
Santa Clara University
Scholar Commons

Computer Science and Engineering Senior Theses Student Scholarship

6-12-2013

Kosmos : a virtual 3-D universe
John Judnich
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in Computer
Science and Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Judnich, John, "Kosmos : a virtual 3-D universe" (2013). Computer Science and Engineering Senior Theses. Paper 3.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior/3?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: June 12, 2013

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

John Judnich

ENTITLED

Kosmos: A Virtual 3-D Universe

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

1

2

KOSMOS: A VIRTUAL 3-D UNIVERSE

by

John Judnich

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Engineering
School of Engineering
Santa Clara University

Santa Clara, California

June 12, 2013

3

ABSTRACT

Kosmos is an application enabling interactive visualization of a fictional 3D universe. It

offers users the opportunity to explore and experience an aesthetically pleasing virtual

environment complete with billions of high-resolution planets and stars. Kosmos

integrates several novel 3D rendering techniques in terrain rendering, large-scale particle

systems, etc. to make this level of graphical realism and scale possible. The efficiency of

the algorithms developed for this project enables average hardware (such as almost any

modern laptop) to run Kosmos smoothly. Moreover, through the use of the recent

WebGL standard, Kosmos may be viewed online1 in any modern web browser on any

major operating system, with no large downloads or additional software installation

necessary. Moreover, the author has released the full source code for Kosmos online for

free under the BSD Open Source License2.

1 Kosmos may be viewed with at judnich.github.io/Kosmos/ (note: may not run on older computers)
2 Full source code for Kosmos (plus additional documentation) is available at github.com/judnich/Kosmos

4

ACKNOWLEDGEMENTS

The author would like to thank the Dr. Nam Ling and the School of Engineering for

continued help towards providing research work, funding, and financial aid, without

which the author’s undergraduate education would not have been financially possible.

5

LIST OF FIGURES

Figure 1. "Moon" screenshot. .. 11	

Figure 2. "Alien sunset" screenshot. ... 11	

Figure 3. Illustration of cube to sphere mapping used for planets. 22	

Figure 4. Enumeration of the 23 symmetric cluster sets used in SCSLOD. 22	

Figure 5. Cross-sectional illustration of a depth interval grid. .. 23	

Figure 6. Illustration of Sharp Normal Map nonlinear interpolation. 25	

Figure 7. Comparison of regular normal maps (top) vs. Sharp Normal Maps (bottom). .. 26	

Figure 9. Kosmos introduction screen. .. 35	

6

LIST OF TABLES

Table 1: Functional Requirements .. 13	

Table 2: Nonfunctional Requirements .. 14	

Table 3: Project Risks ... 15	

7

TABLE OF CONTENTS

INTRODUCTION ... 9	

DESIGN AND IMPLEMENTATION STRATEGY .. 12	

FUNCTIONAL REQUIREMENTS ... 13	

NONFUNCTIONAL REQUIREMENTS .. 14	

TECHNOLOGIES USED ... 14	

DEVELOPMENT TIMELINE ... 14	

PROJECT RISKS ... 15	

TEST STRATEGY AND USE CASES ... 16	

SYSTEM ARCHITECTURE ... 17	

QUERY BASED RENDERING .. 17	

CONTENT QUERY CACHE WITH CONCURRENT LOADING .. 18	

COMPUTATION ON THE GPU .. 19	

IMPLEMENTATION DETAILS .. 21	

PLANET TERRAIN RENDERING .. 21	

HIGH RESOLUTION NEAR SURFACE RENDERING .. 23	

“SHARP NORMAL MAPS” .. 24	

FAST FRUSTUM CULLING .. 27	

GENERAL PROCEDURAL GENERATION NOTES .. 27	

STARFIELD GENERATION AND RENDERING ON THE GPU ... 28	

STAR RENDERING / SHADING .. 29	

CONCURRENT GENERATION OF HIGH-RESOLUTION PLANET DATASETS ON THE GPU ... 30	

8

SOLVING PRECISION LIMITATIONS ... 32	

EMULATED 128 BIT COORDINATES .. 32	

USING FLOATING ORIGIN ON THE GPU .. 32	

Z-BUFFER PRECISION CONCERNS AND MITIGATION: LAYERED DEPTH RENDERING 33	

USER INTERFACE .. 35	

INTRODUCTION SCREEN .. 35	

AUTOPILOT BUTTON: “INTELLIGENTLY” AIDED VIEW CONTROLS 35	

SHARE BUTTON .. 36	

LOCATION PERSISTENCE ... 37	

BROWSER COMPATIBILITY WARNING .. 37	

DATA FILE FORMAT ... 37	

SOCIETAL ISSUES ... 39	

OPEN-SOURCE DECISION .. 39	

CONCLUSION .. 41	

LESSONS LEARNED ... 41	

FUTURE PLANS ... 43	

REFERENCES .. 44	

APPENDIX .. 45	

9

INTRODUCTION

“Kosmos” is a 3-D visualization of a fictional universe containing billions of stars and

planets that runs on relatively inexpensive computing devices. Moreover, Kosmos is

widely accessible simply through a modern web browser (with no large downloads or

software installation required). This visualization engages the users by presenting an

interaction mechanic that leads the user continuously through a wide range of view

scopes within the galaxy. Kosmos enables the user to obtain some sense of the massive

scope of planets, stars, star clusters, etc. as they fly around and interactively explore this

virtual universe from many perspectives and viewpoints. The full source code for

Kosmos is available to the public for free under the BSD Open Source Licence [1].

Kosmos represents an intersection of academic research in algorithms, software

engineering implementation, and art. The development of Kosmos has involved:

• Cutting edge academic research towards pushing the boundaries of modern

computer technology, particularly (in this case) 3D rendering algorithms and

mobile graphics hardware.

• A reasonably large engineering effort spanning multiple implementation iterations

while technology is incrementally improved, new algorithms created, and better

engineering practices learned.

• Artistic expression, and an interpretation of the natural beauty of the massive

scales and structures in the real universe.

In other words, Kosmos targets three seemingly separate but co-dependent problems:

1. Mobile 3D graphics technology needs to be improved to enable progressively

richer, higher resolution, and larger scale visualizations on mobile devices.

2. There are no 3D libraries currently available that include support for the

visualization of large 3D planets, billions of stars, etc.

3. There are no mobile or browser-based interactive visualizations of a virtual 3D

universe that allow you to freely explore a vast area of space at resolution high

enough to see details on planet surfaces.

10

Problem #1 is a research problem, which stands on its own as a valuable area to explore

and push the boundaries of technology. The majority of time for this project has been

devoted to such research, resulting in several successful contributions to the field of 3D

rendering algorithms (including some beneficial even beyond the scope of this particular

project) including a full technical paper currently under review by the journal IEEE

Transactions on Visualizations and Graphics, plus conference papers already published.

Problems #2 and #3 above are market problems. Upon further research since this

project’s initial proposal, the author discovered full-scale universe visualization software

does already exist3. Rather than continuing in a similar direction to this existing software,

the author chose to retarget this project towards a different demographic.

Existing Software (“Space Engine”) [2]

• Requires a large >500 MB download

• Requires installation on the computer’s hard drive

• Requires Windows (no Mac, Linux, or mobile support)

• Requires a powerful CPU and GPU found only in expensive computers

Our Software (“Kosmos”)

• Runs on an average modern laptop (and eventually mobile devices, e.g. tablets)

• Requires only a modern web browser – no additional installation necessary

• No large downloads – the web application loads almost immediately

In particular, the latest version of Kosmos is designed to run on the average modern

laptop. Most significantly, no software installation or large downloads are necessary

because the entire application will be available directly from any modern web browser

(facilitated by the recent web standard technology “WebGL”). It is not necessary to

download large amounts of data since most of the content is generated mathematically in

real-time, and thus the entire application compressed to an extremely small overall size.

Figures 1-2 show some screenshots produced directly by Kosmos, unmodified.

3 en.spaceengine.org

11

Figure 1. "Moon" screenshot.

Figure 2. "Alien sunset" screenshot.

12

DESIGN AND IMPLEMENTATION STRATEGY

The overall design philosophy for Kosmos is simple:

• Value content quality over quantity

• Value understated simplicity over impressive complexity

These principles are aimed at ensuring the end product provides a consistently high

quality user experience for our target audience.

The implementation strategy consists of two major guidelines:

• Iterative bottom-up development with frequent refactoring

• Composition or component oriented design

Composition/component oriented design refers to minimizing the abuse of object oriented

programming features generally considered harmful (e.g. bloated inheritance trees).

Iterative development is an extremely effective approach to rapidly developing high

quality, complex software. This method of software development resembles a process of

iterative evolution, as opposed to older (and usually failed) efforts to design entire

software system architectures before prototyping or implementing them.

For example, this project began initially as a native application using C++ and OpenGL,

only running on powerful NVIDIA video cards. Although these early prototypes provided

valuable experience and research material, in the end all of these iterations were

discarded in favor of a different target platform (this was due to the discovery of

SpaceEngine [2], which already accomplished goals similar to the original Kosmos

project).

Due to lessons learned from these previous prototypes, the latest web-based version is

much more efficient with an overall vastly improved software architecture. Most

importantly, the iterative development model allows for rapid reaction to market changes

as demonstrated by the successful late rewrite of this project. This kind of response is not

otherwise possible with more rigid and antiquated processes (e.g. waterfall).

13

Functional Requirements

Functional requirements represent the core set of features that must be implemented to

complete the project. These requirements are listed below.

P1 features are required. P2 and P3 are optional, with different levels of priority.

Table 1: Functional Requirements

Priority Requirement Name Requirement Description

P1 Planet Terrain The graphics engine shall display 3D planets with

detailed high-resolution mountains and ground

level features.

P3 Atmospheric

Scattering

The graphics engine should simulate 3D

atmospheric scattering to display an atmospheric

glow from space and realistic sky coloring from

within the atmosphere.

P1 Stars The graphics engine shall visually represent

millions of stars in 3D space, each of which may

have orbiting planets.

P3 Nebulae The engine may visually represent gas clouds and

nebulae within the virtual 3D universe.

P2 Exponential View

Speed Control

The user interface should provide the ability to

modify viewer speed on an exponential scale.

P2 Automated Speed

Control

The user interface should provide a mode (enabled

by default), which automatically scales the

viewer’s speed based on proximity to planetary

bodies to ease the user’s navigational task.

P3 Automated Viewer

“Upright” Orientation

The engine should automatically orient the viewer

upright when approaching planets (since this is the

only context where “upright” is properly defined).

14

Nonfunctional Requirements

Nonfunctional requirements are aimed at ensuring the end product provides a high quality

user experience for Kosmos’s target audience. These requirements are listed below.

Table 2: Nonfunctional Requirements

Constraint Description Optimization Strategy

Performance maximization Routinely benchmark and profile whole program

performance. Research, develop, and implement

the most efficient algorithms for each

computationally demanding feature.

Aesthetic visual quality refinement Routinely obtain and review subjective feedback

from random samplings of the program’s target

audience.

Intuitive visual interface (Same as above)

Technologies Used

• CPU Languages

o CoffeeScript, JavaScript

• GPU Language

o GLSL

• APIs

o WebGL (JavaScript OpenGL bindings supported on modern browsers)

o jQuery (JavaScript cross-browser compatibility library)

o glMatrix (JavaScript library providing simple matrix math operations)

Development Timeline

The latest web-based version of Kosmos was rewritten completely from scratch in about

six weeks, with around two weeks of break in the middle. Therefore a full Gantt Chart

does not make sense for this project (since too many features were completed at too fast

of a pace to document individually). Note that a Gantt Chart could be used to illustrate

15

the development of prior prototypes (which occurred over a longer period), but these are

not really relevant to the current version of Kosmos, since they use a different set of

technologies and techniques.

Project Risks

Table 3: Project Risks

Risks Consequences P S I Mitigation Strategy

Conflicting

schedule

Group is unable to

meet for decision-

making

0.5 1 1.00 Default project leader can

make decisions in the event

of schedule failure.

Schedule important

meetings ahead of time.

Insufficient time

to satisfy formal

requirements

Desired features

may not be

implemented

0.5 3 1.50 Prioritize features in order

of desired importance

Data loss Restart project .01 10 0.10 Heavily redundant backup

including multiple server-

based and physical copies.

Insufficient

application

performance

End users will have

higher system

requirements than

desired

0.8 4 3.20 Apply the best algorithms

from cutting-edge research

to computationally

expensive processes.

Unsatisfactory

aesthetic quality

End users do not

find visual

experience pleasing.

0.5 5 2.50 Gather and respond to user

feedback frequently

through development.

Unsatisfactory

user interface

quality

End users will have

unpleasant

experience

interacting with

software.

0.2 5 2.50 Gather and respond to user

feedback frequently

through development.

16

Test Strategy and Use Cases

Kosmos testing strategy:

• Unit test self-contained components which have clearly defined behavior

• Use automated regression testing for unit tests and performance metrics

• Manually test subjective visual elements

• Manually test complex nondeterministic simulation interactions

Due to nondeterministic user input tied to the simulation path, the correct results of a

complex interactive simulation cannot be predetermined to the formal precision necessary

of automated unit testing. Moreover, subjective aspects like visual aesthetic quality have

no known formal metric. Thus, some areas must be tested manually, such as:

• Interaction dynamics and logic

• User engagement and entertainment factor

• Overall look and feel, user experience

• Aesthetic quality of visual content

From the end-user perspective, the following use cases must be tested as well:

• User opens web application and reads instructions

• User navigates around using the control scheme

• User closes application and resumes later at the same location

17

SYSTEM ARCHITECTURE

Since Kosmos is an interactive visualization/simulation, discrete state diagrams and flow

charts are extremely simple. Usually there is only one state, and a flow chart consists of a

simple infinite loop with termination only when the application ends.

Due to power saving features however, Kosmos uses a simple two-state simulation:

• Active State: If the user’s view remains a static unmoving image and no content is

being concurrently loaded, change to idle state; else, repeat the active state.

• Idle State: If the user clicks on any control, forward the data to the appropriate

function and change to active state. Else, remain idle, conserving power.

Beyond this extremely simple high-level state, the majority of complexity for simulations

usually occurs in a more “continuous” state of the application, represented by a large

universe of data, data structures, and viewer coordinates. Each will be described in

moderate detail below in the appropriate sections.

Query Based Rendering

The most important architectural design of Kosmos is how 3D content from such a

massive universe is managed and rendered seamlessly to the screen without pausing at

any time to load additional content. In this paper, the architectural design addressing such

requirements is called “Query Based Rendering.” In contrast to traditional architectures

for rendering large 3D worlds, Query Based Rendering is nearly stateless and allows the

render process to be completely decoupled from content management and loading.

Rather than maintaining progressively updated data structures through the course of the

user’s movement through the world, Query Based Rendering emphasizes using

decoupled database(s) specifically optimized for spatial queries (requests for content

given a location and radius, for example). This is in contrast to traditional 3D rendering

approaches for large worlds, where large, complex, and confusing data structures are

maintained manually to track nearby objects as the viewer moves through the world.

18

While Query Based Rendering in not an entirely new idea (for example, older 2D game

engines often used similar approaches), its application as a unified architectural rule to

3D rendering engines seems to be unique.

Query Based Rendering accommodates LOD (level-of-detail) optimizations extremely

well, since resolution can easily be made a parameter to the spatial query. For example,

the render process may issue several spatial queries covering concentric rings (different

radius intervals from the viewer), requesting a different resolution at each distance. Then,

the render process can pass the query results to draw functions, achieving a clean and

consistent way to implement a progressive LOD.

Note that Query Based Rendering cannot be entirely stateless, since that would imply

everything on the screen passes through query calls every single frame (which would be

very inefficient, and instantly bottleneck CPU-GPU bandwidth). For this reason, this

architecture assumes the database will be custom designed for extremely fast queries,

with a VRAM (video memory) content caching scheme to efficiently deal with content

that takes considerable time to load. Therefore from the render process’s view, all of this

caching behavior can be ignored because it’s already taken care of. As a result, the render

process does not need to manage any loading/unloading of content, but simply focus

solely on drawing content to the screen. This decoupling is a big advantage over

traditional architectures, because the complexity of Kosmos’s render system would

otherwise be nearly unmanageable without it.

Content Query Cache with Concurrent Loading

Note: This particular implementation of this content query cache is specific to Kosmos;

not all 3D rendering engines necessarily need to use the same approach here in order to

fall under the “Query Based Rendering” design theme.

Kosmos implements a generic caching mechanism that can be applied to any persistent

content in the game world, as long as a unique identifier can be produced for that content.

At a high level it operates as an ordinary cache. You instantiate a ContentCache object,

providing a callback function that loads and returns content for a given contentId. Then,

19

whenever you need some content, you request it through the ContentCache’s

getContent() function. This function will return the content immediately if it is already

loaded (stored in an internal id-content hash map), or forward the request to the callback

function otherwise.

In addition to this standard caching behavior however, Kosmos’s ContentCache class

supports progressive loading – it allows the callback loader function to load only a

fraction of the entire resource in a given call, if desired. This feature is integrated by

returning a pair value from the loader callback (percent complete, and intermediate

content). If such a pair is returned, the ContentCache intelligently puts it back into the

loading queue. Then, the next time ContentCache’s update() method is called, the load

callback is issued again. This process repeats indefinitely until the load callback finishes

loading the entire resource, at which point it will return a 100% loaded value and the

ContentCache will move it to the jobCompleted queue.

This system provides a clean and unified interface for concurrently loading complex and

large media files, without disrupting the natural cache interface. The only

accommodation required for this asynchronous loading behavior is of course the

realization by users of a ContentCache that the getContent() method may return null for

perfectly valid resources until they finish loading in the background.

For a more technically detailed specification of Kosmos’s ContentCache, simply refer to

the source code (since an English or diagram based specification takes far more space yet

is still less precise).

Computation on the GPU

Since Kosmos is implemented as a web app, the only CPU programming language

currently possible is JavaScript. Unfortunately while modern browsers run JavaScript

impressively fast for a scripting language, it’s still considerably slower than native

compiled code. Since efficiency is an important goal of Kosmos, this performance issue

presents a technical challenge. The design of Kosmos approaches this issue by

emphasizing offloading as much work as possible to the GPU (using GLSL programs via

20

WebGL). GPU-based computation makes decent performance possible, since GLSL is

executed at native speed.

21

IMPLEMENTATION DETAILS

The algorithms and architectural designs incorporated into the project are overviewed

briefly below. An extensive description of every technical component is not possible in a

relatively short design project thesis, since each section below could be expanded into

over 10 pages of precise technical detail.

However, particularly promising algorithms and tools developed may branch off into

their own papers and open-source projects where each technology is documented in-

depth. For example, Tuple Markup Language has branched off into its own open-source

project with individual in-depth documentation (see github.com/judnich/TupleMarkup).

Also, several technologies outlined below are published or under review for publication

as academic papers.

Finally, note that the most precise design specification possible is simply the source code

itself, which is provided in full 100% free and open-source (released under the BSD

Open Source License) at: https://github.com/judnich/Kosmos

Planet Terrain Rendering

Relatively undistorted spherical tessellation is achieved with a cube whose six faces are

regular grids, whose vertices are then mapped to a sphere using simple vector

normalization (see Figure 3).

Each cube face is then rendered as a quad tree of grid nodes using the “Symmetric

Cluster Set Level of Detail” terrain rendering algorithm. For more information on this

technique, see our conference papers [3][4]. The abstract for the most recent paper

follows:

22

Figure 3. Illustration of cube to sphere mapping used for planets.

Abstract: In this paper, we present an improvement for batch-based quadtree terrain

rendering that drastically reduces the number of draw calls to the graphics processing

unit. As a result, more fine-grained triangular optimization is possible without sacrificing

triangle throughput. No extra preprocessing is required. In general, quadtree terrain

algorithms recursively subdivide mesh geometry to meet visual error constraints. Batch-

based techniques use buffered grid blocks as the subdivision primitive for better triangle

throughput [5]. We base our algorithm on structural observations of such terrain

quadtrees. First, we show that the four sub-nodes of any non-leaf can be categorized into

sixteen distinct states of drawing behavior. These states are symmetric in such a way that

allows just five unique geometries to represent all of them. With the additional

observation that leaf nodes appear in groups of four across regions of homogeneous grid

resolution, we develop a technique employing 23 unique geometric batches from which

any terrain can be rendered (see Figure 4). The resulting algorithm reliably reduces draw

calls by a factor of 6 on average, and achieves render performance 30 to 50 percent faster

than comparable techniques [6].

Figure 4. Enumeration of the 23 symmetric cluster sets used in SCSLOD.

23

High Resolution Near Surface Rendering

For more information on this technique, see our technical paper draft [7], the abstract for

which follows:

Abstract: In this paper, we present a novel space-skipping algorithm for per-pixel

displacement map rendering on the GPU that significantly accelerates ray convergence.

Without any preprocessing, this technique achieves raw displacement map rendering

performance two to four times as fast as other techniques without loss of visual quality.

Displacement mapping algorithms accurately render complex shapes projected within flat

geometry by casting rays from the viewer into a tangent-space height-field; this enables

otherwise unachievable resolutions of 3-D detail in games and simulations [8]. Our

algorithm accelerates ray convergence by first computing ray boundary intervals within

screen-space uniform pixel blocks (see Figure 5). The final pass then uses the

dynamically computed depth intervals to converge on a precise intersection point very

rapidly. As a result, our algorithm enables rendering of raw displacement map data

significantly faster than existing algorithms. Moreover, this technique can provide

performance improvement to other existing per-pixel displacement mapping algorithms

as well, with or without preprocessing.

Figure 5. Cross-sectional illustration of a depth interval grid.

24

“Sharp Normal Maps”

Most 3D rendering engines use lighting models (the mathematical model that calculates

the color of pixels on the screen) that make use of surface normal vectors describing

surface features. It is therefore extremely important to store high-resolution normal maps

for best results. As a result, all modern graphics processing units support built-in

hardware support for simple fixed-rate image compression to enable higher resolution

normal maps under the same memory constraints (e.g. DXT texture compression

ubiquitously available from the OpenGL API).

Sharp Normal Maps introduces a new resolution-enhancing method designed specifically

for normal map data, which has the potential to reduce normal map size by a factor of

four without loss of visual quality. This technique works in addition to existing DXT

compression, thus multiplying even further the feasible normal map resolution under

given memory constraints.

In practice, normal maps tend to contain a broad distribution of surface feature frequency

(low frequency shape, combined with occasional high frequency regions producing

“sharp” features). This is especially true of terrain shapes with ridges and valleys found

in Kosmos: valleys consist of relatively low frequency features, while peaks and ridges

are quite small and require high frequency detail to appear correctly. Sharp Normal

Mapping takes advantage of this structural feature of normal maps through an

unconventional use of the hardware-accelerated linear interpolation behavior used in

computer graphics.

From an information-theoretic perspective, three-dimensional unit-length surface normal

vectors are wasteful since the surface of a unit sphere is two-dimensional. Sharp Normal

Maps use this third dimension of information to store a “sharpness factor”. Specifically,

Sharp Normal Maps divide the length of normal vectors by this “sharpness factor”.

Understanding why downscaling the normal vectors actually affects the interpolation

behavior of the per-fragment vectors requires understanding of how the GPU interpolates

between texture/vertex attributes. Intuitively, one would want normal vectors to be

spherically interpolated (that is, the angle between two vectors interpolated linearly).

25

GPU hardware however is generic and does not change interpolation behavior for

different data. All data is linearly interpolated; when supersampling (magnifying) a

normal map, simple linear interpolation is used between each discrete normal vector

sample. As a result, interpolated normal values for intermediate locations are not unit

vectors, even with traditional normal mapping. As expected, modern 3D engines

renormalize the vector values on a per-fragment basis (the fragment shader simply

rescales the vector to normal length) to resolve this problem.

Therefore, by scaling the relative length of normal vector samples, although the

renormalized unit normal vectors at the endpoints are identical, the linear interpolation in

between behaves differently. In particular, depending on the source/source vector length

ratio, the renormalized normal vectors will be interpolated with a function ranging

anywhere from the regular linear behavior, to extremely nonlinear “accelerated”

interpolation. This behavior is roughly illustrated in Figure 6.

Figure 6. Illustration of Sharp Normal Map nonlinear interpolation.

This technique actually creates a look that is impossible to replicate fully by even

extremely high resolution normal maps without Sharp Normal Mapping, but for

simplicity one can mathematically examine only the intermediate interpolation midpoints

and modify appropriately with correctly chosen “sharpness factors” at each point to

emulate normal maps twice the horizontal and vertical resolution. The mathematics for

computing the corresponding “sharpness factor” to produce a particularly higher

resolution output is straightforward but messy (involving a complex arctangent ratio

equality). See Figure 7 for a visual comparison of Sharp Normal Maps vs regular normal

maps using exactly the same resolution for both.

A
B

A
B

26

Figure 7. Comparison of regular normal maps (top) vs. Sharp Normal Maps (bottom).

Notice that any 3D rendering engine that uses normal maps (i.e. almost every 3D game

engine in operation today) can immediately make use of Sharp Normal Maps to either

achieve up to 4x reduction in memory usage or a 2x2 normal map resolution

improvement. Moreover, since the per-fragment renormalization is already being

performed, Sharp Normal Maps incurs literally zero performance or memory overhead.

Research has so far revealed that Sharp Normal Maps appears to be a completely new

invention, despite its extreme implementation simplicity. A technical paper and open-

source normal map compression tool is being written to enable the rest of the industry to

use this technique.

27

Fast Frustum Culling

Existing frustum culling techniques today usually perform a bounding sphere check

followed by a more precise bounding box check. The bounding sphere check is faster,

preventing the slower bounding box check from wasting CPU time from obviously

occluded objects.

Kosmos presents a better frustum culling technique using dual bounding spheres: one

sphere represents the max distance of all vertices from an object’s origin; another

represents the min distance of all vertices. During frustum checks, an object’s point-plane

distance is checked against one of the frustum planes, and simultaneously checked

against the min and max. This technique effectively performs early culling for almost all

objects both inside and outside of the viewing frustum.

The only objects indeterminate by the dual-sphere check are objects likely directly

intersecting a frustum plane. This reduces the number of frustum culling candidates from

O(n^3) to O(n^2). As a result, the indeterminate objects may check full bounding convex

hulls against the frustum plane without concern for performance. This method results in

more efficient use of both CPU and GPU compute resources.

General Procedural Generation Notes

All content within Kosmos’s virtual universe is procedurally generated through a

combination of pseudorandom number generators and various mathematical filters. This

means everything you see in Kosmos is completely computer/mathematically generated;

Kosmos does not use any external media/resource files of any kind.

For example, planet terrain heightmaps are generated from a spatially parameterized

multifractal combining smooth perlin noise, ridged noise, etc. into a fractal dataset that

resembles a combination of mountains, erosion, rolling hills, etc.

Procedural generation is custom-designed for each type of content (terrain, star cluster

formation, etc). Computer-generated content can be selectively overridden with “real

world” datasets if desired, although right now this is not done.

28

Since the universe contains billions of stars and planets, it makes no sense to pre-generate

and save their data. As the viewer’s position moves and necessitates more data to render

various details, it is generated on-demand in real time.

Starfield Generation and Rendering on the GPU

Draw calls to the GPU are associated with considerable overhead due to driver and PCI

bus latency; too many draw calls will leave the GPU idling, waiting for commands and

doing nothing most of the time. Therefore, a common optimization when rendering large

numbers of simple objects is known as “batching”, where many objects are merged into

large data buffers in memory and drawn with a single command to the GPU.

Kosmos renders stars as a rolling 3D grid of cubic star batches. Rendering stars queries

the nearest 9 cube blocks surrounding the viewer, culling out blocks that are outside of

the field of view. Then each block is rendered with a single draw call. Each block

contains several thousand stars generally, and represents the stars within that region of

space. The intensity of stars near the maximum view range cutoff is distance-modulated

from the vertex shader to create a gradual fade-out effect.

Note that due to JavaScript (as well as general) performance issues, populating new

batches of stars dynamically could incur serious lag as the viewer moves rapidly through

space. This is undesirable, since the ability to move at any speed smoothly is a goal of

Kosmos.

To solve this technical challenge, Kosmos uses an unusual method to generate

pseudorandom star positions on the GPU. This works by generating a large vertex buffer

containing around 10,000 randomized stars pre-batched and ready to render when

Kosmos first loads. Then, whenever a cube block is being rendered, based on the desired

density of stars in that space and a random seed value, an appropriate subset of the large

vertex buffer is rendered (OpenGL allows selectively drawing subsets of geometry

buffers.) This approach produces visual results humanly indistinguishable from

completely random star position populations, but with zero runtime overhead associated

with shuffling star positions as desired according to spatial random seed value.

29

Star Rendering / Shading

Stars are rendered using a simple fragment shader applied to a camera-facing billboard

quad. The fragment shader was artistically tuned to achieve the desired results, with some

physical / mathematical inspiration as well. It works

by simply scaling the intensity of light using inverse

distance squared from the center of the billboard

quad in view space. Specifically, the equation used

is:

Lrgb = min[Crgb / (Δx2 + Δy2), 1]

where “min” computes component-wise minimum,

and Crgb is an extremely high dynamic range light

value representing the intensity and color of the star

(usually around ~100 in magnitude, where 1.0 is

screen pixel color component maximum). This

equation creates a visually appealing radial “glow”

effect, as seen in Figure 14.

The min function used here represents the GPU’s

automatic color saturation behavior; when an output

color value exceeds the maximum value 1.0 for

each component (red, green, and blue), it is simply

clamped/saturated to that value. Note that since

saturation occurs per-channel, extremely bright

output values (e.g. those near the center of the star) are saturated to full white.

Experiments were also done where saturation was performed first and color applied later

in order to preserve color of the inner solid part of the star, but an aesthetic choice was

made against this, as it did not create the same aesthetic feeling of extreme brightness.

Figure 8. Radial star glow example.

30

Concurrent Generation of High-Resolution Planet Datasets on the GPU

An important goal of Kosmos is that the entire universe is seamlessly interact-able, with

no loading screens or unexpected freezes while new content is loaded. With a universe so

large, it is of course impossible to maintain all content in memory at once. Therefore, it is

important to implement a high quality concurrent content loading system. This is a

difficult problem in every 3D engine, because implementing concurrent loading is a

careful balance; loading too fast causes lag and stuttering, but loading too slow causes

frustratingly long periods of low-resolution placeholder content being displayed.

As described in the System Architecture section, Kosmos uses a unified progressive

loading cache system that facilitates this concurrency in various parts of the engine. Of

particular note is how Kosmos uses this interface to implement the concurrent loading of

planet datasets, which are fairly large – a single high-resolution planet dataset consumes

about 500 MB of video memory, and all of this is generated concurrently in the

background when the viewer approaches the planet.

First, note that the concurrent content cache enables progressive loading but does not

enforce any particular rate at which content is concurrently loaded. Therefore, Kosmos

implements a variable rate loading system where an in-progress load job can be sped up

or slowed down at any time. Specifically, the loading speed is dynamically adjusted

based on the viewer’s proximity to the planet. When the user is viewing the planet from a

long distance and approaching slowly, the regular load rate is used – this reduces loading

lag to indistinguishable levels. As the user gets extremely close (in danger of seeing

blurriness from the low resolution data set), the load speed is automatically multiplied 2x

to ensure the best visual results on screen.

The actual generation of planet content itself is accomplished with a very complex GLSL

fragment shader applied to a fullscreen quad, with the framebuffer configured to write the

results to a RGBA texture in VRAM. The incremental loading is accomplished by

adjusting the OpenGL viewport and scissors to only a fraction of the whole vertical

range, therefore effectively performing exactly as much work as desired. (The partial data

structure returned to the concurrent content cache represents how much of the vertical

31

range has been already rendered, and intelligently chooses the next vertical region when

starting the next load step.) Note that when issuing the draw call for this operation,

OpenGL is smart enough to allow it to run in parellel with the rest of the ordinary render

process; as long as no other render operations depend on the output from such a draw call

(and they don’t since the texture is not used until fully complete), it is executed in

parallel, and therefore does not disturb regular render process latency.

Note that there are actually two stages of generation for planet datasets. In the first stage,

only the heightmap of a planet cube face is generated. Heightmaps are initially generated

to an internal temporary framebuffer with a single fixed precision component (for the

height values). Then, a different shader generates normal map values from this heightmap

(applying Sharp Normal Map enhancement, as described in previous sections) while

rendering the final results to a more permanent four-channel RGBA render texture target.

The RGB components of this texture store the sharp normal map, while the A component

stores the terrain height. This data is later used by the planet terrain rendering algorithm

(SCSLOD) in a vertex shader via vertex texture fetch.

32

SOLVING PRECISION LIMITATIONS

Emulated 128 Bit Coordinates

Due to the massive size of the virtual universe in Kosmos, even 64 bit floating point

precision is not nearly enough to represent the range of scopes necessary with sufficient

precision. Ideally, one would use 128 bit fixed-point coordinates consisting of two 64 bit

components (integer and fractional), but unfortunately JavaScript is a poorly designed

language and does not support integer types at all. Still, a solution was necessary.

Kosmos emulates a high precision coordinate system using pairs of two 64 bit floating

point values (the only numeric type available in JavaScript). This is configured such that

a scalar coordinate x = xa + xb, where xa contains the integer component and xb the

fractional. Adding two numbers together therefore consists of adding their integer parts

and fractional parts, etc. Note however that it’s important to correctly match integer parts

with integer parts when constructing a new summed scalar, because due to floating point

prevision behavior, mixing up the component magnitudes would result in the fractional

parts being rounded off.

Using Floating Origin on the GPU

Even with “pseudo-128-bit precision” emulated from JavaScript, one still encounters a

serious limitation of modern GPUs: The vast majority of GPUs only support 32-bit

floating point values when performing OpenGL 3D rendering. Even though some GPUs

support double precision 64 bit floats via compute frameworks (e.g. CUDA or OpenCL),

this does not benefit OpenGL, and typically using such larger floats comes at a

significant performance impact. Therefore, Kosmos required a way to render a universe

consisting of an exponential scale of scope ranging 128-bit coordinates using only 32-bit

GPU computations.

In general this is impossible, but fortunately perspective projection provides a special

case where the theoretical issue can be avoided. Simply put, since objects in the distance

are seen much smaller than objects near the viewer, distant objects do not need as much

33

precision as those very close. Theoretically, as long as the destination screen resolution

(with supersampling / anti-aliasing taken into account) does not exceed 32-bit precision,

there should be some way to achieve sufficient precision.

The solution in this case is to use a floating origin system on the GPU. Specifically, all

render operations are performed relative to the viewer. So, whenever the CPU sends the

GPU model/view/projection matrices, the model and view matrices must be pre-

multiplied. Another important consideration is that GPU programs must take care in

general not to inadvertently transform coordinate values to great distances, then back

again, since this will cause floating point precision issues such as jittering output.

z-Buffer Precision Concerns and Mitigation: Layered Depth Rendering

Yet another limitation of modern GPU hardware is the restriction to 24-bit or 32-bit depth

buffers. Depth buffers (commonly referred to as z-buffers) are necessary for the 3D

objects to self-occlude, i.e. for shapes near the viewer to correctly conceal shapes that

appear behind. Unfortunately, z-buffer precision is not particularly high, with most GPUs

supporting only 24-bits (the remaining 8 bits usually dedicated to stencil buffer

operations). This is usually not a problem, since most simulations and video games do not

have a depth range so vast that this becomes an issue. However in Kosmos, a given frame

may need to render distances ranging from meters to light-years, simultaneously. This

scope easily exceeds the capacity for a 24-bit or even 32-bit depth buffer to retain useful

precision, therefore causing serious tearing and jagged artifacts on the screen.

Kosmos implements a layered rendering approach to solve this problem. Specifically,

rather than rendering the scene all at once with the same depth buffer, several render

passes are made. First, stars and distant planet dots are rendered with the z-buffer

disabled (since star shading is additive and therefore commutative). Then, low-resolution

distant planets are sorted from farthest to nearest, and rendered with also z-buffer

disabled. This technique still produces the desired occlusion effect, as long as no two

planets physically intersect one another (depth sorting is an older method of object

occlusion, and works very well here since it doesn’t require a z-buffer). Finally, high-

resolution planets are rendered with z-buffer enabled. Moreover, the near and far planes

34

of the view frustum are optimally set every frame based on the nearest and farthest

visible point on the high-resolution planet mesh.

35

USER INTERFACE

The user interface in Kosmos is extremely minimalist. It consists simply of a large slider

bar on the left to control speed, with three buttons: Autopilot, Reverse, and Share.

Introduction Screen

When the user first loads Kosmos, they are greeted with a simple welcome message

providing all necessary instructions in a single sentence (see Figure 9).

Figure 9. Kosmos introduction screen.

Autopilot Button: “Intelligently” Aided View Controls

When approaching a planet from space, the viewer’s roll orientation is not guaranteed to

be “upright” from the planet’s perspective, since “upright” is of course relative to what is

considered “down” and there is no such thing as “down” in deep space. However, since

Kosmos’s view controls do not provide a specific method of controlling roll orientation,

it’s important to support a feature where the camera is automatically oriented upright

36

when the viewer approaches a planet. This behavior is accomplished by converting the

camera’s orientation quaternion to a 3x3 rotation matrix, correcting the up vector, re-

orthogonalizing, converting back to quaternion, and finally performing a smooth

spherical linear interpolation on the quaternions to animate the rotation smoothly.

In addition to automatic orientation controls, another control issue encountered was

difficulty in adjusting viewer speed due to the vast exponential scale of the universe. In

particular, the difference in speed / scale between navigating the surface of a planet,

versus traveling between planets, versus traveling between stars are all separated by

many orders of magnitude. While the default speed slider control is on an exponential

scale, it’s still difficult to precisely set the appropriate speed. Kosmos solves this issue by

providing an “Autopilot” feature (enabled by default) where the viewer’s speed is

automatically scaled relative to one’s proximity to planetary bodies. As one approaches a

planet for example with the speed bar at a constant setting, the view speed will

automatically decelerate down to a gentle approach vector.

Share Button

When the user discovers an interesting object or view, it would be useful to be able to

share the discovery by externally referencing the desired location / view orientation.

Kosmos implements an interface where global view orientation and position coordinates

may be provided as a part of the URL, allowing any location / view of the universe to be

directly hyperlinked. Most importantly, a simple “Share” button is provided, which when

clicked, displays a text box containing a link to what the user is currently seeing.

This link can then be copied and pasted to the user’s favorite social networking site,

email, chat, or any other communication medium. This copy-paste method was preferred

to the traditional “Share on [insert social network here]” method because it is simpler and

more universal.

37

Location Persistence

When the user stops using Kosmos and returns later, it would be undesirable if the view

location and orientation were reset to a default every time. As a result, Kosmos

periodically saves the viewer’s location and orientation to persistent storage on the client

side (specifically, Kosmos uses HTML5’s localStorage feature). When started, Kosmos

automatically checks this local storage and restores the saved location if present.

Browser Compatibility Warning

Unfortunately, Kosmos encountered a number of major compatibility issues where

WebGL (the most important API Kosmos uses) behaves inconsistently on some browsers

and operating systems. In addition to attempting to mitigate the issues themselves and

work around browser glitches (more details are provided on these issues in the

Conclusion section below), Kosmos will automatically display a pop-up warning

message informing the user if his/her operating system or browser is known to be

problematic with advanced WebGL. An option to click a “Try Anyway” button allows

the user to ignore the warning and attempt to run Kosmos.

Data File Format

Loading lightweight configuration options and media from external files is a very

important capability that applications require to separate configuration from

implementation. Therefore a simple, consistent, and high performance data format is

desirable.

The author presents a new markup language, called Tuple Markup Language. TML is an

extremely simple all-purpose markup language: nested lists with bracket-minimizing

syntax. It enables YAML-like and XML-like semantics within the same clean and

consistent language, plus much more.

TML is released as open source and other developers are encouraged to use it. Also, full

documentation and examples are available at: https://github.com/judnich/TupleMarkup.

The following is a simple example of TML demonstrating markup semantics:

38

[html |
 Hello. This is an example [b|language] test.
 [div [class testc] | And this text is enclosed in a div.]
 [a [href google.com] | Click this link [i|now]]
]

Compare to equivalent HTML/XML:

<html>
 Hello. This is an example language test.
 <div class='testc'> And this text is enclosed in a div. </div>
 Click this link <i>now</i>
</html>

For the author’s purposes, TML will be primarily used for semantics involving trees of

key-value pairs (configuration files, etc). The author personally prefers TML because its

syntax is cleaner and simpler than XML, JSON, YAML, or most other generalized data

formats currently available.

39

SOCIETAL ISSUES

Earlier versions of Kosmos were meant to offer a subtle educational component by

representing realistic interplanetary and interstellar scales. However this recent rewrite of

Kosmos has since changed to target lower end computer hardware, and now uses

unrealistic scales and planet sizes for artistic and technical reasons.

Kosmos is therefore a technical demo and “toy” of sorts. Since Kosmos shares the same

societal purpose and issues as any other nonviolent video game or toy, this paper omits

redundant commentary on this well-known topic.

Open-Source Decision

Releasing this project as open-source has several advantages not easily derived from

closed source, secretive, or highly protected proprietary work:

1. The world benefits by having free access/rights to use the technology.

2. The author’s reputation benefits since open-source projects tend to spread around

programmers’ social networks online much more broadly than with closed-source.

3. The author benefits because recruiters and tech companies have a real-world work

sample from which to make a confident hiring/recruiting decision.

As a result of open-sourcing a project, the world benefits as a whole from the free

contribution of technology. In exchange, the author gains higher visibility/popularity in

the online software development community. Open-sourcing high quality projects builds

reputation and connections, and by extension, one’s career.

Moreover, the author believes software patents to be anti-competitive and anti-innovative

in most cases. While some of the algorithms could have been patented (for example,

“Sharp Normal Maps”), doing so would only discourage the industry to use it and

improve upon it. Although promoting and licensing such a patented technology could

lead to financial gain, doing so would still require managerial time and effort perhaps

40

better spent elsewhere. (There are of course exceptions; for example if the author starts a

business critically dependent on a particular secret algorithm, it would be imperative to

legally protect the intellectual property.)

By releasing a technology to everyone, its use becomes more pervasive through the

industry (since there is less financial resistance). As a result, one may still benefit

financially if only indirectly, as one’s reputation grows and further employment and

entrepreneurial opportunities open in the longer-term future.

41

CONCLUSION

Despite major changes to the project goals requiring a complete rewrite within a few

months of the final design conference deadline, all the primary goals were achieved:

Kosmos allows you to explore a computer-generated 3D universe containing trillions of

stars, planets, and moons – right from your web browser. Moreover, this latest

incarnation of Kosmos does not require an extremely powerful gaming PC to run; most

modern laptops should be able to run Kosmos smoothly.

Lessons Learned

1. WebGL implementations are flakey and not ready for high-resolution 3D games yet.

During the development of the latest version of Kosmos, a number of compatibility issues

were encountered with the current browsers’ WebGL implementations. In particular,

Kosmos seems to run best on Mozilla Firefox on Mac or Linux computers. Chrome on

Mac encounters strange performance issues with no explanation or warning, likely due to

silent software rendering fallbacks, while Firefox instead uses the GPU as expected.

What’s worse, on Windows Kosmos initially did not work at all (even in Firefox). Upon

debugging the issue, Windows seems to use Google’s ANGLE, a so-called “compatibility

layer” for WebGL used in both Firefox and Chrome. ANGLE converts WebGL calls

(which are really just OpenGL calls exposed to JavaScript) into DirectX. This conversion

means ANGLE recompiles OpenGL’s GLSL shaders into DirectX’s HLSL language. In

theory, this translation process would be fine if it worked – but it’s very buggy.

The very advanced GLSL shaders in Kosmos encounter what seem like unanticipated /

untested edge cases in Google’s ANGLE compatibility layer, because Chrome crashes on

Windows and Firefox freezed and failed to load planet data at all (due to failure to

correctly execute the corresponding GLSL shaders). Fortunately, with much trial and

error, removing some features to simplify GLSL shaders a bit brought Kosmos to a point

where it works on Windows, though not without compromise (in particular, Windows

cannot support an infinite variety of planets that works just fine on Mac and Linux).

42

Even with compatibility issues aside, Google’s ANGLE is extremely slow in processing

GLSL shaders. As a result, Kosmos loads very slowly on even powerful windows

computers because the 3D engine uses very large and complex GLSL shaders to offload

as much work to the GPU as possible. In contrast, on Mac and Linux where ANGLE is

not enabled, Kosmos loads in under 2 seconds (even on a laptop an order of magnitude

slower than the Windows computer tested).

2. Procedural content generation, while a nice idea in concept, ultimately doesn't "save"

you all that much work. In theory it provides "infinite variation" of planets, stars, etc.,

but it does not provide infinite novelty.

What the human mind finds interesting artistically and visually is not variation, but

"novelty". While admittedly a more vague word, novelty represents content that is truly

new, rather than just parameterized variations of the same thing seen before.

Although procedural generation engines (like in Kosmos) can provide infinitely varying

universes with trillions of stars without the need for each to be individually designed, it

becomes boring after a while because human minds adapt and figure out the underlying

patterns very rapidly.

Therefore, some amount of handcrafting and artistically created content is needed to

make content sufficiently interesting for a game, for example.

However, one possible exception would be a more intricate simulation-oriented

generation system (i.e. rather than using simple mathematical functions to generate

planet-resembling things, actually simulate gasses in space, gravity in space, star

formation, planet formation, erosion, elements, etc. etc.) Such a simulation could produce

a system so complex that variation does appear truly "novel" in some sense, simply from

the sheer scale and detail of the simulation. However such complexity would require far

too much computational power to be feasible in real-time, even on powerful gaming

computers, let alone mobile/casual devices. It might be feasible though as an offline

content creation tool to ease the work of artists, however. Or, it could be feasible if

43

offloaded to a supercomputing "cloud", with the data streamed to users of the game world

on-demand. Even then though, creating the rules for such a simulation would be no small

feat in of itself.

So aside from major advances in simulation complexity (which may happen in a few

decades), it appears most 3D worlds will need to have some aspect of human-guided

design to be effectively interesting for games. This observation by no means rules out all

procedurally generated content, it just means one will likely spend about as much time

crafting procedural rules/equations as an artist would making it by hand anyway.

Future Plans

Kosmos (this web based version version) was mostly an experimental, self-educational

project for the author. In retrospect, WebGL simply has too many compatibility

issues/hassles for it to be a valuable target for spare time projects. Future versions or

projects will most likely be done with native code instead -- certainly until WebGL stops

being flakey, and browsers figure out how to get closer to native performance.

For example, the author would like to make a future improved version of Kosmos as a

mobile game app, targeting tablets in particular. Additionally, there are a lot of features

that would be included that weren’t possible in this version due to time constraints:

• Planet atmospheres with correct simulated atmospheric scattering effects

• Much more ground-level detail (i.e. trees, grass, etc.)

• Animated planet orbits and rotations

• More variety of planet types (right now there's just a few base types)

• Gameplay dynamics with space and ground combat

Of course, the completion of such future goals is subject to time constraints, since the

author will be employed working full-time on other projects following graduation.

44

REFERENCES

[1] John Judnich. Kosmos (Full Source Code). 2013. <github.com/judnich/Kosmos>

[2] Vladimir Romanyuk. Space Engine. 2013. <http://en.spaceengine.org>

[3] John Judnich and Nam Ling, “Fast Multiresolution Terrain Rendering with

Symmetric Cluster Sets,” Proceedings of the 4th ACM SIGGRAPH Conference and

Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia),

Hong Kong, China, December 12 – 15, 2011.

[4] John Judnich and Nam Ling, “Symmetric Cluster Set Level of Detail for Real-Time

Terrain Rendering,” Proceedings of the 2012 IEEE International Conference on

Multimedia and Expo (ICME), Melbourne, Australia, pp. 320 – 324, July 9 – 13, 2012.

[5] R. Pajarola and E. Gobbetti, “Survey of semi-regular multiresolution models for

interactive terrain rendering,” Vis. Comput. vol. 23, pp. 583–605, July 2007.

[6] F. Strugar, “Continuous distance-dependent level of detail for rendering heightmaps,”

Journal of Graphics, GPU, & Game Tools, vol. 14, pp. 54–74, 2009.

[7] John Judnich and Nam Ling, “Fast Per-Pixel Displacement Mapping with Screen-

Space Depth Interval Grids,” under review for publication. <http://judnich.github.io>

[8] L. Szirmay-Kalos and T. Umenhoffer, “Displacement mapping on the GPU: State of

the art,” in Computer Graphics Forum, vol. 27, no. 6. Wiley Online Library, 2008, pp.

1567–1592.

45

APPENDIX

Figure 10. Additional screenshots.

	Santa Clara University
	Scholar Commons
	6-12-2013

	Kosmos : a virtual 3-D universe
	John Judnich
	Recommended Citation

	Microsoft Word - DesignThesis.docx

