increase their economic efficiency

e Provide a transportation solution for everyday consumers in rural Uganda that
need to travel between village to village or to larger cities

1.4 Literature Review

Prior to starting development, we spent time to research how an SMS-based mobile
service could impact rural Ugandans as well as how receptive our target audience might
be. Kas Kalba [2] provides an insightful article “Africa’s Mobile Money Story” in
Intermedia about how the use of “Mobile Money” has expanded within Africa in the past
6 years. His analysis shows that services offered through mobile technology have been
well received by the African population. If users are comfortable trusting SMS to handle
their banking transactions, hopefully they will similarly trust SMS to handle their
transportation as well.

This data is supported by an article in BMC Medical Informatics & Decision Making 3]
that reports the findings of a survey asking Ugandans if they would support an SMS
based service that relays personal medical information. The majority of participants said
they would use such a service, while 90% said they were unconcerned about unintended
disclosure. These results gave us more trust in building an SMS service that will be
deployed specifically to the Ugandan market.

Lastly, we spent some time researching the Boda-Boda driver system existent in Uganda
as Wakabi will be servicing these drivers in addition to the general public. An article
from Development Southern Africa [4] includes survey results concerning Boda
demographics and their feelings on their situation. The majority of drivers are young
males between 16-30 years of age, and many reported that they feel it is impossible to
own the actual motorcycles they use. Hopefully with the use of Wakabi, we can provide
more customers to these drivers, thereby increasing their income and overall livelihood.

Chapter 2. System Design

2.1 Requirements

Our solution’s capabilities can be broken down to the following requirements, which are

organized in three categories: functional requirements, non-functional requirements, and

design constraints. The functional requirements define what our system must do, while

the non-functional requirements define the manner in which our system must achieve the

functional requirements. The design constraints are the restrictions on the implementation

of our system.

Functional Requirements:

The system will allow riders to choose between a normal motorcycle or a
motorcycle with a trailer attachment when requesting rides.

The system will prompt riders to indicate their location when requesting rides.
The system will send a rider’s request to the closest driver. If declined, the request
will be sent to the next closest driver, and so on.

The system will alert a rider if no drivers are available and will automatically text
the rider if a driver becomes available within the next 30 minutes.

The system will prompt riders for feedback about their drivers after their rides.
The system will keep a database of registered drivers who will pay monthly to
stay listed in our service.

The system will allow drivers to indicate that they are available to give rides
whenever they choose.

The system will allow drivers to indicate that they are no longer available to give
rides if they are not currently giving a ride.

The system will use simple keywords to allow users to perform actions (such as
drivers accepting requests, riders requesting rides, drivers marking themselves
unavailable, etc.).

The system will present riders with a list of locational zones to which they just
reply with the associated list number when asking them where they are located.

Non-functional Requirements:

The system will be easy to use for first-time riders by using minimal instructions.

Design Constraints:

The system must be usable (by both drivers and riders) completely through SMS.

2.2 Use Cases

The use cases describe how our system will operate. They include the actors, or the
individuals performing the use case, the goals of the use case, conditions that must be
true before the use case is performed, the results of the use case, and a description of
steps to complete the use case.

Request Ride

\

Execute Ride

Rider Driver

Review Driver

=

Request Ride
Goal: To successfully request a ride from the application
Actor: Rider
Preconditions:

1. Web-server is online and available for client interaction
Postconditions:

1. Rider is connected with a driver, or no drivers are available
Scenario:

' Figure 2.1 Use Case diagram depicting use cases and their respective actors.

Sk =

Rider texts the word “RIDE” to our application using SMS

System replies to request user location (region)

Rider replies with a number corresponding to his/her region location

Rider indicates if he/she would like a driver with an attached trailer

IF no drivers available, system responds to notify rider

ELSE system contacts first driver in same location and sends rider’s phone
number

Exceptions: User does not have network access to send or receive SMS

Start Shift
Goal: To inform the system that a driver is available to work

Actor: Driver

Preconditions:

1. Web-server is online and available for client interaction

2. Driver is currently not listed as available
Postconditions:

1. Driver has started shift, which adds them to the queue of available drivers
Scenario:

1. Driver texts “START SHIFT” to the application using SMS

2. System requests driver location (region)

3. Driver replies with location for work

4. System replies to notify driver of successful request

Exceptions: Driver does not have network access to send or receive SMS

Execute Ride
Goal: To assist a driver in providing a ride to a customer

Actor: Driver

Preconditions:
1. Web-server is online and available for client interaction
2. Driver is currently listed as available to work
3. Rider has already submitted a ride request
Postconditions:
1. Rider has successfully completed his/her ride
Scenario:
1. System texts first driver in location to inform him/her of a pending ride request

1.1. Driver has the option of rejecting a request, prompting the system to check
for the next available driver

2. Once accepted, system texts driver with rider’s phone number for pick up
coordination
3. Driver texts “END RIDE” to system once destination is reached and end time is
recorded
4. System calculates and records total ride time for analytics
Exceptions: Driver does not have network access to send or receive SMS

Review Driver
Goal: To allow the rider to provide feedback about his/her driver
Actor: Rider
Preconditions:
1. Web-server is online and available for client interaction
2. Rider has just completed a ride with one of our listed drivers
Postconditions:
1. Rider has sent feedback to the system
Scenario:
1. System texts rider asking if he/she was satisfied with their driver
2. [IF rider replies YES
2.1. System confirms and records positive feedback
3. ELSE (rider replies NO)
3.1. System replies to request comments about driver
3.2. Rider texts system including a short message that contains driver feedback
3.3. System confirms and records negative feedback
Exceptions: Rider does not have network access to send or receive SMS

End Shift
Goal: To inform the system that a driver is not available to work
Actor: Driver
Preconditions:
1. Web-server is online and available for client interaction
2. Driver is currently listed as available
Postconditions:
1. Driver has ended his shift and will no longer receive ride requests
Scenario:
1. Driver texts “END SHIFT” to the application using SMS
2. System replies to notify driver of successful request
Exceptions: Driver does not have network access to send or receive SMS

To supplement the use cases, we provide an activity diagram (fig. 3) found in Appendix
A. The diagram is a graphical representation of all the stepwise activities and processes
that our system participates in. Many of the use cases are loosely defined within the
activity diagram, which attempts to modularize the functions of the project in an easy to
read manner.

Additionally, Appendix C contains a component state diagram (fig. 5) to further
supplement the use cases and activity diagram. The diagram describes the various
physical states that our system can exist in, and outlines the processes that change the
system state. It is meant to extrapolate the use cases in terms of the physical hardware
that will comprise our system.

2.3 Conceptual Model

The following sections outline how users can request rides and give feedback, how
drivers can accept or reject these requests, and how the driver indicates the start and end
of the ride. It also shows how drivers can mark themselves available or unavailable to
give rides.
Notes:
o All English words presented to users will be translated to Luganda. These
user facing strings are stored in a file to make translation easier.
e The following figures are shown on an iPhone screen to help visualize the
entire conversation in one screenshot, but the service is accessible without a
smartphone

1. Requesting Rides (Rider)

00000 ATRAT = 1:51 PM @ 9 84% W)
{ Messages Wakabi Details
Text Message

Today 1:51 PM

Please respond with the
number corresponding
to your location:

1: Kawempe

2: Nangaiza

3: Mubende

4: lganga

5: Arua

Do you need a trailer to
transport cargo (answer
yes or no)? It will cost
extra.

Send

Figure 2.2 Initial transaction to request a ride

la. Ifdrivers are available

*0000 ATET 7 2:00 PM @ 9 82% W)

{ Messages Wakabi Details

Text Message
Today 2:00 PM

Ok, we're looking for a
driver right now! Once
we find one, he'll give

you a call.

© Send

Figure 2.3 Response when drivers are available

2a. Giving Positive Feedback

0000 ATET = 2:05 PM @ © 80% W)
{ Messages Wakabi Details
Text Message
Today 2:04 PM

Was your ride with
Wakabi satisfactory?

Glad to hear it, thanks
for riding with us!

(O] Send

Figure 2.5 Receiving positive feedback post-ride

1b. Ifno drivers are available
00000 ATET & 2:32PM @ 9 75% W)
{ Messages Wakabi Details

Text Message
Today 2 A

We're sorry, no drivers
are available. If one
becomes available within
30 minutes, we will let
you know.

(O] Send

Figure 2.4 Response when no drivers are
immediately available

2b. Giving Negative Feedback

00000 ATET & 2:07 PM @ 0 77% =)
{ Messages Wakabi Details
Text Message
Today 2:06 PM

Was your ride with
Wakabi satisfactory?

We're sorry, please let us
know what we could do

to improve.
The driver was rude

Thank you for your
feedback, we're
constantly striving to
improve our service.
Hope to see you again
soon!

(O] Send

Figure 2.6 Receiving negative feedback post-ride

3a. Accepting Request (Driver)

00000 ATAT = 2:18 PM @ o 76% W+

{ Messages Wakabi Details

Text Message
Today 2:17 PM

Do you want to accept a
new ride request?

Here is the rider's
number: +16366925224

(O] Send

Figure 2.7 Accept a request from the driver side

3b. Rejecting Request (Driver)

®0000 ATAT = 2:54 PM @ 9 72% W+

{ Messages Wakabi Details

Text Message
Today 2:53 PM

Do you want to accept a
new ride request?

Ok, the request has been
sent to another driver in
your location.

(O] Send

Figure 2.8 Rejecting a request from the driver side

4. End Ride (Driver)

00000 AT&T =

< Messages

2:56 PM @ 9 71% W)

Wakabi Details

Text Message
Today 2:55 PM

Please respond with the
number corresponding

to your location:
1: Kawempe

2: Nangaiza

3: Mubende

4: lganga
5: Arua

Ok, we'll let you know
when you have a new

request!

Send

Figure 2.9 Prompt sent to driver after ending ride to track their location

11

Sa. Start Shift (Driver)

e00e0 ATRT = 2:57 PM @ 0 71% W}
< Messages Wakabi Details
Text Message
Today 2:57 PM

Please respond with the
number corresponding
to your location:

1: Kawempe

2: Nangaiza

3: Mubende

4: lganga

5: Arua

You started your shift -
good luck!

(O] Send

Figure 2.10 Starting shift from the driver side

Additionally, Appendix B provides an entity-relationship diagram (fig. 7.2) to aid in the

5b. End Shift (Driver)

00000 ATET = 2:57 PM @ 0 71% W
{ Messages Wakabi Details
Text Message

Today 2:56 PM

End shift

You have successfully
ended shift!

(O] Send

Figure 2.11 Ending shift from the driver side

conceptualization of our project. The ER diagram is a graphical representation of entities

in our system and their relationships. It also contains the relevant data that we will be

storing about our entities, such as driver and rider phone number.

12

2.4 Architecture

Our service will be accessible by SMS to both riders and drivers. As depicted in Fig. 2,
the incoming and outgoing texts will be routed through Twilio and processed using the
Node.JS framework. Our scripts will be able to communicate with a database to keep
track of user (driver and rider) accounts. It will also store information about each ride,
like time taken, locations served, driver’s name, etc.

Voice and SMS

twilio

heroku

PostgreSQL

[\S]

2 Figure 2.12 High level architectural design of the system.

13

2.5 Technologies Used

Our mobile service is based almost entirely on SMS, which severely limits its capabilities
but ensures any individual with a cellular phone (in Uganda) can access it. The following
technologies will be utilized in developing our application. Each technology offers a
specific function and is explained in detail below.

SMS

SMS, or short message service, is a service that allows the transmission of text-only
messages between mobile phones, fax machines, and/or IP addresses. It is the standard
for basic message-sending services between mobile phones. Messages must not be longer
than 160 characters in length, and must also not include images or other media. To
complete the process, an SMS is sent to a Short Message Service Center (SMSC) and
uses a Home Location Register (HLR) to find the roaming customer and deliver the
message. SMS offers the simplest communication service for customers to interact with
our service via mobile phone.

Twilio

Twilio provides a simple platform to build our SMS application. This service can route
incoming calls and SMS messages to a configurable URL over HTTP. Additionally, once
the message is handled, it can then send your response back to the original sender. The
Twilio service acts as a middle-man between our application server, which is hosting the
application scripts and database, and our mobile customers.

HTTP

Twilio uses HTTP to communicate with our externally-hosted web server. HTTP, or
Hypertext Transfer Protocol, is an application protocol that is widely used on the Internet
to exchange or transfer hypertext. HTTP uses structural text to communicate and relay
statuses between clients. For example, when you enter the URL of a website in your
browser, you are sending an HTTP GET request for that particular webpage. The server
will determine if you are able to access the file before sending a structured HTTP
response.

Heroku

Heroku is a cloud-based service for server hosting. We can host our code and database
with Heroku, which then provides URL access points for us to utilize. We can then
configure Twilio to send incoming texts to our provided URL which will hit our server
running on Heroku.

14

Node.JS

Node.JS is a run-time server environment that we use on our Heroku server. Using the
Express web-framework node module, we can accept incoming HTTP requests and send
out HTTP response (to and from Twilio). All coding within our Node.JS environment is
written in JavaScript.

PostgreSQL

PostgreSQL is our relational database management system for keeping track of rider and
driver information. It is offered as an add-on through the Heroku service, allowing for
easy integration with our app. It uses standard SQL for queries (also used with MySQL,
Oracle, SQLite, etc.).

2.6 Design Rationale

Our entire service relies on the SMS communication between user and server. Therefore,
we need to ensure a reliable way to allow easy contact between our system and the
drivers and riders. The only exception is that once a driver has accepted a request, the
rider’s phone number will be sent to him or her so they can call the rider and organize a
pickup location. Without GPS technology, determining location and setting meeting spots
was not possible via SMS. We also needed to make sure we are handling and responding
to our users’ messages accurately, or else the consequences may be leaving a potential
user stranded, leading drivers astray, etc. We will also have to keep up-to-date records on
all of our drivers to make sure that they are receiving requests if they are paying us a
monthly fee, while also removing any drivers that are providing a poor or dangerous
service under our name. The technologies listed in the “Technologies Used” section
detail how we tackled these problems, and the following paragraphs explain our choices.

SMS

We want to reach out to as many people as possible while operating within our means.
Allowing riders and drivers to use SMS for our service seemed the most appropriate
decision as this mobile solution allows for scalability, automation, and responsiveness.
We also chose SMS over a smartphone application because feature phones (or “dumb
phones”) are much more prominently used than smartphones in our target location, so
limiting our service to an app would alienate a large part of the demographic.

15

Twilio

What allows us to provide our service through SMS is the ability to route our users’ texts
to our servers and respond back with our own texts. We chose to use the 3rd party service
Twilio to handle all the routing for us because it has already been deployed and proven to
work. We could take on the task of implementing something like this ourselves, but there
really is no point in reinventing the wheel. By delegating this work to Twilio’s reliable
service, we can primarily focus our attention on what is specific to our project: accepting
and coordinating rides for those in need.

Heroku

We chose Heroku to cover our server hosting because a cloud-based server architecture
will allow us to easily deploy to Uganda. If we decided to own and manage our own
hardware, then we would have to ensure that it is constantly running, buy new hardware
if our current system could not handle the traffic, etc. Heroku allows for quick and easy
scaling, as well as guaranteed up-time and customer support.

Node.JS

We needed to run some sort of framework on our server so we can accept and respond to
HTTP requests incoming from Twilio. Node.JS offers a myriad of “modules” that are
easy to install and integrate, including Express, our web framework. Node is also event
driven rather than thread based, so incoming requests do not have to queue up while a
current request is being handled. It will allow for easy scaling, while the availability of
node modules helps speed up development (we can arbitrarily use pre-made modules to
cover common challenges that we would otherwise have to spend time working through).

16

Chapter 3. Testing

To ensure the integrity of our system, we have formulated a test plan to identify any bugs

or logical gaps. We have included our plan below, along with the results and

recommendations for future testing.

3.1 Test Plan

The logical flows for both drivers and riders were each tested individually for errors.

Each test includes pre-conditions, a scenario of the use-case being tested, and the

expected results for each step of the use-case.

Rider Tests

Requesting Rides

Preconditions: None

Steps

Expected Results

1. Text “RIDE”

1. Receive reply soliciting location

2. Text number corresponding
with one of the available

locations

2. Receive reply asking if a trailer is required

3. Text back “YES” or “NO”

3a. If a driver is available, receive a confirmation
text

3b. If no drivers are available, receive a text about
no availability

4. If no driver available, wait for

text if driver becomes available

4. If by 30 minutes no drivers are available, receive
text saying so. Otherwise, receive text about ride
availability.

Table 3.1 Requesting Rides

17

Reviewing Drivers

Preconditions: User has been given a ride

Steps

Expected Results

1. Driver ends trip (no rider input required)

1. Receive text asking if ride was
satisfactory

2a. Text “YES”
2b. Text “NO”

2a. Receive text thanking user
2b. Receive text asking for

comments

3. If responded with NO, then send text with
any feedback

3. Receive apology text, thank user

Table 3.2 Reviewing Drivers

Driver Tests

Changing Driver Availability

Steps Expected Results

la. Driver status is unavailable, la. Receive reply requesting driver location (by
driver texts “START SHIFT” region)

1b. Driver status is available, driver | 1b. System notifies driver of successful request
texts “END SHIFT” “You have ended your shift. Thank you.”

2a. Driver replies with current 2a. System notifies driver of successful request
location for work, using a number “You have started your shift in 7

Table 3.3 Changing Driver Availability

Start/End Rides

Preconditions: Driver has responded to ride request and picked up rider

Steps Expected Results
1. Driver texts 1. System records start time and responds with
“START RIDE” acknowledgement

2. Driver texts “END | 2a. System records end time and calculates total ride time for

RIDE” analytics, reports time to driver

18

2b. System returns driver status to “available”

Table 3.4 Start/End Rides

Responding to Ride Requests

Preconditions: Driver is listed as available to work

Steps Expected Results

1. Submit ride request in 1. Driver receives text “A user in your location has

same location as driver requested a ride. Accept?”

2a. Text “YES” 2a. Driver receives text containing rider’s phone number
2b. Text “NO” for pickup and is listed as “unavailable”

2b. Driver receives text “You have declined a ride.”

3a. Submit another ride 3a. Driver should not receive request (currently giving
request ride)

Table 3.5 Responding to Ride Requests

3.2 Test Results

Most testing was completed throughout the development process. After significant
changes were made, each of these tests was run to ensure that the integrity of the system
had not been compromised. If a test did not pass, the changes were modified until each
test passed successfully. Additionally, we requested the assistance of friends and family
to stress-test our application and servers. The application currently completes the test
plan without fail.

3.3 Future Testing

Ty will be responsible for maintaining the application in Uganda and for completing
future testing to ensure the service works as intended. The application has only been
tested in the United States, so general testing must take place in rural Uganda before
deployment is possible. Connectivity is the main cause for concern with regard to future
testing. Future developers will need to make sure that our toll-free Twilio number is able
to handle messages from international users. The server’s ability to handle high volumes
of messages will also need to be tested, and the servers should be expanded as necessary.
Our current test plan will be sufficient for testing the application’s reliability in Uganda.

19

Chapter 4. Societal Issues

Having created a service intended for a rural African environment, we intend on
improving the lives of our potential users. We considered the many different societal
issues that would have an impact for each design decision. Below is a summary of how
Wakabi addresses many of these issues.

4.1 Ethical

From the beginning of the project’s inception, our purpose has been to empower the local
entrepreneurs, drivers, and general public of rural Uganda. We have aimed to minimize
any negative impacts that may result from Wakabi’s deployment. In the United States, we
have seen an uprise from local taxi companies directed towards the extension of
on-demand services like Uber and Lyft. These services have proved to be in direct
competition with taxi companies, resulting in diminishing income for said companies.
We have designed Wakabi in such a way that rather than competing with the current
transportation workers of Uganda, we will be helping them. We will not be taking away
their customers and income, but rather providing them with more customers and higher
income.

4.2 Economic

An important aspect that we needed to carefully consider is how to collect income
without taking any profit from our Boda drivers. If we followed similar models as used
here in the United States, we would take a percentage of each ride cost. If we kept ride
prices at the rate currently being charged, that means each driver would only receive a
percentage of what they used to make from each ride. Our solution was to allow drivers
to keep the total ride fare as they are doing now, but charge them a monthly fee in order
to stay registered with Wakabi. This way, we do not cut into their income per ride, but
their monthly fee will be justified by the extra profit they are receiving from the increased
customer traffic provided by Wakabi.

Another economic improvement that Wakabi provides is the ability to tax revenue from
Boda rides. Since each Boda driver currently works independently and directly collects
fare from riders, the government has no way of taxing these transactions. However, if we
collect monthly fees from our riders, the government will now have a way of taxing the
Boda industry. In turn, these tax funds will hopefully be used to improve public utilities,

20

including the very roads that our Boda drivers rely on. So when considering the
ecosystem as a whole, Wakabi will provide more riders for Boda drivers, who will
increase the drivers’ incomes, who will pay a monthly fee, which will be taxed by the
government, who will then improve public utilities.

4.3 Health and Safety

By offering a transportation service in a region known to have poor roads, as well as the
fact that our drivers use motorcycles, we needed to be especially mindful of the safety of
our users, both drivers and riders. By registering our drivers into a single system, as
opposed to having independently operating drivers, we can provide them with standard
training and maintenance guidance. We can inform them of the safest practices while
driving, show them how to maintain their motorcycles to ensure they do not fail during
operation, and possibly provide helmets for both the drivers and their passengers. We are
accepting the liability of our riders when they choose to use Wakabi, so we must ensure
their safety at utmost importance.

4.4 Usability

When Ty was conceiving the original idea for Wakabi, one of the most important aspects
of the service was that it was intended for the people of Uganda. This means that it would
not be a smartphone app, as only a small percentage of Ugandans could utilize it, and that
all diction would be presented in their native language, Luganda. We have designed the
necessary user interactions to be as short and simple as possible, usually only requiring
one or two words from the user for any given response. Thanks to the Twilio service,
there is a possibility in the future of expanding Wakabi to not only be accessible via
SMS, but also through an automated voice service (meaning users could call the Wakabi
number and be guided through the request process by listening to options and indicating
selections via the phone number pad). This will allow people that are illiterate to also use
our service (an important consideration since not everyone in rural Uganda can read and
write).

21

Chapter 5. Conclusions

5.1 Maintenance Guide

Following the 2014-15 academic year, this project will be handed off to future engineers
to continue development and prepare for deployment in Uganda. The separate
components of the project have been broken down below along with information
concerning future development.

Twilio

A Twilio number has been created to act as the Wakabi number accessible to the public.
Twilio allows the creation of multiple phone numbers per account, so additional numbers
could be generated in the future (perhaps for providing information to drivers only).

From the Twilio dashboard, you can specify separate URLs for incoming text messages
and incoming voice calls per number. The voice URL is currently set to the default
Twilio demo server, but can be changed to a URL on our server in the future.

Each text costs approximately $0.0075 and is subtracted from the account balance. An
option can be enabled to auto-load the balance when it drops below a threshold.

We are currently in the process of setting up a relationship with a Twilio evangelist who
will be able to aid with any Twilio related problems or questions.

Heroku

With Heroku, we pay for the amount and quality of “dynos”. A dyno is Heroku’s unit of
computing power, so you can pay for multiple dynos at a certain power. We currently
have 1 free dyno, but once traffic increases to the point that exceeds the dyno’s
capability, paying for more powerful dynos will help scale.

Heroku’s website has extensive documentation concerning the heroku “toolbelt” (their
command line interface) which you can use for deployment, restarting dynos, manage
add-ons, etc. The most important feature of their toolbelt is for deployment. There is a git
repository hosted on Heroku that holds the current app code. In order to deploy a new
version, you simply have to push your changes to that master branch (““git push heroku
master”).

22

The code + Node

We currently have incoming texts routed to wakabi.herokuapp.com/incoming. The
request is handled by incoming.js under the ‘routes’ folder. We do minimal processing
here before passing the request to either RiderMessenger or DriverMessenger (after
we’ve determined if the sender is a rider or driver).

Since we have to keep track of a conversation (either between us and a rider of between
us and a driver), we use cookies with Twilio. With outgoing responses, we set their
rideStage/driveStage depending on what stage they are in their respective flows. You can
view the different stages for riders and drivers in stages.js.

The TextMessenger.js file handles all outgoing texts. When we have determined the
correct response in RiderMessenger or DriverMessenger, we call either text or
textResponse (depending on whether we’re texting in response to a request or sending a
‘cold’ text) from TextMessenger.js.

Most of the database operations have been separated into db.js. These queries use an
asynchronous, callback method. Most calls to these functions don’t require immediate
response (because of the asynchronous nature), but the code can be refactored in order to
pass a callback to the db function to keep the logic within Rider/DriverMessenger.

Administrator Dashboard

As previously mentioned, incoming texts get routed to wakabi.herokuapp.com/incoming.
However, requests to wakabi.herokuapp.com/ return a web page. These pages are written
in Jade (which compiles to HTML) and styled by LESS files (which compile to CSS).

The homepage shows a dashboard with driver and rider stats of the current day, as well as
a column showing alerts (which for now just entail driver ratings dropping below an

accepted threshold).

The site will also have capabilities to add and remove drivers to the system through a
simple form.

23

5.2 Suggested Changes

Wakabi is in a fully-functional state, ideally ready for testing in Uganda. Ty Van Herweg
will take the application to Uganda on a Fulbright Scholarship and continue its
deployment. Certain changes should be considered to ensure the application’s stability
and success. Some of the suggested changes are mandatory, while others may be
implemented as the developers see fit.

1. All user-facing text must be translated to Luganda
a. Strings have been separated into their own file to make this process easier
2. Need to implement a payment system to collect the monthly fee from drivers
a. Determine pricings for trailers and rides (e.g. distance traveled, time, or by
zone)
3. Changing the Twilio number to a Ugandan country code might be beneficial
a. Ideally, we would want to keep the number “Toll-Free” to minimize user
costs
b. See Twilio’s newly announced “Messaging Copilot” that offers
“geo-match”
4. Increase the number of dynos on the Heroku application server as needed
5. Formal driver sign-up process once in Uganda
a. An administration page will be provided to add drivers to the database
6. Create additional database views to capture important data
a. For example, show driver ratings or create “driver/rider profiles”
7. Consider investing in analytics software to monitor application performance
metrics
8. [Explore voice-response services provided by Twilio to increase usability
9. Integrate the application with mobile-banking services, or other SMS-based
applications
10. Try to minimize the amount of database queries made by the server
a. Look for ways to maintain short-term data
11. Storing phone numbers in the database could provide marketing opportunities or
the ability to share important safety information to drivers/riders
a. For example: road hazards, weather conditions, gas prices

24

5.3 Lessons Learned

Creating Wakabi has been an insightful, exciting, and rewarding experience for all
members involved. It was motivating to know that our project would eventually be
deployed to serve an actual need in rural Uganda. Working on a long-term project has
been a daunting task, but the senior design project provided us the opportunity to solve a
real-world problem from start to finish. We were exposed to several different processes
that businesses execute when working on a project, such as creating a design report and
even presenting that design report in front of a group of important people. We also
experienced the stresses and frustrations that accompany developing a large project that
integrates with many different types of software. In the end, we became familiar with the
formal process of developing a project — an experience that will prove vital to our success
as computer engineers.

One important lesson we learned was to maintain flexibility when researching
technologies during the early stages of project development. Our initial design report
contained detailed information about technologies we thought we would be using (Tropo,
RapidSMS, Python). However after performing additional research, we found that our
application would likely perform better if we switched architectures to Twilio and
Node.JS. Making the switch meant that we needed to spend time updating our reports and
learning unfamiliar technologies, but our flexibility allowed us to build an even more
robust application than we had originally thought possible.

Another lesson we learned while developing Wakabi was how to effectively manage
several deadlines while simultaneously dividing work between the two of us, and
knowing that the work would get done. Maintaining constant trust and respect between
teammates meant that we could focus less on management and more on development. It
also alleviated some of the stresses that normally accompany group projects, such as
worrying about the quality of the other person’s work. In the work force projects will
almost always be completed in teams, so it was important that we learn how to cooperate
with other people as effectively as possible.

25

Chapter 6. References

1. "Rural Population." The World Bank. International Development Association, 2014.
Web. 07 June 2015.

2. Kalba, Kas. Africa's Mobile Money Story. Intermedia, 41 (5), 26- 29.

3. Siedner, M.J., Haberer, J.E., Bosco Bwana, M., Ware, N.C., and Bangsberg, D.R.
High acceptability for cell phone text messages to improve communication of laboratory
results with HIV-infected patients in rural Uganda: a cross-sectional survey study. BMC
Medical Informatics & Decision Making, 12 (1). 56-62.

4. Kisaalita, W.S. and Sentongo-Kibalama, J. Delivery of urban transport in

developing countries: the case for the motorcycle taxi service (boda-boda) operators of
Kampala. Development Southern Africa, 24 (2). 345-357.

26

Chapter 7. Appendices

Appendix A - Activity Diagram:

Receive
confirmation?

Text nearest
available driver

Drivers
available?

Request location
from user

User requests ride

Driver
available within
30 mins?

Text rider about
unavailability

Mo

Text rider about

unavailability

27

Sender rider's
number to driver

Prompt rider for
feedback

Driver sends Driver sends
start text end text

)=

Mark driver
unavailable

Mark driver
available

Update driver rating

3 Figure 7.1 Activity diagram describing system processes.

28

Appendix B - Entity-Relationship Diagram:

+Number

+Working

+Current Zone

+Has Trailer
+Rating

+Last Payment Date

Rider
[]

Driver

+Giving Ride To
+Total Rides Completed
+Time Last Ride

\ A4

Number: Rider’s phone number

Number: Driver’s phone number

Working: Boolean indicating if driver is “on shift” and available to take new ride
requests

Current Zone: The zone the driver is currently in

Has Trailer: Boolean indicating if driver has a trailer

Rating: Driver’s rating on a scale from 0% to 100%

Last Payment Date: The date of their last payment. If their last payment is not
within the past month, they will not receive new requests.

Giving Ride To: If they are currently giving a ride, this field holds the rider’s
phone number

Total Rides Completed: The total number of rides the driver has successively
started and ended

Time Last Ride: The time at which they ended their latest ride. Used to break ties
when receiving a request in a zone with multiple drivers (request first sent to
driver that has waited longest).

4 Figure 7.2 Entity-Relationship diagram describing relevant information about entities and their
relationships.

29

Appendix C - Component State Diagram:

Receive request text;
Ask for rider location

Awaiting location
info

Receive location;
Ask if trailer needed

No drivers become available;
Text rider about unavailability

Awaiting trailer info

Receive trailer info;
Start search for drivers

Searching for drivers

None available;
Alert rider

Driver{s) available;
Text for confirmation

v

Mo drivers accept,
Alert rider no availability

Waiting for driver to
accept request

Driver accepls requast;
Mark driver unavailable

Waiting for start text

Awaiting Request

i

Receive positive feedback;

Thank rider

Listen for drivers to
become available
within 30 mins

Driver(s) become available;
Text for confirmation

——-~Receive start text——3»|

Waiting for end text

Receive end text;
Mark driver available
and prompt user for

feedback

Receive response,
Apologize and thank user

Waiting for free
response

A

Receive negative feedback,

Ask user for reason

Waiting for feedback

5 Figure 7.3 Component State diagram describing various system states and subsequent actions.

30

	Santa Clara University
	Scholar Commons
	6-5-2015

	Wakabi: on-demand ride service for rural Uganda
	Michael Brew
	Bryant Larsen
	Recommended Citation

	tmp.1445019099.pdf.PyK3V

