
Santa Clara University
Scholar Commons

Computer Science and Engineering Senior Theses Student Scholarship

6-1-2015

Code girl
Tracey Acosta
Santa Clara University

Amanda Holl
Santa Clara University

Paige Rogalski
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in Computer
Science and Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Acosta, Tracey; Holl, Amanda; and Rogalski, Paige, "Code girl" (2015). Computer Science and Engineering Senior Theses. Paper 43.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior/43?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Code Girl

by

Tracey Acosta
Amanda Holl

Paige Rogalski

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science Computer Science and Engineering
Bachelor of Science in Web Design and Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 1, 2015

Code Girl

Tracey Acosta
Amanda Holl

Paige Rogalski

Computer Science and Engineering
Web Design and Engineering

Santa Clara University
June 1, 2015

ABSTRACT

Despite the growing importance of technology and computing, fewer than 1% of women in college
today choose to major in computer science.[1] Educational programs and games created to interest
girls in computing, such as Girls Who Code and Made With Code, have been successful in engaging
girls with interactive and creative learning environments, but they are too advanced for young girls
to benefit from. To address the lack of educational, computer science games designed specifically
for young girls, we developed a web-based application called Code Girl for girls age five to eight to
customize their own avatar using Blockly, an open-source visual coding editor developed by Google.
Girls learn basic computer science and problem-solving skills by successfully using puzzle-piece like
blocks to complete challenges that unlock new accessories for their avatar.

In conducting user testing with a Girl Scouts ages six to eight, we assessed the complexity of
the application and identified ways make Code Girl more user-friendly and intuitive. The overall
feedback we received on Code Girl in user testing was positive, as a majority of the girls expressed
an interest in playing the game again and playing more games designed to teach programming. Code
Girl thus appeals to the general pastimes of young girls to interest them in computer science from
an early age and hopefully inspires them to pursue computing as a career. Before being released
to the public, a few improvements are necessary. The application must be made fully responsive,
the page load time when deployed must be reduced, and additional challenges and accessories for
the avatar should be incorporated, all of which will better reach and engage users in learning about
computing, thereby educating and empowering them even more.

Table of Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Background . 2
1.3 Requirements . 4

1.3.1 Functional Requirements . 4
1.3.2 Non-functional Requirements . 5
1.3.3 Design Constraints . 5

1.4 Conclusions . 5

2 Design 6
2.1 Conceptual Model . 6

2.1.1 State Diagram . 6
2.1.2 Activity Diagrams . 7
2.1.3 Mockups . 9

2.2 Use Cases . 12
2.3 Architectural Design . 14
2.4 Technologies Used . 15
2.5 Design Rationale . 15

2.5.1 Game Design . 16
2.5.2 Visual Programming Environment . 16
2.5.3 Blockly . 17
2.5.4 Technologies . 17

3 Project Management 18
3.1 Test Plan . 18
3.2 Test Results . 18
3.3 Project Risks . 19
3.4 Development Timeline . 20
3.5 Societal Issues . 22

3.5.1 Ethics . 22
3.5.2 Social Context . 23
3.5.3 Political, Economic, Health and Safety, Manufacturability Issues 23
3.5.4 Sustainability and Environmental Impact . 23
3.5.5 Usability . 23
3.5.6 Lifelong Learning . 24
3.5.7 Compassion . 24

4 Conclusion 25
4.1 The Final Application . 25

4.1.1 Login . 25
4.1.2 Avatar Customization . 26
4.1.3 Challenges . 26
4.1.4 Saving the Avatar . 29

iv

4.2 Future Work . 29
4.3 Project Assessment . 30

4.3.1 Disadvantages . 30
4.3.2 Advantages . 31

4.4 Lessons Learned . 31
4.4.1 Objectives Met . 31

v

List of Figures

2.1 State Diagram . 7
2.2 General Application Activity Diagram . 8
2.3 Building an Avatar Activity Diagram . 9
2.4 Completing a Challenge Activity Diagram . 10
2.5 Signup and Login Page Mockup . 11
2.6 Main Page Mockup . 11
2.7 Use Case Diagram . 12
2.8 Architectural Diagram . 14

3.1 Fall Quarter Gantt Chart . 21
3.2 Winter Quarter Gantt Chart . 21
3.3 Spring Quarter Gantt Chart . 21

4.1 Application Homepage . 25
4.2 Login . 26
4.3 Avatar Customization . 27
4.4 First Challenge . 27
4.5 Second Challenge . 28
4.6 Third Challenge . 29
4.7 Save the Avatar . 30

vi

List of Tables

3.1 Risk Table . 20

vii

Chapter 1

Introduction

1.1 Problem Statement

Computing continues to grow in importance, yet few girls pursue this field. Today, less than 1% of

women in college are majoring in computer science, making computing a heavily male-dominated

field.[1] Girls have the potential to contribute immense creativity and ingenuity to the future of

computing and technology, but few of them are introduced to opportunities to get involved. Exposing

girls to programming at a young age fosters their interest in the subject, so that when they are older

they may consider pursuing a career in computing.

In an attempt to address this problem, many educational programs designed to introduce girls to

computing have been implemented in schools and camps across the country. Non-profit organizations

such as Girls Who Code hold summer coding programs that educate high school girls about computer

science and the skills they need to pursue computing. In addition, programs like Scratch have been

developed to begin teaching children aged eight and older how to code through games. Scratch and

similar programs such as Alice have children use a visual coding editor to solve puzzles and create

games, improving their ability to reason through problems and design projects. Made With Code

recently launched a series of Scratch-like applications aimed at engaging girls in coding by allowing

them to customize a picture of themselves, draw an avatar, design a bracelet and more with code.

These interactive and customizable coding environments pique the interests of children by giving

them control and the ability to create real products.

Although educational programs, such as those organized by Girls Who Code, and visual-based

programs like Scratch and Alice interest children and teenagers in computing, they are not enough.

Educational programs are usually designed for children in middle school and up, and applications

like those created by Made With Code are geared toward girls eight and older. Few programs exist

for children younger than eight and those that do, such as Tynker games, are either aimed at boys or

1

are designed to be unisex, which make them uninteresting to girls. As such, girls have less exposure

to coding from an early age and become interested in other areas, perpetuating the lack of women

in computer science and related fields.

Our solution, Code Girl, introduces girls ages five to eight to computing through a education

computer-science game designed to best appeal to their general interests while simultaneously teach-

ing them coding. Many young girls love to play with dolls and spend hours dressing their dolls up,

so we created a web-based application that allows girls to customize their own avatar using a visual

coding editor. To unlock features and accessories for their avatar, the girls have to complete various

challenges and puzzles designed to develop their ability to solve problems using code. For example,

before a girl is able to put shoes on her avatar, she has to successfully move a object through a

maze by putting together blocks of code. We included a story-telling aspect in our application by

making the avatar a superhero named Grace, whom the user then dresses up to assume any identity

she chooses. Grace also has a robot sidekick named Ada who is incorporated into many of the

challenges, giving the application a cohesive superhero theme and story that will engage users. To

allow users to progress through the application at their own pace, girls can create an account, with

their parents permission, so they can save their progress in designing their avatar at any point in

the game. When they are finished creating their avatar, the girls are able to save their avatar as an

image, which they can then print them out to share with their friends, hopefully inspiring others to

learn more about Code Girl and consequently computer-science. Given the young age of our users,

we designed our application to be simple, colorful, easy to read, and easy to interact with, making

it as user-friendly and engaging as possible.

We assessed the success of our project by partnering with Girl Scouts and analyzing how inter-

ested the girls were in learning more about programming after using our application. By designing

an application specific to the interests of five to eight year old girls, we hope to interest this under-

represented group in coding from a young age and inspire them to pursue computing later on.

1.2 Background

As the initiative to introduce young children to programming grows, so do the number of available

tools. Before designing Code Girl, we investigated a few of the previously mentioned platforms and

applications, along with other popular online games for children, to understand and assess what

they do and do not offer.

The first application, ScratchJr, is an iPad App where children ages five to seven can program

2

their own interactive stories and games by dragging and dropping different puzzle-piece shaped

blocks. Although ScratchJr has the customization options for the age group we are looking for, it

does not specifically target young girls and limits the users to iPads. This will not work for our

project because we want young girls to feel comfortable using a computer, not an iPad, through our

application.

Code.orgs Studio is another platform that teaches basic computer skills through games and

puzzles designed for ages four to six plus. Course 1 and Course 2, the twenty hour courses geared

towards our target age group, are specifically designed to be taught in classrooms and include full

lesson plans for the teacher. As a specific curriculum, Code.orgs Studio is designed to be unisex

in an attempt to appeal to an entire classroom. Our project hopes to captivate girls and motivate

them to play and learn outside of the classroom.

The hardware and software combination of Leapfrog is well known for its educational games

that are designed to begin teaching kids math, problem solving, language and more. An appealing

attribute of Leapfrog is the use of popular cartoon characters in its games and its diverse selection

of products and games for a range of ages. However, Leapfrog currently only has one game to teach

computer programming and the characters are vikings, which appeal more to boys. The age group

for Leapfrog games aligns with our target audience, but the content is not geared towards teaching

basic computer engineering principles.

MadeWithCode is an initiative by Google to get more girls in middle school and above excited

about coding. On their website, they have a few beginner projects that use Blockly, a programming

language made up of puzzle-piece shapes, to do tasks such as create an avatar using shapes, connect

together virtual instruments to create a song, decorate a picture, or animate your own gif. Since

MadeWithCode is one of the few platforms geared towards girls, we hoped to use some of their design

ideas to appeal to a younger audience such as the colors and the simplicity of using Blockly to piece

things together.

Another application, Polly Pockets online games, is a series of games featuring the main character

and her friends in various locations and situations. Since she is a popular doll, with her own elaborate

and engaging online world, we wanted to use the idea of customization of a character. The downside

of Polly Pockets games though, is that there is too much of a focus on activities such as shopping

and less focus on educational enrichment, which is the main objective of our project.

These platforms all have something to offer in their own way, yet none solve the problem of

specifically engaging girls ages five to eight in basic computer and problem solving skills. We thus

created our requirements by taking the advantages of each of these platforms and combining them

3

into a unique solution.

1.3 Requirements

For our solution, we identified and met the following functional and non-functional requirements,

which describe the necessities of our application. The set of functional requirements define what must

be done by the system, and the set of nonfunctional requirements define the manner in which the

functional requirements need to be achieved. In addition, we identified and met design constraints,

which are similar to non-functional requirements, but they limit the way the solution is designed

and implemented.

1.3.1 Functional Requirements

The functional requirements for our solution are summarized below. Our application is interactive,

as users snap together blocks of code to customize an avatar and immediately see the results of their

actions, in addition to receiving dynamic instructions on how to play the game. Users also connect

blocks of code to solve challenges, which upon successful completion unlock new features for the

users avatar. The avatar creation and challenges teach users basic logic and computer science skills,

such as iteration, loops, and conditional statements. To allow our users to progress through the

application at their own pace, girls can create an account, with their parents permission, so that

they can save their progress in designing their avatar and completing challenges and return to the

application later. When they are finished customizing their avatar, the girls can save their avatar

as an image, which they can then share with their friends and inspire others.

1. The application is interactive

2. The user snaps together puzzle pieces to customize an avatar

3. The avatar created by the user is saveable

4. The application provides instructions

5. The user solves challenges by snapping together puzzle pieces

6. The user unlocks new accessories for her avatar by successfully completing challenges

7. The application saves user progress

8. The application teaches basic logic skills including positioning, loops and sequences

4

1.3.2 Non-functional Requirements

In addition to functional requirements, we outlined and achieved the following non-functional re-

quirements, summarized below. Given the young age of our users, we designed our application to

be colorful, easy to read and easy to interact with, making it as user-friendly, engaging, and intu-

itive as possible. Our application is also compatible with desktops, laptops, and tablets, making it

competitive with applications currently available.

1. The application is user-friendly

2. The application is intuitive

3. The application is compatible with desktops, laptops and tablets

1.3.3 Design Constraints

With regards to design constraints, summarized below, we identified and met only two. First, our

application is web-based because of senior design requirements for the web design and engineering

major, but this has the advantage of making our application widely available to potential users.

Most importantly though, given the young age of our users, our application is compliant with the

Children’s Online Privacy Protection Act (COPPA), which constrained the manner in which we

gathered and stored user information.

1. The application is web-based

2. The application is compliant with the Children’s Online Privacy Protection Act

1.4 Conclusions

Through research into existing applications, we were able to take the design and learning outcomes we

thought were most beneficial for engaging and educating young girls and craft them into requirements

for Code Girl. The functional requirements include the main activities the user is able to do, as well

as what we want to teach young girls through playing with our application. These requirements and

ideas then gave way to designs of how these activities fit together and how the user might interact

with the system.

5

Chapter 2

Design

2.1 Conceptual Model

Before implementing our application, we created conceptual models, in the form of state diagrams,

activity diagrams, and mockups, to help us determine and visualize the flow of system and the design

of the application.

2.1.1 State Diagram

From the functional requirements, we determined the main states of the system and how they

interact with each other. The state diagram, Figure 2.1, shows the three states and how the system

transitions from one state to another. At any given time, the user can only be in one of these states.

For example, while a user is playing a challenge, she cannot simultaneously edit her avatar. The user

must successfully complete a challenge in order to unlock a new challenge and accessories. From

there she can either play the new challenge or work on building her avatar.

6

Figure 2.1: A state diagram that shows the three main states of the system.

2.1.2 Activity Diagrams

Each state is made up of many actions. An activity diagram combines these actions into main

activities done by the user. The first activity diagram, Figure 2.2, focuses on showing the overall

activities of a user of our system. Once a user accesses the system by signing up or signing in,

she is taken to the main avatar customization page, where she can build her avatar. On this page,

there is a progress bar indicating if the user has challenges available to play. If she does, she may

successfully complete them to unlock accessories for her avatar. At any given point, the user can

save her progress and continue playing or log out.

7

Log In Sign Up

Build Avatar

Complete
Challenge

(Not done)

(Done)

Log Out

Save

(Save progress)

(Keep playing)

(Already signed
up)

(Not yet signed up)

Figure 2.2: The activity diagram of the general application.

While the general activity diagram of the application gives a high-level view of the activities, it

does not go into detail about how the user builds an avatar or completes challenges.

Figure 2.3 shows the actions a user takes to create an avatar. These actions focus on the user

interaction with puzzle-piece shaped blocks. As the user selects, drags and drops, and arranges these

blocks on the canvas she can see the customization of her avatar taking place. If the user wants to

try and unlock new accessories, she can choose to play a challenge; otherwise, she can continue to

edit her avatar.

8

Choose piece
(accessory)

Drag piece to
canvas

Snap pieces
together

See changes
made to
avatar

Play
challenge

(done)(not done)

(want to unlock
new features)

(do not want to
unlock

features)

(done)

(not done)

Figure 2.3: The activity diagram of building an avatar.

Figure 2.4 depicts the flow of activities of a user completing a challenge. In this example challenge,

the user arranges puzzle-piece shapes to direct their character through a maze. The puzzle pieces may

tell the character to turn right, or take two steps. If the user successfully completes the challenge,

she unlocks new accessories for her avatar.

2.1.3 Mockups

Low fidelity mockups provided us with a way to show the user-interface design to visualize how

the user will accomplish the main activities in our application and gave us a framework to begin

9

Choose a
piece with a
direction on it

Drag piece to
canvas

Snap pieces
together to get the

character to the exit
of the maze

Click run
(done)(not done)

Unlock new
accessories Reset

(successfully complete maze) (did not successfully
complete maze)

Figure 2.4: The activity diagram of completing a challenge.

designing and implementing the game. Figure 2.5 shows an initial idea for the design of the login or

signup page. We decided to combine these actions into a single page since they relate to the user’s

account. It is also important to note that because our target audience consists of minors, we ask for

the parent’s email to make sure the parent gives permission to join, thereby making our application

compliant with the Children’s Online Privacy Protection act, as specified in our design constraints.

10

Project Title RESOURCESABOUT LOGIN

Footer

PLAY

SIGN UP OR LOGIN TO PLAY

SIGN UP

Parent’s Email

LOGIN

Username

Username

Password

Password

Confirm Password

SIGN UP

Figure 2.5: A mockup of the signup or login page.

The mockup of the main page of Code Girl, where the user will create the avatar, is shown in

Figure 2.6. The main page is divided into three sections. To the left is a library of available blocks

that the user can use to create the avatar. To the right of the library is the canvas where the user

snaps the pieces together. On the far right is where the avatar is shown, so the user can see the

changes made as she customizes her avatar.

Project Title RESOURCESABOUT LOGOUT

PIECE 1

PIECE 2

PIECE 3

ACCESSORY 1

1 11

Footer

SAVE

Figure 2.6: A mockup of the main page.

11

2.2 Use Cases

A use case defines the steps required to accomplish a specific goal, as described in the activity

diagrams and visualized in the mockups. The following use cases describe how the user interacts

with the system to achieve these goals, including conditions that need to be met, steps required, and

common errors that might occur. The use case diagram, Figure 2.7, helps to illustrate the major

actions the user will take when using our system.

Girl

Sign-up/Login

Build Avatar

Save Progress

Logout

Complete
Challenges

<<includes>>

Figure 2.7: The use case diagram.

1. Signup/Login

• Goal: Sign-up or login to begin building the avatar

• Actor: Girl (with Parent)

• Precondition: The user does not have an account if he or she wants to sign-up and the

user has an account if he or she wants to login in

• Postcondition: The user is logged into the system

• Scenario:

(a) The user either selects the SIGN UP or LOGIN button

(b) The user either fills out the form to sign up or the form to login

• Exceptions:

(a) The user wants to sign up, but his or her email is already in the system

(b) The user forgets his or her password to login

12

2. Build Avatar

• Goal: A customized avatar/doll has been created

• Actor: Girl

• Precondition: The girl has unlocked all of the features and built her customized avatar

• Postcondition: The girl has built her own avatar using blocks of code

• Scenario:

(a) The user chooses a piece that she wants to add to her avatar

(b) The user drags the piece to the canvas

(c) The user snaps the piece together with the other pieces on the canvas

(d) The user sees the changes made to the avatar

(e) The user plays challenges to unlock more pieces

• Exceptions:

(a) The user wants to skip a challenge

3. Save Progress

• Goal: The user saves the blocks she has put together to build her avatar

• Actor: Girl

• Precondition: The girl has at least one block on the canvas for building her avatar

• Postcondition: The girl’s progress has been saved

• Scenario:

(a) The girl clicks the ”SAVE” icon

• Exceptions:

(a) None

4. Logout

• Goal: The user is logged out of the application

• Actor: Girl

• Precondition: The girl is logged in

• Postcondition: The girl is logged out

13

• Scenario:

(a) The girl clicks on the LOGOUT button

(b) The girl is prompted to save her work

(c) The girl confirms she wants to logout

• Exceptions:

(a) None

2.3 Architectural Design

The activity diagrams, mockups, and use cases all present how the user interacts with the system.

An architectural diagram shows the components and connections of the system as a whole. Figure

2.8 displays a multi-tier architectural style that models our system. While Blockly is client-side, we

still need a server and database for logic and storage.

The system is contained in four main modules to successfully independently manage different

components. The first module contains the custom blocks used to create the avatar. The second

module contains the challenges the user can play. Isolating the modules helped us with development

and testing that the challenges and avatar worked separately before we integrated them. The logic

module on the client side defines the integration between unlocking challenges and new blocks. The

server contains the fourth module that defines the logic for saving the user’s level and blocks, so

that when she logs out and logs back in, the system remembers where she left off. Through hosting

our application on Google App Engine we have access to Google Cloud Storage to save and load the

program, as well as keep track of user accounts and authenticate our users.

Figure 2.8: An architectural diagram of our system.

14

2.4 Technologies Used

To accomplish our design and achieve the desired functionalities we have previously described, we

used the following web-development technologies and services:

• Blockly: A client-side library that can be used to build programs by snapping together puzzle-

piece blocks in a visual editor created by Google. Blockly provides us with the framework for

a drag and drop environment and the library of coding puzzle piece blocks used in the games.

• JavaScript: A programming language that enables client-side interaction with the user, browser

control, and changes to the content displayed on the webpage.

• JQuery: A JavaScript library that implements common JavaScript functionality to simplify

client-side scripting.

• XML: A markup language that specifies how a document is encoded.

• HTML5: The markup language used to render the graphics on the canvas.

• Google Apps Engine: A Platform as a Service that enables developers to build and deploy

an application using Googles runtime and development environment. Google Apps Engine

provides many features, such as data storage, retrieval, and search.

• NoSQL: A database that enables the storage and retrieval of data, such as account information,

but does not use tabular relations

• Python: A scripting language that we used to communicate between the Google App Engine

and the database.

• GitHub: a web-based repository service used for revision control and source code management.

2.5 Design Rationale

Before making any decisions regarding the design and implementation of our application, we thor-

oughly researched how to effectively design games to teach computer science and tested successful

applications, such as Scratch and Made with Code. Our design was thus driven by our goal of

educating young girls in a fun and interactive way to inspire them to pursue computer science or

technology. To achieve this goal and the requirements we identified, we made several design choices,

presented and discussed in this section.

15

2.5.1 Game Design

We decided to create a game-based application to inspire young girls to pursue computing because

game-based learning through applications such as Scratch and Alice has been proven effective in

teaching children computer science concepts and skills.[3] In our application, users snap together

pieces of code to create their own avatar and complete challenges that unlock more features for their

avatar within the context of a larger story. We chose these activities because research shows that

educational games are more effective when they actively engage the users with stories and interactive

puzzles. Additionally, in researching non-educational games, such as Polly Pockets, that are popular

among our target audience of five to eight year old girls, we noticed that many games allowed users

to customize their character, indicating that personalization engages young girls. Incorporating

challenges that unlock new features will not only engage our users by allowing them to customize

their avatar, but will also serve as an incentive for our users to continue playing our game, and

thereby learn computer science concepts and skills. By introducing young girls to computer science

in a fun and interactive game that is similar to the games they already play, we hope to teach them

basic skills and concepts and inspire them to learn more about computing.

2.5.2 Visual Programming Environment

Traditional programming languages and environments are the most effective means of teaching

computer science concepts and skills, but they are too complicated for young children to understand.

They also are usually taught in a classroom setting or online environment, and difficult for people to

learn on their own. Since our target audience is very young and presumably using our application

on their own, we chose to use a visual programming environment to best meet their needs and skill

level. Visual programming environments are easier to learn in than traditional, language-driven

environments, because they not require the users to compile their code or verify syntax. They

essentially allow users to write error-free programs without any instruction by abstracting away

the syntax of the code, which will benefit our users since their reading, writing, and reasoning

skills are still developing. By removing the issues of syntax and coding errors, visual programming

environments focus the users attention on the logic of the problem, introducing them to basic

computer science concepts, such as loops. Additionally, using visual blocks that users drag-and-drop

and snap together to build a program or solve a challenge facilitates interaction and engages the

user creatively. The specific visual programming editor we chose to use is Blockly for the following

reasons.

16

2.5.3 Blockly

Created by Google, Blockly is a JavaScript library that developers can use to build a visual coding

editor that enables users to write programs by snapping puzzle-piece like blocks of code together.

As the blocks are put together, the library generates and executes the corresponding code, showing

the results to the user. We decided to use Blockly because of its benefits for both developers and

users. Blockly, like Scratch, is open source, but Blockly is designed for developers to integrate into

their own applications, whereas Scratch must be exported or embedded on external websites. Since

Blockly is open-source and can be used in custom applications, we can extend its functionality to

create an application personalized to our target audiences interests and skills. Blockly was also

influenced by Scratch and App Inventor, so it is easy for young children to use, making it the best

tool for engaging our target age group of five to eight year old girls. Blockly, furthermore, meets

the design constraint that our application must be web-based and gives our application portability,

since it is compatible with Chrome, Firefox, Safari, Opera and Internet Explorer.

2.5.4 Technologies

Our application is built primarily using Javascript, making it a client-heavy application. Blockly,

the visual coding editor we chose to use, is 100% client side and written in Javascript, which can

then be compiled to Javascript, Dart, or Python, but we chose to only use Javascript, as we are all

familiar with the language. To simplify the creation of our application and achieve consistency, we

intially decided to use the AngularJS framework. We chose the AngularJS framework over similar

frameworks such as Backbone.js and Ember because it is well suited to single page applications.

Additionally, AngularJS has been used to develop Blockly applications and does not necessitate a

dominant rest API application, which benefits our client-heavy application. AngularJS also does

not have as steep of a learning curve as Ember does. Once we began implementation, however, we

decided not to use AngularJS because Blockly provided us with a sufficient framework for building

our application. When necessary, we used JQuery to simplify the Javascript that we needed to write,

since it implements many common functions. To save the users blocks and then restore them when

they return, we used calls to export to and return from XML. To enable users to save, load, and share

their work, we hosted our application on Google App Engine, which provided these features that

we could access using Python and the cloud storage API. Additionally, we used a NoSQL database,

provided with Google App Engine, to save the user’s progress. We, as such, enable our users to play

at their own pace to maximize their learning and enjoyment.

17

Chapter 3

Project Management

3.1 Test Plan

Our test plan can be broken down into three main sections: testing of the avatar, testing of the

games and testing both together. The first part involved unit testing on the processes of signing

up, signing in, and using the Blockly pieces. We then conducted functional testing on the different

combinations of Blockly pieces and the avatars they produce as we wrote the code to make sure that

adding new features did not break existing code. Next, each of the challenges was tested separately.

This phase tested that the correct inputs or combination of blocks produced the correct outputs,

and therefore solved the maze or puzzle. Finally, we integrated the games with the creation of the

avatar to test the system as a whole. An important part of this phase included testing the possible

combinations of challenge outcomes, such as successes and failures, and the resulting actions, such

as features unlocked. After we tested the system as the developers, we conducted user testing with

groups of Girl Scouts ages six to eight. The results of our user testing will be discussed in the

following section.

3.2 Test Results

Our user group consisted of nine girls ages six to eight. By observing the Girl Scouts interact with

our application, we learned that the directions need to be as simple as possible with easy vocabulary.

The younger girls who are just learning to read struggled with words such as ”sidebar”. User testing

also taught us that we cannot assume that our users understand how to use a mouse and a desktop,

which is what we used for the testing, because the girls did not immediately understand how to

”drag and drop” blocks onto the canvas to customize their avatar. After the Girl Scouts spent half

an hour playing Code Girl, we asked them questions regarding their previous computer science game

experience, their interest in programming before and after the game, and what they would change or

18

add to the game. The overall feedback was positive, with a majority of the girls saying they would

play the game again and were interested in playing more games to learn programming. There were

two girls who had previous experience with games such as Scratch and Code.org’s Studio who were

not as challenged by the games, but they said they really enjoyed getting to create the avatar and

wished they could change her hair color and style. User testing helped put us in the mind-set of five

to eight year old girls so we could simplify directions and vocabulary to make Code Girl even more

user-friendly and intuitive.

3.3 Project Risks

A risk analysis is conducted to identify possible risks and the costs they could have on the system

or project as a whole. As shown in Table 3.1, each risk is given a probability from zero to one as

well as a severity from zero to ten. The total impact of the risk is then calculated by multiplying

the probability and severity together. By considering these risks at the beginning of the project,

we aimed to take action to prevent the risks and their associated consequences from happening.

Ironically, the biggest risk we encountered was not one we included in our original risk analysis.

Originally, we chose PHP as our language to communicate with the server because Google App

Engine is compatible with PHP, and it is the language we know best. About three quarters of the

way through the project, we realized that Blockly uses Python to communicate with Google App

Engine for storage of the user’s blocks. In order to successfully reload the users blocks and level

when they log in, we would also have to use Python, a language none of us knew. The severity of

the problem seemed pretty high, as one of us had to learn a new language to complete the project,

and we did not know how easy or quick that would be. Thankfully, we were able to do some quick

tutorials and finish the required Python parts of our project to successfully integrate with Blockly.

We learned that we should have included a risk about the technology or languages changing, so we

would have been more prepared to handle the mini crisis we encountered.

19

Risk Consequences
Probability

(P)
Severity

(S)
Impact
(P x S)

Mitigations

Bugs and Errors

We will have to go
back into the
code, find out

what’s causing the
problems, and

fix them

1 3 3

Do ample testing
every step of the
way to find bugs

sooner and
use debugging

software

We run out of time

Not all desired
functions of the

project are
completed by

the design
conference.

0.3 9 2.7

Prioritize our work
and implement the

most important
functionality first and

perform extensive
time management

Incomplete
requirements

We do not
implement

a functionality
our system

needs

0.2 8 1.6

Review all our
requirements to make
sure they meet and
match our intended

outcomes and
continuously talk to

our advisor regarding
the requirements

Changing
scope/objectives

We might need
to redo sections
of code and it
can delay our

schedule

0.2 5 1

Prioritize requirements
and functions to keep
the project within the

scope and
limit the number of

functions added after
we begin implementation

Table 3.1: Our risk table for the project.

3.4 Development Timeline

One of our mitigation strategies was to prioritize our work and perform extensive time management.

We planed to accomplish this by sticking to our Gantt chart. A Gantt chart displays the amount

of work done or production that is completed in certain periods of time in relation to the amount

planned for in such periods. It is important that we created detailed charts for each quarter to

manage our time and energy. The following figures show our proposed development timeline by

quarter. Initially, they included the basic deliverables and split them up by team member. However,

as we better understood these deliverables, we divided them into specific components to make our

Gantt chart even more effective.

20

Figure 3.1: Our Gantt Chart for Fall Quarter.

Figure 3.2: Our Gantt Chart for Winter Quarter.

Figure 3.3: Our Gantt Chart for Spring Quarter.

21

3.5 Societal Issues

As engineers, it is important to consider how the applications we create affect the world around us.

We must conduct ourselves in a way that aligns with our ethics as well as the society as a whole.

The following societal issues are discussed as they relate to us and our project, Code Girl.

3.5.1 Ethics

Because we were the people defining the requirements and specifications for our project, we had

to think differently about ethical issues in ways that a group creating something for an outside

customer might not. For example, we did not have a company’s code of ethics to follow, so we had

to decide on our own. Also, unlike most other groups, we had to consider ethics involving children,

since we developed our application for a certain age group and tested it with real children. These

differences prove we had to carefully consider the ethics of our project.

Ethics in Our Team

Given the nature of our project, we examined the Association for Computing Machinery’s (ACM)

Code of Ethics and Software Engineering Code of Ethics. [2] The general ACM Code of Ethics talks

about morals, professional responsibilities and organizational leadership. These helped us to prevent

any ethical issues within our group and foster communication by driving us to be trustworthy and

honoring assigned responsibilities. The Software Engineering Code of Ethics can be applied to how

we as individuals act as developers. This code focuses mainly on acting consistently with the public

interest and upholding integrity. We kept both of these in the front of our minds throughout our

senior design project.

Ethics in Our Project

The most important ethical discussion we needed to have involved working with and designing for

young girls. We wanted the web application to purposefully appeal to girls, however there could

be sexism involved in us deciding what exactly that means. Obviously, not every girl likes pink

and princesses, so it was important to offer a wide variety of clothing and accessories for the avatar

that will appeal to a multitude of girls. Another ethical dilemma involves internet security because

parents need to have control over what their child sees on the internet. We had to take this into

consideration if we wanted the child to have a profile where they can sign in and save their progress.

There are legalities that go along with asking children to provide an email address and password

to sign up, usually a parent must do it for them. Lastly, we wanted to interact with young girls to

22

test our project throughout the design process. We hoped to find out what appeals to them, ask

them questions about our design and get feedback on how to make it better. There are legal issues

with contacting minors, as well as a Santa Clara University ”human subject review process,” so we

partnered with local Girl Scouts to help us. Making sure we uphold our ethics required some research

to make sure we follow laws, make our interactions constructive, and make our web application safe

and appropriate.

3.5.2 Social Context

From a social standpoint, we aim to interest a very specific group of young girls in computing to help

benefit society. Although an interest in playing our game or learning to program does not necessarily

mean the user will go on to study computing or have a job in the field, we hope to at least help

spark the idea and the possibility at a young age. Computing is growing so fast that there are not

enough graduates to fill all the jobs, or enough women in the jobs currently available, exacerbating

the gender divide in technology. By interesting young girls in computer science we hope to help fill

those jobs with capable, smart women when they grow up.

3.5.3 Political, Economic, Health and Safety, Manufacturability Issues

Code Girl is a free, web-based application, so we do not think there are any relevant political,

economic, health and safety or manufacturability issues to discuss.

3.5.4 Sustainability and Environmental Impact

Since Code Girl is a web-based application, it is sustainable and environmentally friendly. We do

not need to consider how to recycle resources or the impact resources may have on the environment

because our application uses the internet and any issues involving the internet are out of the scope

of this project. Users do not need any additional hardware or devices to use our application.

3.5.5 Usability

User testing helped put us in the mind-set of five to eight year old girls to help us make Code Girl

even easier and more intuitive to use. We included animations in the directions to help the young

girls better understand how to use our application because their reading levels and vocabulary vary.

The user can also slow down the animations in trying to solve the challenges to easily understand

and learn what the blocks are doing.

23

3.5.6 Lifelong Learning

Code Girl has prepared us for a life of learning new technologies as well as fueled a passion in us to

help awaken the love of learning in new generations of young girls and programmers. This project

has taught us how to quickly learn important and relevant parts of a language on our own. For

example, we had to learn Python in a short amount of time to be able to integrate with Blockly

and Google Cloud Storage to save what level the user was on. Learning how to distinguish what

features of a language are applicable to the functionality we needed to implement proved a useful

skill that will help us easily pick up new languages on our own in the future. Code Girl also inspired

us to extend our passion for encouraging and supporting women in computing to a new generation.

Channeling this passion, we want our program to reach as many young girls as possible, and we

would love to partner with summer camps, schools and/or the Girl Scouts to include Code Girl as

part of a curriculum to inspire young girls to learn how to program.

3.5.7 Compassion

Our compassion is evident in our desire to educate and enrich an often overlooked portion of the

youth, who are not given many educational programs or games specifically designed for them. By

beginning to teach basic computer skills and computer science ideas to young girls, we are giving

them the opportunity to develop their interests and skills to help them succeed.

24

Chapter 4

Conclusion

4.1 The Final Application

When users type in the URL for our website, they are taken to the application’s homepage, pictured

in Figure 4.1, which introduces them to the superhero story of the game. A slideshow presents

Grace, Ada, and the objective of the game, which is to customize a unique avatar while learning

computer science concepts.

Figure 4.1: Users are initially taken to the application’s homepage.

4.1.1 Login

To log in to the application, users select the ”Login or Signup” button on the homepage. Because

our application is hosted on Google Apps Engine, user registration and authentication is performed

25

through Google Accounts. Consequently, users are taken to the main login page for GMail, in Figure

4.2, where their parents can sign up for an account or log in for them.

Figure 4.2: Users’ parents login or signup via Google Accounts.

4.1.2 Avatar Customization

After users log in to the application, they are taken to the page for the first avatar customization

level, show in Figure 4.3, where they can see their avatar and begin customizing her. The page is

split into the Blockly canvas on the left, which includes a toolbar where blocks are grouped and

selected, and the avatar visualization on the right. They can start by adding a shirt from a toolbar,

and this is where our users first get exposed to the Blockly blocks. Users can then add a color block

to change the color of the shirt they selected. If they do not like the color or the shirt they selected,

they can drag the block to the trash and select a different one. The avatar serves as a reward system

to engage girls and make them want to complete the challenges, which introduce them to computer

science. In order to get more accessories for the avatar, users need to complete the challenges, so

they select the ”Unlock Accessories” button above the avatar to go to one.

4.1.3 Challenges

For the first challenge, pictured in Figure 4.4, users need to complete a puzzle, where they connect

a block that has the picture of an animal with the block that lists the animal’s name and select how

many legs the animal has. The purpose of this challenge is to familiarize users with the Blockly

26

Figure 4.3: Users customize their avatar, on right, using the accessories from the toolbar.

blocks and show them how to make selections within the blocks. Once users think they have the

correct answer, they can check the ”Check Answer” button, and if they are right, more accessories

will be unlocked and the users are redirected to the avatar page.

Figure 4.4: Users complete an animal puzzle for the first challenge to introduce them to Blockly.

Now, on the avatar customization page, the users can see a new category of blocks they can use

to customize their avatar further. For example, upon completing the puzzle challenge and being

27

taken to the second level in the avatar creation process, users can then add bottoms to the avatar

and change their color as well.

In the second challenge, shown in Figure 4.5, we start teaching coding concepts, the first being

sequentiality. We give users all of the blocks they need to complete the challenge on the canvas to

begin with because we want users to focus on the importance of having code in order, and not on

deciding how many steps to take. For this challenge, users need to make the robot sidekick move

around in a square, as depicted in the instructions the user sees upon starting the challenge. Once

the user has the right answer, they can click the ”Run Program” button and see the result of their

code.

Figure 4.5: Users learn sequentiality by connecting the blocks of code on the canvas.

In the following challenge, seen in Figure 4.6, we increase the difficulty of the challenges by

building on the computer science concepts we teach, introducing users to loops as an alternative to

sequentiality. This is similar to the previous challenge, but we do not put all the blocks on the canvas

because we want users to learn about loops and how they simplify a series of repeated steps. If a

user selects the wrong blocks, for example, she on picks a loop and a move forward block, then she

can run the program, and from the robot’s action, see that she completed the challenge incorrectly.

The user is then able to reset the challenge and try it again. Users are also able to slow down the

speed the robot moves at, so users can run the program and see exactly what movement corresponds

to each block.

28

Figure 4.6: Users learn how to use loops in place of iteration to repeat actions.

4.1.4 Saving the Avatar

Once users are happy with how their avatar looks, they are able to save a picture of their avatar

by selecting the ”Save Image” button on the final avatar customization level, shown in Figure 4.7,

and then print it out to share with their friends. When users are done playing the game, they can

logout, and the application will save their progress. Users can also save their progress at any point

in the game and return to this point later on.

4.2 Future Work

We are currently working on making the application fully-responsive, so when the application is

rendered on smaller screens, the display is not distorted. Now, when the application is viewed on

a small display, such as on a tablet, the Blockly canvas becomes very small, making it difficult for

users to drag blocks onto it and connect them with other pieces. By making our application more

compatible with tables, we are engaging users in a mode they are more comfortable with, since as

we learned in user testing, children are less familiar using a desktop and mouse to play games than

they are using mobile devices. We are also keeping up to date with the growing popularity of mobile

games and making our application competitive with programs like those developed by Made with

Code. Additionally, when our application is deployed on Google Apps Engine, it currently runs

and loads a bit slowly. To optimize our application, we plan to profile our code base to identify

29

Figure 4.7: Users can save the avatar as image once done customizing.

and resolve performance bottle-necks and use compressed JavaScript files when we deploy the final

application on Google Apps Engine. Finally, we are in the process of developing and testing more

games and accessories, as requested by the Girl Scouts who used our application.

4.3 Project Assessment

An assessment of the disadvantages and advantages of Code Girl in introducing girls to computer

science is provided in the following sections.

4.3.1 Disadvantages

With the target age range of five to eight year old girls we chose for our application, there is a sub-

stantial difference in reading comprehension and logic skills among users. As such, the application,

in particular the challenges, can be quite difficult for some users, yet very easy for others. We learned

in user testing, however, that prior experience with a visual programming environment was a better

indicator than age of how quickly users progressed through the application. Additionally, young

children are more familiar with playing games on mobile devices than they are with playing games

on a desktop or laptop, thus a native mobile application may be a more effective means of engaging

them in computer science than a web-based application, such as ours. To address this weakness, we

could make a native mobile version of Code Girl, in addition to the web-based application we have

already created.

30

4.3.2 Advantages

Our application appears to be effective at interesting young girls in computer science. As we saw in

user testing, the girls were engaged in the game and excited to learn that by completing challenges

to customize their avatar, they were learning code. Moreover, all but one of the girls reported that

they enjoyed playing the game, and most were actually disappointed that they finished the game

quickly, indicating that the superhero story and customization incentive successfully engage our

target audience in learning basic computing concepts.

4.4 Lessons Learned

There are few resources designed specifically for young girls that teach basic computer science skills.

To fill this gap, we developed Code Girl, which uses Blockly to interest girls in computing using

familiar concepts, such as puzzles, customization, and story-telling.

4.4.1 Objectives Met

In our application, successfully completing challenges unlocks new accessories, incentivizing game

play, so our users continue learning new concepts while dressing up their avatar as they would a

doll, appealing to their unique interests while educating, empowering and inspiring them.

31

Bibliography

[1] C. Corbett, C. Hill, A. St. Rose. ”Why So Few? Women in Science,Technology, Engineering,
and Mathematics”, American Association of University Women, Washington, DC, 2010.

[2] D. Gotterbarn, S. Rogerson. ”Computer Society and ACM Approve Software Engineering Code
of Ethics”, Computer 32.10, 1999, 84-88.

[3] T. Bell, B. Gibson. ”Evaluation of Games for Teaching Computer Science”, Proceedings of the
8th Workshop in Primary and Secondary Computing Education. Ed.: ACM. Aarhus, Denmark,
2013.

32

	Santa Clara University
	Scholar Commons
	6-1-2015

	Code girl
	Tracey Acosta
	Amanda Holl
	Paige Rogalski
	Recommended Citation

	tmp.1445016965.pdf.uMLT9

