
Santa Clara University
Scholar Commons

Computer Science and Engineering Senior Theses Student Scholarship

6-16-2016

Explorable 3D Model of SCU Campus
Benjamin Giglione
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in Computer
Science and Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Giglione, Benjamin, "Explorable 3D Model of SCU Campus" (2016). Computer Science and Engineering Senior Theses. Paper 57.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior/57?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

 ii

Explorable 3D Model of SCU Campus

By

Benjamin Giglione

SENIOR DESIGN PROJECT REPORT

Submitted to

the Department of Computer Sciences and Engineering

of

SANTA CLARA UNIVERSITY

In Partial fulfillment of the requirements

for the degree of

Bachelor of Science in Computer Science and Engineering

School of Engineering

Santa Clara, California

June 16, 2016

 iii

Table of Contents
Abstract . 1

Chapter 1 – Introduction
1.1 Problem Statement . 2
1.2 Requirements . 4

1.3 Related Works . 5

Chapter 2 – Software

2.1 Use Cases . 7

2.2 Technologies Used . 7

2.3 Design Rationale . 10

Chapter 3 – Analysis

3.1 Risk Assessment . 12

3.2 Aesthetics Analysis . 13

3.3 Ethics Analysis . 16

Chapter 4 – Development and Testing

4.1 Application Development . 19

4.2 Demonstration of Final Project . 20

4.3 Testing and Bugfixes . 20

4.4 Procedure . 21

4.5 Conclusions . 28

Chapter 5 – References

5.1 Literature Review . 30

Chapter 6 – Appendix

6.1 Screenshot of the campus model in JOSM, overlaying the Bing map 32

6.2 UE4 Project setting to run the SCU Level as a VR Preview App 32

6.3 Oculus Desktop App set to Enable VR in Unknown Sources like UE4 33

6.4 The SCU Landscape Texture’s Nodes in the Material Graph Editor 33

6.5 Header file generated from the project’s First Person Blueprint 34

 iv

List of Figures
1 Google Maps Street View Screenshot from the perspective of an Oculus 3

2 Use Cases Diagram . 7

3 Early Work in Progress screenshot, from OpenStreetMap . 9

4 Senior Design Conference Work in Progress screenshot of Swig Hall in Blender . . 9

5 Final Project screenshot of Swig Hall in Unreal Engine 4.11.2 10

6 Bing Aerial Map of SCU Campus used to texture heightmap 20

7 Heightmap of Campus generated from OSM2World OBJ . 21

6.1 Screenshot of the campus model in JOSM, overlaying the Bing map 32

6.2 UE4 Project setting to run the SCU Level as a VR Preview App 32

6.3 Oculus Desktop App set to Enable VR in Unknown Sources like UE4 33

6.4 The SCU Landscape Texture’s Nodes in the Material Graph Editor 33

 v

List of Tables
1 Risk Table . 12

2 Aesthetics Analysis Table . 13

3 Ethics Rationale Table . 16

 1

Abstract

My project is an interactive 3D model of SCU campus, which

prospective students and their parents can explore without actually having to

make the journey to campus. The architecture of the university is made

traversable by running under Unreal Engine 4 which is a 3D game

development framework that supports the Oculus Rift. The Oculus Rift is a

virtual reality headset, which enhances the immersive experience for users of

the SCU campus application. It accomplishes this by displaying the rendered

images in immersive 3D right in front of their faces, and tracking their head

motion and moving the viewpoint in the virtual world accordingly, so it will

be as if they were actually there. Oculus Rift compatibility is fully integrated

into the Unreal Engine, so it’s only natural to take advantage of the

technology for this project.

 2

Chapter 1 – Introduction

1.1 Problem Statement

Prospective incoming freshman and their parents need to get a good

look at a college’s campus before they decide whether it’s a sounder

investment than the other universities they’ve been accepted into. Entire

families often go miles out of their way to take a tour of the school primarily

for this purpose. It could save a significant amount of time and money, and

show them the true beauty of the campus, if they had the experience of

touring the university before actually going there. Unfortunately, SCU’s

current options on that front are limited.

Anyone can use a labeled map to take a look at SCU’s campus, but it

can’t give them the same kind of feeling as actually being there. Currently,

the only technology that simulates a first-hand exploration of the school’s

grounds is Google Street View, a feature of Google Maps that allows the

user to browse select areas from a grounded first-person perspective.

However, even with Street View, you only get a series of stationary

panoramas, which is far from the same experience of exploring the

university on foot. There are even some websites that will take Google’s 3D

imaging data and output a 3D Street View on the Oculus Rift (Figure 1), a

developing technology that can project 3D data to lenses right in front of

your eyes as if you were actually there, and internal sensors that know when

you’re tilting your head so it can tilt the 3D worldview in kind. Although

that’s a step in the right direction, the underlying service still does not offer

the kind of mobility one should expect from an accurate emulation of an

area.

I propose we remedy this lack of a decent campus simulation by

building a full 3D model of the campus and deploying it in a game engine to

enable interactivity and cross-platform support. The interactive model will

include most of the common structures of SCU’s campus, and cover as much

ground as possible with time constraints. My project will make use of the

Unreal Engine, and will be constructed using Unreal Engine 4 (citation 3).

With a video game-type application in the Unreal Engine, users will be able

to use their keyboards to walk around the campus in a fully realized three-

 3

dimensional environment, which will allow them to view the school at every

possible angle and position. The Unreal Engine also natively supports the

Oculus Rift VR, which will do one better than the standard computer screen

by allowing the user to look around the campus in 3D as if they were inside

the school. With this leap in virtual reality services, parents and students

alike will be impressed by such a convenient and well-executed simulation

of the area, as well as by the architectural beauty of Santa Clara University.

Figure 1. Google Maps Street View, from the viewpoint of an Oculus:

 4

1.2 Requirements

Functional Requirements

Users must be able to do the following:

 Travel around in an accurate model of SCU campus that encompasses

all of its buildings to scale

 Wear the Oculus VR to view the scene in 3D and look around as if

they’re actually there

Non-Functional Requirements

The final project must be:

 Portable on multiple platforms

 User-friendly

 Straight-forward

 Easy enough for prospective students and their parents to understand

 Well-designed

 5

1.3 Related Works

Qing Wang; Xijuan Zhu, "The implementation of campus 3D electronic map

based on SketchUp and ArcGIS," Audio Language and Image Processing

(ICALIP), 2010 International Conference on , vol., no., pp.1031,1034, 23-25

Nov. 2010

Yangtze University students created a basic 3D campus with the

ArcGIS Engine and Google SketchUp. Although the authors emphasized the

speed and efficiency of their method, the model they pictured looks wooden

and low-quality.

Bin Chen; Fengru Huang; Hui Lin; Mingyuan Hu, "VCUHK: Integrating the

Real into a 3D Campus in Networked Virtual Worlds," Cyberworlds (CW),

2010 International Conference on , vol., no., pp.302,308, 20-22 Oct. 2010

The CUHK students modeled over 100 buildings of CUHK campus in

Second Life. They also gave the example of NTU, who have done the same

thing. The Second Life rendering reminds me of old CGI from the 90s like

ReBoot and Myst, but the geometric accuracy of the VCUHK campus

compared to the real CUHK campus is impressive.

Wu Fenghua; Chen Guangzhao, "Virtual 3D Campus Design and

Implementation," Intelligent Computation Technology and Automation

(ICICTA), 2010 International Conference on , vol.3, no., pp.1136,1139, 11-

12 May 2010

Hebei Polytechnic University students used 3DS MAX 8 to model the

campus, in conjunction with GIS and VR-Platform. Their campus model

looks fairly decent, but the resolution of the sample images provided is

pretty low, so it’s hard to make out the finer details. Nonetheless, the models

provided are a good example of the balance of quality and accuracy I’m

aiming for in my project.

Zhang Shuai; Tan Guoxin; Liang Bo; Hu Fanggang, "Design and

Implementation of Real-Time 3D Campus Scene Simulation Management

System Based on Vega,"Computer Science and Software Engineering, 2008

International Conference on , vol.2, no., pp.1162,1165, 12-14 Dec. 2008

 6

This project denotes the results of a Chinese Computer Engineering

team’s efforts to design and implement a virtual campus using Vega. The

team made the 3D models for the campus in Maya and Creator, and rendered

them in the Vega API. The final images produced seemed a tad flat but

overall impressive and indicative of a real college campus.

Ke Yu; Zhuo shi; Hong-yan Yang, "3D Virtual campus based on VR-

Platform," Consumer Electronics, Communications and Networks

(CECNet), 2011 International Conference on , vol., no., pp.2848,2851, 16-

18 April 2011

High-echelon computer engineers of Guilin University of Electronic

Technology described how they incorporated a 3D campus based on Google

Earth images and modeled in 3DS MAX into a Virtual Reality Platform.

Grated, I couldn’t understand most of it; almost all of the text was in

Chinese besides the abstract, but the renders of the campus they created

looked sound. The framing device they used for those 3D views felt quite

hokey to me, but perhaps that’s just the fashion in the country.

 7

Chapter 2 – Software

2.1 Use Cases

A user must be able to perform the following actions within the application:

 Move the character throughout the virtual environment

 Adjust the character’s camera view to any 3D angle (Figure 2)

 Switch between the 2D and 3D modes if the user has an Oculus

Rift

Figure 2. Use Cases Diagram

2.2 Technologies Used

Unreal Engine 4:

 Unreal Engine 4 (UE4) is a popular multi-platform game engine

 The engine and its Source Development Kit (level editor) are free

 UE4’s editor runs on Mac OS X, but UE3’s (UDK) is Windows-only

 Its high-end graphics are beautiful and state-of-the-art

 Unreal Engine 4 has built-in support for the Oculus Rift

Oculus Rift DK2:

 The Oculus Rift Development Kit 2 was Oculus’s latest VR headset.

 8

 It shows video game levels in true 3D with head-tracking

 The previous model, the DK1, was blurry and caused motion sickness

 DK2 has higher resolution and lower-latency head-tracking to fix this

Blueprint:

 Blueprint is Unreal Engine 4’s event and sequencing tool

 A visual programming language that can customize 3D levels of UE4

 Perfect for setting up the player’s interactions with the environment

 Much better suited for creating reusable behaviors than UE3’s Kismet

3D Modeling:

 OpenStreetMap is an open source 3D world map (citation 1)

 Google Earth Pro is an extensive proprietary 3D model of Earth (cit 2)

 JOSM is a Java-based editor for OpenStreetMap (OSM)

 Blender is a free 3D modeling program. Features:

 Quick Projection - Use a 2D image to edit a 3D model

 Export model to FBX and heightmap (elevation map)

 3DS Max is a paid modeling program with free licenses for students

 Also features FBX and heightmap export, with better FBX support

2D Textures:

 Bing Maps is a satellite mapping service allowed to be used in OSM

 tile-utils is an open source GitHub project that generates aerial maps

 It downloads up to 200 Bing Maps tiles and stitch them together

My Contribution:

Using modeling approaches, I accomplished the following:

 Used OpenStreetMap’s model of SCU campus as a base (Figure 3)

 Used Google Earth Pro to approximate the heights of buildings

 Set all the school’s buildings to their proper heights using JOSM

 Imported the model to 3DS Max by exporting w/ OSM2World (Fig 4)

 Exported a heightmap of the model with 3DS Max to 16-bit grey PNG

 Used the tile-utils program to download an 11x11 square aerial map

of SCU

 In UE4, I imported the 8161x8161 resolution heightmap as a terrain

 Using Blueprint, I applied the aerial texture to the landscape terrain

 9

Figure 3. Early Work in Progress screenshot, from OpenStreetMap:

Figure 4. Design Conference WIP screenshot of Swig Hall in Blender:

 10

Figure 5. Final Project screenshot of Swig Hall in Unreal Engine 4:

2.3 Design Rationale

The 3D engine the model of campus runs under is Epic Games’

Unreal Engine 4. An End User License Agreement applies, but the basic

terms of it dictate that 5% of the gross revenue of any application utilizing

the engine must be paid to Epic as royalties. However, Unreal Engine 4 does

not require payment for non-profit and academic use (nor does Epic require

royalties for any program that does not met a minimum threshold for sales).

The explorable campus application uses the Oculus Rift for advanced head-

tracking and three-dimensional viewing. The Oculus Rift is the main product

offered by the Oculus VR company (which developed the Oculus Rift).

My project is consistent with the Strategic Vision of Santa Clara

University in the following ways. The project excels in competently

educating men and women in the structure and scope of the University in

full. The project gives them an integrated education in the Jesuit tradition by

accurately depicting the Mission of Santa Clara and the various religious

signs and imagery that can be found all over campus. The project makes a

commitment to incoming students as persons by helping them get familiar

with the college they’ll be studying in before they even get here, and helps

them navigate the area during their stay; preparing them for professional

excellence.

 11

My project is consistent with the Mission Statement for the School of

Engineering in that the scholarly activities I am conducting will benefit the

school’s various constituencies by attracting more applicants with a fully

functional inside look at the beauty of the campus. The project makes full

use in advances in the state of the art of stereoscopic viewing and motion

tracking technologies.

 12

Chapter 3 – Analysis

3.1 Risk Assessment

Table 1. Risk Table

Risk Consequences Mitigations

New
Requirements Project is unacceptable Demo project before it’s due

Incapacitation Development falls
behind

Get work done ahead of time

Time runs out
Desired functions

incomplete Prioritize essential features

Bugs and Errors Find source of problem
Testing and Debugging

Don’t

understand how

to use dev kit

Spend days relearning

development kit features
Look through preexisting

UE4 tutorials and projects to
help

Loss of Data
Must redo weeks of work

Use GitHub or Google Drive
and keep multiple copies

 13

3.2 Aesthetics Analysis

The creative design process for my senior design project inherently

involves a distinct aesthetic component, and although the functionality of the

final project is certainly the prime objective of any technical design, the

sheer elegance in the simplicity of how this is achieved does matter. A

description and analysis of the aesthetic elements in my senior design,

explaining the rationale for choices made on my Senior Design Project,

which is a 3D representation of SCU campus made explorable in the Unreal

Engine 4 and utilizing the Oculus Rift, is as follows.

I decided on the Unreal Engine when choosing which engine to use

for my project after considering a number of different engines both before

and during the course of this assignment. The main decision to make Unreal

my go-to game engine came in early February after reading some news

updates from the team of Starry Expanse, a project to develop a 3D remake

of Cyan Worlds’ hit video game Riven, one of many such video game

remakes I follow. They had previously been utilizing the Unity game

development platform as their go-to game engine, and so had I, but they

simply couldn’t keep up with the cost of constantly paying to upgrade the

engine and buying a license for each version. Cyan, who themselves had

released a Unity remake of Riven’s prequel that same month, had suggested

the Unreal Engine as a powerful, cost effective alternative to Unity, as they

were using Unreal Engine 4 for their latest production. The Starry Expanse

team concurred that it was cheaper, faster, and prettier than Unity, and

haven’t looked back. I was familiar with the engine, having myself been part

of a modding project for Deus Ex, which used Unreal Engine 1, and I found

it a welcome change.

I also looked at the engines other projects utilized to make virtual

campuses, and out of all the Chinese teams who documented their

endeavors, the Second Life campus was the one I found the most impressive.

Second Life is a decent and well-used platform, as evidenced by the

multitude of Second Life programs I have found on the Library’s computers

over the years, but the rendering is simplistic and lacks the aesthetic beauty

that myself and others have found in the Unreal Engine. Also, Second Life

has a much smaller user base than it had in its heyday of popularity and

 14

Second Life technical development now proceeds at a much slower pace

compared to Unreal Engine and Unity.

My project demonstrates simplicity in that it is a very basic concept,

putting SCU into the virtual world for all to see, although the means in

which I carry out this task is quite intricate. My project demonstrates

elegance in that it is stylish and modern in its implementation, and using

cutting-edge visualization software, in order to achieve its goals. My project

demonstrates balance in that on one hand, the project needs to look like SCU

to a wide degree of detail, while on the other hand understanding that there

are limits to the degree of accuracy one man can accomplish for an entire

miles-wide area without exhausting oneself; the project must be just accurate

enough for people to accept it as the campus without it being too difficult to

accomplish within the project’s limited timeframe. My project demonstrates

unity in that it unites reality and software in a fabricated representation of a

very real place made real by the marriage of modeling and rendering

software, computing and virtualization hardware, and the human brain. My

project demonstrates symmetry in that it is composed of similar, uniform

parts; a spatially distributed assortment of virtual structures all in proportion

to one another working together to form one big collective environment, just

like the school.

My design is influenced by formal, aesthetic, “look and feel,” and

usability conditions to the extent that it had serious weight on the final

product. The need I have imposed for the public to truly experience the look

and feel of the model of campus as if they were actually at the real place has

prompted my use of an Oculus Rift to enhance immersion. Feel and usability

conditions have also prompted my push for acquiring Oculus Rift DK2

(Development Kit 2) hardware for the project, because it has higher

resolution and higher fidelity tracking than the previous edition of the

Oculus and the DK2 version of the Rift has more refined oscillatory systems

which greatly reduces the causes of motion sickness, because I don’t want

users to feel dizzy and nauseous when they’re trying to immerse themselves

in the experience of augmented reality.

My project’s design is primarily functional, with little need to

consider formal, aesthetic issues in the programming and engine side of

things; it’s more about getting the rendering layer operational and making

 15

sure Unreal acts appropriately. It is formal on the visual depiction of campus

and the modeling thereof; it is important to know how detailed the campus-

wide simulation must be in order to please potential applicants.

My project’s design extends functionality into formality in the sense

that in fulfilling the function of going to a campus without actually being

there has required me to stand on ceremony in going about it, and rigidly and

accurately representing the time-honored traditions that went in to SCU’s

design, such as the religious imagery and its significance.

My project’s design extends formality into functionality in the sense

that while fulfilling the strict set of social rules that apply to the audience’s

area of influence, it demonstrates and carry outs its function of depicting the

university in a way that people will enjoy and recognize on a personal level.

Thoughts about aesthetics influence my design and improve the final

functionality and appeal of the product in that the need to be aesthetically

pleasing has required serious effort on my part to capture the true beauty of

the campus. Being aesthetically pleasing has been hard for me, mainly

because I am a group of one and only have one human opinion to offer over

what that is, when it requires many people to capture a broad range of what

the audience will see as artistically pleasant, but with extra effort and testing

I believe it can be accomplished.

 16

3.3 Ethics Analysis

I am making this project because I want to work with a game engine

in such a way that it would benefit the school and the general public. More

relevantly, I’m making this project so people who want to tour the school as

if they were actually there can do so without actually being there,

particularly for those of whom travelling to the school would be a long trip

and thus a major inconvenience. Additionally, the virtual tours could

potentially show more areas of the campus than real tours, which would help

these people to get a better lay of the land. That makes me fundamentally

ethically justified in what I am doing because it would significantly help

Santa Clara University and anyone who is looking at going there, and it

would not inconvenience anyone to do so.

What this project teaches me about the character of an engineer is that

a good engineer must possess the determination to make good on his or her

promises and see them to the end, even through a long development cycle.

A good engineer must be punctual, and not be late with his or her meetings,

presentations, and assignments. A good engineer must be diligent, and

avoid putting assignments off until the last minute just because he or she

can, and pace himself or herself in working on a well thought out time

schedule. Most importantly, a good engineer must have ethical integrity,

and put people’s safety above all else. That means avoiding thinking of

one’s projects as a businessman would just because one finds oneself

pressured, because it is not one’s place to do so, and such thinking could

cost people their lives, as it did in the Challenger disaster.

The specific engineering ethics challenges regarding safety and risks

raised by the project itself are primarily limited to the scope of the VR

hardware’s side effect of sometimes causing motion illness in its wearer. I

have to do my best to make sure this technology does not cause unwanted

harm as a result of such seasickness. So the first specific ethical challenge

I’m faced with are ensuring the Oculus causes as little dizziness as possible,

which I have hopefully accomplished by securing the necessary funding to

obtain the Oculus DK2 with reduced motion blur. The second challenge is

determining which target demographics could suffer more severe trauma or

 17

ailment as a result of this motion sickness, and advise these groups against

using the VR headset functionality of the application.

I know my team is acting ethically in relation to Santa Clara

University, my advisor, and the discipline of Computer Engineering I must

work with to achieve my goals because I have gone over the project multiple

times with these people and these institutions’ ethical codes of conduct and

will continue to do so. My walk-away; that is, at what point my personal

code of ethics will require me to abandon the project would be if the

circumstances were such that continuing the project will cause serious harm

to befall anyone or put any group or organization associated with the project

into considerable financial detriment. It is not ethical to produce such

destructive technology as guns, poisons, and bombs, but my invention does

not fall into this category. I am sure of this because it is a purely digital

development, and I could not possibly see it do any harm or perform any

matter of deconstruction in any way.

The ethical duty I have to potential users of my product is to ensure

they have a safe and accurate experience of Santa Clara University through

the project. I will know I’ve gone too far in taking the user’s welfare into

consideration when personal influences start to affect the project in ways I

had not envisioned for it to be. The point at which the ethical responsibility

for using a product or service transferred primarily if not wholly to the user

or customer is when they have been given the full warnings for the potential

downsides of using the product but continue to do so anyway.

If the user is sick, then they should not use the application, or at least

not the VR headset. If the user is a child, then they may not fully understand

the technologies behind the project and may not handle the devices with

proper care, but they shouldn’t have too much trouble with motion sickness

because it is more common with older generations. If the user is elderly,

then they might be a little too overwhelmed by the virtual interface aspect of

the project and should be advised to simply view the 3D campus on the

screen of their computer instead of wearing an Oculus headset. The ethical

ramifications of my project, and more particularly, the unforeseen

consequences range from minor dizziness to serious head trauma caused by

bumping one’s head on a nearby object while wearing the headset and

exploring the school digitally. My obligation to worry about these more

 18

remote issues is just as paramount as the other ethical obligations I have in

this project.

I ensure integrity in my research and design project by doing as much

of the work myself as I can and citing any other source I use for the project.

The processes I have in place to ensure the truthfulness and accuracy of my

designs are geometric and photographic crosschecking precision. I know my

data can be trusted because I am very thorough and precise with my work,

and I would not fudge the results of certain tests and experiments just

because it would be beneficial or convenient. I know someone else’s data

can be trusted if I personally know them to be of decent moral character and

engineering skill, or if they have the seal of approval from a well-regarded

engineering professor or advisor or from a prolific and trustworthy

engineering organization. In disclosing how I conducted a scientific

experiment or in sharing research results, I go as far as to share my whole

test group without breaking any previously agreed confidentiality. I

distinguish between errors of commission and omission by the definition

that errors of commission are lies or falsehoods and errors of omission are

simply instances where the whole truth is not told. My ethical obligation

about the product does not extend to subsequent teams who may continue

my work because the project is about the university. Other teams who might

later try to continue working the project would only do so if they were

working with or for SCU, and by that time I expect to have graduated from

the university and moved on to other things, so it would thusly be out of my

hands.

 19

Chapter 4 – Development and Testing

4.1 Application Development

During the development of my project, I encountered a number of

pitfalls that would set me back for months at a time while I tried to come up

with a solution. As a consequence, the version I presented at the Senior

Design Conference in May of 2015 was an unfinished model of the campus

demoed in Blender. Even after I finished the rest of my courses at the

university and no longer had to constantly juggle and choose between

working on my project by myself and working to maintain reasonable grades

in each of my classes, I still managed to have this problem. In December, I

for the most part finished work on getting the approximate heights of all the

school buildings all right in OpenStreetMap. In January of 2016, I figured

out how to make the roofs of the buildings other shapes besides flat, which

particularly helped in finalizing the Observatory behind McLaughlin-Walsh

Hall. Then in late February, I followed a tutorial that enabled me to finally

solve the problem of rendering heightmaps from non-plane-based meshes,

and development progress noticeably hastened from there.

In March, I found a program to generate a high-resolution aerial map,

and finalized the heightmap’s render position accurately mapped to that

map, also adding buildings in that area I previously did not include from

OSM’s current data on that area because they were now within the scope of

this 9 by 11 aerial map. In early April, I determined the terrain import

settings that would import the heightmap to scale with the user. Around that

time. I also discovered that by making the terrain and aerial texture both

square, I could apply the texture directly to the UE4 terrain of the school,

instead of using the heightmap mesh as a collision map and importing a

viewing model in tandem, as I originally believed I would need to do. This

square heightmap also necessitated me to again incorporate buildings from

the full OSM map which I previously did not include in my own, because

they were previously too far North and South to show up in the rectangular

map, but would now show up on the full square map.

 20

4.2 Demonstration of Final Project

During the Senior Design Conference, I demonstrated a much earlier

version of my project, which was an unfinished OSM map with some of the

buildings’ heights programmed in imported into Blender, with the buildings’

names displayed in the corner when you click on them and a flyover view.

The current version, or versions if you count both the final Unreal 4 project

and the textureless OBJ version that can be imported to Blender and clicked

on for building names, as the UE4 version cannot, is fully textured and

traversable, with all the buildings the proper heights, and gravity and

collisions working properly.

4.3 Testing and Bugfixes

During my tests of the map, I learned that texturing rectangular

terrains with rectangular aerial maps in Unreal Engine 4 was near impossible

with my current skillset, because of the way the program tiles and stretches

textures. What simplified things was making both the terrain heightmap and

the aerial map square images, and from there the texturization process really

fell into place.

Figure 6. Bing Aerial Map of SCU Campus used to texture heightmap:

 21

Figure 7. Heightmap of Campus generated from OSM2World OBJ:

4.4 Procedure

0. If you already have a heightmap and an aerial map of the campus, and you

don’t need to update either of them, skip steps 1-9.

1. Go to the SCU website’s campus map and briefly review all the buildings

they depict and describe as being part of the campus.

 22

2. Go to the OpenStreetMap website and download a square slice of the

campus using the approximate latitude and longitude coordinate boundaries

of Left -121.94380, Top 37.343, Right -121.93017, and Bottom 37.35438 as

an OSM file. (These may not be high or low enough, so just make sure the

vertical coordinates line up with tile-utils’ square Bing map.)

3. Download JOSM, and the latest version of Java if you don’t have it

already, and open the OSM file in it.

4. Download Google Earth Pro Free License Edition, set Santa Clara

University as the destination, and using Tools➔ 3D Ruler, measure the

approximate heights of all the buildings designated in the online map.

Alternatively, you could retrieve the architectural specifications of the

buildings and get their actual target heights from those archives/departments,

or somehow measure all the buildings on site yourself, either of which

would both be more accurate than the 3D Ruler.

5. Use the custom OSM file I made to do this. If updates are needed, export

an OSM file of OpenStreetMap’s latest version of the region using the

method described above and merge them in JOSM by selecting and copying

the needed structures in the first OSM file and pasting them into the other.

There is a multi-OSM layer function in JOSM for doing just that, by

dragging one OSM file onto a JOSM window with the other OSM file

opened in it.

6. In JOSM, select Imagery ➔ Bing Aerial Map to have Bing’s satellite

aerial map of the region overlaid under the OSM representations of the

buildings. Warning: There may be some aerial offset from the real area,

which it will warn you about, so other aerial maps might not line up in

exactly the same way. Also, both the Soccer Training Center next to

Locatelli and the McLaughlin-Walsh bridge are as of April 2016 not on

Bing’s map, as they were constructed relatively recently and so made before

Bing’s last map update of SCU. The only satellite map I know of that does

currently contain those buildings is Google Maps, but those are also very

proprietary.

 23

7. Download OSM2World, and the associated textures on its website and

also from https://github.com/tordanik/isocore/tree/master/textures and

extract them to the same OSM2World folder. Then open the finished OSM

file in it, using a batch command or bat file in the same folder with the

command:

 java -Xmx2G -jar osm2world.jar --config texture_config.properties --

gui.

8. In the top menus, select Export new OBJ, then open in in 3DS Max

import it as a single mesh. Then execute the following sequence of menu

commands:

 Click the MAX Button in top-left corner ➔ Import ➔ File to Import

➔ SCU2.obj, and select Don’t Import Materials. Or, alternatively,

drag the OBJ file from Explorer/Finder onto the 3DS Max scene;

import it as a single mesh.

 Open the Materials Editor, and make sure to use the compact

materials editor.

 Materials Editor (Globe Icon on top menu) ➔ Utilities ➔ Reset

Materials Editor slots ➔ on scene

 Utilites ➔ More ➔ UVW Remove ➔ Parameters ➔ Remove all

materials from scene

 New Material (Standard) ➔ Diffuse ➔ Gradient ➔ Gradient Params

➔ Gradient Type ➔ Linear

 Gradient Parameters ➔ Color 1: White, Color 2: Black

 Click Go back to parent material (the globe icon with an up arrow) ➔

Blinn Basic ➔ self-illumination 100 (Shadeless in Blender)

(Note: After subsequent executions of these steps, I found it faster to set the

self-illumination before the Diffuse Gradient, because then you don't have to

go back to the parent material.)

 Drag the material onto the mesh (specifically the buildings).

 Edit ➔ Select All (to select all of the SCU Mesh)

https://github.com/tordanik/isocore/tree/master/textures

 24

 Right Menu ➔ Modify (Icon of a Blue Arch in a Square) ➔ Modifier

List ➔ Object-Space Modifiers ➔ Unwrap UVW ➔ Polygon

 Edit UVWs ➔ Open UVW Editor ➔ Freeform Mode [Free

Transform], Select All (Again)

 Right Menu ➔ Projection ➔ Planar Map (Plane Icon) ➔ Align Y (Y

icon)

 UVW Editor ➔ Top-Right Corner ➔ Change from Checkerboard to

Gradient (this is done to preview the texture mapping)

 Make sure the UV is aligned properly in the square (it should already be

mostly prepositioned):

o UVW Editor ➔ Select All ➔ Scale Selected Subobjects; slightly

scale it down so the top line (that’s Swig) is just within the grey top

line of the grayscale square

 To make sure you can edit and scale the UVs in 3DS Max:

o Select all in viewport ➔ Unwrap UVW ➔ Faces ➔ Select none in

viewport ➔ UVW Editor ➔ Select All ➔ Scale

(Note: If done wrong, the top of Swig Hall will look blocky or missing,

or the buildings will look darker than the floor.)

 Select the top view from one of the four 3D preview boxes. Make sure it

is set as an Orthographic top view.

 On your Orthographic Realistic Top View, vertically scale the window

up so that it looks like a square and zoom so that the majority of the

school is in the shot as is in the aerial map. To make the zoom more

precise, make the following UI changes:

o Customize ➔ Customize User Interface ➔ Mouse ➔ Wheel Zoom

increment 0.1, and then later 0.01

 Then narrow the render area so that the view shows exactly the same area

of SCU campus that the square Bing aerial map does. Instructions on

getting the Bing aerial map are further down.

 Of course, I already did all of this positioning, so if you need to import a

new version of the OSM OBJ file without having to reposition the 3DS

Max viewport, click/select the map’s top-wise viewport and follow these

steps:

 25

o Go to Views ➔ Save Active Orthographic View

o Delete and reimport the model

o Views ➔ Restore Active Orthographic View

 Production Rendering ➔ Render options ➔ Output Size ➔ Custom

8161x8161 ➔ Render

(Note: To be clear, the settings should read as: Aperture Width 20.12 mm,

Image Aspect 1.0, Pixel Aspect 1.0, and Render Resolution 8161x8161.)

 Save Image ➔ Export render as a 16-bit greyscale PNG (No Alpha

Channel)

(Note: Given more time, I could probably replicate this process in so as to

avoid potential monetization issues in using 3DS Max.)

9. Obtain an Aerial Map of SCU

To generate the corresponding Bing aerial map, you will need tile-utils, a tile

downloader that stitches large segments of Bing aerial maps into bigger

ones. Please note that downloading and using Bing maps this way most

likely violates Bing’s Terms of Service, so I’d suggest as a replacement to

use some of the aerial maps Santa Clara University is licensed to use, like

the ones in the ArcGIS Lab on campus, though ArcGIS’s aerial maps are

even less up-to-date than Bing’s. Make sure to cut a square slice of the new

aerial map that exactly matches and corresponds to the area represented in

the Bing map. There may be some offset with the buildings due to the zoom

and angle of the two aerial map providers being slightly different.

 Download and install the following: tile-utils from vvoovv’s GitHub

project page, Python 2.7, and the Python Imaging Library for Python 2.7.

 Follow the online Bing tutorial called Getting a Bing Maps Key at

https://msdn.microsoft.com/en-us/library/ff428642.aspx, then replace the

text of the file in the tile-utils folder named bing_maps_key.txt with your

key.

 Open the Windows Command line or the Mac/Linux Terminal,

depending on the operating system being used, and execute the following

two commands:

o cd C:/path_to_tile-utils/tile-utils-master/

https://msdn.microsoft.com/en-us/library/ff428642.aspx

 26

o C:/Python27/python.exe stitch.py -z 18 -o map.png -- -

121.94380,37.343,-121.93017,37.35438 bing

10. Import the campus heightmap and aerial map into Unreal Engine 4

 Get an Epic Games account ➔ Download Epic Games Launcher ➔

Download version 4.11.2 or newer of Unreal Engine 4

 New Unreal 4 Blueprint Project ➔ First Person

 Once you’ve started the first-person project, delete all of the walls and

cubes and blue text, most of which can be selected from inside the

ArenaGeometry folder’s subfolders in the top-right menu.

 Top-Right Corner ➔ FirstPersonCharacter ➔ Right Click ➔ Edit ➔

Select and delete the Spawn Projectile section in the Event Graph, then

on the left side of the same window,

 FirstPersonCamera ➔ Mesh2P ➔ FP_Gun ➔ Right Click ➔ Delete,

save blueprint,

 ConstructionScript ➔ Delete AttachTo and its two connected nodes,

select Mesh2P

 Right Panel ➔ Rendering ➔Actor Hidden in Game, Save and compile,

exit subwindow, save and build

(Note: You’ll have to scroll a little bit down on that lower-right panel to get

to the rendering section.)

 Left Menu ➔ Select Terrain (3rd tab) ➔ Import from file ➔ Select the

16-bit heightmap ➔ Input these settings: Quads 255x255, 1x1 sections,

Scale X 17 Y 17 Z 6.3, Number of Components in X and Y direction

32x32, Location Z set to 1750 cm ➔ Import

(Note: The exact measurements that allowed me to calculate those

scale settings were aided by the Unreal Engine 4 project Unit One by Jeremy

Baldwin. The Z Scale may or may not be a little off.)

(Note: The heightmap must be no more than 8161 on either side for

UE4 terrain generator to display it properly.)

(Note: By importing the heightmap as terrain in UE4, the collisions

and walkmeshes will autogenerate from them. The scale settings were

chosen to linearly scale the mesh so that the buildings heights are to scale,

 27

with the highest building, Swig Hall, being 33.2 meters high, and the lowest,

the ground, being 0 meters high.)

 If needed, translate the terrain up so the player bounding box is just

above the ground, then delete original floor.

(Note: Do not drag the player downwards; you should only move it on

the X and Y axes. This is because if it goes down too low, i.e. below the

editor’s X-Y grid, it won’t be able to traverse the map or move. And by “it”,

I mean a pair of robot arms. In earlier versions of UE4, the default player

model was a blue mannequin.)

 In UE4 main editor, highlight FirstPersonCharacter on upper-right menu,

on lower-right menu scroll down to CharacterMovement (Inherited)

o Enable Crouch, Flying, Jump off ledge while crouched, and set

character movement walking ➔ Maximum walk speed to 2000 (So

the user can traverse the large campus quickly)

 Top-Right Menu ➔ Landscape ➔ Bottom-right menu ➔ Landscape ➔

landscape material➔ new material in /Game/Landscape/Materials

 Right-click new material, edit (will take you to materials editor graph)

 Drag the map texture onto the NewMaterial graph. It will show up as a

Texture Sample. Then, using the right Palette menu, find and drag

LandscapeLayerCoords onto the graph.

 Select it and set LandscapeCoords’ Mapping Type to TCMT XY and its

Mapping Scale to 8161 (this is the UV scale).

 Connect the output of LandscapeCoords to the UVs of Texture Sample,

and connect its white first output to the Base Color of NewMaterial.

 Save and check the landscape mesh.

 Rebuild the lighting on the map

11. Confirm the heights of the buildings are to scale (optional)

 Finally, use 3DS Max to export the OBJ map as an FBX, then import it

into the Unreal Project and scale it up and translate it until the length and

width of it perfectly match up with that of the map, then check to see if

the heights are about the same. If the Swig Hall of one is a bit taller or

shorter than the other, measure by how much, then use that to calculate

 28

what the Terrain heightmap importers’ new Z factor should be to make it

the same height as the imported FBX’s and reimport the heightmap.

12. Enable 3D Support

o Open your Oculus headset, if you have one, and follow the enclosed

Oculus setup instructions to hook it up to your computer.

o Download OculusSetup.exe from Oculus’s main website and install it.

o Create an account and register your VR headsets and any Oculus or

Xbox controllers.

o Open the Oculus desktop app (if it crashes, run setup repair/reinstall)

 Settings (Gear icon) ➔ General ➔ Allow unregistered apps

o Epic Games ➔ Unreal Engine 4 ➔ Project ➔ Play Icon ► on the

options dropdown ➔ select VR Preview

o If VR Preview is greyed out, then either UE4 doesn’t recognize the

Oculus or the Oculus runtime is outdated and needs to be updated.

o Click Play to run the app. Use the mouse and arrow keys/analog sticks

to move left and right, and press ~ to use console commands or exit out.

4.5 Conclusions

My project was successful in:

 Modeling whole campus to scale

 Displaying buildings with recognizable roofs and grounds

 Allowing one to walk around the whole campus

Weaknesses of my project due to time/personnel constraints were that:

 Models of the buildings are currently very flat and undetailed

 The textures of the campus are flawed because trees got in the way

 Rough edges due to processing of model into heightmap

 Stretched textures on buildings’ sides due to use of aerial texture

 Did not label the buildings with names and descriptions in UE4

Future improvements others can make to improve this (by a team of people):

 Texturing the sides of the buildings

 Taking pictures of the campus to use as those textures

 Smooth the sides of the buildings (by using the OSM2World OBJ)

 Deapproximate the heights of all the buildings

 29

 Add 3D labels and descriptions of the buildings in Unreal Engine 4

 Model the geometries of the buildings more precisely

 Model the interiors of the buildings

I represented the geometry every building on campus and provided the

texture for the roofs on campus. I also completed the work on the underlying

engine integration, including collision detection and first-person

traversability. The project currently works with the Oculus Rift so that the

project can either be viewed as a basic 3D walkthrough or as a virtual reality

walkthrough. Work that I foresee others contributing to the project is

texturing the sides of the buildings and smoothing the edges. However, from

a programmatic and functional standpoint, all of the required mechanics for

the walkthrough are in place.

I had hoped to write up a procedure on making heightmaps in Blender

and believe I still could now, because it is both as well-equipped to make

heightmaps as 3DS Max and, unlike 3DS Max, free-to-use commercially.

Unfortunately, the video tutorials on doing so in Blender weren’t quite as

easy to follow as those in 3DS Max, and I’ve already perfected a process for

completing the project in 3DS that would take days or even weeks to

replicate in Blender. The project was already being submitted fairly late

even without this addition, so, due to time constraints, I could not complete a

procedure for generating the heightmap in Blender.

It was disheartening coming up against all those obstacles, but it was

exhilarating making all those breakthroughs.

 30

Chapter 5 – References

5.1 Literature Review

1. OpenStreetView

http://www.openstreetmap.org/#map=17/37.34924/-121.94021

2. Google Earth

https://www.google.com/maps/place/Santa+Clara+University/@37.3499298

,-

121.9384107,439m/data=!3m1!1e3!4m2!3m1!1s0x808fcbaf36303ec3:0x561

ca114f6d4e347

3. Unreal Engine 4

https://www.unrealengine.com/

4. 3DS Max 2016 (Student License)

http://www.autodesk.com/education/free-software/3ds-max

5. tile-utils

https://github.com/vvoovv/tile-utils

6. JOSM

https://josm.openstreetmap.de/

7. Blender

https://www.blender.org/

8. Oculus Rift

https://www.oculus.com/en-us/rift/

Tutorials Used:

9. Unreal Engine 4 Landscaping Quick Start

https://docs.unrealengine.com/latest/INT/Engine/Landscape/QuickStart/4/in

dex.html

http://www.openstreetmap.org/#map=17/37.34924/-121.94021
https://www.google.com/maps/place/Santa+Clara+University/@37.3499298,-121.9384107,439m/data=!3m1!1e3!4m2!3m1!1s0x808fcbaf36303ec3:0x561ca114f6d4e347
https://www.google.com/maps/place/Santa+Clara+University/@37.3499298,-121.9384107,439m/data=!3m1!1e3!4m2!3m1!1s0x808fcbaf36303ec3:0x561ca114f6d4e347
https://www.google.com/maps/place/Santa+Clara+University/@37.3499298,-121.9384107,439m/data=!3m1!1e3!4m2!3m1!1s0x808fcbaf36303ec3:0x561ca114f6d4e347
https://www.google.com/maps/place/Santa+Clara+University/@37.3499298,-121.9384107,439m/data=!3m1!1e3!4m2!3m1!1s0x808fcbaf36303ec3:0x561ca114f6d4e347
https://www.unrealengine.com/
http://www.autodesk.com/education/free-software/3ds-max
https://github.com/vvoovv/tile-utils
https://josm.openstreetmap.de/
https://www.blender.org/
https://www.oculus.com/en-us/rift/
https://docs.unrealengine.com/latest/INT/Engine/Landscape/QuickStart/4/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/QuickStart/4/index.html

 31

10. Unreal Engine 4 Tutorial: Landscape Tool

https://www.youtube.com/watch?v=FHVuVVHlUmM

11. Unreal Engine 4 Oculus DK2 Quick Start

https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/4/ind

ex.html

12. Installing Oculus DK2 on a Mac

http://www.uxconnections.com/installing-oculus-dk2-on-a-mac/

13. UE4 Oculus Rift Template Introduction

https://www.youtube.com/watch?v=oo2XKSvmSc0

14. Unreal Engine 4 Oculus DK2 Best Practices

https://docs.unrealengine.com/latest/INT/Platforms/Oculus/BestPractices/ind

ex.html

15. Enabling Oculus Games and Apps From Unknown Sources [like Unreal Engine 4]

https://support.oculus.com/878170922281071

16. Oculus Software Setup

https://www.oculus.com/en-us/setup/

https://www.youtube.com/watch?v=FHVuVVHlUmM
https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/4/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/4/index.html
http://www.uxconnections.com/installing-oculus-dk2-on-a-mac/
https://www.youtube.com/watch?v=oo2XKSvmSc0
https://docs.unrealengine.com/latest/INT/Platforms/Oculus/BestPractices/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Oculus/BestPractices/index.html
https://support.oculus.com/878170922281071
https://www.oculus.com/en-us/setup/

 32

Chapter 6 – Appendix

6.1 Screenshot of the campus model in JOSM, overlaying the Bing map

6.2 UE4 Project setting to run the SCU Level as a VR Preview App

 33

6.3 Oculus Desktop App set to Enable VR in Unknown Sources like UE4

6.4 The SCU Landscape Texture’s Nodes in the Material Graph Editor

 34

6.5 Header file generated from the project’s First Person Blueprint

FirstPersonCharacter__pf.h:

#pragma once

#include "Blueprint/BlueprintSupport.h"

#include "Runtime/Engine/Classes/GameFramework/Character.h"

#include "Runtime/InputCore/Classes/InputCoreTypes.h"

#include "Runtime/CoreUObject/Classes/Object.h"

class USphereComponent;

class USkeletalMeshComponent;

class UCameraComponent;

#include "FirstPersonCharacter__pf.generated.h"

UCLASS(Blueprintable, BlueprintType,

meta=(ReplaceConverted="/Game/FirstPersonBP/Blueprints/FirstPersonChara

cter.FirstPersonCharacter_C",

OverrideNativeName="FirstPersonCharacter_C"))

class AFirstPersonCharacter_C__pf : public ACharacter

{

public:

 GENERATED_BODY()

 UPROPERTY(BlueprintReadWrite, NonTransactional,

meta=(Category="Default", OverrideNativeName="Sphere"))

 USphereComponent* bpv__Sphere__pf;

 UPROPERTY(BlueprintReadWrite, NonTransactional,

meta=(Category="MyCharacter", OverrideNativeName="Mesh2P"))

 USkeletalMeshComponent* bpv__Mesh2P__pf;

 UPROPERTY(BlueprintReadWrite, NonTransactional,

meta=(Category="MyCharacter", OverrideNativeName="FirstPersonCamera"))

 UCameraComponent* bpv__FirstPersonCamera__pf;

 UPROPERTY(EditDefaultsOnly, BlueprintReadWrite,

meta=(DisplayName="Gun Offset", Category="Default", Tooltip="Gun offset

from the camera location", OverrideNativeName="GunOffset"))

 FVector bpv__GunOffset__pf;

 UPROPERTY(EditDefaultsOnly, BlueprintReadWrite,

meta=(DisplayName="Base Turn Rate", Category="Default",

OverrideNativeName="BaseTurnRate"))

 float bpv__BaseTurnRate__pf;

 UPROPERTY(EditDefaultsOnly, BlueprintReadWrite,

meta=(DisplayName="Base Look Up Rate", Category="Default",

OverrideNativeName="BaseLookUpRate"))

 float bpv__BaseLookUpRate__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputActionEvent_Key2"))

 FKey bpv__K2Node_InputActionEvent_Key2__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue6"))

 35

 float bpv__K2Node_InputAxisEvent_AxisValue6__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue5"))

 float bpv__K2Node_InputAxisEvent_AxisValue5__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue4"))

 float bpv__K2Node_InputAxisEvent_AxisValue4__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue3"))

 float bpv__K2Node_InputAxisEvent_AxisValue3__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue2"))

 float bpv__K2Node_InputAxisEvent_AxisValue2__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputAxisEvent_AxisValue"))

 float bpv__K2Node_InputAxisEvent_AxisValue__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="Temp_struct_Variable"))

 FKey bpv__Temp_struct_Variable__pf;

 UPROPERTY(Transient, DuplicateTransient,

meta=(OverrideNativeName="K2Node_InputActionEvent_Key"))

 FKey bpv__K2Node_InputActionEvent_Key__pf;

 AFirstPersonCharacter_C__pf(const FObjectInitializer&

ObjectInitializer = FObjectInitializer::Get());

 virtual void PostLoadSubobjects(FObjectInstancingGraph*

OuterInstanceGraph) override;

 static void

__StaticDependenciesAssets(TArray<FBlueprintDependencyData>&

AssetsToLoad);

 UFUNCTION(meta=(OverrideNativeName="ExecuteUbergraph_FirstPersonC

haracter"))

 void bpf__ExecuteUbergraph_FirstPersonCharacter__pf(int32

bpp__EntryPoint__pf);

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_LookUpRate_K2Node_

InputAxisEvent_62"))

 virtual void

bpf__InpAxisEvt_LookUpRate_K2Node_InputAxisEvent_62__pf(float

bpp__AxisValue__pf);

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_TurnRate_K2Node_In

putAxisEvent_34"))

 virtual void

bpf__InpAxisEvt_TurnRate_K2Node_InputAxisEvent_34__pf(float

bpp__AxisValue__pf);

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_MoveRight_K2Node_I

nputAxisEvent_192"))

 virtual void

bpf__InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192__pf(float

bpp__AxisValue__pf);

 36

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_MoveForward_K2Node

_InputAxisEvent_181"))

 virtual void

bpf__InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181__pf(float

bpp__AxisValue__pf);

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_LookUp_K2Node_Inpu

tAxisEvent_172"))

 virtual void

bpf__InpAxisEvt_LookUp_K2Node_InputAxisEvent_172__pf(float

bpp__AxisValue__pf);

 UFUNCTION(meta=(OverrideNativeName="InpAxisEvt_Turn_K2Node_InputA

xisEvent_157"))

 virtual void

bpf__InpAxisEvt_Turn_K2Node_InputAxisEvent_157__pf(float

bpp__AxisValue__pf);

 UFUNCTION(meta=(OverrideNativeName="InpActEvt_Jump_K2Node_InputAc

tionEvent_6"))

 virtual void

bpf__InpActEvt_Jump_K2Node_InputActionEvent_6__pf(FKey bpp__Key__pf);

 UFUNCTION(meta=(OverrideNativeName="InpActEvt_Jump_K2Node_InputAc

tionEvent_7"))

 virtual void

bpf__InpActEvt_Jump_K2Node_InputActionEvent_7__pf(FKey bpp__Key__pf);

 UFUNCTION(BlueprintCallable,

meta=(BlueprintInternalUseOnly="true", DisplayName="Construction

Script", ToolTip="Construction script, the place to spawn components

and do other setup.@note Name used in CreateBlueprint function@param

Location The location.@param Rotation The

rotation.", Category, CppFromBpEvent,

OverrideNativeName="UserConstructionScript"))

 void bpf__UserConstructionScript__pf();

public:

};

	Santa Clara University
	Scholar Commons
	6-16-2016

	Explorable 3D Model of SCU Campus
	Benjamin Giglione
	Recommended Citation

	tmp.1467148923.pdf.S9dTj

