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ABSTRACT 

Kosmos is an application enabling interactive visualization of a fictional 3D universe. It 

offers users the opportunity to explore and experience an aesthetically pleasing virtual 

environment complete with billions of high-resolution planets and stars. Kosmos 

integrates several novel 3D rendering techniques in terrain rendering, large-scale particle 

systems, etc. to make this level of graphical realism and scale possible. The efficiency of 

the algorithms developed for this project enables average hardware (such as almost any 

modern laptop) to run Kosmos smoothly. Moreover, through the use of the recent 

WebGL standard, Kosmos may be viewed online1 in any modern web browser on any 

major operating system, with no large downloads or additional software installation 

necessary. Moreover, the author has released the full source code for Kosmos online for 

free under the BSD Open Source License2. 

 

  

                                                
1 Kosmos may be viewed with at judnich.github.io/Kosmos/ (note: may not run on older computers) 
2 Full source code for Kosmos (plus additional documentation) is available at github.com/judnich/Kosmos 
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INTRODUCTION 

“Kosmos” is a 3-D visualization of a fictional universe containing billions of stars and 

planets that runs on relatively inexpensive computing devices. Moreover, Kosmos is 

widely accessible simply through a modern web browser (with no large downloads or 

software installation required). This visualization engages the users by presenting an 

interaction mechanic that leads the user continuously through a wide range of view 

scopes within the galaxy. Kosmos enables the user to obtain some sense of the massive 

scope of planets, stars, star clusters, etc. as they fly around and interactively explore this 

virtual universe from many perspectives and viewpoints. The full source code for 

Kosmos is available to the public for free under the BSD Open Source Licence [1]. 

Kosmos represents an intersection of academic research in algorithms, software 

engineering implementation, and art. The development of Kosmos has involved: 

• Cutting edge academic research towards pushing the boundaries of modern 

computer technology, particularly (in this case) 3D rendering algorithms and 

mobile graphics hardware. 

• A reasonably large engineering effort spanning multiple implementation iterations 

while technology is incrementally improved, new algorithms created, and better 

engineering practices learned. 

• Artistic expression, and an interpretation of the natural beauty of the massive 

scales and structures in the real universe. 

In other words, Kosmos targets three seemingly separate but co-dependent problems:  

1. Mobile 3D graphics technology needs to be improved to enable progressively 

richer, higher resolution, and larger scale visualizations on mobile devices. 

2. There are no 3D libraries currently available that include support for the 

visualization of large 3D planets, billions of stars, etc. 

3. There are no mobile or browser-based interactive visualizations of a virtual 3D 

universe that allow you to freely explore a vast area of space at resolution high 

enough to see details on planet surfaces. 



 

10 

Problem #1 is a research problem, which stands on its own as a valuable area to explore 

and push the boundaries of technology. The majority of time for this project has been 

devoted to such research, resulting in several successful contributions to the field of 3D 

rendering algorithms (including some beneficial even beyond the scope of this particular 

project) including a full technical paper currently under review by the journal IEEE 

Transactions on Visualizations and Graphics, plus conference papers already published. 

Problems #2 and #3 above are market problems. Upon further research since this 

project’s initial proposal, the author discovered full-scale universe visualization software 

does already exist3. Rather than continuing in a similar direction to this existing software, 

the author chose to retarget this project towards a different demographic. 

Existing Software (“Space Engine”) [2] 

• Requires a large >500 MB download 

• Requires installation on the computer’s hard drive 

• Requires Windows (no Mac, Linux, or mobile support) 

• Requires a powerful CPU and GPU found only in expensive computers 

Our Software (“Kosmos”) 

• Runs on an average modern laptop (and eventually mobile devices, e.g. tablets) 

• Requires only a modern web browser – no additional installation necessary 

• No large downloads – the web application loads almost immediately 

In particular, the latest version of Kosmos is designed to run on the average modern 

laptop. Most significantly, no software installation or large downloads are necessary 

because the entire application will be available directly from any modern web browser 

(facilitated by the recent web standard technology “WebGL”). It is not necessary to 

download large amounts of data since most of the content is generated mathematically in 

real-time, and thus the entire application compressed to an extremely small overall size. 

Figures 1-2 show some screenshots produced directly by Kosmos, unmodified. 

                                                
3 en.spaceengine.org 
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Figure 1. "Moon" screenshot. 

 

Figure 2. "Alien sunset" screenshot. 
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DESIGN AND IMPLEMENTATION STRATEGY 

The overall design philosophy for Kosmos is simple: 

• Value content quality over quantity 

• Value understated simplicity over impressive complexity 

These principles are aimed at ensuring the end product provides a consistently high 

quality user experience for our target audience. 

The implementation strategy consists of two major guidelines: 

• Iterative bottom-up development with frequent refactoring 

• Composition or component oriented design 

Composition/component oriented design refers to minimizing the abuse of object oriented 

programming features generally considered harmful (e.g. bloated inheritance trees).  

Iterative development is an extremely effective approach to rapidly developing high 

quality, complex software. This method of software development resembles a process of 

iterative evolution, as opposed to older (and usually failed) efforts to design entire 

software system architectures before prototyping or implementing them. 

For example, this project began initially as a native application using C++ and OpenGL, 

only running on powerful NVIDIA video cards. Although these early prototypes provided 

valuable experience and research material, in the end all of these iterations were 

discarded in favor of a different target platform (this was due to the discovery of 

SpaceEngine  [2], which already accomplished goals similar to the original Kosmos 

project).  

Due to lessons learned from these previous prototypes, the latest web-based version is 

much more efficient with an overall vastly improved software architecture. Most 

importantly, the iterative development model allows for rapid reaction to market changes 

as demonstrated by the successful late rewrite of this project. This kind of response is not 

otherwise possible with more rigid and antiquated processes (e.g. waterfall). 
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Functional Requirements 

Functional requirements represent the core set of features that must be implemented to 

complete the project. These requirements are listed below. 

P1 features are required. P2 and P3 are optional, with different levels of priority. 

Table 1: Functional Requirements 

Priority Requirement Name Requirement Description 

P1 Planet Terrain The graphics engine shall display 3D planets with 

detailed high-resolution mountains and ground 

level features.  

P3 Atmospheric 

Scattering 

The graphics engine should simulate 3D 

atmospheric scattering to display an atmospheric 

glow from space and realistic sky coloring from 

within the atmosphere. 

P1 Stars The graphics engine shall visually represent 

millions of stars in 3D space, each of which may 

have orbiting planets. 

P3 Nebulae The engine may visually represent gas clouds and 

nebulae within the virtual 3D universe. 

P2 Exponential View 

Speed Control 

The user interface should provide the ability to 

modify viewer speed on an exponential scale. 

P2 Automated Speed 

Control 

The user interface should provide a mode (enabled 

by default), which automatically scales the 

viewer’s speed based on proximity to planetary 

bodies to ease the user’s navigational task. 

P3 Automated Viewer 

“Upright” Orientation 

The engine should automatically orient the viewer 

upright when approaching planets (since this is the 

only context where “upright” is properly defined). 



 

14 

Nonfunctional Requirements 

Nonfunctional requirements are aimed at ensuring the end product provides a high quality 

user experience for Kosmos’s target audience. These requirements are listed below. 

Table 2: Nonfunctional Requirements 

Constraint Description Optimization Strategy  

Performance maximization Routinely benchmark and profile whole program 

performance. Research, develop, and implement 

the most efficient algorithms for each 

computationally demanding feature. 

Aesthetic visual quality refinement Routinely obtain and review subjective feedback 

from random samplings of the program’s target 

audience. 

Intuitive visual interface (Same as above) 

Technologies Used 

• CPU Languages 

o CoffeeScript, JavaScript 

• GPU Language 

o GLSL 

• APIs 

o WebGL (JavaScript OpenGL bindings supported on modern browsers) 

o jQuery (JavaScript cross-browser compatibility library) 

o glMatrix (JavaScript library providing simple matrix math operations) 

Development Timeline 

The latest web-based version of Kosmos was rewritten completely from scratch in about 

six weeks, with around two weeks of break in the middle. Therefore a full Gantt Chart 

does not make sense for this project (since too many features were completed at too fast 

of a pace to document individually). Note that a Gantt Chart could be used to illustrate 
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the development of prior prototypes (which occurred over a longer period), but these are 

not really relevant to the current version of Kosmos, since they use a different set of 

technologies and techniques. 

Project Risks 

Table 3: Project Risks 

Risks Consequences P S I Mitigation Strategy 

Conflicting 

schedule 

Group is unable to 

meet for decision-

making 

0.5 1 1.00 Default project leader can 

make decisions in the event 

of schedule failure. 

Schedule important 

meetings ahead of time. 

Insufficient time 

to satisfy formal 

requirements 

Desired features 

may not be 

implemented 

0.5 3 1.50 Prioritize features in order 

of desired importance 

Data loss Restart project .01 10 0.10 Heavily redundant backup 

including multiple server-

based and physical copies. 

Insufficient 

application 

performance 

End users will have 

higher system 

requirements than 

desired 

0.8 4 3.20 Apply the best algorithms 

from cutting-edge research 

to computationally 

expensive processes.  

Unsatisfactory 

aesthetic quality 

End users do not 

find visual 

experience pleasing. 

0.5 5 2.50 Gather and respond to user 

feedback frequently 

through development. 

Unsatisfactory 

user interface 

quality 

End users will have 

unpleasant 

experience 

interacting with 

software. 

0.2 5 2.50 Gather and respond to user 

feedback frequently 

through development. 
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Test Strategy and Use Cases 

Kosmos testing strategy: 

• Unit test self-contained components which have clearly defined behavior  

• Use automated regression testing for unit tests and performance metrics 

• Manually test subjective visual elements 

• Manually test complex nondeterministic simulation interactions 

Due to nondeterministic user input tied to the simulation path, the correct results of a 

complex interactive simulation cannot be predetermined to the formal precision necessary 

of automated unit testing. Moreover, subjective aspects like visual aesthetic quality have 

no known formal metric. Thus, some areas must be tested manually, such as: 

• Interaction dynamics and logic 

• User engagement and entertainment factor 

• Overall look and feel, user experience 

• Aesthetic quality of visual content 

From the end-user perspective, the following use cases must be tested as well: 

• User opens web application and reads instructions 

• User navigates around using the control scheme 

• User closes application and resumes later at the same location 
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SYSTEM ARCHITECTURE 

Since Kosmos is an interactive visualization/simulation, discrete state diagrams and flow 

charts are extremely simple. Usually there is only one state, and a flow chart consists of a 

simple infinite loop with termination only when the application ends.  

Due to power saving features however, Kosmos uses a simple two-state simulation: 

• Active State: If the user’s view remains a static unmoving image and no content is 

being concurrently loaded, change to idle state; else, repeat the active state. 
 

• Idle State: If the user clicks on any control, forward the data to the appropriate 

function and change to active state. Else, remain idle, conserving power. 

Beyond this extremely simple high-level state, the majority of complexity for simulations 

usually occurs in a more “continuous” state of the application, represented by a large 

universe of data, data structures, and viewer coordinates. Each will be described in 

moderate detail below in the appropriate sections. 

Query Based Rendering 

The most important architectural design of Kosmos is how 3D content from such a 

massive universe is managed and rendered seamlessly to the screen without pausing at 

any time to load additional content. In this paper, the architectural design addressing such 

requirements is called “Query Based Rendering.” In contrast to traditional architectures 

for rendering large 3D worlds, Query Based Rendering is nearly stateless and allows the 

render process to be completely decoupled from content management and loading.  

Rather than maintaining progressively updated data structures through the course of the 

user’s movement through the world, Query Based Rendering emphasizes using 

decoupled database(s) specifically optimized for spatial queries (requests for content 

given a location and radius, for example). This is in contrast to traditional 3D rendering 

approaches for large worlds, where large, complex, and confusing data structures are 

maintained manually to track nearby objects as the viewer moves through the world. 
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While Query Based Rendering in not an entirely new idea (for example, older 2D game 

engines often used similar approaches), its application as a unified architectural rule to 

3D rendering engines seems to be unique. 

Query Based Rendering accommodates LOD (level-of-detail) optimizations extremely 

well, since resolution can easily be made a parameter to the spatial query. For example, 

the render process may issue several spatial queries covering concentric rings (different 

radius intervals from the viewer), requesting a different resolution at each distance. Then, 

the render process can pass the query results to draw functions, achieving a clean and 

consistent way to implement a progressive LOD. 

Note that Query Based Rendering cannot be entirely stateless, since that would imply 

everything on the screen passes through query calls every single frame (which would be 

very inefficient, and instantly bottleneck CPU-GPU bandwidth). For this reason, this 

architecture assumes the database will be custom designed for extremely fast queries, 

with a VRAM (video memory) content caching scheme to efficiently deal with content 

that takes considerable time to load. Therefore from the render process’s view, all of this 

caching behavior can be ignored because it’s already taken care of. As a result, the render 

process does not need to manage any loading/unloading of content, but simply focus 

solely on drawing content to the screen. This decoupling is a big advantage over 

traditional architectures, because the complexity of Kosmos’s render system would 

otherwise be nearly unmanageable without it. 

Content Query Cache with Concurrent Loading 

Note: This particular implementation of this content query cache is specific to Kosmos; 

not all 3D rendering engines necessarily need to use the same approach here in order to 

fall under the “Query Based Rendering” design theme. 

Kosmos implements a generic caching mechanism that can be applied to any persistent 

content in the game world, as long as a unique identifier can be produced for that content. 

At a high level it operates as an ordinary cache. You instantiate a ContentCache object, 

providing a callback function that loads and returns content for a given contentId. Then, 
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whenever you need some content, you request it through the ContentCache’s 

getContent() function. This function will return the content immediately if it is already 

loaded (stored in an internal id-content hash map), or forward the request to the callback 

function otherwise. 

In addition to this standard caching behavior however, Kosmos’s ContentCache class 

supports progressive loading – it allows the callback loader function to load only a 

fraction of the entire resource in a given call, if desired. This feature is integrated by 

returning a pair value from the loader callback (percent complete, and intermediate 

content). If such a pair is returned, the ContentCache intelligently puts it back into the 

loading queue. Then, the next time ContentCache’s update() method is called, the load 

callback is issued again. This process repeats indefinitely until the load callback finishes 

loading the entire resource, at which point it will return a 100% loaded value and the 

ContentCache will move it to the jobCompleted queue. 

This system provides a clean and unified interface for concurrently loading complex and 

large media files, without disrupting the natural cache interface. The only 

accommodation required for this asynchronous loading behavior is of course the 

realization by users of a ContentCache that the getContent() method may return null for 

perfectly valid resources until they finish loading in the background. 

For a more technically detailed specification of Kosmos’s ContentCache, simply refer to 

the source code (since an English or diagram based specification takes far more space yet 

is still less precise). 

Computation on the GPU 

Since Kosmos is implemented as a web app, the only CPU programming language 

currently possible is JavaScript. Unfortunately while modern browsers run JavaScript 

impressively fast for a scripting language, it’s still considerably slower than native 

compiled code. Since efficiency is an important goal of Kosmos, this performance issue 

presents a technical challenge. The design of Kosmos approaches this issue by 

emphasizing offloading as much work as possible to the GPU (using GLSL programs via 
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WebGL). GPU-based computation makes decent performance possible, since GLSL is 

executed at native speed. 
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IMPLEMENTATION DETAILS 

The algorithms and architectural designs incorporated into the project are overviewed 

briefly below. An extensive description of every technical component is not possible in a 

relatively short design project thesis, since each section below could be expanded into 

over 10 pages of precise technical detail.  

However, particularly promising algorithms and tools developed may branch off into 

their own papers and open-source projects where each technology is documented in-

depth. For example, Tuple Markup Language has branched off into its own open-source 

project with individual in-depth documentation (see github.com/judnich/TupleMarkup). 

Also, several technologies outlined below are published or under review for publication 

as academic papers. 

Finally, note that the most precise design specification possible is simply the source code 

itself, which is provided in full 100% free and open-source (released under the BSD 

Open Source License) at: https://github.com/judnich/Kosmos  

Planet Terrain Rendering 

Relatively undistorted spherical tessellation is achieved with a cube whose six faces are 

regular grids, whose vertices are then mapped to a sphere using simple vector 

normalization (see Figure 3).  

Each cube face is then rendered as a quad tree of grid nodes using the “Symmetric 

Cluster Set Level of Detail” terrain rendering algorithm. For more information on this 

technique, see our conference papers [3][4]. The abstract for the most recent paper 

follows: 
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Figure 3. Illustration of cube to sphere mapping used for planets. 

Abstract: In this paper, we present an improvement for batch-based quadtree terrain 

rendering that drastically reduces the number of draw calls to the graphics processing 

unit. As a result, more fine-grained triangular optimization is possible without sacrificing 

triangle throughput. No extra preprocessing is required. In general, quadtree terrain 

algorithms recursively subdivide mesh geometry to meet visual error constraints. Batch-

based techniques use buffered grid blocks as the subdivision primitive for better triangle 

throughput [5]. We base our algorithm on structural observations of such terrain 

quadtrees. First, we show that the four sub-nodes of any non-leaf can be categorized into 

sixteen distinct states of drawing behavior. These states are symmetric in such a way that 

allows just five unique geometries to represent all of them. With the additional 

observation that leaf nodes appear in groups of four across regions of homogeneous grid 

resolution, we develop a technique employing 23 unique geometric batches from which 

any terrain can be rendered (see Figure 4). The resulting algorithm reliably reduces draw 

calls by a factor of 6 on average, and achieves render performance 30 to 50 percent faster 

than comparable techniques [6]. 

 

Figure 4. Enumeration of the 23 symmetric cluster sets used in SCSLOD. 
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High Resolution Near Surface Rendering 

For more information on this technique, see our technical paper draft [7], the abstract for 

which follows: 

Abstract: In this paper, we present a novel space-skipping algorithm for per-pixel 

displacement map rendering on the GPU that significantly accelerates ray convergence. 

Without any preprocessing, this technique achieves raw displacement map rendering 

performance two to four times as fast as other techniques without loss of visual quality. 

Displacement mapping algorithms accurately render complex shapes projected within flat 

geometry by casting rays from the viewer into a tangent-space height-field; this enables 

otherwise unachievable resolutions of 3-D detail in games and simulations [8]. Our 

algorithm accelerates ray convergence by first computing ray boundary intervals within 

screen-space uniform pixel blocks (see Figure 5). The final pass then uses the 

dynamically computed depth intervals to converge on a precise intersection point very 

rapidly. As a result, our algorithm enables rendering of raw displacement map data 

significantly faster than existing algorithms. Moreover, this technique can provide 

performance improvement to other existing per-pixel displacement mapping algorithms 

as well, with or without preprocessing. 

 

Figure 5. Cross-sectional illustration of a depth interval grid. 
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“Sharp Normal Maps” 

Most 3D rendering engines use lighting models (the mathematical model that calculates 

the color of pixels on the screen) that make use of surface normal vectors describing 

surface features. It is therefore extremely important to store high-resolution normal maps 

for best results. As a result, all modern graphics processing units support built-in 

hardware support for simple fixed-rate image compression to enable higher resolution 

normal maps under the same memory constraints (e.g. DXT texture compression 

ubiquitously available from the OpenGL API). 

Sharp Normal Maps introduces a new resolution-enhancing method designed specifically 

for normal map data, which has the potential to reduce normal map size by a factor of 

four without loss of visual quality. This technique works in addition to existing DXT 

compression, thus multiplying even further the feasible normal map resolution under 

given memory constraints. 

In practice, normal maps tend to contain a broad distribution of surface feature frequency 

(low frequency shape, combined with occasional high frequency regions producing 

“sharp” features). This is especially true of terrain shapes with ridges and valleys found 

in Kosmos: valleys consist of relatively low frequency features, while peaks and ridges 

are quite small and require high frequency detail to appear correctly. Sharp Normal 

Mapping takes advantage of this structural feature of normal maps through an 

unconventional use of the hardware-accelerated linear interpolation behavior used in 

computer graphics. 

From an information-theoretic perspective, three-dimensional unit-length surface normal 

vectors are wasteful since the surface of a unit sphere is two-dimensional. Sharp Normal 

Maps use this third dimension of information to store a “sharpness factor”. Specifically, 

Sharp Normal Maps divide the length of normal vectors by this “sharpness factor”.  

Understanding why downscaling the normal vectors actually affects the interpolation 

behavior of the per-fragment vectors requires understanding of how the GPU interpolates 

between texture/vertex attributes. Intuitively, one would want normal vectors to be 

spherically interpolated (that is, the angle between two vectors interpolated linearly). 
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GPU hardware however is generic and does not change interpolation behavior for 

different data. All data is linearly interpolated; when supersampling (magnifying) a 

normal map, simple linear interpolation is used between each discrete normal vector 

sample. As a result, interpolated normal values for intermediate locations are not unit 

vectors, even with traditional normal mapping. As expected, modern 3D engines 

renormalize the vector values on a per-fragment basis (the fragment shader simply 

rescales the vector to normal length) to resolve this problem. 

Therefore, by scaling the relative length of normal vector samples, although the 

renormalized unit normal vectors at the endpoints are identical, the linear interpolation in 

between behaves differently. In particular, depending on the source/source vector length 

ratio, the renormalized normal vectors will be interpolated with a function ranging 

anywhere from the regular linear behavior, to extremely nonlinear “accelerated” 

interpolation. This behavior is roughly illustrated in Figure 6. 

 

 

Figure 6. Illustration of Sharp Normal Map nonlinear interpolation. 

 

This technique actually creates a look that is impossible to replicate fully by even 

extremely high resolution normal maps without Sharp Normal Mapping, but for 

simplicity one can mathematically examine only the intermediate interpolation midpoints 

and modify appropriately with correctly chosen “sharpness factors” at each point to 

emulate normal maps twice the horizontal and vertical resolution. The mathematics for 

computing the corresponding “sharpness factor” to produce a particularly higher 

resolution output is straightforward but messy (involving a complex arctangent ratio 

equality). See Figure 7 for a visual comparison of Sharp Normal Maps vs regular normal 

maps using exactly the same resolution for both. 

A 
B 

A 
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Figure 7. Comparison of regular normal maps (top) vs. Sharp Normal Maps (bottom). 

 

Notice that any 3D rendering engine that uses normal maps (i.e. almost every 3D game 

engine in operation today) can immediately make use of Sharp Normal Maps to either 

achieve up to 4x reduction in memory usage or a 2x2 normal map resolution 

improvement. Moreover, since the per-fragment renormalization is already being 

performed, Sharp Normal Maps incurs literally zero performance or memory overhead. 

Research has so far revealed that Sharp Normal Maps appears to be a completely new 

invention, despite its extreme implementation simplicity. A technical paper and open-

source normal map compression tool is being written to enable the rest of the industry to 

use this technique.  
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Fast Frustum Culling 

Existing frustum culling techniques today usually perform a bounding sphere check 

followed by a more precise bounding box check. The bounding sphere check is faster, 

preventing the slower bounding box check from wasting CPU time from obviously 

occluded objects. 

Kosmos presents a better frustum culling technique using dual bounding spheres: one 

sphere represents the max distance of all vertices from an object’s origin; another 

represents the min distance of all vertices. During frustum checks, an object’s point-plane 

distance is checked against one of the frustum planes, and simultaneously checked 

against the min and max. This technique effectively performs early culling for almost all 

objects both inside and outside of the viewing frustum. 

The only objects indeterminate by the dual-sphere check are objects likely directly 

intersecting a frustum plane. This reduces the number of frustum culling candidates from 

O(n^3) to O(n^2). As a result, the indeterminate objects may check full bounding convex 

hulls against the frustum plane without concern for performance. This method results in 

more efficient use of both CPU and GPU compute resources. 

General Procedural Generation Notes 

All content within Kosmos’s virtual universe is procedurally generated through a 

combination of pseudorandom number generators and various mathematical filters. This 

means everything you see in Kosmos is completely computer/mathematically generated; 

Kosmos does not use any external media/resource files of any kind. 

For example, planet terrain heightmaps are generated from a spatially parameterized 

multifractal combining smooth perlin noise, ridged noise, etc. into a fractal dataset that 

resembles a combination of mountains, erosion, rolling hills, etc. 

Procedural generation is custom-designed for each type of content (terrain, star cluster 

formation, etc). Computer-generated content can be selectively overridden with “real 

world” datasets if desired, although right now this is not done. 
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Since the universe contains billions of stars and planets, it makes no sense to pre-generate 

and save their data. As the viewer’s position moves and necessitates more data to render 

various details, it is generated on-demand in real time.  

Starfield Generation and Rendering on the GPU 

Draw calls to the GPU are associated with considerable overhead due to driver and PCI 

bus latency; too many draw calls will leave the GPU idling, waiting for commands and 

doing nothing most of the time. Therefore, a common optimization when rendering large 

numbers of simple objects is known as “batching”, where many objects are merged into 

large data buffers in memory and drawn with a single command to the GPU.  

Kosmos renders stars as a rolling 3D grid of cubic star batches. Rendering stars queries 

the nearest 9 cube blocks surrounding the viewer, culling out blocks that are outside of 

the field of view. Then each block is rendered with a single draw call. Each block 

contains several thousand stars generally, and represents the stars within that region of 

space. The intensity of stars near the maximum view range cutoff is distance-modulated 

from the vertex shader to create a gradual fade-out effect. 

Note that due to JavaScript (as well as general) performance issues, populating new 

batches of stars dynamically could incur serious lag as the viewer moves rapidly through 

space. This is undesirable, since the ability to move at any speed smoothly is a goal of 

Kosmos. 

To solve this technical challenge, Kosmos uses an unusual method to generate 

pseudorandom star positions on the GPU. This works by generating a large vertex buffer 

containing around 10,000 randomized stars pre-batched and ready to render when 

Kosmos first loads. Then, whenever a cube block is being rendered, based on the desired 

density of stars in that space and a random seed value, an appropriate subset of the large 

vertex buffer is rendered (OpenGL allows selectively drawing subsets of geometry 

buffers.) This approach produces visual results humanly indistinguishable from 

completely random star position populations, but with zero runtime overhead associated 

with shuffling star positions as desired according to spatial random seed value. 
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Star Rendering / Shading 

Stars are rendered using a simple fragment shader applied to a camera-facing billboard 

quad. The fragment shader was artistically tuned to achieve the desired results, with some 

physical / mathematical inspiration as well. It works 

by simply scaling the intensity of light using inverse 

distance squared from the center of the billboard 

quad in view space. Specifically, the equation used 

is: 

Lrgb = min[Crgb / (Δx2 + Δy2), 1] 

where “min” computes component-wise minimum, 

and Crgb is an extremely high dynamic range light 

value representing the intensity and color of the star 

(usually around ~100 in magnitude, where 1.0 is 

screen pixel color component maximum). This 

equation creates a visually appealing radial “glow” 

effect, as seen in Figure 14. 

The min function used here represents the GPU’s 

automatic color saturation behavior; when an output 

color value exceeds the maximum value 1.0 for 

each component (red, green, and blue), it is simply 

clamped/saturated to that value. Note that since 

saturation occurs per-channel, extremely bright 

output values (e.g. those near the center of the star) are saturated to full white. 

Experiments were also done where saturation was performed first and color applied later 

in order to preserve color of the inner solid part of the star, but an aesthetic choice was 

made against this, as it did not create the same aesthetic feeling of extreme brightness. 

Figure 8. Radial star glow example. 
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Concurrent Generation of High-Resolution Planet Datasets on the GPU 

An important goal of Kosmos is that the entire universe is seamlessly interact-able, with 

no loading screens or unexpected freezes while new content is loaded. With a universe so 

large, it is of course impossible to maintain all content in memory at once. Therefore, it is 

important to implement a high quality concurrent content loading system. This is a 

difficult problem in every 3D engine, because implementing concurrent loading is a 

careful balance; loading too fast causes lag and stuttering, but loading too slow causes 

frustratingly long periods of low-resolution placeholder content being displayed. 

As described in the System Architecture section, Kosmos uses a unified progressive 

loading cache system that facilitates this concurrency in various parts of the engine. Of 

particular note is how Kosmos uses this interface to implement the concurrent loading of 

planet datasets, which are fairly large – a single high-resolution planet dataset consumes 

about 500 MB of video memory, and all of this is generated concurrently in the 

background when the viewer approaches the planet. 

First, note that the concurrent content cache enables progressive loading but does not 

enforce any particular rate at which content is concurrently loaded. Therefore, Kosmos 

implements a variable rate loading system where an in-progress load job can be sped up 

or slowed down at any time. Specifically, the loading speed is dynamically adjusted 

based on the viewer’s proximity to the planet. When the user is viewing the planet from a 

long distance and approaching slowly, the regular load rate is used – this reduces loading 

lag to indistinguishable levels. As the user gets extremely close (in danger of seeing 

blurriness from the low resolution data set), the load speed is automatically multiplied 2x 

to ensure the best visual results on screen. 

The actual generation of planet content itself is accomplished with a very complex GLSL 

fragment shader applied to a fullscreen quad, with the framebuffer configured to write the 

results to a RGBA texture in VRAM. The incremental loading is accomplished by 

adjusting the OpenGL viewport and scissors to only a fraction of the whole vertical 

range, therefore effectively performing exactly as much work as desired. (The partial data 

structure returned to the concurrent content cache represents how much of the vertical 
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range has been already rendered, and intelligently chooses the next vertical region when 

starting the next load step.) Note that when issuing the draw call for this operation, 

OpenGL is smart enough to allow it to run in parellel with the rest of the ordinary render 

process; as long as no other render operations depend on the output from such a draw call 

(and they don’t since the texture is not used until fully complete), it is executed in 

parallel, and therefore does not disturb regular render process latency. 

Note that there are actually two stages of generation for planet datasets. In the first stage, 

only the heightmap of a planet cube face is generated. Heightmaps are initially generated 

to an internal temporary framebuffer with a single fixed precision component (for the 

height values). Then, a different shader generates normal map values from this heightmap 

(applying Sharp Normal Map enhancement, as described in previous sections) while 

rendering the final results to a more permanent four-channel RGBA render texture target. 

The RGB components of this texture store the sharp normal map, while the A component 

stores the terrain height. This data is later used by the planet terrain rendering algorithm 

(SCSLOD) in a vertex shader via vertex texture fetch. 
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SOLVING PRECISION LIMITATIONS 

Emulated 128 Bit Coordinates 

Due to the massive size of the virtual universe in Kosmos, even 64 bit floating point 

precision is not nearly enough to represent the range of scopes necessary with sufficient 

precision. Ideally, one would use 128 bit fixed-point coordinates consisting of two 64 bit 

components (integer and fractional), but unfortunately JavaScript is a poorly designed 

language and does not support integer types at all. Still, a solution was necessary. 

Kosmos emulates a high precision coordinate system using pairs of two 64 bit floating 

point values (the only numeric type available in JavaScript). This is configured such that 

a scalar coordinate x = xa + xb, where xa contains the integer component and xb the 

fractional. Adding two numbers together therefore consists of adding their integer parts 

and fractional parts, etc. Note however that it’s important to correctly match integer parts 

with integer parts when constructing a new summed scalar, because due to floating point 

prevision behavior, mixing up the component magnitudes would result in the fractional 

parts being rounded off. 

Using Floating Origin on the GPU 

Even with “pseudo-128-bit precision” emulated from JavaScript, one still encounters a 

serious limitation of modern GPUs: The vast majority of GPUs only support 32-bit 

floating point values when performing OpenGL 3D rendering. Even though some GPUs 

support double precision 64 bit floats via compute frameworks (e.g. CUDA or OpenCL), 

this does not benefit OpenGL, and typically using such larger floats comes at a 

significant performance impact. Therefore, Kosmos required a way to render a universe 

consisting of an exponential scale of scope ranging 128-bit coordinates using only 32-bit 

GPU computations. 

In general this is impossible, but fortunately perspective projection provides a special 

case where the theoretical issue can be avoided. Simply put, since objects in the distance 

are seen much smaller than objects near the viewer, distant objects do not need as much 
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precision as those very close. Theoretically, as long as the destination screen resolution 

(with supersampling / anti-aliasing taken into account) does not exceed 32-bit precision, 

there should be some way to achieve sufficient precision. 

The solution in this case is to use a floating origin system on the GPU. Specifically, all 

render operations are performed relative to the viewer. So, whenever the CPU sends the 

GPU model/view/projection matrices, the model and view matrices must be pre-

multiplied. Another important consideration is that GPU programs must take care in 

general not to inadvertently transform coordinate values to great distances, then back 

again, since this will cause floating point precision issues such as jittering output. 

z-Buffer Precision Concerns and Mitigation: Layered Depth Rendering 

Yet another limitation of modern GPU hardware is the restriction to 24-bit or 32-bit depth 

buffers. Depth buffers (commonly referred to as z-buffers) are necessary for the 3D 

objects to self-occlude, i.e. for shapes near the viewer to correctly conceal shapes that 

appear behind. Unfortunately, z-buffer precision is not particularly high, with most GPUs 

supporting only 24-bits (the remaining 8 bits usually dedicated to stencil buffer 

operations). This is usually not a problem, since most simulations and video games do not 

have a depth range so vast that this becomes an issue. However in Kosmos, a given frame 

may need to render distances ranging from meters to light-years, simultaneously. This 

scope easily exceeds the capacity for a 24-bit or even 32-bit depth buffer to retain useful 

precision, therefore causing serious tearing and jagged artifacts on the screen. 

Kosmos implements a layered rendering approach to solve this problem. Specifically, 

rather than rendering the scene all at once with the same depth buffer, several render 

passes are made. First, stars and distant planet dots are rendered with the z-buffer 

disabled (since star shading is additive and therefore commutative). Then, low-resolution 

distant planets are sorted from farthest to nearest, and rendered with also z-buffer 

disabled. This technique still produces the desired occlusion effect, as long as no two 

planets physically intersect one another (depth sorting is an older method of object 

occlusion, and works very well here since it doesn’t require a z-buffer). Finally, high-

resolution planets are rendered with z-buffer enabled. Moreover, the near and far planes 
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of the view frustum are optimally set every frame based on the nearest and farthest 

visible point on the high-resolution planet mesh. 
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USER INTERFACE 

The user interface in Kosmos is extremely minimalist. It consists simply of a large slider 

bar on the left to control speed, with three buttons: Autopilot, Reverse, and Share.  

Introduction Screen 

When the user first loads Kosmos, they are greeted with a simple welcome message 

providing all necessary instructions in a single sentence (see Figure 9). 

 

Figure 9. Kosmos introduction screen. 

Autopilot Button: “Intelligently” Aided View Controls 

When approaching a planet from space, the viewer’s roll orientation is not guaranteed to 

be “upright” from the planet’s perspective, since “upright” is of course relative to what is 

considered “down” and there is no such thing as “down” in deep space. However, since 

Kosmos’s view controls do not provide a specific method of controlling roll orientation, 

it’s important to support a feature where the camera is automatically oriented upright 



 

36 

when the viewer approaches a planet. This behavior is accomplished by converting the 

camera’s orientation quaternion to a 3x3 rotation matrix, correcting the up vector, re-

orthogonalizing, converting back to quaternion, and finally performing a smooth 

spherical linear interpolation on the quaternions to animate the rotation smoothly. 

In addition to automatic orientation controls, another control issue encountered was 

difficulty in adjusting viewer speed due to the vast exponential scale of the universe. In 

particular, the difference in speed / scale between navigating the surface of a planet, 

versus traveling between planets, versus traveling between stars are all separated by 

many orders of magnitude. While the default speed slider control is on an exponential 

scale, it’s still difficult to precisely set the appropriate speed. Kosmos solves this issue by 

providing an “Autopilot” feature (enabled by default) where the viewer’s speed is 

automatically scaled relative to one’s proximity to planetary bodies. As one approaches a 

planet for example with the speed bar at a constant setting, the view speed will 

automatically decelerate down to a gentle approach vector. 

Share Button 

When the user discovers an interesting object or view, it would be useful to be able to 

share the discovery by externally referencing the desired location / view orientation. 

Kosmos implements an interface where global view orientation and position coordinates 

may be provided as a part of the URL, allowing any location / view of the universe to be 

directly hyperlinked. Most importantly, a simple “Share” button is provided, which when 

clicked, displays a text box containing a link to what the user is currently seeing. 

This link can then be copied and pasted to the user’s favorite social networking site, 

email, chat, or any other communication medium. This copy-paste method was preferred 

to the traditional “Share on [insert social network here]” method because it is simpler and 

more universal. 
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Location Persistence 

When the user stops using Kosmos and returns later, it would be undesirable if the view 

location and orientation were reset to a default every time. As a result, Kosmos 

periodically saves the viewer’s location and orientation to persistent storage on the client 

side (specifically, Kosmos uses HTML5’s localStorage feature). When started, Kosmos 

automatically checks this local storage and restores the saved location if present. 

Browser Compatibility Warning 

Unfortunately, Kosmos encountered a number of major compatibility issues where 

WebGL (the most important API Kosmos uses) behaves inconsistently on some browsers 

and operating systems. In addition to attempting to mitigate the issues themselves and 

work around browser glitches (more details are provided on these issues in the 

Conclusion section below), Kosmos will automatically display a pop-up warning 

message informing the user if his/her operating system or browser is known to be 

problematic with advanced WebGL. An option to click a “Try Anyway” button allows 

the user to ignore the warning and attempt to run Kosmos.  

Data File Format 

Loading lightweight configuration options and media from external files is a very 

important capability that applications require to separate configuration from 

implementation. Therefore a simple, consistent, and high performance data format is 

desirable. 

The author presents a new markup language, called Tuple Markup Language. TML is an 

extremely simple all-purpose markup language: nested lists with bracket-minimizing 

syntax. It enables YAML-like and XML-like semantics within the same clean and 

consistent language, plus much more. 

TML is released as open source and other developers are encouraged to use it. Also, full 

documentation and examples are available at: https://github.com/judnich/TupleMarkup. 

The following is a simple example of TML demonstrating markup semantics: 
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[html | 
    Hello. This is an example [b|language] test. 
    [ div [class testc] | And this text is enclosed in a div. ] 
    [ a [href google.com] | Click this link [i|now] ] 
] 
 

Compare to equivalent HTML/XML: 

<html> 
    Hello. This is an example <b>language</b> test. 
    <div class='testc'> And this text is enclosed in a div. </div> 
    <a href='google.com'> Click this link <i>now</i> </a> 
</html> 

 

For the author’s purposes, TML will be primarily used for semantics involving trees of 

key-value pairs (configuration files, etc). The author personally prefers TML because its 

syntax is cleaner and simpler than XML, JSON, YAML, or most other generalized data 

formats currently available. 
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SOCIETAL ISSUES 

Earlier versions of Kosmos were meant to offer a subtle educational component by 

representing realistic interplanetary and interstellar scales. However this recent rewrite of 

Kosmos has since changed to target lower end computer hardware, and now uses 

unrealistic scales and planet sizes for artistic and technical reasons. 

Kosmos is therefore a technical demo and “toy” of sorts. Since Kosmos shares the same 

societal purpose and issues as any other nonviolent video game or toy, this paper omits 

redundant commentary on this well-known topic. 

Open-Source Decision 

Releasing this project as open-source has several advantages not easily derived from 

closed source, secretive, or highly protected proprietary work: 

1. The world benefits by having free access/rights to use the technology. 

 

2. The author’s reputation benefits since open-source projects tend to spread around 

programmers’ social networks online much more broadly than with closed-source. 

 

3. The author benefits because recruiters and tech companies have a real-world work 

sample from which to make a confident hiring/recruiting decision. 

As a result of open-sourcing a project, the world benefits as a whole from the free 

contribution of technology. In exchange, the author gains higher visibility/popularity in 

the online software development community. Open-sourcing high quality projects builds 

reputation and connections, and by extension, one’s career. 

Moreover, the author believes software patents to be anti-competitive and anti-innovative 

in most cases. While some of the algorithms could have been patented (for example, 

“Sharp Normal Maps”), doing so would only discourage the industry to use it and 

improve upon it. Although promoting and licensing such a patented technology could 

lead to financial gain, doing so would still require managerial time and effort perhaps 



 

40 

better spent elsewhere. (There are of course exceptions; for example if the author starts a 

business critically dependent on a particular secret algorithm, it would be imperative to 

legally protect the intellectual property.)  

By releasing a technology to everyone, its use becomes more pervasive through the 

industry (since there is less financial resistance). As a result, one may still benefit 

financially if only indirectly, as one’s reputation grows and further employment and 

entrepreneurial opportunities open in the longer-term future. 
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CONCLUSION 

Despite major changes to the project goals requiring a complete rewrite within a few 

months of the final design conference deadline, all the primary goals were achieved: 

Kosmos allows you to explore a computer-generated 3D universe containing trillions of 

stars, planets, and moons – right from your web browser. Moreover, this latest 

incarnation of Kosmos does not require an extremely powerful gaming PC to run; most 

modern laptops should be able to run Kosmos smoothly. 

Lessons Learned 

1. WebGL implementations are flakey and not ready for high-resolution 3D games yet. 

During the development of the latest version of Kosmos, a number of compatibility issues 

were encountered with the current browsers’ WebGL implementations. In particular, 

Kosmos seems to run best on Mozilla Firefox on Mac or Linux computers. Chrome on 

Mac encounters strange performance issues with no explanation or warning, likely due to 

silent software rendering fallbacks, while Firefox instead uses the GPU as expected. 

What’s worse, on Windows Kosmos initially did not work at all (even in Firefox). Upon 

debugging the issue, Windows seems to use Google’s ANGLE, a so-called “compatibility 

layer” for WebGL used in both Firefox and Chrome. ANGLE converts WebGL calls 

(which are really just OpenGL calls exposed to JavaScript) into DirectX. This conversion 

means ANGLE recompiles OpenGL’s GLSL shaders into DirectX’s HLSL language. In 

theory, this translation process would be fine if it worked – but it’s very buggy. 

The very advanced GLSL shaders in Kosmos encounter what seem like unanticipated / 

untested edge cases in Google’s ANGLE compatibility layer, because Chrome crashes on 

Windows and Firefox freezed and failed to load planet data at all (due to failure to 

correctly execute the corresponding GLSL shaders). Fortunately, with much trial and 

error, removing some features to simplify GLSL shaders a bit brought Kosmos to a point 

where it works on Windows, though not without compromise (in particular, Windows 

cannot support an infinite variety of planets that works just fine on Mac and Linux). 
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Even with compatibility issues aside, Google’s ANGLE is extremely slow in processing 

GLSL shaders. As a result, Kosmos loads very slowly on even powerful windows 

computers because the 3D engine uses very large and complex GLSL shaders to offload 

as much work to the GPU as possible. In contrast, on Mac and Linux where ANGLE is 

not enabled, Kosmos loads in under 2 seconds (even on a laptop an order of magnitude 

slower than the Windows computer tested). 

 

2. Procedural content generation, while a nice idea in concept, ultimately doesn't "save" 

you all that much work. In theory it provides "infinite variation" of planets, stars, etc., 

but it does not provide infinite novelty. 

What the human mind finds interesting artistically and visually is not variation, but 

"novelty". While admittedly a more vague word, novelty represents content that is truly 

new, rather than just parameterized variations of the same thing seen before. 

Although procedural generation engines (like in Kosmos) can provide infinitely varying 

universes with trillions of stars without the need for each to be individually designed, it 

becomes boring after a while because human minds adapt and figure out the underlying 

patterns very rapidly. 

Therefore, some amount of handcrafting and artistically created content is needed to 

make content sufficiently interesting for a game, for example. 

However, one possible exception would be a more intricate simulation-oriented 

generation system (i.e. rather than using simple mathematical functions to generate 

planet-resembling things, actually simulate gasses in space, gravity in space, star 

formation, planet formation, erosion, elements, etc. etc.) Such a simulation could produce 

a system so complex that variation does appear truly "novel" in some sense, simply from 

the sheer scale and detail of the simulation. However such complexity would require far 

too much computational power to be feasible in real-time, even on powerful gaming 

computers, let alone mobile/casual devices. It might be feasible though as an offline 

content creation tool to ease the work of artists, however. Or, it could be feasible if 
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offloaded to a supercomputing "cloud", with the data streamed to users of the game world 

on-demand. Even then though, creating the rules for such a simulation would be no small 

feat in of itself. 

So aside from major advances in simulation complexity (which may happen in a few 

decades), it appears most 3D worlds will need to have some aspect of human-guided 

design to be effectively interesting for games. This observation by no means rules out all 

procedurally generated content, it just means one will likely spend about as much time 

crafting procedural rules/equations as an artist would making it by hand anyway. 

Future Plans 

Kosmos (this web based version version) was mostly an experimental, self-educational 

project for the author. In retrospect, WebGL simply has too many compatibility 

issues/hassles for it to be a valuable target for spare time projects. Future versions or 

projects will most likely be done with native code instead -- certainly until WebGL stops 

being flakey, and browsers figure out how to get closer to native performance. 

For example, the author would like to make a future improved version of Kosmos as a 

mobile game app, targeting tablets in particular. Additionally, there are a lot of features 

that would be included that weren’t possible in this version due to time constraints: 

• Planet atmospheres with correct simulated atmospheric scattering effects 

• Much more ground-level detail (i.e. trees, grass, etc.) 

• Animated planet orbits and rotations 

• More variety of planet types (right now there's just a few base types) 

• Gameplay dynamics with space and ground combat 

Of course, the completion of such future goals is subject to time constraints, since the 

author will be employed working full-time on other projects following graduation. 
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APPENDIX 

 

 

 

  

 

 

Figure 10. Additional screenshots. 


	Santa Clara University
	Scholar Commons
	6-12-2013

	Kosmos : a virtual 3-D universe
	John Judnich
	Recommended Citation


	Microsoft Word - DesignThesis.docx

