# Santa Clara University Scholar Commons

**Civil Engineering Senior Theses** 

**Engineering Senior Theses** 

6-8-2013

# Structural design of the 2013 Santa Clara University Solar Decathlon 'radiant house'

Katherine McKenzie Santa Clara Univeristy

Mey-Ling Leon Santa Clara Univeristy

Follow this and additional works at: https://scholarcommons.scu.edu/ceng\_senior Part of the <u>Civil and Environmental Engineering Commons</u>

#### **Recommended** Citation

McKenzie, Katherine and Leon, Mey-Ling, "Structural design of the 2013 Santa Clara University Solar Decathlon 'radiant house'" (2013). *Civil Engineering Senior Theses.* 12. https://scholarcommons.scu.edu/ceng\_senior/12

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in Civil Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact <a href="mailto:rscroggin@scu.edu">rscroggin@scu.edu</a>.

# STRUCTURAL DESIGN OF THE 2013 SANTA CLARA UNIVERSITY SOLAR DECATHLON 'RADIANT HOUSE'

by Katherine M<sup>c</sup>Kenzie & Mey-Ling Leon

## SENIOR DESIGN PROJECT REPORT

#### submitted to

# the Department of Civil Engineering

## of

# SANTA CLARA UNIVERSITY

in partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering

> Santa Clara, California 2013



Katherine M<sup>c</sup>Kenzie and Mey-Ling Leon

Department of Civil Engineering Santa Clara University, Fall 2013

## ABSTRACT

The Structural Team for the Santa Clara University Solar Decathlon 2013 Radiant House achieved the task of designing a structurally operative, yet efficient, innovative, and sustainable house that satisfies the needs of everyone from Team Radiant House. The loadings to be considered in the structural design were: dead load, live load, wind load, seismic load, and roof load. The house design implements a classic system of joists, beams, studs, and shear walls to transfer loads to the piers, and finally to the foundations, in combination with a steel framing system to direct loads, increase stiffness and simplify connections for ease of construction, and transportation. The house was designed in softwood timber, with the intent of switching the material to bamboo in the joists and shear wall elements, an intent which was achieved in accordance with the success of other senior design groups. Santa Clara's 2013 Solar Decathlon Radiant House uses the structural engineering as a crucial element in showing new methods of sustainable development and design looked for in the Solar Decathlon Competition.

# TABLE OF CONTENTS

| INTRODUCTION                                             |
|----------------------------------------------------------|
| SUMMARY ALTERNATIVE ANALYSIS                             |
| DESIGN CRITERIA AND STANDARDS                            |
| DESCRIPTION OF THE DESIGNED FACILITY                     |
| COST ESTIMATE                                            |
| CONCLUSION                                               |
| APPENDIX A – Calculations                                |
| APPENDIX B – Construction Drawings and Design Renderings |

ſ

#### INTRODUCTION

The Structural Design Team of Santa Clara University's 2013 Solar Decathlon "Radiant House' was tasked with developing a structurally sound, sustainable, and innovative structural design for the 2013 Solar House. The Solar Decathlon is a competition which emphasizes sustainable, innovative, and affordable design of residential homes though student led teams and designs. "The Solar Decathlon is a key strategy to achieve an important goal for National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy (DOE), namely, to foster development and facilitate widespread adoption of homes that demonstrate solar and energy efficiency technologies in marketable applications, through technology development and key partnerships. The strategy includes fostering excellence in building science education in universities with the goal of equipping future design and construction professionals with the skills necessary to design and build quality high performance homes that are healthy, safe, durable, and energy efficient." (as per SD2013 RFP)

The DOE, and the SCU Solar Decathlon Team, are interested in developing net-zero sustainable housing due primarily to the extremely detrimental effect current energy usage is having on the planet. There is a worldwide need for a movement to greener living. Humans have caused the mass majority of the current planetary warming, along with many other environmental issues, all of which relate to excessive energy consumption in some way. Industrialization, deforestation, and pollution have increased atmospheric concentrations of water vapor, carbon dioxide, methane, and nitrous oxide, all greenhouse gases that help trap heat near Earth's surface. According to NASA's Goddard Institute for Space Studies, average temperatures have climbed 1.4 degrees Fahrenheit around the world since 1880, much of this

occurring in recent decades. A report by the IPCC released in April 2007 warned that global warming could lead to large-scale food and water shortages and have catastrophic effects on wildlife. The frequency and magnitude of natural disasters, such as hurricanes and heat waves, will also increase. Clearly, the effect of inefficient energy usage is having an extremely negative effect on the planet.

"The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency." (DOE Solar Decathlon Home Page) The Solar Decathlon is an international competition focusing on ten contests by which the student designed solar houses are judged by. Through the structural design of the Radiant House, this team focused on certain aspects of the engineering, as well as the architecture, contests within the 10 Solar Decathlon Contests. The major features to be considered therein were designing structurally sound structure, assuring each of its three modules can withstand travel to its competition location, determining appropriate module, foundation, and roof connections, and incorporating innovative features. The ultimate goal of the structural engineering of the Solar House was to design for structural integrity, whilst not overdesigning so as to minimize cost, and maximize sustainability and innovation.

The competition location for the 2013 Department of Energy Solar Decathlon is Orange County Great Park in Irvine, California, on October 3–13, 2013. During this 10 day period hundreds of thousands of house visits will be provided to the public.

"For the student competitors, the project is designed to increase education about

energy-efficient home design, and to accelerate home research and development... and to achieve the goal of developing and demonstrating solar and energy efficiency technologies in marketable residential applications." (SD2013 RFP) The Santa



Clara University 2013 Radiant House should be a viable representation of the direction in

which housing need to progress. The structural aspect of the house was designed to be sustainable while maintaining ease of construction and assembly, and, perhaps most importantly, remaining economical.

#### SUMMARY ALTERNATIVE ANALYSIS

The most fundamental and innovative aspect of the structural design of the Solar House was the material. There are three commonly used building materials: steel, concrete, and timber. Concrete is not a viable option for a project of this scale. Along with steel and timber, we considered bamboo as a third building option. The pros and cons of each are summarized in the table below:

|        | Pros                                                                                                                                                                                                                                                   | Cons                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steel  | <ul> <li>High Strength</li> <li>Recyclable</li> <li>Full design information</li> </ul>                                                                                                                                                                 | <ul> <li>Expensive</li> <li>High CO<sub>2</sub> emissions</li> </ul>                                                                                                                                                                                       |
| Timber | oCheaper than steeloNot particularly sustainable –<br>does not regenerate quickly                                                                                                                                                                      |                                                                                                                                                                                                                                                            |
| Bamboo | <ul> <li>o High strength to weight ratio</li> <li>o Strongest growing woody plant on earth</li> <li>o One of the widest ranging habitats</li> <li>o Grows the fastest: some species grow one and a half meters a day</li> <li>→ Sustainable</li> </ul> | <ul> <li>Very little structural testing and<br/>therefore extremely limited<br/>design information (extensive<br/>testing required)</li> <li>Variable material properties an<br/>dimensions</li> <li>Not easily cut into consistent<br/>product</li> </ul> |

**Table 1. Structural Materials Comparison** 

From this table, it is easy to reach the conclusion, as the Structural Team did, that bamboo would be an extremely sustainable, and likely very structurally sound material, but it would require research, and therefore time and money, before use. Bamboo has the potential to be analyzed and designed with the same ease as timber once it is a more established structural material in the US. Steel is expensive and, though it is recyclable, the processes involved in recycling steel do not lend themselves well to being coined 'sustainable'. Timber is a less expensive and greener building alternative than steel, though not so much so as bamboo. Timber has adequate strength and design properties for a project of this scale. Santa Clara University has spent extensive time testing bamboo's properties over the

2011/2012 and 2012/2013 school years. Therefore, the 2013 Solar Decathlon Radiant House was designed as a timber structure, with the intent of shifting to bamboo when the testing was completed and if the results proved it to be an equivalent or better alternative. The testing showed bamboo as a viable alternative to timber, and therefore Bamboo Shear Walls and Floor/Ceiling Joists were implemented. Bamboo has the potential to be a superior, inexpensive, and sustainable building material in the future – by using



innovative new direction.

In addition to the innovative use of bamboo in the Radiant House, the Structural Team proved innovative in its combinatory approach to the Structural Design. The Radiant

it in the SCU Solar House bamboo's potential was showcased as an



FIG. 4 - 2013 RADIANT HOUSE FLOOR PLAN

House will be initially constructed at Santa Clara University in the spring and summer of 2013. It will then be deconstructed in order to be shipped to the Solar Decathlon Competition Site in Irvine, CA, where it must be reconstructed in a 7 day period

before the competition commences on October 3, 2013. At the end of the competition the house must be deconstructed, moved, and reconstructed at least once more in a more permanent location. For this reason it is required at the Radiant House be a modularized structure. The Architectural Team along with the Structural Team determined that a four module system would be most effective: three main modules and a roof module. These modules are to be essentially fully constructed in Santa Clara before shipping.

The Structural Team decided to implement a combined Steel, Bamboo, and Timber

structural system in contrast to a Steel Moment Frame system that is the typical industry standard for Modularized Homes today. The Team was committed to using the aforementioned bamboo elements, negating the possibility of using a Steel Moment Frame System, yet due to the





beneficial. The travel and modular assembly aspects of the Radiant House create a need for extra strength and stiffness factors as well as simple connection details in the design – modularized design of the house it was determined that some steel elements would be



FIG. 7 - 2013 RADIANT HOUSE MODULE CONNECTION

steel has the ability to achieve this much more effectively than any other material. Without the extra stiffness granted by the steel elements in the design the extra loadings and deflections due to these loadings cases would cause severe damage to the fully finished modular elements. This integrated system makes for an efficient and dynamic structure capable of performing well throughout its stages of mobilization and construction.

"The Solar Decathlon is... a public event designed to increase awareness about energy for residential use. The competition demonstrates that a beautifully and well-designed house can generate enough thermal and electrical energy to meet the needs of a household... A critical long-range outcome of the Solar Decathlon project is the development and demonstration of cost-effective solar-powered homes." (as per SD2013 RFP) The structural engineering of the Solar House plays a strong role in this demonstration. The use of structural bamboo in this design as sustainable and economical option, along with the integrated and dynamic aspect of material usage in the SCU 2013 Radiant House, the structural design is a striking showcase of innovative methods within the residential housing industry.

# **DESIGN CRITERIA AND STANDARDS**

The Structural components to be included in the Structural Design of the Santa Clara 2013 Solar Decathlon Radiant House were required to be in compliance with the Santa Clara Building Code, the Irvine Building Code, and the Solar Decathlon 2013 Rules. Loadings considered were: dead load, live load, wind load, seismic load, and roof load. Bamboo components will be used in place of soft wood where they are demonstrated to comply with the acceptance criteria developed by other Senior Design groups. The following are the codes and standards which the Structural Team followed and utilized.

- $\rightarrow$  2009 IBC
- $\rightarrow$  2007 NDS
- $\rightarrow$  AISC Steel Construction Manual
- $\rightarrow$  ASCE 705
- $\rightarrow$  DOE Solar Decathlon 2013 Design Requirements

#### DESCRIPTION OF THE DESIGNED FACILITY

Radiant House was designed using SCU's 2009 Solar Decathlon Refract House Structural Design as a foundation. The design for Refract House included a structural narrative, structural drawings, and addressed the following features: Material Properties, Gravity Loads, Seismic Loads, Wind Loads, Joists and Beams, Columns, Diaphragms, Shear Walls, Moment Frame, Cantilever Column, Foundations, Grade Variability, Deck, Solar Racking, and Overturning Moment.

Using those subjects as a basis, steel moment frames were removed from Radiant House's design due to Professor Aschheim's request that the house be designed solely using shear walls as the primary lateral load resistance. This is because the shear walls being placed in the house were supposed to be bamboo shear walls for innovative purposes. Afterward, it was also determined that the cantilever column was not needed either because that was part of a feature exclusive to Refract House.

After determining what was not needed for Radiant House Structural Design, what was needed was decided. Adding to the list above, the additional features that had to be addressed were: steel frame, connections, carport, awnings, and their respective drawings.

All weights and loads are shown in Appendix A.

#### **Modules**

Radiant House is designed into 4 different modules. If looking at a planar view of the house in Appendix B Sheet S-102, 3 modules are distinguishable. The modules are labeled A, B, and C from left to right when the house is facing North. When looking at a side or isotropic view, the fourth module is discernible. This module, which can be seen in Appendix B sheets S-206 and S-301, is the top module which runs across the middle of the other three modules. Modules A and C are rectangular. Module B is trapezoidal when looking at its planar view but when looking at its side or isotropic view, the module only has two window-covered walls. The top module is essentially a pentahedron without its bottom side.

#### **Gravity Loads**

# (Refer to Appendix A - page 24)

This was one of the most important features of the house design to address. Knowing the materials and their weights is important because almost of the other features' calculations depended upon house weight. This was also one of the most difficult aspects to figure out. The materials used inside of the house, such as HVAC and exterior finish, were supposed to be chosen by different subgroups within the SCU Solar Decathlon team. Even though the other groups were supposed to choose the materials, they still had not decided what they wanted by the time the structural design had to be started. Using materials the other teams believed would be used inside the house, the house's weights were decided.

In order to simplify the weight, the house was separated into components; flat roof, sloped roof, floors, exterior walls, and interior walls. This allowed for the module weights to be calculated on a linear foot basis.

#### Seismic Loads

(Refer to Appendix A – page 26 & Appendix B – sheet S-650)

In order to design for seismic loads, the seismic design base shear had to be calculated for Irvine, CA and for Santa Clara, CA. This had to be done in order to calculate for a worst case scenario seismic load. First, the mapped spectral accelerations were determined using the USGS Java Ground Motion Parameter Calculator. Secondly, the occupancy category, II, was given by the Department of Energy. After that, the calculation in the appendix was followed through using the 2010 California Building Code and Seismic Building Codes. In order to be conservative, the response modification coefficient, R, was chosen to be 6.5 for light frame walls with panels for shear resistance. The building period coefficient based on structural system, Ct, was chosen as 0.02 for 'other structural system' and its corresponding exponent for fundamental period of vibration calculation, x, was 0.75. Following through with the calculation, the earthquake load, E, for both Irvine and Santa Clara was determined to be 0.2 times the weight of the house.

Using the earthquake load and the total weight of each individual module, the seismic force distribution was obtained. The force was determined in the North to South direction and in the East to West direction. It was obtained for ground level and for roof level.

#### Wind Load

(Refer to Appendix A – page 30 & Appendix B – sheet S-650)

Using ASCE 7-10, it was determined that the wind conditions in Irvine and in Santa Clara were the same. The basic wind speed as set by the Department of Energy was 85 miles per hour. The enclosure classification is enclosed because the home is an enclosed structure. All other factor values were determined using their respective charts within the ASCE 7-10 book.

Using the values obtained, the velocity pressure,  $q_z$  came out to be 14.15. The second velocity pressure,  $q_h$  came out to be 13.36. Using these values, the design wind load came out to 12.027 pounds per square foot. Using this value, the shear based on wind loads per each module was determined for the North to South and for the East to West directions.

After comparing the values obtained in each direction for wind and for seismic, the worst case shear in each direction was chosen. For Modules A and C, seismic loads governed in the North to South direction and wind loads governed in the East to West direction. For Module B, seismic loads governed in the East to West direction and wind loads governed in the North to South direction.

#### **Shear Walls**

(Refer to Appendix A – page 31 & Appendix B – sheet S-104)

The shear walls in the house were designed using the governing lateral loads. The shear in each direction was distributed by tributary area into the wall closest to each area. Next, the amount of shear walls in each wall was determined based on the amount of space available in each wall to place in a shear wall. The shear force was then distributed into each shear wall to design the strength per shear wall. The plywood and edge staple or nail spacing were chosen based on the shear wall table allocated in the 2009 Wind and Seismic Design Book. They were chosen based on allowable strength.

Following the basic strength design of each shear wall, a few more checks were required. The first check was making sure that the shear wall had a proper holdown. The strength for each holdown was verified using the Simpson Tie-Down Catalog. The next check was overturning to make sure the shear wall would not turn over. The following check was a mudsill to rim joist connection check to make sure that the force from the lateral load would not cause the connection between the top of the house and the shear wall to break or disconnect. This was also the reason why there was a check to see how many clips were required to connect to the top plate.

#### **Diaphragm**

(Refer to Appendix A – page 38 & Appendix B – sheets S-103, S-105, S-106)

The floor diaphragm was designed for Modules A, B, and C. The flat roof diaphragm was designed for Modules A and C. Over Module B and the middle of Modules A and C, a sloped diaphragm was designed.

An innovation within Radiant House is shown through the floor diaphragm. The floor diaphragms were designed to transfer the lateral loads to the shear walls and the frame of Radiant

House. The diaphragm is attached to the rim joist that is attached to inside web of the steel channel. This is different because diaphragms are not typically located within the steel frame, but instead above it. Most of the shear walls are attached above the C15x33.9 and the one that separates the mechanical room from the house is above an HSS8x3x3/8.

The roof diaphragms are attached to the top plates of the walls. They also transfer the lateral loads to the shear walls and the frame of Radiant House.

#### **Foundations**

(Refer to Appendix A – page 46 & Appendix B – sheets S101, S-501, S-502)

The foundation of the Radiant House was designed using Standard Piers and Seismic Piers from Central Piers Incorporated. Using the weight of each module, the total bearing area needed was calculated. To be more conservative, an overturning calculation was done to determine the number of square feet for footings per side. Using the required amount of area for footings, the number of seismic piers and standard piers were chosen.

#### **Grade Variability**

(Refer to Appendix A – page 50 & Appendix B – sheet 601)

The Department of Energy required that the house design have structural calculations that account for the grade variability on the runway where the house will be on display. In order to avoid calculations, piers were chosen that can be adjusted by 2" each. The piers also range in size from 4" up to 36" high. Using the basic grade variability and using profiles to figure out the height of the house at a location on the lot, a pier that would account for the height differences was chosen.

#### Steel

(Refer to Appendix A – page 56 & Appendix B – SOS Steel Co. sheets)

The loads on the house were small enough that the house could have been designed solely out of timber. Although that is the case, the house was designed using a steel frame. A steel frame was designed to make connecting the modules easier for the group of students who will be assembling, disassembling, and reassembling the house. The steel frame was also used for transportation and transferring loads.

#### W5x19 (Refer to Appendix A – page 60 & Appendix B – Sheet D4-D5.1)

These 6 pieces of steel were originally designed in a lighter size in order to collect the gravity loads from the top module and transfer the loads down to the steel columns that hold them up. The steel size was also chosen because there was a 6 inch width limit in the location that the steel was being placed in. When designing for shear in the house it was discovered that a collector was needed to transfer later loads in the East to West direction. Although the original size and the W5x19 can both transfer the seismic loads throughout the house to the shear wall, the original size did not enable for proper bolting connections. It was because of that that the W5x19 was chosen.

#### HSS 3.5x3.5x 5/16 (Refer to Appendix A – page 59 & Appendix B – Sheet D1-D3)

This size steel was chosen for the columns that hold up the W5x19 collector steel. Steel was chosen as the element to hold the W5x19 up, instead of timber, due to the ease of connections. At first the steel columns were designed to be the element that enabled for inter-modular connections. When designing the steel with the steel company though, it was decided not to use that as the inter-modular connection because it would still be a difficult connection. The steel still remained as the primary gravity catcher of the top module though. A smaller size steel tube

would have been able to take the small loads from the top module, but in order to limit eccentric loads and still enable stiffness, the HSS 3.5x3.5x5/16 was chosen for the column design.

HSS 8x3x3/8 (Refer to Appendix A – page 58 & Appendix B – sheet D6-D8)

Transportation, insufficient testing on the bamboo joists, and connection to the C15x33.9 led to the decision of having steel beams located every 8 feet within the floor of the house.

#### **Transportation**

The trucks being used to transport each module of the house down to Irvine are being donated by an SCU alumnus with a transportation company. The beds of the trucks are only 8 feet wide, which was a conflict with the 12 foot wide base of Radiant House. If placed upon the bed of the truck, the sides of the house would be unsupported and this may cause the house to come apart. In order to support the house, additional steel would need to be placed on the beds of the trucks and then the modules would be placed above it, or steel would need to already be implemented as part of the base of the house. The price of the steel would be a part of the house regardless of whether it was placed inside of the house or not so it was decided to make the house stiffer, which is safer, and add steel to the bottom of the house.

#### **Insufficient Testing**

The bamboo joists tested for the house were tested for gravity loads but not for shear loads. This meant that nailing into the bamboo joists for the diaphragm could actually be dangerous. Each diaphragm plywood board is 4'x8' and would need to be nailed into a joist on the 8' side. In order to make the diaphragm load safe, the HSS was designed so that 2 - 2x4's would be bolted onto the top of the HSS steel for the diaphragm to be nailed into.

Ease of connection to C15x33.9

The last step in designing the steel was deciding which shape of steel to use as the support. The size was narrowed down to a W, C, or HSS member. Each had a flat top so that the 2 - 2x4's could be placed above it. Each shape was available in the height limits that were needed in order for the top of the 2-2x4's to align properly with the top of the bamboo joists. Each shape was also able to take the loads placed upon it during transportation. Because steel is priced on a linear foot weight basis, the next step was narrowing down the shape by weight. The most promising shape was the HSS but due to the fact that the ends of the beam would need to be welded to the C15x33.9, it still was not clear which shape would be used. After meeting with S.O.S. Steel Company, their manager said it would not be a difficult connection to weld, so HSS was chosen as the shape.

C15x33.9 (Refer to Appendix A – page 56 & Appendix B – sheet D6-D8)

A C15x33.9 was chosen as the base frame main component due to its shape, height, and strength.

#### Shape

Going with a large HSS shape steel member seemed safest when trying to decide on a shape. The shape would not deflect under torsional loading. Although that is the case, it seemed too difficult to attach the floor joist hangers to the HSS member. This led to the decision to use a W-shape or a C-shape so that a rim joist could be placed inside of it in order to attach the floor joist hangers onto it. A W-shape seemed safest because a channel may bend inwardly and a W-shape would be able to resist loads better. Although a w-shape seemed like a better shape to use, a W-shape didn't allow for a thick rim joist to be attached to its web. The channel also had a flat backside, which enabled for easier inter-modular connections. With a W-shape, an inter-modular connection utilizing the W's at the base of two modules would have proven too difficult or nearly impossible.

Height

The Santa Clara University team wanted to have a standard interior ceiling height. With basic construction it would have been a difficult feature to design for. By using a taller steel size at the base to place the walls of the house above, it was easier to get close to this interior height.

#### Strength

Using Visual Analysis, it was determined that a W12x19 could be used. This meant that we would have been able to use a much smaller size that would be much cheaper. Once we changed it to a channel, it was established that using a C15x33.9 would be sufficient to carry the strength. The challenge with using the C15x33.9 was that the price would be nearly twice the price of the W12x19. After bringing up the dilemma with the SCU Solar Team, the team decided that paying more for a higher ceiling height was worth the money.

#### **C8x11.5** (Refer to Appendix A – page 57 & Appendix B – sheet D7)

The C8x11.5 pieces of steel are used at the base ends of Module B. A channel was chosen so that the backside of the channel could connect easily to the backside of the channel at the base of modules A and C. It was also chosen in order to be able to take the transportation loads. Due to the fact that module B is not as heavy as modules A and C, the channel at its base did not have to be as heavy as the C15x33.9 that is at the ends of the other modules.

L8x4x1/2 (Refer to Appendix A – page 70 & Appendix B – sheet D10)

The Top module is 42 feet long and has to be lifted into place after the other three modules are set down. This means that the top module had to have a steel frame as well because there is not a piece of timber 42 feet long that would be thin enough to conceal within the walls of the house. Because the loads are so light on the top module, a large size of steel was not needed. The reason that an angle was chosen for the top module frame was because there had to be a way to connect the W5x19 to the top module. For an easier connection, we chose to bolt through the angle and into the flange of the W5x19. The L8x4x1/4 also had to be strong enough so that the transportation company could attach D-rings to pick points in order to lift it without the module deflecting too much.

#### C3x3.5 (Refer to Appendix A – page 74 & Appendix B – sheet D9)

In order to make the top module stiffer for transportation, steel was added in the areas between where the windows in the module are located. This will enable the top module to deflect less and enable for more security in its strength and stiffness. The steel was not placed in there to take a particular amount of load. It will take some of the roof load though. It will also be used to attach the timber infill to the L8x4x1/2 steel.

#### L2x2x1/4 (Refer to Appendix A – page 67 & Appendix B – sheet D10)

Temporary bracing needed to be added to the modules for transportation. The module that needed temporary bracing was Module B. When it stands alone, this module only has a floor and two walls. These two walls also contain vast amount of windows and glass doors. The module would be unstable during transportation and the windows inside the module would probably break if no bracing was designed. Due to the fact that the actual loads during transportation are unknown, the design load was chosen as 20 kips tension and compression to be conservative. To be conservative, temporary bracing was also designed for Modules A, B, and the top module.

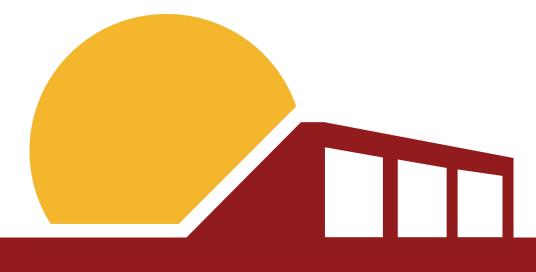
# **COST ESTIMATE**

| Item           | Budgeted Cost | Actual Cost |
|----------------|---------------|-------------|
| Lumber         | \$20000.00    | \$26808.29  |
| Standard Piers | \$3444.00     | \$1650.00   |
| Seismic Piers  | \$2000.00     | \$1908.00   |
| Steel          | \$35000.00    | \$44841.40  |
| Deck           | \$7000.00     | \$10811.91  |
| Bamboo         |               |             |

#### **Estimated Budget versus Actual Cost**

When estimating the cost of the house, labor was not adjusted into the budget. The actual cost shown is the cost that the Department of Energy has estimated for certain items within the structure of the house and this price includes labor. For a seismic pier for example, we bought 12 seismic piers and each one costs \$105 so the total price should be \$1260 but because the piers need to be installed, the Department of Energy added \$648 for labor to the cost.

For the deck, the original budgeted cost was estimated for a different house and deck layout. The deck was not as large as the current deck which is roughly 1500 sq. ft., which is larger in area than the 1000 sq. ft. house. The price of the deck also includes decking material such as railing and the bamboo decking that were chosen by the architect of the team. This material adds to the structural cost of the deck. The standard piers for the deck were also included in the cost of the deck instead of under the cost of the standard piers, which is why the actual cost of the standard piers is much lower than the budgeted cost of standard piers.


# CONCLUSION

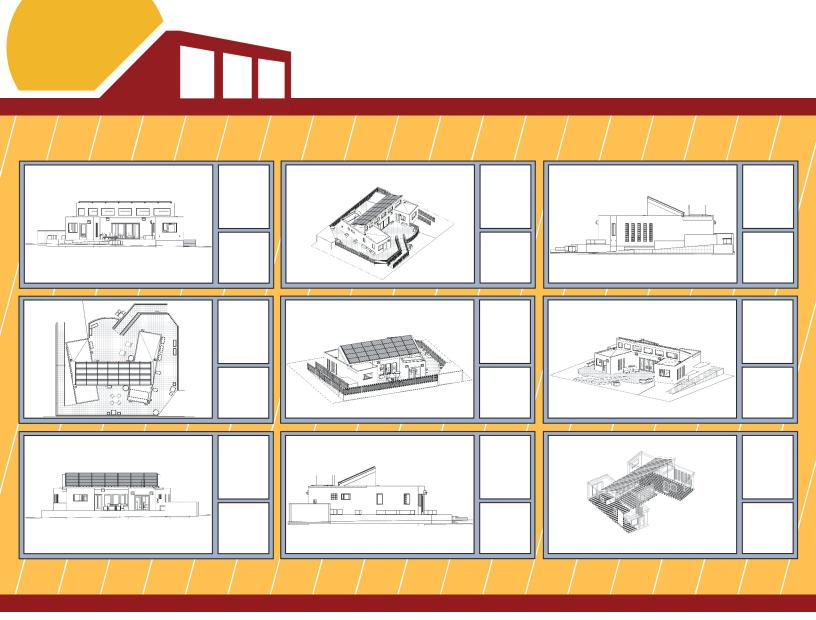
The ultimate objective of the Department of Energy Solar Decathlon competition, and the Santa Clara University Solar Decathlon Team is to educate students and the public about the money-saving opportunities and environmental benefits presented by clean-energy products and design solutions, and to demonstrate the comfort and affordability of homes that combine energy-efficient construction and appliances with renewable energy systems available today. Santa Clara's 2013 house is using the structural engineering as a crucial element in showing new methods of sustainable development and design. By primarily using bamboo, creating a dynamic and integrated design, and using sustainable products where possible throughout the structure, the structural engineering of the Solar House has the ability to showcase sustainable design options.

**APPENDIX A – Structural Calculations** 

\_\_\_\_\_

APPENDIX B – As-built Construction Drawings and Design Renderings




# RADIANT HOUSE PROJECT MANUAL

US DEPARTMENT OF ENERGY Solar Decathlon 2013 Santa Clara University



# TABLE OF CONTENTS

| 3   |
|-----|
| 10  |
| 19  |
| 96  |
| 99  |
| 111 |
| 113 |
| 115 |
| 117 |
| 138 |
|     |



# RULES COMPLIANCE

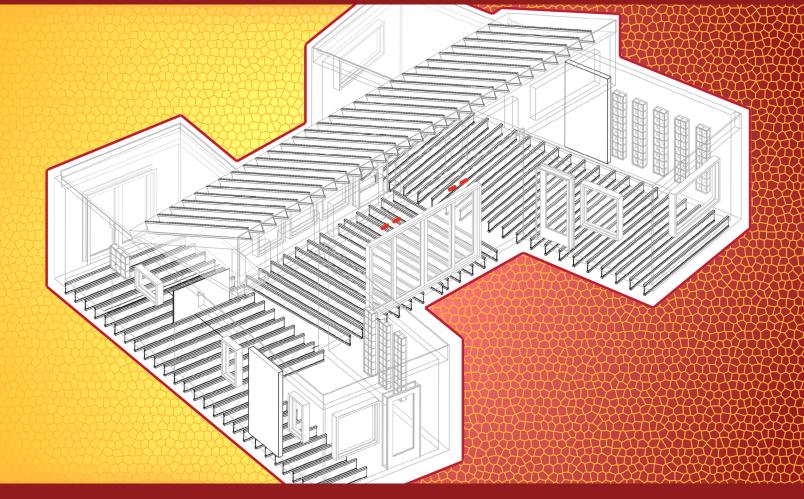
## RULES COMPLIANCE CHECKLIST

| Rule # | Rule Name                        | Content Description                                                                                                                    | Location                                                                                                                                                             |
|--------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-2    | Construction<br>Equipment        | Drawing(s) showing the assembly and disassembly sequences and the movement of heavy machinery on the competition site                  | O-101                                                                                                                                                                |
| 4-2    | Construction<br>Equipment        | Specifications for heavy machinery                                                                                                     | 41 20 00<br>41 23 23<br>41 62 23                                                                                                                                     |
| 4-3    | Ground Penetration               | Drawing(s) showing the locations and depths of all ground penetrations on the competition site                                         | S-101                                                                                                                                                                |
| 4-4    | Impact within the Solar Envelope | Drawing(s) showing the location, contact area, and bearing pressure of every component resting directly within the solar envelope      | S-108                                                                                                                                                                |
| 4-5    | Generators                       | Specifications for generators (including sound rating)                                                                                 | 26 32 13                                                                                                                                                             |
| 4-6    | Spill Containment                | Drawing(s) showing the locations of all equipment,<br>containers, and pipes that will contain liquids at any point<br>during the event | P-102<br>P-103<br>P-104<br>P-901<br>P-902<br>M-102<br>M-103<br>H-101<br>FP-01                                                                                        |
| 4-6    | Spill Containment                | Specifications for all equipment, containers, and pipes that<br>will contain liquids at any point during the event                     | 21 10 00<br>22 05 00<br>22 11 13<br>22 11 16<br>22 12 23<br>22 12 00<br>22 13 00<br>22 13 53<br>22 41 16<br>22 41 23<br>22 80 08<br>23 23 23<br>23 83 16<br>23 83 33 |
| 4-7    | Lot Conditions                   | Calculations showing that the structural design remains compliant even if 18 in. (30.48 cm) of vertical elevation change exists        | Pg. 50                                                                                                                                                               |
| 4-7    | Lot Conditions                   | Drawing(s) showing shimming methods and materials to be<br>used if 18 in. (30.48 cm) of vertical elevation change exists<br>on the lot | S-501                                                                                                                                                                |
| 5-2    | Solar Envelope<br>Dimensions     | Drawing(s) showing the location of all house and site components relative to the solar envelope                                        | G-201<br>G-202                                                                                                                                                       |

| 5-2 | Solar Envelope<br>Dimensions  | List of solar envelope exemption requests accompanied by justifications and drawing references                                                                                                                                                                                                                  | N/A                     |
|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6-1 | Structural Design<br>Approval | List of, or marking on, all drawing and project manual<br>sheets that have been or will be stamped by the qualified,<br>licensed design professional in the stamped structural<br>submission; the stamped submission shall consist entirely<br>of sheets that also appear in the drawings and project<br>manual | Pg. 15                  |
| 6-2 | Finished Square<br>Footage    | Drawing(s) showing all information needed by the rules<br>officials to measure the finished square footage<br>electronically                                                                                                                                                                                    | G-101                   |
| 6-2 | Finished Square<br>Footage    | Drawing(s) showing all movable components that may increase the finished square footage if operated during contest week                                                                                                                                                                                         | N/A                     |
| 6-3 | Entrance and Exit<br>Routes   | Drawing(s) showing the accessible public tour route                                                                                                                                                                                                                                                             | G-103                   |
| 7-1 | Placement                     | Drawing(s) showing the location of all vegetation and, if<br>applicable, the movement of vegetation designed as part of<br>an integrated mobile system                                                                                                                                                          | L-101                   |
| 7-2 | Watering<br>Restrictions      | Drawing(s) showing the layout and operation of greywater irrigation systems                                                                                                                                                                                                                                     | N/A                     |
| 8-1 | PV Technology<br>Limitations  | Specifications for photovoltaic components                                                                                                                                                                                                                                                                      | 26 31 00<br>48 19 16    |
| 8-3 | Batteries                     | Drawing(s) showing the location(s) and quantity of all primary and secondary batteries and stand-alone, PV-powered devices                                                                                                                                                                                      | F-101<br>E-105<br>T-102 |
| 8-3 | Batteries                     | Specifications for all primary and secondary batteries and stand-alone, PV-powered devices                                                                                                                                                                                                                      | 26 33 13                |
| 8-4 | Desiccant Systems             | Drawing(s) describing the operation of the desiccant system                                                                                                                                                                                                                                                     | N/A                     |
| 8-4 | Desiccant Systems             | Specifications for desiccant system components                                                                                                                                                                                                                                                                  | N/A                     |
| 8-5 | Village Grid                  | Completed interconnection application form                                                                                                                                                                                                                                                                      | Pg. 115                 |
| 8-5 | Village Grid                  | Drawing(s) showing the locations of the photovoltaics,<br>inverter(s), terminal box, meter housing, service<br>equipment, and grounding means                                                                                                                                                                   | E-103<br>E-201<br>E-401 |

| 8-5 | Village Grid               | Specifications for the photovoltaics, inverter(s), terminal box, meter housing, service equipment, and grounding                             | 26 05 19<br>26 05 26 |
|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     |                            | means                                                                                                                                        | 26 05 33             |
|     |                            |                                                                                                                                              | 26 05 83             |
|     |                            |                                                                                                                                              | 26 24 16             |
|     |                            |                                                                                                                                              | 26 27 26             |
|     |                            |                                                                                                                                              | 26 28 16<br>26 31 00 |
|     |                            |                                                                                                                                              | 48 19 16             |
| 8-5 | Village Grid               | One-line electrical diagram                                                                                                                  | E-611                |
| 8-5 | Village Grid               | Calculation of service/feeder net computed load per NEC 220                                                                                  | E-601                |
| 8-5 | Village Grid               | Site plan showing the house, decks, ramps, tour paths, and terminal box                                                                      | G-103                |
| 8-5 | Village Grid               | Elevation(s) showing the meter housing, main utility disconnect, and other service equipment                                                 | E-201                |
| 9-1 | Container                  | Drawing(s) showing the location of all liquid containers                                                                                     | P-102                |
|     | Locations                  | relative to the finished square footage                                                                                                      | P-103<br>P-104       |
| 9-1 | Container                  | Drawing(s) demonstrating that the primary supply water                                                                                       | P-104                |
| 5 1 | Locations                  | tank(s) is fully shaded from direct solar radiation between 9<br>a.m. and 5 p.m. PDT or between 8 a.m. and 4 p.m. solar<br>time on October 1 | P-901                |
| 9-2 | Team-Provided              | Quantity, characteristics, and delivery date(s) of all team-                                                                                 | N/A                  |
|     | Liquids                    | provided liquids for irrigation, thermal mass, hydronic<br>system pressure testing, and thermodynamic system<br>operation                    |                      |
| 9-3 | Greywater Reuse            | Drawing(s) showing the layout and operation of greywater reuse systems                                                                       | N/A                  |
| 9-4 | Rainwater<br>Collection    | Drawing(s) showing the layout and operation of rainwater collection systems                                                                  | N/A                  |
| 9-6 | Thermal Mass               | Drawing(s) showing the locations of liquid-based thermal mass systems                                                                        | H-101                |
| 9-6 | Thermal Mass               | Specifications for components of liquid-based thermal mass systems                                                                           | N/A                  |
| 9-7 | Greywater Heat<br>Recovery | Drawing(s) showing the layout and operation of greywater heat recovery systems                                                               | N/A                  |
| 9-8 | Water Delivery             | Drawing(s) showing the complete sequence of water delivery and distribution events                                                           | P-101                |
| 9-8 | Water Delivery             | Specifications for the containers to which water will be delivered                                                                           | 22 12 00             |
| 9-9 | Water Removal              | Drawing(s) showing the complete sequence of water consolidation and removal events                                                           | P-101                |
| 9-9 | Water Removal              | Specifications for the containers from which water will be removed                                                                           | 22 12 00<br>22 13 53 |

| 11-4 | Public Exhibit | Interior and exterior plans showing entire accessible tour route | G-103<br>X-101 |  |
|------|----------------|------------------------------------------------------------------|----------------|--|
|------|----------------|------------------------------------------------------------------|----------------|--|


#### 6-1 STRUCTURAL DESIGN APPROVAL

The following is a list of the sheets and pages that are stamped in the hard copy by Dr. Mark Aschheim, PE. The sheets and pages can be found in the Construction Drawings and Project Manual at the locations listed below, or in a separate, but attached Stamped Drawing Set and Stamped Structural Calculations.

- Structural Calculations, pages 19-95 of the Project Manual
- Construction drawings, including:
  - S-001 Structural Notes and Symbols
  - S-101 Foundation Plan
  - S-102 Module Separation
  - S-103 Floor Framing Plan
  - S-104 Wall Framing Plan
  - S-105 Lower Roof Framing
  - S-106 Upper Roof Module Framing Plan
  - S-107 Deck Framing Plan
  - S-108 Bearing Pressure Plan
  - S-109 South Awning Plan
  - S-201 Module A Wall Framing
  - S-202 Module A Wall Framing
  - S-203 Module B Wall Framing
  - S-204 Module C Wall Framing
  - S-205 Module C Wall Framing
  - S-206 Roof Elevation
  - S-303 Roof Module Section
  - S-311 Deck Section
  - S-401 Awning Large Scale Plan
  - S-501 Pier Details
  - S-502 Pier Plate Details
  - S-512 Bamboo Gravity Wall Details
  - S-521 I-Joist Details
  - S-531 Connection Details
  - S-532 Timber to Steel Connections
  - S-541 Railing Details
  - S-551 Awning Details
  - S-601 Schedules
- S.O.S. Steel Co. Shop drawings, including:
  - D1
  - D2
  - D3
  - D4
  - D4.1
  - D5
  - D5.1

D6 D7 D8 D9 D10 D11 E1 E1.1 E2 E3 E4





# STRUCTURAL CALCULATIONS

# STRUCTURAL CALCULATIONS

# TABLE OF CONTENTS

| Structural Narrative                | 21 |
|-------------------------------------|----|
| Bamboo Structural Systems Narrative | 22 |
| Material Properties.                | 23 |
| Gravity Loads                       | 24 |
| Seismic Design Base Shear           |    |
| Wind Load.                          |    |
| Shear Walls                         |    |
| Flat Roof Diaphragms                |    |
| Floor Diaphragm                     | 40 |
| TJI 230 Joists Provided Information |    |
| Flat Roof Joist Calculations        |    |
| Floor Joist Calculations            | 45 |
| Foundations                         | 46 |
| Anchorage                           |    |
| Grade Variability                   |    |
| Moment Stability                    | 51 |
| Wall Post Design                    | 52 |
| Wall Stud Design                    |    |
| Header Calculations                 |    |
| Steel                               | 56 |
| Connections                         | 68 |
| Roof Module                         | 69 |
| Steel                               | 70 |
| North Wall Roof – Timber Framing    | 76 |
| TJI 230 Joists Provided Information | 78 |
| Roof Chord Forces                   | 79 |
| Sloped Roof Diaphragm               | 80 |
| Connections                         |    |
| Sunplanter Solar Racking            | 83 |
| Deck                                |    |
| Girder Calculations                 | 85 |
| Joist Calculations                  | 86 |
| Slats                               | 87 |
| Foundation                          | 88 |
| Connections                         |    |
| Awnings                             |    |
| Railings                            |    |
|                                     |    |

## STRUCTURAL NARRATIVE

The 2013 Radiant House is the realization of Santa Clara's goal to design a strong, efficient, and innovative symbol of sustainability. Utilizing a conventional system of joists, beams, studs, and shear walls, we implemented an innovative and original design to resist and transfer dead, live, wind, and seismic loads to the foundation.

The approach of our team is to substitute an initial conventional softwood design with one that makes use of a bamboo structural system. Research conducted at Santa Clara University has yielded results affirming bamboo's suitability as a substitute for bamboo joists and gravity walls. The bamboo will be incorporated into the design as a primary structural component of Radiant House.

Radiant House will be composed of three base modules and an additional roof module. A perimeter structural steel channel or angle will serve as the backbone to each of these modules, serving to collect all gravity and lateral loads and distribute them into the foundation, which will consist of a series of seismic and standard piers. Roof gravity loads will be collected by bamboo joists and transferred through bamboo gravity walls into the steel channel. While lateral loads at the roof level will transfer through the roof diaphragm into the shear walls and into the perimeter steel channel. The floor joists will be hung such that a minimum clearance of 1- 9/16 inch will be maintained above the bottom of the steel channel. Lateral loads will be collected by floor diaphragms and transferred into the steel perimeter channel.

The sloped roof module consists of a structural steel angle base that transmits roof diagram loads into the top plates of the base modules. The roof angle is 24 degrees and is supported on the low side by the above mentioned structural steel angle and a vierendeel truss at the high end of the slope. The vierendeel truss is created by vertical structural steel channels running between the base angle and a top horizontal steel angle. The vertical steel channels are placed at strategic locations to carry and transfer shear loading due to wind and seismic in the East-West directions and gravity loads, while still allowing windows for natural lighting. The roof slopes from the top steel at the north wall to the base steel on the south side in order to create a slope optimal for solar collection.

As Radiant House will be transported by truck from Santa Clara to Irvine, our greatest concern is maintaining the structural integrity of the completed house during transportation. The significant wind loads expected to act on the house's modules during transportation will require thorough consideration during both the design and transportation phases in order to preserve structural stability. For example, steel beams will be placed parallel to the floor joists and flush with the bottom of the perimeter channel to support and transfer the gravity load to the truck bed during transportation.

Santa Clara's 2013 Radiant House demonstrates the importance of structural engineering's role in sustainable development and design. With its frugal and efficient design and its pioneering use of sustainable products, the structural engineering of Radiant House reaffirms Santa Clara's enduring commitment to sustainability.

# BAMBOO STRUCTURAL SYSTEMS NARRATIVE

Santa Clara seeks to implement a bamboo structural system in our 2013 Solar Decathlon house. We will provide a conventional softwood design and then, where sufficient capacity is demonstrated, will propose substitution of the following bamboo structural components:

- Bamboo gravity walls: Wall panels will be prefabricated, with hollow section bamboo culms at 16 inches on center, mounted to 4 ft. by 8 ft. woven bamboo panels. The assembly will have an integral bottom plate positioned to allow the wall panel be dropped in place on top of a field-installed bottom plate. Similarly, the lower of two top plates will be preinstalled in the panel assembly. Once the wall panel is in place, the upper of the two top plates will be field installed as a means to integrate the wall panels into the structural system. See Figure 18.
- *Bamboo joists*: Representing our third innovation in this category, our I-shaped bamboo joists consist of a woven bamboo sheet product used as a web, with solid section bamboo culms attached to the web to form flanges. See Figure 17.

These components are being developed in our laboratory in collaboration with a bamboo fabricator in Vietnam. Acceptance criteria for each component has been approved and quality assurance/quality control protocols for each component has also been approved to ensure the bamboo components used in construction adhere to design expectations.

- *Bamboo stud walls*: Stud walls were subjected to axial compression testing to establish design values and determine behavior under loading.
- Bamboo joists: Shear and bending tests are underway to establish design values.

Results obtained through testing have been compared to behavior displayed by conventional softwood components and to required demand loads to determine the suitability of bamboo as a substitute for components in Radiant House's structural system. Santa Clara hopes to provide innovation in Radiant House with this bamboo structural system.

See S-512 and S-521 for relevant drawings.

# MATERIAL PROPERTIES

| Steel |  |
|-------|--|
|       |  |

| Channels  | f <sub>v</sub> = 36 ksi |
|-----------|-------------------------|
| Angles    | $f_v = 36 \text{ ksi}$  |
| HSS beams | $f_v = 46 \text{ ksi}$  |
| W beams   | $f_v = 36 \text{ ksi}$  |

# Connections

| Welds               | E70XX |
|---------------------|-------|
| High Strength Bolts | A490  |
| Machine Bolts       | A307  |

# Wood Framing

### Sawn Lumber

| Horizontal Framing: |          |      |      |
|---------------------|----------|------|------|
|                     | 2x6      | D.F. | No.2 |
|                     | 4x6      | D.F. | No.2 |
|                     | 6x6      | D.F. | No.1 |
|                     | 2x12     | D.F. | No.1 |
|                     | 4x12     | D.F. | No.1 |
|                     |          |      |      |
| Vertical Framing:   |          |      |      |
|                     | 2x studs | D.F. | No.2 |
|                     | 4x posts | D.F. | No.2 |
|                     |          |      |      |
| Mudsills & Ledgers: |          | D.F. | No.2 |

# GRAVITY LOADS

| Misc<br>Dead Load      |                              | 0.8  | psf<br>psf |
|------------------------|------------------------------|------|------------|
| MEP                    | Conduit, Ducting, and Piping | 1    | psf        |
| Insulation             | ICYNENE MD-R-200             | 1.1  | psf        |
| Framing                | TJI 230 Joists @ 16" O.C.    | 2.1  | psf        |
| Sheathing              | 3/4" T&G Plywood             | 2.2  | psf        |
| Finish                 | Tate ConCore 1500 Posilock   | 8.8  | psf        |
| Floors                 |                              |      |            |
| Live Load              |                              | 20   | psf        |
| Dead Load              |                              | 15.0 | psf        |
| Misc.                  |                              | 0.9  | psf        |
| MEP                    | Messana Panels               | 2.8  | psf        |
| Insulation             | ICYNENE MD-R-200             | 1.5  | psf        |
| Framing                | TJI 230 Joists @ 16" O.C.    | 2.1  | psf        |
| Sheathing              | 3/4" T&G Plywood             | 2.2  | psf        |
| Roofing                | TPO Roofing                  | 1.5  | psf        |
| Racking System         | Sunplanter                   | 1.0  | psf        |
| PV Panels              | Bosch Solar Module c-Si M 60 | 3.0  | psf        |
| Slope Roof             |                              |      |            |
| Live Load              |                              | 20   | psf        |
| Dead Load              |                              | 12.0 | psf        |
| Misc.                  |                              | 0.6  | psf        |
| Parapet                |                              | 1.7  | psf        |
| MEP                    | Messana Panels               | 2.8  | psf        |
| Insulation             | ICYNENE MD-R-200             | 1.1  | psf        |
| Framing                | TJI 230 Joists @ 16" O.C.    | 2.1  | psf        |
| Sheathing              | 3/4" T&G Plywood             | 2.2  | psf        |
| Roofing                | TPO Roofing                  | 1.5  | psf        |
| Flat Roof Not over the |                              |      |            |
| Live Load              |                              | 20   | psf        |
| Dead Load              |                              | 16.0 | psf        |
| Misc.                  |                              | 0.9  | psf        |
| Parapet                |                              | 1.7  | psf        |
| MEP                    | Messana Panels               | 2.8  | psf        |
| Solar Thermal          | Free Hot Water               | 3.3  | psf        |
| Insulation             | ICYNENE MD-R-200             | 1.5  | psf        |
| Framing                | TJI 230 Joists @ 24" O.C.    | 2.1  | psf        |
| Sheathing              | 3/4" T&G Plywood             | 2.2  | psf        |
|                        |                              |      |            |

Live Load

| Frat                          |                         |      |       |
|-------------------------------|-------------------------|------|-------|
| Exterior Wall Exterior Finish | Cidian                  | 4    | m = f |
|                               | Siding                  | 4    | psf   |
| Sheathing                     | 15/32" Str1 Plywood     | 1.7  | psf   |
| Studs                         | 2 x 4 @ 16" staggered   | 2.7  | psf   |
| Interior Finish               | 5/8" EcoRock Gyp        | 2.5  | psf   |
| Insulation                    | ICYNENE MD-R-200        | 1.1  | psf   |
| Glazing                       | Windows and Mullion     | 2    | psf   |
| Misc.                         |                         | 1    | psf   |
| Dead Load                     |                         | 15   | psf   |
| Exterior Side Wall Of         | Top Module              |      |       |
| Exterior Finish               | Siding                  | 4    | psf   |
| Sheathing                     | 15/32" Str1 Plywood     | 1.7  | psf   |
| Studs                         | 2 x 4 @ 16" staggered   | 2.7  | psf   |
| Interior Finish               | 5/8" EcoRock Gyp        | 2.5  | psf   |
| Insulation                    | ICYNENE MD-R-200        | 1.1  | psf   |
| Misc.                         |                         | 1    | psf   |
| Dead Load                     |                         | 13   | psf   |
| Interior Wall                 |                         |      |       |
| Finish                        | (2) 5/8" EcoRock Gyp    | 5    | psf   |
| Framing                       | 2 x 4 @ 16" single stud | 1    | psf   |
| Misc.                         |                         | 2    | psf   |
| Dead Load                     |                         | 8    | psf   |
| Other Loads                   |                         |      |       |
| Steel Foundation Track        |                         | 33.9 | plf   |
| Mechanical Equipment          |                         | 2000 | lb    |

# SEISMIC DESIGN BASE SHEAR

Santa Clara seismic conditions govern over Irvine

| Santa Clara        | seisr | nic conditions gov                    | ern over I   | rvine             |                                   |          |                                  |
|--------------------|-------|---------------------------------------|--------------|-------------------|-----------------------------------|----------|----------------------------------|
|                    |       | Zip Code = 9505                       | 3            |                   |                                   |          |                                  |
|                    |       | Spectral Respon                       | se Accele    | erations          | S <sub>s</sub> and S <sup>,</sup> | I        |                                  |
|                    |       | $S_s$ and $S_1 = Map$                 | ped Spec     | tral Acc          | eleration                         | Values   |                                  |
|                    |       | Site Class B - Fa                     | = 1.0, $F_v$ | = 1.0             |                                   |          |                                  |
|                    |       | Data are based of                     | on a 0.01    | deg grid          | d spacing                         |          |                                  |
|                    |       |                                       | - ·          |                   |                                   |          |                                  |
|                    |       | Period                                | Centroi      | d Sa              |                                   |          |                                  |
|                    |       | (sec)                                 | (g)          |                   |                                   | _        |                                  |
|                    |       | 0.2                                   | 1.500        | (S <sub>s</sub> ) | , Site Cl                         |          |                                  |
|                    |       | 1.0                                   | 0.600        | (S <sub>1</sub> ) | , Site Cl                         | ass D    |                                  |
|                    |       | Period                                | Maximu       | ım Sa             |                                   |          |                                  |
|                    |       | (sec)                                 | (g)          |                   |                                   |          |                                  |
|                    |       | 0.2                                   | 1.500        | (S <sub>s</sub> ) | , Site Cl                         |          |                                  |
|                    |       | 1.0                                   | 0.600        | (S <sub>1</sub> ) | , Site Cl                         | ass D    |                                  |
|                    |       | Period                                | Minimu       | m Sa              |                                   |          |                                  |
|                    |       | (sec)                                 | (g)          |                   |                                   |          |                                  |
|                    |       | 0.2                                   | 1.500        | (S <sub>s</sub> ) | , Site Cl                         |          |                                  |
|                    |       | 1.0                                   | 0.600        | (S <sub>1</sub> ) | , Site Cl                         | ass D    |                                  |
| Occupancy          | Cate  | norv                                  |              | =                 | II                                |          | (ASCE/SEI 7-10, Table 1.5-1)     |
| I                  | oulo  | gory                                  |              | =                 |                                   |          |                                  |
| h <sub>x</sub>     |       |                                       |              | =                 | 18                                | ft       |                                  |
| R                  |       |                                       |              | =                 | 6.5                               |          | Light Framed Walls w/ Panels For |
| Ct                 |       |                                       |              | =                 | 0.02                              |          | Shear Resistance                 |
| X                  |       |                                       |              | =                 | 0.75                              |          |                                  |
| Ta                 | =     | C <sub>t</sub> * (h) <sup>x</sup>     |              | =                 | 0.175                             |          |                                  |
| Ss                 |       |                                       |              | =                 | 1.5                               | g        |                                  |
| S <sub>1</sub>     |       |                                       |              | =                 | 0.6                               | g < 0.6g |                                  |
| Fa                 |       |                                       |              | =                 | 1                                 |          |                                  |
| Fv                 |       |                                       |              | =                 | 1.5                               |          |                                  |
| S <sub>MS</sub>    | =     | Fa * Ss                               |              | =                 | 1.5                               | g        |                                  |
| S <sub>M1</sub>    | =     | 2 * S <sub>ms</sub> /3                |              | =                 | 0.9                               | g        |                                  |
| S <sub>DS</sub>    | =     | F <sub>v</sub> * S <sub>1</sub>       |              | =                 | 1                                 | g > 0.50 | Seis. Design Cat.: D             |
| S <sub>D1</sub>    | =     | 2 * S <sub>m1</sub> /3                |              | =                 | 0.6                               | g        |                                  |
| Cs                 | =     | S <sub>ds</sub> / (R/I)               |              | =                 | 0.154                             |          | (ASCE/SEI 7-10, Eq 12.8-2)       |
| C <sub>s</sub> max | =     | S <sub>d1</sub> /T <sub>a</sub> (R/I) |              | =                 | 0.528                             |          | (ASCE/SEI 7-10, Eq 12.8-3)       |
| C <sub>s</sub> min | =     | .044 S <sub>DS</sub> * I              |              | =                 | 0.044                             |          | (ASCE/SEI 7-10, Eq 12.8-5)       |
| Cs                 |       |                                       |              | =                 | 0.154                             |          | (Controls)                       |
| V                  | =     | Cs * W                                |              | =                 | 0.154                             | W        |                                  |
| ρ                  |       |                                       |              | =                 | 1.300                             |          |                                  |
| E                  | =     | ρ * V                                 |              | =                 | 0.200                             | W        |                                  |
|                    |       |                                       |              |                   |                                   |          |                                  |

# SEISMIC DESIGN BASE SHEAR

Santa Clara seismic conditions govern over Irvine

| Santa Clara        | seisi | nic conditions gov       | ern over I   | rvine             |                                   |          |                                  |
|--------------------|-------|--------------------------|--------------|-------------------|-----------------------------------|----------|----------------------------------|
|                    |       | Zip Code = 9261          |              |                   |                                   |          |                                  |
|                    |       | Spectral Respon          | se Accele    | erations          | S <sub>s</sub> and S <sup>,</sup> | I        |                                  |
|                    |       | $S_s$ and $S_1 = Map$    | ped Spec     | tral Acc          | eleration                         | Values   |                                  |
|                    |       | Site Class B - Fa        | $= 1.0, F_v$ | = 1.0             |                                   |          |                                  |
|                    |       | Data are based           | on a 0.01    | deg grid          | d spacing                         |          |                                  |
|                    |       |                          |              | 00                |                                   |          |                                  |
|                    |       | Period                   | Centroi      | d Sa              |                                   |          |                                  |
|                    |       | (sec)                    | (g)          |                   |                                   |          |                                  |
|                    |       | 0.2                      | 1.470        | (S <sub>s</sub> ) | , Site Cl                         | ass D    |                                  |
|                    |       | 1.0                      | 0.520        | (S <sub>1</sub> ) | , Site Cl                         |          |                                  |
|                    |       | Period                   | Maximu       | . ,               | ,                                 |          |                                  |
|                    |       | (sec)                    | (g)          |                   |                                   |          |                                  |
|                    |       | 0.2                      | 1.500        | (S <sub>s</sub> ) | , Site Cl                         | ass D    |                                  |
|                    |       | 1.0                      | 0.546        | (S <sub>1</sub> ) | , Site Cl                         |          |                                  |
|                    |       | Period                   | Minimu       |                   | ,                                 |          |                                  |
|                    |       | (sec)                    | (g)          |                   |                                   |          |                                  |
|                    |       | 0.2                      | 1.401        | (S <sub>s</sub> ) | , Site Cl                         | ass D    |                                  |
|                    |       | 1.0                      | 0.498        | (S <sub>1</sub> ) | , Site Cl                         |          |                                  |
|                    |       |                          | 01.00        | (01)              | , ene ei                          |          |                                  |
| Occupancy          | Cate  | oorv                     |              | =                 | Ш                                 |          | (ASCE/SEI 7-10, Table 1.5-1)     |
| l I                |       | 5-5                      |              | =                 | 1                                 |          |                                  |
| h <sub>x</sub>     |       |                          |              | =                 | 18                                | ft       |                                  |
| R                  |       |                          |              | =                 | 6.5                               |          | Light Framed Walls w/ Panels For |
| Ct                 |       |                          |              | =                 | 0.02                              |          | Shear Resistance                 |
| x                  |       |                          |              | =                 | 0.75                              |          |                                  |
| Ta                 | =     | $C_t * (h)^x$            |              | =                 | 0.175                             |          |                                  |
| Ss                 |       |                          |              | =                 | 1.5                               | g        |                                  |
| S <sub>1</sub>     |       |                          |              | =                 | 0.546                             | g < 0.6g |                                  |
| Fa                 |       |                          |              | =                 | 1                                 | <u>g</u> |                                  |
| F <sub>v</sub>     |       |                          |              | =                 | 1.5                               |          |                                  |
| S <sub>MS</sub>    | =     | Fa * Ss                  |              | =                 | 1.5                               | g        |                                  |
| S <sub>M1</sub>    | =     | 2 * S <sub>ms</sub> /3   |              | =                 | 0.819                             | g        |                                  |
| S <sub>DS</sub>    | =     | $F_v * S_1$              |              | =                 | 1                                 | g > 0.50 | Seis. Design Cat.: D             |
| S <sub>D1</sub>    | =     | 2 * S <sub>m1</sub> /3   |              | =                 | 0.546                             | g        |                                  |
| Cs                 | =     | S <sub>ds</sub> / (R/I)  |              | =                 | 0.154                             | 9        | (ASCE/SEI 7-10, Eq 12.8-2)       |
| Cs max             | =     | $S_{d1}/T_a(R/I)$        |              | =                 | 0.481                             |          | (ASCE/SEI 7-10, Eq 12.8-2)       |
| C <sub>s</sub> min | =     | .044 S <sub>DS</sub> * I |              | =                 | 0.044                             |          | (ASCE/SEI 7-10, Eq 12.8-5)       |
| C <sub>s</sub>     | -     |                          |              | =                 | 0.154                             |          | (Controls)                       |
| Us<br>V            | =     | Cs * W                   |              | =                 | 0.154                             | W        | (00111010)                       |
|                    | _     | $\sim_{\rm S}$ VV        |              | =                 | 1.300                             | * *      |                                  |
| ρ<br>E             | =     | ρ * V                    |              | =                 | 0.200                             | W        |                                  |
| L                  | -     | r v                      |              | -                 | 0.200                             | * *      |                                  |

### MODULE A

**Building Weight:** 

|                    | 1    | N-S Seismic Lo | bad    | E-W Seismic Load |           |        |  |
|--------------------|------|----------------|--------|------------------|-----------|--------|--|
| Level              | Area | Flat Load      | Weight | Area             | Flat Load | Weight |  |
|                    | (sf) | (psf)          | (lbs.) | (sf)             | (psf)     | (lbs.) |  |
| Sloped Roof        | 144  | 15             | 2160   | 144              | 15        | 2160   |  |
| Roof               | 257  | 12             | 3084   | 257              | 12        | 3084   |  |
| Floor              | 388  | 16             | 6208   | 388              | 16        | 6208   |  |
| Ext. Wall (N)      | 117  | 15             | 1755   | 117              | 15        | 1755   |  |
| Ext. Wall (S)      | 117  | 15             | 1755   | 117              | 15        | 1755   |  |
| Ext. Wall (E)      | 315  | 15             | 4729   | 315              | 15        | 4729   |  |
| Ext. Wall (W)      | 210  | 15             | 3154   | 210              | 15        | 3154   |  |
| Roof Side Wall (W) | 42   | 13             | 540    | 42               | 13        | 540    |  |
| Roof Wall (N)      | 70   | 15             | 1055   | 70               | 15        | 1055   |  |
| Top Steel          |      |                | 1171   |                  |           | 1171   |  |
| Total Wt.          |      |                | 25609  |                  |           | 25609  |  |
|                    |      |                |        |                  |           |        |  |
|                    |      | E =            | 5121.9 | lbs.             |           | 5121.9 |  |

### MODULE A

Force Distribution:

| la la  |                         |       | N-S Seis             | mic Load      |       | E-W Seismic Load |                      |               |       |
|--------|-------------------------|-------|----------------------|---------------|-------|------------------|----------------------|---------------|-------|
| Level  | hx <sup>k</sup><br>(ft) | Wx    | wx*hxk               | <u>Wx*hxk</u> | Fx    | Wx               | wx*hxk               | <u>wx*hxk</u> | Fx    |
|        | (11)                    | (lbs) | VVX TIX <sup>r</sup> | S(wi*hi)      | (lbs) | (lbs)            | VVX TIX <sup>r</sup> | S(wi*hi)      | (lbs) |
| Roof   | 18.0                    | 13593 | 244668               | 0.89064       | 4562  | 13593            | 244668               | 0.89064       | 4562  |
| Ground | 2.5                     | 12017 | 30041                | 0.10936       | 560   | 12017            | 30041                | 0.10936       | 560   |
| Total  |                         | 25609 | 274710               | 1             | 5122  | 25609            | 274710               | 1             | 5122  |

### MODULE B

**Building Weight:** 

|               | 1    | N-S Seismic Lo | ad     | E-W Seismic Load |           |        |  |  |
|---------------|------|----------------|--------|------------------|-----------|--------|--|--|
| Level         | Area | Flat Load      | Weight | Area             | Flat Load | Weight |  |  |
|               | (sf) | (psf)          | (lbs)  | (sf)             | (psf)     | (lbs)  |  |  |
| Sloped Roof   | 247  | 15             | 3703   | 247              | 15        | 3703   |  |  |
| Floor         | 228  | 16             | 3648   | 228              | 16        | 3648   |  |  |
| Ext. Wall (N) | 199  | 15             | 2991   | 199              | 15        | 2991   |  |  |
| Ext. Wall (S) | 161  | 15             | 2421   | 161              | 15        | 2421   |  |  |
| Roof Wall (N) | 146  | 15             | 2196   | 146              | 15        | 2196   |  |  |
| Steel         |      |                | 1030   |                  |           | 1030   |  |  |
| Total Wt.     |      |                | 15989  |                  |           | 15989  |  |  |

3197.9 lbs

E =

3197.9 lbs

### Module B

Force Distribution:

|        | la li                   |       | N-S Seis           | mic Load      |       | E-W Seismic Load |          |                |       |  |
|--------|-------------------------|-------|--------------------|---------------|-------|------------------|----------|----------------|-------|--|
| Level  | hx <sup>k</sup><br>(ft) | Wx    | wx*hx <sup>k</sup> | <u>Wx*hxk</u> | Fx    | Wx               | wx*hxk   | <u>wx*hx</u> k | Fx    |  |
|        | (11)                    | (lbs) | VVX TIX"           | S(wi*hi)      | (lbs) | (lbs)            | VVX TIX" | S(wi*hi)       | (lbs) |  |
| Roof   | 18.0                    | 9523  | 171414             | 0.91382       | 2922  | 9523             | 171414   | 0.91382        | 2922  |  |
| Ground | 2.5                     | 6466  | 16166              | 0.08618       | 276   | 6466             | 16166    | 0.08618        | 276   |  |
| Total  |                         | 15989 | 187580             | 1             | 3198  | 15989            | 187580   | 1              | 3198  |  |

### MODULE C

**Building Weight:** 

| <b>J</b>           | 1    | N-S Seismic Lo | ad     | E-   | E-W Seismic Load |        |  |  |  |  |
|--------------------|------|----------------|--------|------|------------------|--------|--|--|--|--|
| Level              | Area | Flat Load      | Weight | Area | Flat Load        | Weight |  |  |  |  |
|                    | (sf) | (psf)          | (lbs)  | (sf) | (psf)            | (lbs)  |  |  |  |  |
| Sloped Roof        | 144  | 15             | 2160   | 144  | 15               | 2160   |  |  |  |  |
| Roof with water    | 108  | 16             | 1728   | 108  | 16               | 1728   |  |  |  |  |
| Roof               | 197  | 12             | 2364   | 197  | 12               | 2364   |  |  |  |  |
| Floor              | 436  | 16             | 6976   | 436  | 16               | 6976   |  |  |  |  |
| Ext. Wall (N)      | 117  | 15             | 1755   | 117  | 15               | 1755   |  |  |  |  |
| Ext. Wall (S)      | 117  | 15             | 1755   | 117  | 15               | 1755   |  |  |  |  |
| Ext. Wall (E)      | 354  | 15             | 5314   | 354  | 15               | 5314   |  |  |  |  |
| Ext. Wall (W)      | 319  | 15             | 4778   | 319  | 15               | 4778   |  |  |  |  |
| Interior Walls     | 276  | 8              | 2211   | 276  | 8                | 2211   |  |  |  |  |
| Roof Side Wall (E) | 42   | 13             | 540    | 42   | 13               | 540    |  |  |  |  |
| Mech Room          |      |                | 2000   |      |                  | 2000   |  |  |  |  |
| Roof Wall (N)      | 70   | 15             | 1055   | 70   | 15               | 1055   |  |  |  |  |
| Bathroom           |      |                | 1200   |      |                  | 1200   |  |  |  |  |
| Steel              |      |                | 1171   |      |                  | 1171   |  |  |  |  |
| Total Wt.          |      |                | 35005  |      |                  | 35005  |  |  |  |  |
|                    |      |                |        |      |                  |        |  |  |  |  |

| 7001.0 lbs |
|------------|
|------------|

E =

MODULE C

Force Distribution:

|            | la k                    |          | N-S Seis           | mic Load      |          | E-W Seismic Load |                    |               |      |  |
|------------|-------------------------|----------|--------------------|---------------|----------|------------------|--------------------|---------------|------|--|
| Level      | hx <sup>k</sup><br>(ft) | Wx       | wx*hx <sup>k</sup> | <u>wx*hxk</u> | Fx       | Wx               | wx*hx <sup>k</sup> | <u>wx*hxk</u> | Fx   |  |
| (It) (Ibs) | VVX TIX <sup>K</sup>    | S(wi*hi) | (lbs)              | (lbs)         | VVX TIX" | S(wi*hi)         | (lbs)              |               |      |  |
| Roof       | 18.0                    | 16811    | 302592             | 0.87688       | 6139     | 16811            | 302592             | 0.87688       | 6139 |  |
| Ground     | 2.5                     | 16995    | 42486              | 0.12312       | 862      | 16995            | 42486              | 0.12312       | 862  |  |
| Total      |                         | 33805    | 345079             | 1             | 7001     | 33805            | 345079             | 1             | 7001 |  |

7001.0 lbs

# WIND LOAD

Per ASCE 7-10 Wind conditions for Santa Clara and Irvine are the same.

| Basic Wind                                                       |                    |                                   |      |              |                                         |
|------------------------------------------------------------------|--------------------|-----------------------------------|------|--------------|-----------------------------------------|
| Speed<br>Importance                                              |                    | V                                 | =    | 85           | mph                                     |
| Factor                                                           |                    | I                                 | =    | 1.0          |                                         |
| Exposure                                                         |                    |                                   |      |              |                                         |
| Category                                                         | <i>ff</i> :=:==t   | K                                 | =    | С            |                                         |
| Velocity Pressure Exposure Coe<br>Velocity Pressure Exposure Coe |                    | K <sub>z</sub><br>K <sub>h</sub>  | =    | 0.9<br>0.85  |                                         |
| Topographic Factor                                               | molent             | κ <sub>h</sub><br>K <sub>Zt</sub> | =    | 0.65         |                                         |
| Wind Directionality Factor                                       |                    | K <sub>d</sub>                    | _    | 0.85         |                                         |
| Gust Effect                                                      |                    | i tu                              | _    | 0.00         |                                         |
| Factor                                                           |                    | G                                 | =    | 0.85         |                                         |
| Enclosure Classification                                         |                    |                                   | =    | Enclosed     |                                         |
|                                                                  |                    |                                   |      |              |                                         |
| Internal Pressure Coefficient                                    |                    | GC <sub>pi</sub>                  | =    | 0.18         |                                         |
|                                                                  |                    | GC <sub>pi</sub>                  | =    | -0.18        |                                         |
| Wall External Pressure Coefficie                                 | nte                | C                                 | =    | 0.8          | Windward Wall                           |
| Wall External Flessure Coefficie                                 | 1115               | Cp                                | -    | -0.25        | Leeward Wall                            |
|                                                                  |                    |                                   |      | -0.23        | Side Wall                               |
|                                                                  |                    |                                   |      | 0.7          |                                         |
| Roof External Pressure Coefficie                                 | ents               | Cp                                | =    | -0.9         | Windward Wall                           |
|                                                                  |                    |                                   |      | -0.5         | Leeward Wall                            |
| Velocity Pressure                                                | $q_z = (0.00256)($ | Kz)(Kzt)(Kd)(V <sup>2</sup> )     | (I)= | 14.15        |                                         |
| Velocity Pressure                                                | $q_h = (0.00256)($ | Kh)(Kzt)(Kd)(V <sup>2</sup> )     | (I)= | 13.36        |                                         |
| Design Wind Load                                                 | p = qGC            | o - qi(Gcpi) =                    | :    | 12.027       | psf                                     |
|                                                                  |                    |                                   |      |              |                                         |
| Module A                                                         |                    |                                   |      |              |                                         |
| Width. N-S                                                       |                    | =                                 |      | 32.33        | ft                                      |
| Width. E-W                                                       |                    | =                                 |      | 12           | ft                                      |
| Height                                                           |                    | =                                 |      | 18.00        | ft                                      |
| Vwind.N-S                                                        |                    | =                                 |      | 2598         | Ibs Seismic Governs                     |
| Vwind.E-W                                                        |                    | =                                 |      | 7000         | Ibs Wind Governs                        |
| Module B<br>Width. N-S                                           |                    | _                                 |      | 12           | ft                                      |
| Width, E-W                                                       |                    | =                                 |      | 21.10        | ft                                      |
| Height                                                           |                    | =                                 |      | 18.00        | ft                                      |
| Vwind.N-S                                                        |                    | =                                 |      | 4569         | Ibs Seismic Governs                     |
| Vwind.E-W                                                        |                    | =                                 |      | 2598         | Ibs Wind Governs                        |
| Module C                                                         |                    |                                   |      | 2070         |                                         |
| Width. N-S                                                       |                    | =                                 |      | 36.33        | ft                                      |
| Width. E-W                                                       |                    | =                                 |      | 12           | ft                                      |
| Height                                                           |                    | =                                 |      | 18.00        | ft                                      |
| Vwind.N-S                                                        |                    |                                   |      |              |                                         |
| vwind.iv-5                                                       |                    | =                                 |      | 2598         | Ibs Seismic Governs                     |
| Vwind.R-S<br>Vwind.E-W                                           |                    | =<br>=                            |      | 2598<br>7866 | Ibs Seismic Governs<br>Ibs Wind Governs |

# SHEAR WALLS

### MODULE A

### E-W Wind Load on Shear Walls

| Shear<br>Wall | Wall Type   | Fx (lbs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-------------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| А             | Segmented   | 605      | 432.3          | 2.84   | 9.46  | 3.326                    | 152.0            | 475               | 15/32 Str 1      | 10d @ 6                  |
| В             | Segmented   | 605      | 432.3          | 2.84   | 9.46  | 3.326                    | 152.0            | 475               | 15/32 Str 1      | 10d @ 6                  |
| С             | Segmented   | 485      | 346.5          | 2.84   | 9.46  | 3.326                    | 121.9            | 475               | 15/32 Str 1      | 10d @ 6                  |
| D             | Segmented   | 485      | 346.5          | 2.84   | 9.46  | 3.326                    | 121.9            | 475               | 15/32 Str 1      | 10d @ 6                  |
| H&I           | Collector A | 2530     | 1806.9         | -      | -     | -                        | -                | -                 | -                | -                        |
| К             | Collector B | 2289     | 1635.3         | -      | -     | -                        | -                | -                 | -                | -                        |

### N-S Seismic Load on Shear Walls

| Shear<br>Wall | Wall Type | Fx (Ibs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-----------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| Е             | Segmented | 1225     | 874.9          | 2.75   | 9.46  | 3.439                    | 318.1            | 340               | 15/32 Str 1      | 10d @ 6                  |
| F             | Segmented | 3340     | 2386.0         | 7.50   | 9.46  | 1.261                    | 318.1            | 340               | 15/32 Str 1      | 10d @ 6                  |
| G             | Segmented | 2281     | 1629.2         | 12.00  | 9.46  | 0.788                    | 135.8            | 340               | 15/32 Str 1      | 10d @ 6                  |

#### MODULE B

#### E-W Seismic Load on Shear Walls

| Shear<br>Wall | Wall Type   | Fx (Ibs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-------------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| Н             | Segmented   | 3477     | 2483.3         | 4.00   | 9.46  | 2.365                    | 620.8            | 665               | 15/32 Str 1      | 10d @ 3                  |
| I             | Segmented   | 3477     | 2483.3         | 4.00   | 9.46  | 2.365                    | 620.8            | 665               | 15/32 Str 1      | 10d @ 3                  |
| К             | Collector B | 1461     | 1043.7         | -      | -     | -                        | -                | -                 | -                | -                        |

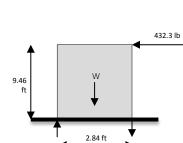
#### N-S Wind Load on Shear Walls

| Shear<br>Wall | Wall Type | Fx (Ibs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-----------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| E&F           |           | 2284.38  | 1631.7         | -      | -     | -                        | -                | -                 | -                | -                        |
| N,O&P         |           | 2284.38  | 1631.7         | -      | -     | -                        | -                | -                 | -                | -                        |

#### MODULE C

### E-W Wind Load on Shear Walls

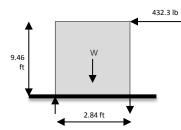
| Shear<br>Wall | Wall Type   | Fx (Ibs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-------------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| J             | Segmented   | 1643     | 1173.8         | 2.71   | 9.46  | 3.492                    | 433.4            | 510               | 15/32 Str 1      | 10d @ 4                  |
| К             | Perforated  | 6323     | 4516.1         | -      | -     | -                        | -                | -                 | -                | -                        |
| L             | Segmented   | 344      | 245.6          | 2.84   | 9.46  | 3.326                    | 86.4             | 475               | 15/32 Str 1      | 10d @ 6                  |
| М             | Segmented   | 344      | 245.6          | 2.84   | 9.46  | 3.326                    | 86.4             | 475               | 15/32 Str 1      | 10d @ 6                  |
| H&I           | Collector A | 2963     | 2116.1         | -      | -     | -                        | -                | -                 | -                |                          |


### N-S Seismic Load on Shear Walls

| Shear<br>Wall | Wall Type | Fx (lbs) | Px =<br>Fx/1.4 | b (ft) | h(ft) | Aspect<br>Ratio<br>(h:b) | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|-----------|----------|----------------|--------|-------|--------------------------|------------------|-------------------|------------------|--------------------------|
| Ν             | Segmented | 1784.6   | 1274.7         | 4.00   | 9.46  | 2.365                    | 318.7            | 340               | 15/32 Str 1      | 10d @ 6                  |
| 0             | Segmented | 1784.6   | 1274.7         | 4.00   | 9.46  | 2.365                    | 318.7            | 340               | 15/32 Str 1      | 10d @ 6                  |
| Р             | Segmented | 1784.6   | 1274.7         | 4.00   | 9.46  | 2.365                    | 318.7            | 340               | 15/32 Str 1      | 10d @ 6                  |
| Q             | Segmented | 3069.5   | 2192.5         | 7.67   | 9.46  | 1.234                    | 286.0            | 340               | 15/32 Str 1      | 10d @ 6                  |

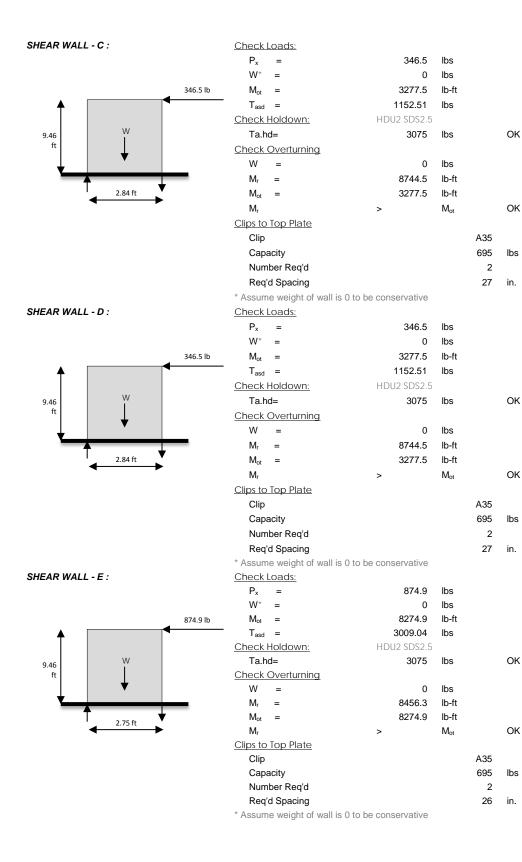
### Perforated Shear Walls

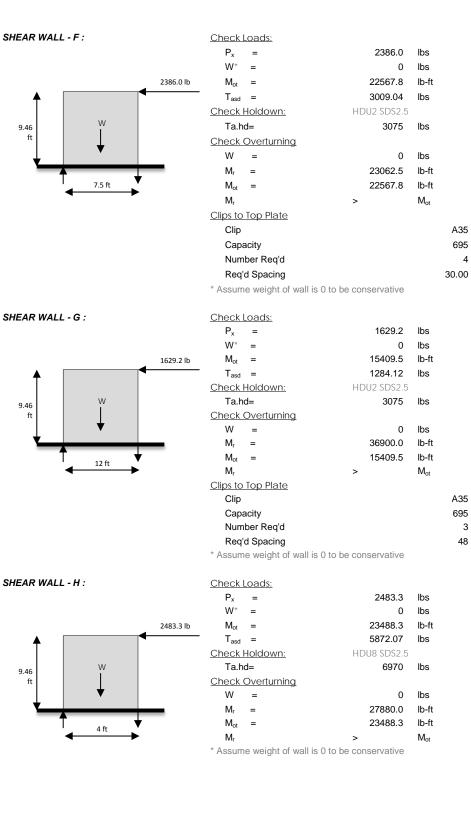
SHEAR WALL - A :


| Shear<br>Wall | $\sum L_i \left( ft \right)$ | L <sub>total</sub> (ft) | Opening<br>Height<br>Ratio | Percent<br>Full-Height<br>Sheathing | Co | v (ASD)<br>(plf) | v. allow<br>(plf) | Plywood<br>(in.) | Edge<br>Nailing<br>(in.) |
|---------------|------------------------------|-------------------------|----------------------------|-------------------------------------|----|------------------|-------------------|------------------|--------------------------|
| К             | 0.00                         | 8.04                    | h/3                        | 0.75                                | 1  | 0.0              | 561.58            | 15/32 Str 1      | 10d @ 4                  |



| Check Loads:       |             |                 |     |     |
|--------------------|-------------|-----------------|-----|-----|
| P <sub>x</sub> =   | 432.3       | lbs             |     |     |
| W* =               | 0           | lbs             |     |     |
| M <sub>ot</sub> =  | 4088.7      | lb-ft           |     |     |
| T <sub>asd</sub> = | 1437.79     | lbs             |     |     |
| Check Holdown:     | HDU2 SDS2.5 |                 |     |     |
| Ta.hd=             | 3075        | lbs             |     | OK  |
| Check Overturning  |             |                 |     |     |
| W =                | 0           | lbs             |     |     |
| M <sub>r</sub> =   | 8744.5      | lb-ft           |     |     |
| M <sub>ot</sub> =  | 4088.7      | lb-ft           |     |     |
| Mr                 | >           | M <sub>ot</sub> |     | OK  |
| Clips to Top Plate |             |                 |     |     |
| Clip               |             |                 | A35 |     |
| Capacity           |             |                 | 695 | lbs |
| Number Req'd       |             |                 | 2   |     |
| Req'd Spacing      |             |                 | 27  | in. |
|                    |             |                 |     |     |


\* Assume weight of wall is 0 to be conservative


### SHEAR WALL - B :



| Check Loads:              |             |       |     |     |
|---------------------------|-------------|-------|-----|-----|
| P <sub>x</sub> =          | 432.3       | lbs   |     |     |
| W* =                      | 0           | lbs   |     |     |
| M <sub>ot</sub> =         | 4088.7      | lb-ft |     |     |
| T <sub>asd</sub> =        | 1437.79     | lbs   |     |     |
| Check Holdown:            | HDU2 SDS2.5 |       |     |     |
| Ta.hd=                    | 3075        | lbs   |     | OK  |
| Check Overturning         |             |       |     |     |
| W =                       | 0           | lbs   |     |     |
| M <sub>r</sub> =          | 8744.5      | lb-ft |     |     |
| M <sub>ot</sub> =         | 4088.7      | lb-ft |     |     |
| Mr                        | >           | Mot   |     | ОК  |
| <u>Clips to Top Plate</u> |             |       |     |     |
| Clip                      |             |       | A35 |     |
| Capacity                  |             |       | 695 | lbs |
| Number Req'd              |             |       | 2   |     |
| Req'd Spacing             |             |       | 27  | in. |
|                           |             |       |     |     |

\* Assume weight of wall is 0 to be conservative





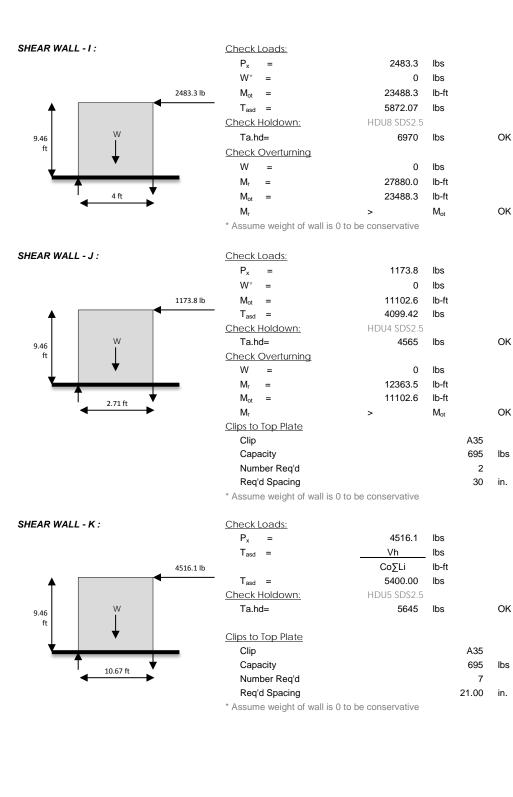
OK

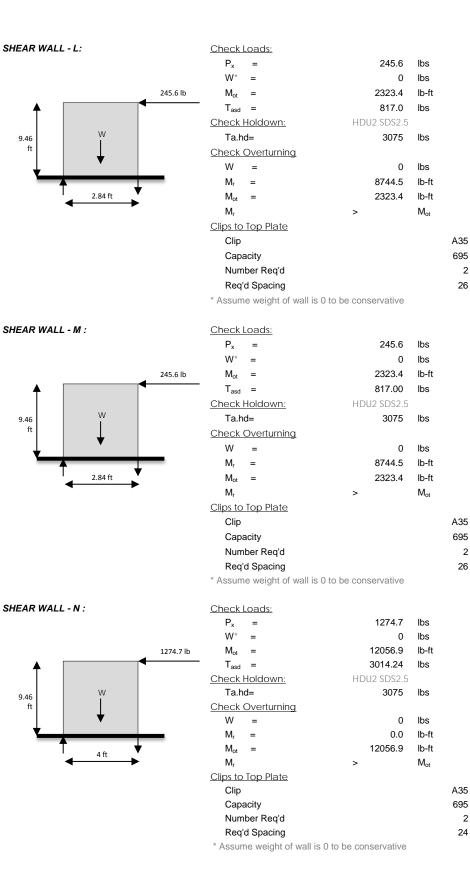
OK

lbs

in.

οк


ΟK


lbs

in.

OK

OK





OK

ОK

lbs

ΟK

ΟK

lbs

OK

OK

lbs

2

24 in.

2

26 in.

2

26 in.

#### SHEAR WALL - O : Check Loads: Px 1274.7 lbs = W\* 0 lbs = 1274.7 lb 12056.9 Mot lb-ft = $\mathsf{T}_{\mathsf{asd}}$ 3014.24 lbs = Check Holdown: HDU2 SDS2.5 W Ta.hd= 3075 lbs 9.46 ft Check Overturning W 0 lbs = Mr 12300.0 lb-ft 4 ft Mot = 12056.9 lb-ft Mr $M_{\text{ot}}$ > Clips to Top Plate Clip A35 Capacity 695 2 Number Req'd Req'd Spacing 24 \* Assume weight of wall is 0 to be conservative SHEAR WALL - P : Check Loads: 1274.7 Px lbs = W\* 0 lbs = 12056.9 Mot lb-ft 1274.7 lb = 3014.24 $\mathsf{T}_{\mathsf{asd}}$ lbs = Check Holdown: HDU2 SDS2.5 Ta.hd= 3075 W lbs 9.46 Check Overturning W 0 lbs = Mr 12300.0 lb-ft = Mot 12056.9 lb-ft = 4 ft Mr Mot > Clips to Top Plate Clip A35 Capacity 695 Number Req'd 2 Req'd Spacing 24 \* Assume weight of wall is 0 to be conservative SHEAR WALL - Q : Check Loads: 2192.5 $\mathsf{P}_{\mathsf{x}}$ = lbs W\* = 0 lbs 2192.5 lb Mot = 20737.6 lb-ft T<sub>asd</sub> = 2704.91 lbs HDU2 SDS2.5 Check Holdown: 3075 W Ta.hd= lbs 9.46 Check Overturning w 0 \_ lbs $M_{r}$ 23575.0 lb-ft = 20737.6 Mot lb-ft = 7.67 ft $M_{r}$ $M_{\text{ot}}$ -Clips to Top Plate Clip A35 Capacity 695 Number Req'd 3 Req'd Spacing 30 \* Assume weight of wall is 0 to be conservative

ΟK

OK

lbs

in.

ΟК

ΟK

lbs

in.

OK

OK

lbs

in.

# FLAT ROOF DIAPHRAGM

# MODULE A

|                    | Unblocked Diaph    | ragm Design                                |        |     |
|--------------------|--------------------|--------------------------------------------|--------|-----|
| Direction 1        | Height of Story    | H₁                                         | 12.00  | ft  |
| N-S                | Dead Load          | DL                                         | 12.00  | psf |
|                    | Length of Building | L <sub>B1</sub>                            | 12.33  | ft  |
|                    |                    | L <sub>B2</sub>                            | 12.00  | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H₁             | 144.32 | plf |
|                    | Seismic            | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 29.60  | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                    | 865.95 | lb  |
|                    | Seismic            | $V_{smax}=W_s*L_{B2}/2$                    | 177.60 | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd} = V_{wmax} / L_{B1}$               | 70.21  | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd}=V_{smax}/L_{B1}$                   | 14.40  | plf |
| Nominal Capacities | Ω                  |                                            | 2      |     |
|                    | Vwdnom             | $v_{wdnom} = v_{wd} * \Omega$              | 140.42 | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd} * \Omega$              | 28.80  | plf |
|                    |                    |                                            |        |     |
| Direction 2        | Height of Story    | H <sub>1</sub>                             | 12.00  | ft  |
| E-W                | Dead Load          | DL                                         | 12.00  | psf |
|                    | Length of Building | L <sub>B1</sub>                            | 12.00  | ft  |
|                    |                    | L <sub>B2</sub>                            | 12.33  | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H <sub>1</sub> | 144.32 | plf |
|                    | Seismic            | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 28.80  | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                    | 890.00 | lb  |
|                    | Seismic            | $V_{smax}=W_s*L_{B2}/2$                    | 177.60 | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd} = V_{wmax} / L_{B1}$               | 74.17  | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd} = V_{smax} / L_{B1}$               | 14.80  | plf |
| Nominal Capacities | Ω                  |                                            | 2      |     |
|                    | Vwdnom             | $v_{wdnom} = v_{wd} * \Omega$              | 148.33 | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd} * \Omega$              | 29.60  | plf |
|                    |                    |                                            |        |     |

\*Use 3/4" T&G, 8d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# FLAT ROOF DIAPHRAGM

# MODULE C

|                    | Unblocked Diaph    | ragm Design                                           |         |     |
|--------------------|--------------------|-------------------------------------------------------|---------|-----|
| Direction 1        | Height of Story    | H <sub>1</sub>                                        | 12.00   | ft  |
| N-S                | Dead Load          | DL                                                    | 16.00   | psf |
|                    | Length of Building | L <sub>B1</sub>                                       | 16.50   | ft  |
|                    |                    | L <sub>B2</sub>                                       | 12.00   | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H <sub>1</sub>            | 144.32  | plf |
|                    | Seismic            | W <sub>S</sub> =0.2*D <sub>L</sub> *L <sub>B1</sub>   | 52.80   | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                               | 865.95  | lb  |
|                    | Seismic            | V <sub>smax</sub> =W <sub>s</sub> *L <sub>B2</sub> /2 | 316.80  | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd} = V_{wmax}/L_{B1}$                            | 52.48   | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd}=V_{smax}/L_{B1}$                              | 19.20   | plf |
| Nominal Capacities | Ω                  |                                                       | 2       |     |
|                    | Vwdnom             | v <sub>wdnom</sub> =v <sub>wd</sub> *Ω                | 104.96  | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd} * \Omega$                         | 38.40   | plf |
|                    |                    |                                                       |         |     |
| Direction 2        | Height of Story    | H <sub>1</sub>                                        | 12.00   | ft  |
| E-W                | Dead Load          | DL                                                    | 16.00   | psf |
|                    | Length of Building | L <sub>B1</sub>                                       | 12.00   | ft  |
|                    |                    | L <sub>B2</sub>                                       | 16.50   | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H <sub>1</sub>            | 144.32  | plf |
|                    | Seismic            | W <sub>S</sub> =0.2*D <sub>L</sub> *L <sub>B1</sub>   | 38.40   | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                               | 1190.68 | lb  |
|                    | Seismic            | V <sub>smax</sub> =W <sub>s</sub> *L <sub>B2</sub> /2 | 316.80  | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd} = V_{wmax}/L_{B1}$                            | 99.22   | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd} = V_{smax} / L_{B1}$                          | 26.40   | plf |
| Nominal Capacities | Ω                  |                                                       | 2       |     |
|                    | Vwdnom             | v <sub>wdnom</sub> =v <sub>wd</sub> *Ω                | 198.45  | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd}^* \Omega$                         | 52.80   | plf |
|                    |                    |                                                       |         |     |

\*Use 3/4" T&G, 8d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# FLOOR DIAPHRAGM

# MODULE A

| MODULL A               |                            |                                                       |         |     |  |  |
|------------------------|----------------------------|-------------------------------------------------------|---------|-----|--|--|
|                        | Unblocked Diaphragm Design |                                                       |         |     |  |  |
| Direction 1            | Height of Story            | H₁                                                    | 8.00    | ft  |  |  |
| N-S                    | Dead Load                  | DL                                                    | 16.00   | psf |  |  |
|                        | Length of Building         | L <sub>B1</sub>                                       | 32.33   | ft  |  |  |
|                        |                            | L <sub>B2</sub>                                       | 12.00   | ft  |  |  |
| Applied Load           | Wind                       | W <sub>L</sub> =(12.027psf)*H <sub>1</sub>            | 96.22   | plf |  |  |
|                        | Seismic                    | W <sub>S</sub> =0.2*D <sub>L</sub> *L <sub>B1</sub>   | 103.47  | plf |  |  |
| V <sub>max</sub>       | Wind                       | $V_{wmax}=W_L*L_{B2}/2$                               | 577.30  | lb  |  |  |
|                        | Seismic                    | V <sub>smax</sub> =W <sub>s</sub> *L <sub>B2</sub> /2 | 620.80  | lb  |  |  |
| V <sub>wd</sub>        | Wind                       | $v_{wd} = V_{wmax} / L_{B1}$                          | 17.85   | plf |  |  |
| V <sub>sd</sub>        | Seismic                    | $v_{sd}=V_{smax}/L_{B1}$                              | 19.20   | plf |  |  |
| Nominal Capacities     | Ω                          |                                                       | 2       |     |  |  |
|                        | Vwdnom                     | $v_{wdnom} = v_{wd} * \Omega$                         | 35.71   | plf |  |  |
|                        | Vsdnom                     | $v_{sdnom} = v_{sd} * \Omega$                         | 38.40   | plf |  |  |
|                        |                            |                                                       |         |     |  |  |
| Direction 2            | Height of Story            | H <sub>1</sub>                                        | 8.00    | ft  |  |  |
| E-W                    | Dead Load                  | DL                                                    | 16.00   | psf |  |  |
|                        | Length of Building         | L <sub>B1</sub>                                       | 12.00   | ft  |  |  |
|                        |                            | L <sub>B2</sub>                                       | 32.33   | ft  |  |  |
| Applied Load           | Wind                       | W <sub>L</sub> =(12.027psf)*H <sub>1</sub>            | 96.22   | plf |  |  |
|                        | Seismic                    | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$                        | 38.40   | plf |  |  |
| V <sub>max</sub>       | Wind                       | $V_{wmax}=W_L*L_{B2}/2$                               | 1555.50 | lb  |  |  |
|                        | Seismic                    | $V_{smax}=W_s*L_{B2}/2$                               | 620.80  | lb  |  |  |
| V <sub>wd</sub>        | Wind                       | $v_{wd} = V_{wmax} / L_{B1}$                          | 129.62  | plf |  |  |
| V <sub>sd</sub>        | Seismic                    | $v_{sd} = V_{smax} / L_{B1}$                          | 51.73   | plf |  |  |
| Nominal Capacities     | Ω                          |                                                       | 2       |     |  |  |
|                        | Vwdnom                     | $v_{wdnom} = v_{wd} * \Omega$                         | 259.25  | plf |  |  |
|                        | Vsdnom                     | $v_{sdnom} = v_{sd} * \Omega$                         | 103.47  | plf |  |  |
| Load with cut panel se | ections                    |                                                       |         |     |  |  |
|                        | Diaphragm Edge Shear       | v <sub>wdnom</sub> * L <sub>B2</sub>                  | 8382.39 | lbs |  |  |
|                        | Length with cut panels     | L <sub>B3</sub>                                       | 28.33   | ft  |  |  |
|                        | Vwdnom                     | v <sub>wdnom</sub> * L <sub>B2</sub>                  | 295.85  | plf |  |  |
|                        | Diaphragm Edge Shear       | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$                     | 3345.42 | lbs |  |  |
|                        | Vsdnom                     | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$                     | 118.07  | plf |  |  |
|                        |                            |                                                       |         |     |  |  |

\*Use 3/4" T&G, 10d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# FLOOR DIAPHRAGM

# MODULE B

| MODULL D               |                            |                                            |         |     |  |  |  |
|------------------------|----------------------------|--------------------------------------------|---------|-----|--|--|--|
|                        | Unblocked Diaphragm Design |                                            |         |     |  |  |  |
| Direction 1            | Height of Story            | H₁                                         | 8.00    | ft  |  |  |  |
| E-W                    | Dead Load                  | DL                                         | 16.00   | psf |  |  |  |
|                        | Length of Building         | L <sub>B1</sub>                            | 21.50   | ft  |  |  |  |
|                        |                            | L <sub>B2</sub>                            | 12.00   | ft  |  |  |  |
| Applied Load           | Wind                       | W <sub>L</sub> =(12.027psf)*H₁             | 96.22   | plf |  |  |  |
|                        | Seismic                    | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 68.80   | plf |  |  |  |
| V <sub>max</sub>       | Wind                       | $V_{wmax}=W_L*L_{B2}/2$                    | 577.30  | lb  |  |  |  |
|                        | Seismic                    | $V_{smax}=W_s*L_{B2}/2$                    | 412.80  | lb  |  |  |  |
| V <sub>wd</sub>        | Wind                       | $v_{wd}=V_{wmax}/L_{B1}$                   | 26.85   | plf |  |  |  |
| V <sub>sd</sub>        | Seismic                    | $v_{sd}=V_{smax}/L_{B1}$                   | 19.20   | plf |  |  |  |
| Nominal Capacities     | Ω                          |                                            | 2       |     |  |  |  |
|                        | V <sub>wdnom</sub>         | $v_{wdnom} = v_{wd} * \Omega$              | 53.70   | plf |  |  |  |
|                        | Vsdnom                     | $v_{sdnom} = v_{sd} * \Omega$              | 38.40   | plf |  |  |  |
|                        |                            |                                            |         |     |  |  |  |
| Direction 2            | Height of Story            | H1                                         | 8.00    | ft  |  |  |  |
| N-S                    | Dead Load                  | DL                                         | 16.00   | psf |  |  |  |
|                        | Length of Building         | L <sub>B1</sub>                            | 12.00   | ft  |  |  |  |
|                        |                            | L <sub>B2</sub>                            | 21.50   | ft  |  |  |  |
| Applied Load           | Wind                       | W <sub>L</sub> =(12.027psf)*H <sub>1</sub> | 96.22   | plf |  |  |  |
|                        | Seismic                    | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 38.40   | plf |  |  |  |
| V <sub>max</sub>       | Wind                       | $V_{wmax}=W_L*L_{B2}/2$                    | 1034.32 | lb  |  |  |  |
|                        | Seismic                    | $V_{smax}=W_s*L_{B2}/2$                    | 412.80  | lb  |  |  |  |
| V <sub>wd</sub>        | Wind                       | $v_{wd}=V_{wmax}/L_{B1}$                   | 86.19   | plf |  |  |  |
| V <sub>sd</sub>        | Seismic                    | $v_{sd} = V_{smax} / L_{B1}$               | 34.40   | plf |  |  |  |
| Nominal Capacities     | Ω                          |                                            | 2       |     |  |  |  |
|                        | V <sub>wdnom</sub>         | $v_{wdnom} = v_{wd} * \Omega$              | 172.39  | plf |  |  |  |
|                        | Vsdnom                     | $v_{sdnom} = v_{sd} * \Omega$              | 68.80   | plf |  |  |  |
| Load with cut panel se | ections                    |                                            |         |     |  |  |  |
|                        | Diaphragm Edge Shear       | $v_{wdnom}$ * $L_{B2}$                     | 2068.65 | lbs |  |  |  |
|                        | Length with cut panels     | L <sub>B3</sub>                            | 8.00    | ft  |  |  |  |
|                        | Vwdnom                     | v <sub>wdnom</sub> * L <sub>B2</sub>       | 258.58  | plf |  |  |  |
|                        | Diaphragm Edge Shear       | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$          | 825.60  | lbs |  |  |  |
|                        | Vsdnom                     | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$          | 103.20  | plf |  |  |  |
|                        |                            |                                            |         |     |  |  |  |

\*Use 3/4" T&G, 10d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# FLOOR DIAPHRAGM

# MODULE C

|                        | Unblocked Diaphrag     | m Design                                   |          |     |
|------------------------|------------------------|--------------------------------------------|----------|-----|
| Direction 1            | Height of Story        | H <sub>1</sub>                             | 8.00     | ft  |
| N-S                    | Dead Load              | DL                                         | 16.00    | psf |
|                        | Length of Building     | L <sub>B1</sub>                            | 36.33    | ft  |
|                        |                        | L <sub>B2</sub>                            | 12.00    | ft  |
| Applied Load           | Wind                   | W <sub>L</sub> =(12.027psf)*H <sub>1</sub> | 96.22    | plf |
|                        | Seismic                | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 116.27   | plf |
| V <sub>max</sub>       | Wind                   | $V_{wmax}=W_L*L_{B2}/2$                    | 577.30   | lb  |
|                        | Seismic                | $V_{smax}=W_s*L_{B2}/2$                    | 697.60   | lb  |
| V <sub>wd</sub>        | Wind                   | $v_{wd} = V_{wmax} / L_{B1}$               | 15.89    | plf |
| V <sub>sd</sub>        | Seismic                | $v_{sd}=V_{smax}/L_{B1}$                   | 19.20    | plf |
| Nominal Capacities     | Ω                      |                                            | 2        |     |
|                        | Vwdnom                 | $v_{wdnom} = v_{wd} * \Omega$              | 31.78    | plf |
|                        | Vsdnom                 | $v_{sdnom} = v_{sd} * \Omega$              | 38.40    | plf |
|                        |                        |                                            |          |     |
| Direction 2            | Height of Story        | H <sub>1</sub>                             | 8.00     | ft  |
| E-W                    | Dead Load              | DL                                         | 16.00    | psf |
|                        | Length of Building     | L <sub>B1</sub>                            | 12.00    | ft  |
|                        |                        | L <sub>B2</sub>                            | 36.33    | ft  |
| Applied Load           | Wind                   | $W_{L}=(12.027 psf)^{*}H_{1}$              | 96.22    | plf |
|                        | Seismic                | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$             | 38.40    | plf |
| V <sub>max</sub>       | Wind                   | $V_{wmax}=W_L*L_{B2}/2$                    | 1747.93  | lb  |
|                        | Seismic                | $V_{smax}=W_s*L_{B2}/2$                    | 697.60   | lb  |
| V <sub>wd</sub>        | Wind                   | $v_{wd} = V_{wmax} / L_{B1}$               | 145.66   | plf |
| V <sub>sd</sub>        | Seismic                | $v_{sd} = V_{smax} / L_{B1}$               | 58.13    | plf |
| Nominal Capacities     | Ω                      |                                            | 2        |     |
|                        | V <sub>wdnom</sub>     | $v_{wdnom} = v_{wd} * \Omega$              | 291.32   | plf |
|                        | Vsdnom                 | $v_{sdnom} = v_{sd} * \Omega$              | 116.27   | plf |
| Load with cut panel se | ections                |                                            |          |     |
|                        | Diaphragm Edge Shear   | v <sub>wdnom</sub> * L <sub>B2</sub>       | 10584.67 | lbs |
|                        | Length with cut panels | L <sub>B3</sub>                            | 32.33    | ft  |
|                        | Vwdnom                 | v <sub>wdnom</sub> * L <sub>B2</sub>       | 327.36   | plf |
|                        | Diaphragm Edge Shear   | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$          | 4224.36  | lbs |
|                        | Vsdnom                 | $v_{sdnom}$ * $L_{B2}$ / $L_{B3}$          | 130.65   | plf |
|                        |                        |                                            |          |     |

\*Use 3/4" T&G, 10d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# TJI ® 230 JOISTS PROVIDED INFORMATION

| TJI Depth                  | =                                                                          | 9 1/2 "              |                   |      |    |  |
|----------------------------|----------------------------------------------------------------------------|----------------------|-------------------|------|----|--|
| ROOF JOISTS                |                                                                            |                      |                   |      |    |  |
| 40 PSF Live Load/20 PSF D  | Dead Load > 20 PSF Li                                                      | ive Load/16 PSF      | Dead Load         |      | ок |  |
| L/480 Live Load Deflection |                                                                            |                      |                   |      |    |  |
|                            | 40 PSF Live Load/20                                                        |                      |                   |      |    |  |
|                            | Spacing                                                                    | Allowab              |                   |      |    |  |
|                            | 16" o.c.                                                                   | 16'                  | -8"               | >11' | OK |  |
| L/360 Live Load Deflection |                                                                            |                      |                   |      |    |  |
|                            | 40 PSF Live Load/20                                                        | 0 PSF Dead Load      |                   |      |    |  |
|                            | Spacing                                                                    | Allowat              | ole Span          |      |    |  |
|                            | 16" o.c.                                                                   | 18'                  | -1"               | >11' | ок |  |
|                            |                                                                            |                      |                   |      |    |  |
| FLOOR JOISTS               |                                                                            |                      |                   |      |    |  |
| Δ =                        | $= \frac{22.5 \text{wL}^4 + 2.67 \text{wL}^2}{\text{EI}} \text{ d x 10}^5$ | =                    | 0.1583            | in.  |    |  |
|                            | w = uniform live load                                                      | d in pounds per li   | near foot = 66.67 | 7    |    |  |
|                            | L = span in feet = 11                                                      | .625                 |                   |      |    |  |
|                            | d = out-to-out depth                                                       | of the joist in inch | ies = 9.5         |      |    |  |
|                            | $EI = 206 \times 10^6 \text{ in}^2 \text{-Ib}$                             |                      |                   |      |    |  |
|                            |                                                                            |                      |                   |      |    |  |
| L/480                      | =                                                                          | 0.2906               | in.               |      |    |  |
| L/360                      | =                                                                          | 0.3875               | in.               |      |    |  |
| L/480 & L/36               | δ0 > Δ                                                                     | ОК                   |                   |      |    |  |

# FLAT ROOF JOIST CALCULATIONS

### 2x12 Trimmed Joist - DFL No. 1

| Length         | 138    | in              |
|----------------|--------|-----------------|
| Depth          | 9.75   | in              |
| Width          | 1.5    | in              |
| Area           | 14.63  | in <sup>2</sup> |
| S <sub>x</sub> | 23.77  | in <sup>3</sup> |
| lx             | 115.86 | in <sup>4</sup> |

#### **Reference Design Values**

| Fb | 1000    | psi |  |
|----|---------|-----|--|
| Fv | 180     | psi |  |
| E  | 1700000 | psi |  |

### Adjustment Factors - NDS Table 4.3.1

| CD | См | Ct | C <sub>F</sub> | Ci | Cr   |
|----|----|----|----------------|----|------|
| 1  | 1  | 1  | 1.075          | 1  | 1.15 |

#### **Structural Analysis :**

| Dead load         | 20      | psf   |  |
|-------------------|---------|-------|--|
| Live load         | 25      | psf   |  |
| W: D+L            | 60      | plf   |  |
| M <sub>load</sub> | 11902.5 | lb-in |  |

16 in

### **Design Calculations**

| Bending Chec                       | k                                                |                                                                                |          |
|------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|----------|
| Depthnominal                       | 10.5                                             | in                                                                             |          |
| Widthnominal                       | 2                                                | in                                                                             |          |
| Dn/Wn :                            | 5.25                                             | * Block @ 16" o.c.                                                             | with TJI |
| CL                                 | 1                                                |                                                                                |          |
| F'b                                | F <sub>b</sub> *C <sub>M</sub> *C <sub>t</sub> * | C <sub>D</sub> *C <sub>r</sub> *C <sub>F</sub> *C <sub>i</sub> *C <sub>L</sub> |          |
| F'b                                | 1236.25                                          | psi                                                                            |          |
| f <sub>b</sub> : M/S               | 500.8                                            | psi                                                                            |          |
| f <sub>b</sub> <f'<sub>b?</f'<sub> | ок                                               |                                                                                |          |

#### Shear Check

| F'v                    | Fv *Cd*CM*Ct*Ci |
|------------------------|-----------------|
| F'v                    | 180 <b>psi</b>  |
| V: wL/2                | 345 lb          |
| f <sub>v</sub> : 3V/2A | 35.4 psi        |
| $f_v < F'_v$ ?         | ок              |

#### **Deflection Check**

| Length/360             | 0.383      | in.                       |
|------------------------|------------|---------------------------|
| L                      | 2.778      | lb/in                     |
| Δ                      | 5*L*Lengtl | n <sup>4</sup> /(384*E*I) |
| Δ                      | 0.067      | in                        |
| $\Delta$ < Length/360? |            | ок                        |

# FLOOR JOIST CALCULATIONS

### DFL No. 2 - 2x4 Floor Joists in Module B from Lines 2-2.5 and 4.5-5

| Length         | 42   | in              |  |
|----------------|------|-----------------|--|
| Depth          | 3.5  | in              |  |
| Width          | 1.5  | in              |  |
| Area           | 5.25 | in <sup>2</sup> |  |
| S <sub>x</sub> | 3.06 | in <sup>3</sup> |  |
| lx             | 5.36 | in <sup>4</sup> |  |

### **Reference Design Values**

| Fb | 900     | psi |
|----|---------|-----|
| Fv | 180     | psi |
| E  | 1600000 | psi |

### Adjustment Factors - NDS Table 4.3.1

| CD | См | Ct | CF | Ci | Cr   |
|----|----|----|----|----|------|
| 1  | 1  | 1  | 1  | 1  | 1.15 |

#### **Structural Analysis**

| Dead Load           | 16     | psf   |
|---------------------|--------|-------|
| Live Load           | 50     | psf   |
| W: D+L              | 66     | psf   |
| W                   | 94.29  | plf   |
| M <sub>load</sub> : | 1732.5 | in-lb |

|       | -    |           |         |
|-------|------|-----------|---------|
| Worst | Case | Tributary | / Area: |

5 ft<sup>2</sup>

#### **Design Calculations**

### Bending Check

| Depthnominal                       | 4           | in            |
|------------------------------------|-------------|---------------|
| Widthnominal                       | 2           | in            |
| D <sub>n</sub> /W <sub>n</sub> :   | 2           | ОК            |
| CL                                 | 1           |               |
| F'b                                | Fb*CM*Ct*CD | o*Cr*CF*Ci*CL |
| F'b                                | 1035        | psi           |
| fb : M/S                           | 565.7       | psi           |
| f <sub>b</sub> <f'<sub>b?</f'<sub> | ОК          |               |

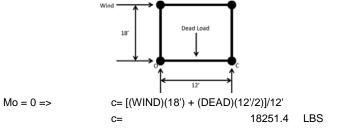
#### Shear Check

| F'v                    | F <sub>v</sub> *C <sub>D</sub> *C <sub>M</sub> *( | Ct*Ci |
|------------------------|---------------------------------------------------|-------|
| F' <sub>v</sub> =      | 180                                               | psi   |
| V: wL/2                | 165                                               | lb    |
| f <sub>v</sub> : 3V/2A | 47.1                                              | psi   |
| $f_v < F'_v$ ?         | ОК                                                |       |

#### **Deflection Check**

| Length/360             | 0.117 in.                          |
|------------------------|------------------------------------|
| L                      | 5.556 lb/in                        |
| Δ                      | 5*L*Length <sup>4</sup> /(384*E*I) |
| Δ                      | 0.026 in                           |
| $\Delta$ < Length/360? | ОК                                 |

#### FOUNDATIONS **MODULE A** DIMENSIONS LENGTH: 32.33 FT HEIGHT: 18 FΤ (AT HIGHEST POINT) WIDTH: FT 12 WIND: 12.027 PSF GRAVITY DEAD LOAD TOTAL MODULE LIVE LOAD FLOOR 50 PSF


ROOF

1500 PSF BEARING PRESSURE REQUIRES:

19400 LBS 20 PSF 8020 LBS 27420 LBS 19 SQ FT FOR FOOTINGS WIND: 3028 LBS DEAD: 27420 LBS

25609 LBS

LATERAL - FOR IRVINE, CA



| 1500 PSF BEA | 1500 PSF BEARING PRESSURE REQUIRES: 12.2 |  |       | R FOOTINGS | PER SIDE    |
|--------------|------------------------------------------|--|-------|------------|-------------|
| EAST:        |                                          |  | QTY   | AREA       |             |
|              | SEISMIC PIERS                            |  | 2     | 4          | SQ FT       |
|              | STANDARD PIERS                           |  | 3     | 1.8        | SQ FT       |
|              |                                          |  | 13.33 | SQ FT      | PROVIDED    |
| WEST:        |                                          |  | QTY   | AREA       |             |
|              | SEISMIC PIERS                            |  | 2     | 4          | SQ FT       |
|              | STANDARD PIERS                           |  | 3     | 1.8        | SQ FT       |
|              |                                          |  | 13.33 | SQ FT      | PROVIDED    |
|              |                                          |  | 26.7  |            | FT PROVIDED |
|              |                                          |  | 1369  | PSF PER F  | FOOTING     |

| IODULE B                  |                                                                             |                                             |            |                                        |                                                        |                                              |     |
|---------------------------|-----------------------------------------------------------------------------|---------------------------------------------|------------|----------------------------------------|--------------------------------------------------------|----------------------------------------------|-----|
| IMENSIONS                 | LENGTH:                                                                     | 21.17                                       | FT         |                                        |                                                        |                                              |     |
|                           | HEIGHT:                                                                     | 18                                          | FT         | (AT HIGHES                             | ST POINT)                                              |                                              |     |
|                           | WIDTH:                                                                      | 12                                          | FT         |                                        |                                                        |                                              |     |
|                           | WIND:                                                                       | 12.027                                      | PSF        |                                        |                                                        |                                              |     |
| RAVITY                    |                                                                             |                                             |            |                                        |                                                        |                                              |     |
|                           | DEAD LOAD                                                                   |                                             |            |                                        |                                                        |                                              |     |
|                           |                                                                             | TOTAL MODU                                  | LE         |                                        |                                                        | 15989                                        | LBS |
|                           | LIVE LOAD                                                                   |                                             |            |                                        |                                                        |                                              |     |
|                           |                                                                             | FLOOR                                       |            | 50                                     | PSF                                                    | 11400                                        | LBS |
|                           |                                                                             | ROOF                                        |            | 20                                     | PSF                                                    | 4937                                         | LBS |
|                           |                                                                             |                                             |            |                                        |                                                        | 16337                                        | LBS |
|                           | 1500 PSF BEARING                                                            | S PRESSURE REQUI                            | RES:       | 11                                     | SQ FT FO                                               | R FOOTINGS                                   |     |
| ATERAL - FOR              | IRVINE, CA                                                                  |                                             |            |                                        |                                                        |                                              |     |
|                           | Wind                                                                        |                                             |            |                                        |                                                        |                                              |     |
|                           | 18' De                                                                      | ad Load                                     |            |                                        | WIND:                                                  | 4159                                         | LBS |
|                           |                                                                             |                                             |            |                                        | DEAD:                                                  | 16337                                        | LBS |
|                           | ~                                                                           | 12'                                         |            |                                        |                                                        |                                              |     |
| o = 0 =>                  | c= [(WIND)(18') -                                                           | I                                           |            |                                        |                                                        |                                              |     |
| 0 = 0 =>                  | c= [(WIND)(18') -<br>c=                                                     | →<br>12'<br>+ (DEAD)(12'/2)]/12'<br>14407.2 | LBS        |                                        |                                                        |                                              |     |
| 0 = 0 =><br>500 PSF BEARI |                                                                             | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | LBS<br>9.6 | 6 SQ FT FOR                            | FOOTINGS                                               | PER SIDE                                     |     |
|                           | C=                                                                          | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          | 5 SQ FT FOR<br>QTY                     | FOOTINGS                                               | PER SIDE                                     |     |
| 00 PSF BEAR               | C=                                                                          | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          |                                        |                                                        | PER SIDE<br>SQ FT                            |     |
| 500 PSF BEARI             | C=                                                                          | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY                                    | AREA                                                   |                                              |     |
| 00 PSF BEAR               | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS                                    | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2                               | AREA<br>4                                              | SQ FT                                        |     |
| 000 PSF BEAR              | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS                                    | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2<br>1                          | AREA<br>4<br>1.8                                       | SQ FT<br>SQ FT                               |     |
| 00 PSF BEARI              | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS                                    | ⊢ (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2<br>1<br>9.78                  | AREA<br>4<br>1.8<br>SQ FT                              | SQ FT<br>SQ FT                               |     |
| 00 PSF BEARI<br>DRTH:     | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS<br>STANDARD PIERS                  | I (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2<br>1<br>9.78<br>QTY           | AREA<br>4<br>1.8<br>SQ FT<br>AREA                      | SQ FT<br>SQ FT<br>PROVIDED                   |     |
| 00 PSF BEARI<br>DRTH:     | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS<br>STANDARD PIERS<br>SEISMIC PIERS | I (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2<br>1<br>9.78<br>QTY<br>2      | AREA<br>4<br>1.8<br>SQ FT<br>AREA<br>4                 | SQ FT<br>SQ FT<br>PROVIDED<br>SQ FT          | _   |
| 500 PSF BEARI             | C=<br>ING PRESSURE REQU<br>SEISMIC PIERS<br>STANDARD PIERS<br>SEISMIC PIERS | I (DEAD)(12'/2)]/12'<br>14407.2             | -          | QTY<br>2<br>1<br>9.78<br>QTY<br>2<br>1 | AREA<br>4<br>1.8<br>SQ FT<br>AREA<br>4<br>1.8<br>SQ FT | SQ FT<br>SQ FT<br>PROVIDED<br>SQ FT<br>SQ FT |     |

# FOUNDATIONS

| MODULE C      |                                                  |                                                                    |                       |                                         |                                                          |                                              |                   |
|---------------|--------------------------------------------------|--------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------|
| WODULE C      |                                                  |                                                                    |                       |                                         |                                                          |                                              |                   |
| DIMENSIONS    | LENGTH:<br>HEIGHT:<br>WIDTH:<br>WIND:            | 36.33<br>18<br>12<br>12.027                                        | FT<br>FT<br>FT<br>PSF | (AT HIGHE                               | ST POINT)                                                |                                              |                   |
| GRAVITY       |                                                  |                                                                    |                       |                                         |                                                          |                                              |                   |
|               | DEAD LOAD                                        | TOTAL MODULE                                                       | E                     |                                         |                                                          | 35005                                        | LBS               |
|               | LIVE LOAD                                        |                                                                    |                       |                                         |                                                          |                                              |                   |
|               |                                                  | FLOOR<br>ROOF                                                      |                       | 50<br>20                                | PSF<br>PSF                                               | 21800<br>8980<br>30780                       | LBS<br>LBS<br>LBS |
|               | 1500 PSF BEARING                                 | PRESSURE REQUI                                                     | RES:                  | 21                                      | SQ FT FOI                                                | R FOOTINGS                                   | LDO               |
|               |                                                  |                                                                    |                       |                                         |                                                          |                                              |                   |
| LATERAL - FOR |                                                  | <b></b>                                                            |                       |                                         |                                                          |                                              |                   |
|               | 18' Dead                                         | Load                                                               |                       |                                         | WIND:<br>DEAD:                                           | 4760<br>30780                                | LBS<br>LBS        |
| Mo = 0 =>     | 1                                                | ↓<br>2 <sup>′</sup><br>(DEAD)(12 <sup>′</sup> /2)]/12 <sup>′</sup> |                       |                                         |                                                          |                                              |                   |
| 10 - 0 -2     | C= [(\\\\\\D)(10) 1                              | 22529.5                                                            | LBS                   |                                         |                                                          |                                              |                   |
|               |                                                  |                                                                    |                       |                                         |                                                          |                                              |                   |
| 1500 PSF BEAR | ING PRESSURE REQU                                | IIRES:                                                             | 15.0                  | SQ FT FOR                               | FOOTINGS                                                 | PER SIDE                                     |                   |
|               | ING PRESSURE REQU                                | IIRES:                                                             | 15.0                  | SQ FT FOR<br>QTY                        | FOOTINGS                                                 | PER SIDE                                     |                   |
|               | SEISMIC PIERS                                    | IIRES:                                                             | 15.0                  | QTY<br>2                                | AREA<br>4                                                | SQ FT                                        |                   |
| EAST:         |                                                  | IIRES:                                                             | 15.0                  | QTY                                     | AREA                                                     |                                              | _                 |
| EAST:         | SEISMIC PIERS                                    | IIRES:                                                             | 15.0                  | QTY<br>2<br>5<br>16.89                  | AREA<br>4<br>1.78<br>SQ FT                               | SQ FT<br>SQ FT                               |                   |
| EAST:         | SEISMIC PIERS                                    | IIRES:                                                             | 15.0                  | QTY<br>2<br>5                           | AREA<br>4<br>1.78                                        | SQ FT<br>SQ FT                               |                   |
| EAST:         | SEISMIC PIERS<br>STANDARD PIERS                  | IIRES:                                                             | 15.0                  | QTY<br>2<br>5<br>16.89<br>QTY           | AREA<br>4<br>1.78<br>SQ FT<br>AREA                       | SQ FT<br>SQ FT<br>PROVIDED                   | _                 |
|               | SEISMIC PIERS<br>STANDARD PIERS<br>SEISMIC PIERS | IIRES:                                                             | 15.0                  | QTY<br>2<br>5<br>16.89<br>QTY<br>2      | AREA<br>4<br>1.78<br>SQ FT<br>AREA<br>4                  | SQ FT<br>SQ FT<br>PROVIDED<br>SQ FT          | _                 |
| EAST:         | SEISMIC PIERS<br>STANDARD PIERS<br>SEISMIC PIERS | IIRES:                                                             | 15.0                  | QTY<br>2<br>5<br>16.89<br>QTY<br>2<br>5 | AREA<br>4<br>1.78<br>SQ FT<br>AREA<br>4<br>1.78<br>SQ FT | SQ FT<br>SQ FT<br>PROVIDED<br>SQ FT<br>SQ FT |                   |

# ANCHORAGE

### SEISMIC ANCHOR LOADS

| Shear Load (lb)<br>Allowable Design Level |      |      |      |  |  |  |
|-------------------------------------------|------|------|------|--|--|--|
| Module                                    | А    | В    | С    |  |  |  |
| N-S                                       | 4890 | -    | 6017 |  |  |  |
| E-W                                       | 1558 | 4968 | 6181 |  |  |  |

| Shear Load (Ib) per Seismic Pier<br>Allowable Design Level |      |      |      |  |  |  |
|------------------------------------------------------------|------|------|------|--|--|--|
| Module                                                     | А    | В    | С    |  |  |  |
| (lbs)                                                      | 1223 | 1242 | 1545 |  |  |  |

| Shear Load per Anchor<br>Allowable Design Level |     |   |   |  |  |  |
|-------------------------------------------------|-----|---|---|--|--|--|
| Module                                          | А   | В | С |  |  |  |
| (lbs)                                           | 773 |   |   |  |  |  |

Assumed Pullout Design Capacity (per Solar Decathlon rules)

1250 lbs

Assumed Shear Design Capacity (per Solar Decathlon rules)

1500 lbs

### ALLOWABLE SHEAR STRENGTH OF THREADED ROD ANCHOR

#### AS PER THE DOE, USE A 1" DIAMETER ANCHOR

| $R_n = F_n A_b / \Omega$ | where $\Omega = 2$ |                     |    |
|--------------------------|--------------------|---------------------|----|
| $F_n = F_{nv} =$         | 20.772             | ksi <b>for A36</b>  |    |
| A <sub>b</sub> =         | 0.785              | in <sup>2</sup>     |    |
| R <sub>n</sub> =         | 8157               | lbs per anchor      |    |
|                          |                    | 8157 lbs > 1500 lbs | ок |
|                          |                    | 8157 lbs > 1242 lbs | ок |

#### PULLOUT STRENGTH - THREADED ROD ANCHOR IN CONCRETE

| Embedment length =                                    | 36                     | in.             |
|-------------------------------------------------------|------------------------|-----------------|
| Pullout Surface Area = $\pi$ *1.4142*H <sup>2</sup> = | 5758                   | in <sup>2</sup> |
| Shear Strength of Concrete =                          | 800                    | psi             |
|                                                       |                        |                 |
| Force (lbs) = 4606336.85                              | lbs                    |                 |
|                                                       | 4606337 lbs > 1250 lbs | ок              |

# GRADE VARIABILITY

Standard Piers, fabricated by Central Piers Inc., serve as the footings required to comply with the allowable bearing capacity. See S-101 for the foundation plan and bearing plan. Central Piers Inc. supplies various sized piers for varying ground heights. Central Piers Inc. stocks seismic piers that range from 7"-10" up to 19"-33". Each Standard Pier has a height adjustment of 2". Santa Clara plans to bring a set of all of the available sized piers listed on the Footing Adjustability Schedule on S-601 if shimming is needed. Therefore, no additional structural calculations are needed for our method of pier adjustability because an appropriately sized pier will be used where piers are needed.

# MOMENT STABILITY

| Overturning Moment<br>Resisting Moment | = | wind * height<br>weight * base/2 |       |    |
|----------------------------------------|---|----------------------------------|-------|----|
| MODULE A                               |   |                                  |       |    |
| Overturning Moment                     | = | 29519                            | lb-ft |    |
| Resisting Moment                       | = | 153656                           | lb-ft |    |
| OM < RM                                |   | ОК                               |       |    |
| Factor of Safety                       | = | 5.2052659                        | >1.67 | OK |
| MODULE B                               |   |                                  |       |    |
| Overturning Moment                     | = | 40550                            | lb-ft |    |
| Resisting Moment                       | = | 140988                           | lb-ft |    |
| OM < RM                                |   | ОК                               |       |    |
| Factor of Safety                       | = | 3.4768858                        | >1.67 | ОК |
| MODULE C                               |   |                                  |       |    |
| Overturning Moment                     | = | 46407                            | lb-ft |    |
| Resisting Moment                       | = | 210031                           | lb-ft |    |
| OM < RM                                |   | ОК                               |       |    |
| Factor of Safety                       | = | 4.5258548                        | >1.67 | OK |
| ROOF MODULE                            |   |                                  |       |    |
| Overturning Moment                     | = | 24312                            | lb-ft |    |
| Resisting Moment                       | = | 95548                            | lb-ft |    |
| OM < RM                                |   | ОК                               |       |    |
| Factor of Safety                       | = | 3.9301247                        | >1.67 | ОК |

# WALL POST DESIGN

### Member Information: 4 x 6, No. 1 DF-L

| Length | 100.75 | in  |
|--------|--------|-----|
| Depth  | 5.5    | in  |
| Width  | 3.5    | in  |
| Area   | 19.25  | in² |

### Reference Design Values

| Fc               | 1500    | psi |
|------------------|---------|-----|
| E                | 1700000 | psi |
| E <sub>min</sub> | 620000  | psi |

### Adjustment Factors - NDS Table 4.3.1

| CD | C <sub>M_C</sub> | Ct | CF  | Ci | C <sub>M_E</sub> | C <sub>M_Fc</sub> | Cī |
|----|------------------|----|-----|----|------------------|-------------------|----|
| 1  | 1                | 1  | 1.1 | 1  | 1                | 1                 | 1  |

### **Design Calculations**

### **Compression Check**

| Pload           | 1300 lbs                                                                             | *Worst C                        | ase Scenario | : Column at l | A2 or A5 |
|-----------------|--------------------------------------------------------------------------------------|---------------------------------|--------------|---------------|----------|
| E'min           | Emin * CM_E * Ct * Ci                                                                | * C <sub>T</sub>                | 620000       | psi           |          |
| F <sub>cE</sub> | 0.822* E' <sub>min</sub> / ((L/wic                                                   | lth)²)                          | 615          | psi           |          |
| Fc*             | F <sub>c</sub> * C <sub>D</sub> * C <sub>M Fc</sub> * C <sub>t</sub> * (             | C <sub>F</sub> * C <sub>i</sub> | 1650         | psi           | •        |
| СР              | 0.338                                                                                |                                 | 1            | •             | 1        |
| F'c             | F <sub>c</sub> * C <sub>D</sub> * C <sub>M</sub> * C <sub>t</sub> * C <sub>F</sub> * | Ci * Cn                         | 558.0        | psi           |          |
| f <sub>c</sub>  | P <sub>load</sub> /Area                                                              | <u>-, -p</u>                    | 67.53        | psi           |          |
| fc < F'c        | OK                                                                                   |                                 | 51.00        | P.0.          | 1        |

# WALL STUD DESIGN

### Member Information: 2 x 4, No. 2 DF-L

| Length | 100.75 | in              |
|--------|--------|-----------------|
| Depth  | 3.5    | in              |
| Width  | 1.5    | in              |
| Area   | 5.25   | in <sup>2</sup> |

| Reference Design Values |         |     |  |  |
|-------------------------|---------|-----|--|--|
| Fc                      | 1350    | psi |  |  |
| E                       | 1600000 | psi |  |  |
| Emin                    | 580000  | psi |  |  |

### Adjustment Factors - NDS Table 4.3.1

| CD | C <sub>M_C</sub> | Ct | CF   | Ci | C <sub>M_E</sub> | C <sub>M_Fc</sub> | Cī |
|----|------------------|----|------|----|------------------|-------------------|----|
| 1  | 1                | 1  | 1.15 | 1  | 1                | 1                 | 1  |

### **Design Calculations**

| Pload                            | 288 lbs                                                                            | *Worst Cas                              | se Scenario: | Between A5 & A6 |
|----------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------|
| E'min                            | Emin * CM_E * Ct * C                                                               | Ci * Cī                                 | 580000       | psi             |
| F <sub>cE</sub>                  | 0.822* E' <sub>min</sub> / ((L/w                                                   | 0.822* E' <sub>min</sub> / ((L/width)²) |              | psi             |
| Fc*                              | Fc * CD * CM_Fc * Ct                                                               | * C <sub>F</sub> * C <sub>i</sub>       | 1552.5       | psi             |
| СР                               | 0.067                                                                              |                                         |              |                 |
| F'c                              | F <sub>c</sub> * C <sub>D</sub> * C <sub>M</sub> * C <sub>t</sub> * C <sub>F</sub> | * * C <sub>i</sub> * C <sub>p</sub>     | 104.2        | psi             |
| fc                               | P <sub>load</sub> /Area                                                            |                                         | 54.9         | psi             |
| f <sub>c</sub> < F' <sub>c</sub> | ОК                                                                                 |                                         |              |                 |

### HEADER CALCULATIONS Header - 4 x 6 DFL No. 1

| ength                                    |  | 72                           | in.                                              |  |
|------------------------------------------|--|------------------------------|--------------------------------------------------|--|
| Depth                                    |  | 5.5                          | in.                                              |  |
| Vidth                                    |  | 3.5                          | in.                                              |  |
| Area                                     |  | 19.25                        | in <sup>2</sup>                                  |  |
| Sx                                       |  | 17.65                        | in <sup>3</sup>                                  |  |
| ĸ                                        |  | 48.53                        | in <sup>4</sup>                                  |  |
| Depth<br>Vidth<br>Area<br>S <sub>x</sub> |  | 5.5<br>3.5<br>19.25<br>17.65 | in.<br>in.<br>in <sup>2</sup><br>in <sup>3</sup> |  |

| Reference Design Values |         |     |  |  |
|-------------------------|---------|-----|--|--|
| Fb                      | 900     | psi |  |  |
| Fv                      | 180     | psi |  |  |
| E                       | 1600000 | psi |  |  |

### Adjustment Factors - NDS Table 4.3.1

| CD | См | Ct | CF  | Ci | Cr |
|----|----|----|-----|----|----|
| 1  | 1  | 1  | 1.3 | 1  | 1  |

#### **Structural Analysis**

| Dead Load | 16    | psf   | Tri                | b. Area of roof over h  | neader | 36 | ft <sup>2</sup> |  |
|-----------|-------|-------|--------------------|-------------------------|--------|----|-----------------|--|
| Live Load | 20    | psf   |                    |                         |        |    |                 |  |
| W: D+L    | 36    | psf   |                    |                         |        |    |                 |  |
| W         | 220   | plf   | *(plus 4 plf for 2 | 2 - 2x6 plates above he | eader) |    |                 |  |
| М         | 11880 | in-lb |                    |                         |        |    |                 |  |

### **Design Calculations**

### Bending Check

| Depth <sub>nominal</sub>           | 6            | in.         |
|------------------------------------|--------------|-------------|
| Widthnominal                       | 4            | in.         |
| Dn/Wn                              | 1.5          | ОК          |
| CL                                 | 1            |             |
| F'b                                | Fb*CM*Ct*CD* | Cr*CF*Ci*CL |
| F'b                                | 1170         | psi         |
| f <sub>b</sub> : M/S               | 673.25       | psi         |
| f <sub>b</sub> <f'<sub>b?</f'<sub> | ОК           |             |

### Shear Check

| F'v                                 | $F_v * C_D * C_N$ | ⊿*Ct*Ci |
|-------------------------------------|-------------------|---------|
| F'v                                 | 180               | psi     |
| V: wL/2                             | 660               | lb      |
| f <sub>v</sub> : 3V/2A              | 51.43             | psi     |
| f <sub>v</sub> <f'<sub>v ?</f'<sub> | ОК                |         |

#### Deflection Check

| Length/360          | 0.2        | in.                     |
|---------------------|------------|-------------------------|
| L                   | 1.667      | lb/in                   |
| Δ                   | 5*L*Length | <sup>4</sup> /(384*E*I) |
| Δ                   | 0.007511   | in.                     |
| $\Delta$ < Length/3 | ОК         |                         |

\* USE 4X6 HEADERS ON OPENINGS BETWEEN 4-6 ft

# HEADER CALCULATIONS

### Header - 2 x 6 DFL No. 2

| Length         | 48    | in.             |
|----------------|-------|-----------------|
| Depth          | 5.5   | in.             |
| Width          | 1.5   | in.             |
| Area           | 8.25  | in <sup>2</sup> |
| Sx             | 7.56  | in <sup>3</sup> |
| l <sub>x</sub> | 20.80 | in <sup>4</sup> |

| Reference Design Values |         |     |
|-------------------------|---------|-----|
| Fb                      | 900     | psi |
| Fv                      | 180     | psi |
| E                       | 1600000 | psi |

### Adjustment Factors - NDS Table 4.3.1

| CD | См | Ct | CF  | Ci | Cr |
|----|----|----|-----|----|----|
| 1  | 1  | 1  | 1.3 | 1  | 1  |

#### **Structural Analysis**

| Dead Load | 16 psf     | Trib. Area of roof over header                | 24 ft <sup>2</sup> |
|-----------|------------|-----------------------------------------------|--------------------|
| Live Load | 20 psf     |                                               |                    |
| W: D+L    | 36 psf     |                                               |                    |
| W         | 220 plf    | *(plus 4 plf for 2 - 2x6 plates above header) |                    |
| Μ         | 5280 in-lb |                                               |                    |

### **Design Calculations**

### Bending Check

| Depth <sub>nominal</sub>           | 6            | in.         |
|------------------------------------|--------------|-------------|
| Widthnominal                       | 2            | in.         |
| Dn/Wn                              | 3            | ОК          |
| CL                                 | 1            |             |
| F'b                                | Fb*CM*Ct*CD* | Cr*CF*Ci*CL |
| F'b                                | 1170         | psi         |
| f <sub>b</sub> : M/S               | 698.18       | psi         |
| f <sub>b</sub> <f'<sub>b?</f'<sub> | ок           |             |

### Shear Check

| F'v                    | F <sub>v</sub> *C <sub>D</sub> *C <sub>M</sub> *C <sub>t</sub> *C <sub>i</sub> |     |
|------------------------|--------------------------------------------------------------------------------|-----|
| F'v                    | 180                                                                            | psi |
| V: wL/2                | 440                                                                            | lb  |
| f <sub>v</sub> : 3V/2A | 80.00                                                                          | psi |
| $f_v < F'_v$ ?         | ОК                                                                             |     |

#### **Deflection Check**

| Length/360          | 0.13                   | in.   |
|---------------------|------------------------|-------|
| L                   | 1.667                  | lb/in |
| Δ                   | 5*L*Length4 /(384*E*I) |       |
| Δ                   | 0.003462               | in.   |
| $\Delta$ < Length/3 | 60š                    | ОК    |

### \* USE 2X6 HEADERS ON OPENINGS LESS THAN 4 ft

# BOTTOM STEEL CHANNEL : C15X33.9

### SUPPORTS AT : 0', 6', 14', 22.33', 30.33', & 36.33'

### LOADS

|            | D+L | 330.0 | plf     |                |          |                 |
|------------|-----|-------|---------|----------------|----------|-----------------|
|            |     |       |         |                |          |                 |
| PROPERTIES |     |       |         |                |          |                 |
|            |     |       |         |                |          |                 |
|            | 14/ | 00.0  | 11. /61 | 0              | 10       | •3              |
|            | W   | 33.9  | lb/ft   | S <sub>x</sub> | 42       | In              |
|            | А   | 10    | in²     | l <sub>x</sub> | 315      | in <sup>4</sup> |
|            | d   | 15    | in      | I              | 36.33    | ft              |
|            | b   | 3.375 | in      | E              | 29000000 | psi             |
|            | t   | 0.625 | in      | Fy             | 36       | ksi             |

### DEFLECTION

|                     | $\Delta_{ m allowable}$ | =    | 1/480        | =    | 0.076′ |
|---------------------|-------------------------|------|--------------|------|--------|
|                     | $\Delta_{max}$          | =    | 0.009′       |      | OK     |
|                     |                         |      |              |      |        |
| Max Allow           | able Uniform            | Load | =            | 91.3 | klf    |
| Actual Uniform Load |                         |      | =            | 0.33 | klf    |
|                     |                         |      | Max > Actual |      | ок     |

#### FLEXURE

Yielding

| Mn               | = | 91.3  | kip-ft |    |
|------------------|---|-------|--------|----|
| M <sub>max</sub> | = | 2.074 | kip-ft | OK |

SHEAR

| Vn               | = | 77.6  | kips |    |
|------------------|---|-------|------|----|
| V <sub>max</sub> | = | 1.888 | kips | ОК |

# **STEEL** BOTTOM SHORT EDGE STEEL CHANNEL- MODULE B : C8X11.5

### SUPPORTS AT : 0', 6', & 12'

### LOADS

D+L 216.0 plf

#### PROPERTIES

| W | 11.5  | lb/ft | S <sub>x</sub> | 8.14     | in <sup>3</sup> |
|---|-------|-------|----------------|----------|-----------------|
| А | 3.37  | in²   | I <sub>x</sub> | 32.5     | in <sup>4</sup> |
| d | 8     | in    | I              | 6        | ft              |
| b | 2.25  | in    | E              | 29000000 | psi             |
| t | 0.375 | in    | Fy             | 36       | ksi             |

#### DEFLECTION

|                     | $\Delta_{	ext{max}}$ $\Delta_{	ext{allowable}}$ | = | 0.007′<br>I/480 | =     | <b>ОК</b><br>0.013' |
|---------------------|-------------------------------------------------|---|-----------------|-------|---------------------|
| Max Allowa          | Max Allowable Uniform Load                      |   |                 | 17.3  | klf                 |
| Actual Uniform Load |                                                 |   | =               | 0.216 | klf                 |
|                     |                                                 |   | Max > Actual    |       | OK                  |

#### FLEXURE

Yielding

| Mn               | = | 17.3  | kip-ft |    |
|------------------|---|-------|--------|----|
| M <sub>max</sub> | = | 1.024 | kip-ft | ОК |

SHEAR

| Vn               | = | 22.8  | kips |    |
|------------------|---|-------|------|----|
| V <sub>max</sub> | = | 0.832 | kips | ОК |

## STEEL BOTTOM STEEL: HSS 8X3X3/8

### LO

| loads                 | Point lo                | ad during ti         | ransportation                  | =                                          | 2143.2             | lbs                     |
|-----------------------|-------------------------|----------------------|--------------------------------|--------------------------------------------|--------------------|-------------------------|
| PROPERTIES            |                         |                      |                                |                                            |                    |                         |
|                       | Cantilever<br>Need to c | -                    | =<br>=<br>=<br>ng, flange loca | 5.6<br>19.9<br>18.6875"<br>Il buckling, an | d web local b      | uckling                 |
| DEFLECTION            |                         |                      |                                |                                            |                    |                         |
|                       |                         | illowable<br>nax     | =<br>=                         | I/480<br>0.0033″                           | =<br>=             | 0.039″<br><b>OK</b>     |
| FLEXURE               |                         |                      |                                |                                            |                    |                         |
| Yi                    | elding                  |                      |                                |                                            |                    |                         |
|                       |                         | In<br>Imax           | =<br>=                         | 61.72<br>3.34                              | kip-ft<br>kip-ft   | ОК                      |
| SHEAR                 |                         |                      |                                |                                            |                    |                         |
| Vr                    | $h = 0.6F_yA_wC_v$      |                      | A <sub>w</sub> = 5.4375        | in <sup>2</sup>                            | C <sub>v</sub> = 1 | F <sub>y</sub> = 46 ksi |
|                       | Vr<br>V                 | max                  | =                              | 89.87<br>2.14                              | kips<br>kips       | ОК                      |
| FLANGE LOCAL BUCKLING |                         |                      |                                |                                            |                    |                         |
|                       | 1.12*√(                 | E/F <sub>y</sub> ) = | 28.12                          | > b/t                                      | FLB DOES           | NOT APPLY               |

WEB LOCAL BUCKLING

| 2.42*√(E/F <sub>y</sub> ) | = | 60.76 >h/t | WLB DOES NOT APPLY |
|---------------------------|---|------------|--------------------|
|---------------------------|---|------------|--------------------|

LOADS

|            | Point | Load            | =              | 3        | kips            |      |       |    |
|------------|-------|-----------------|----------------|----------|-----------------|------|-------|----|
| PROPERTIES |       |                 |                |          |                 |      |       |    |
| W          | 12.7  | lb/ft           | S <sub>x</sub> | 3.34     | in <sup>3</sup> | r    | 1.29  | in |
| Ag         | 3.52  | in <sup>2</sup> | I <sub>x</sub> | 5.84     | in⁴             | b/t  | 9.03  |    |
| d          | 3.5   | in              | E              | 29000000 | psi             | KL/r | 81.77 |    |
| I          | 8.79  | ft              | F <sub>y</sub> | 46       | ksi             |      |       |    |

Need check local buckling and flexural buckling

FLEXURAL BUCKLING

| When KL/r <              | 4.71*VE/F |                   | [ 0.658 <sup>Fy/Fe</sup> ] F <sub>y</sub> |                                              |
|--------------------------|-----------|-------------------|-------------------------------------------|----------------------------------------------|
|                          |           |                   | where $F_e = 1$ (K                        | <u>π²E</u> = 42.81 ksi<br>(L/r) <sup>2</sup> |
|                          |           | F <sub>cr</sub> = | 29.34                                     | ksi                                          |
| $P_{n} = 0.9F_{cr}A_{g}$ | =         | 92.94             | kips > 3                                  | kips OK                                      |

LOCAL BUCKLING

| $1.4^*\sqrt{(E/I)} = 59.07 > b/t$ NONSLENDER - LB DOES NOT AP |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

### **STEEL** TOP MODULE CONNECTOR BEAM : W5X19

### LOADS

| D + L | = | 300.0 | plf |
|-------|---|-------|-----|
|       |   |       |     |

### PROPERTIES

| W              | 16     | lb/ft           | S <sub>x</sub> | 10.2     | in <sup>3</sup> | L              | 21.25  | ft              |
|----------------|--------|-----------------|----------------|----------|-----------------|----------------|--------|-----------------|
| А              | 5.56   | in <sup>2</sup> | l <sub>x</sub> | 26.3     | in <sup>4</sup> | L <sub>b</sub> | 11.583 | ft              |
| $A_{w}$        | 2.24   | in²             | l <sub>y</sub> | 9.13     | in <sup>4</sup> | Z <sub>x</sub> | 9.63   | in <sup>3</sup> |
| d              | 5.125  | in              | E              | 29000000 | psi             | r <sub>y</sub> | 1.28   | in.             |
| b <sub>f</sub> | 5      | in              | Fy             | 50       | ksi             | Cv             | 1      |                 |
| t <sub>w</sub> | 0.4375 | in              | J <sub>c</sub> | 0.316    | in <sup>4</sup> | C <sub>b</sub> | 1.14   |                 |
| h₀             | 4.72   | in.             |                |          |                 |                |        |                 |

### Need to check yielding and lateral torsional buckling.

#### DEFLECTION

|                | $\Delta_{ m allowable}$ | = | I <sub>b</sub> /480 | =    | 0.024′ |
|----------------|-------------------------|---|---------------------|------|--------|
|                | $\Delta_{max}$          | = | 0.0133′             | =    | ОК     |
|                | 1                       |   |                     |      |        |
| Max Allowable  | Uniform Load            |   | =                   | 91.3 | klf    |
| Actual Uniform | Load                    |   | =                   | 0.33 | klf    |
|                |                         |   | Max > Actual        |      | OK     |

### FLEXURE

Yielding

| Mn               | = | 481.5 | kip-in  |    |
|------------------|---|-------|---------|----|
| M <sub>max</sub> | = | 60.4  | kip- in | OK |

SHEAR

### $Vn = 0.6F_yA_wC_v$

| Vn               | = | 67.27 | kips |    |
|------------------|---|-------|------|----|
| V <sub>max</sub> | = | 1.738 | kips | OK |

### LATERAL - TORSIONAL BUCKLING

| Lp               | =                   | 1.76r <sub>y</sub> *√(E                               | E/F <sub>y</sub> )                | =                                               |                   | 54.25                                            | in                                       |
|------------------|---------------------|-------------------------------------------------------|-----------------------------------|-------------------------------------------------|-------------------|--------------------------------------------------|------------------------------------------|
| L <sub>b</sub>   | =                   | 139                                                   | in                                |                                                 |                   |                                                  |                                          |
| Lr               | =                   | 1.95r <sub>ts</sub> ( E/0.7                           | 7F <sub>y</sub> ) *v              | {(J <sub>o</sub> /S <sub>x</sub> h <sub>c</sub> | )+v[(J₀/S         | S <sub>x</sub> h <sub>o</sub> ) <sup>2</sup> +6. | 76(0.7F <sub>y</sub> /E) <sup>2</sup> ]} |
| $r_{ts}^{2}$     | =                   | $I_y h_o / 2S_x$                                      |                                   | $\rightarrow$                                   | $\mathbf{r}_{ts}$ | =                                                | 1.453                                    |
| Lr               | =                   | 276.25                                                | in.                               |                                                 |                   |                                                  |                                          |
|                  |                     |                                                       |                                   |                                                 |                   |                                                  |                                          |
| When             |                     | $L_p < L_b < L_r$                                     | :                                 |                                                 |                   |                                                  |                                          |
| $M_n = C_b \{ N$ | И <sub>р</sub> - [М | M <sub>p</sub> - 0.7F <sub>y</sub> S <sub>x</sub> ]*[ | (L <sub>b</sub> -L <sub>p</sub> ) | /(L <sub>r</sub> -L <sub>p</sub> )]}            | $\leq M_p$        |                                                  |                                          |
| M <sub>n</sub> = |                     | 339.4                                                 | k-in                              |                                                 | <u>&lt;</u> Mp    | (                                                | ок                                       |
| M <sub>n</sub>   |                     | >                                                     | M <sub>max</sub>                  |                                                 |                   |                                                  | ок                                       |

## STEEL LATERAL COLLECTOR BEAM : W5X19

loads

|                | E-W Seismic and Wind Loads |                 |                | =     |                 | 7.1 | kips           |        |                 |
|----------------|----------------------------|-----------------|----------------|-------|-----------------|-----|----------------|--------|-----------------|
| PROPERTIES     |                            |                 |                |       |                 |     |                |        |                 |
| b/t            | 5.85                       |                 | E              | 29000 | ksi             |     | L              | 141.81 | in              |
| Ag             | 5.56                       | in <sup>2</sup> | Fy             | 50    | ksi             |     | r <sub>y</sub> | 1.26   | in.             |
| C <sub>w</sub> | 50.9                       | in <sup>6</sup> | l <sub>x</sub> | 26.3  | in <sup>4</sup> |     | l <sub>y</sub> | 9.13   | in <sup>4</sup> |
| J              | 0.316                      | in <sup>4</sup> | G              | 11200 | ksi             |     | KL/r           | 112.55 |                 |

Need to check flexural buckling and torsional buckling.

FLEXURAL BUCKLING

| When KL/r              | < 4.71*V(E/I |          | =     | [ 0.658 <sup>Fy</sup> | <sup>//Fe</sup> ] F <sub>y</sub> |   |       |     |
|------------------------|--------------|----------|-------|-----------------------|----------------------------------|---|-------|-----|
|                        |              |          |       | where $F_e =$         | <u>π²E</u><br>(KL/r)²            | = | 22.59 | ksi |
|                        |              | $F_{cr}$ | =     | 19.80                 | ksi                              |   |       |     |
| $P_n = 0.9 F_{cr} A_g$ | =            |          | 99.09 | kips                  | <u>&gt;</u> 7.1 kips             |   | ОК    |     |

TORSIONAL BUCKLING

For doubly symmetric members:

 $F_{e} = [\pi^{2}EC_{w}/(K_{z}L)^{2} + GJ] * 1/(I_{x}+I_{y})$  $F_{e} = 120.34 \qquad \text{ksi}$ 

| $F_{cr}$ | = | 42.02 | ksi |
|----------|---|-------|-----|
|          |   |       |     |

 $P_n = 0.9F_{cr}A_g$  = 210.26 kips  $\geq$  7.1 Kips OK

| 10001010  | COLONIN              |                                      | MLC/10/               | •                               |                 |          |     |
|-----------|----------------------|--------------------------------------|-----------------------|---------------------------------|-----------------|----------|-----|
|           |                      |                                      |                       |                                 |                 |          |     |
| LOADS     |                      |                                      |                       |                                 |                 |          |     |
|           | $W_{\text{wind}}$    | 5244                                 | lb                    |                                 |                 |          |     |
|           | $W_{\text{seismic}}$ | 5783                                 | lb                    | * (Seismic G                    | Governs)        |          |     |
|           |                      |                                      |                       |                                 |                 |          |     |
|           |                      |                                      | (2) 1                 | /2" A307 thread                 | ed bolt         |          | 1   |
|           |                      |                                      |                       |                                 |                 |          | -   |
| ALLOWABL  | E SHEAR STR          | ENGTH                                |                       |                                 |                 |          |     |
|           |                      |                                      | F <sub>nv</sub>       | 27                              | ksi             |          |     |
|           |                      |                                      | A <sub>b</sub>        | 0.196                           | in <sup>2</sup> |          |     |
|           |                      |                                      | φ                     | 0.75                            |                 |          |     |
|           |                      | R <sub>n</sub> = φ *F <sub>n</sub> , | ,*A <sub>b</sub>      | 3976.08                         | lbs             |          |     |
|           |                      |                                      | 2*R <sub>n</sub>      | 7952.16                         | lbs             |          |     |
|           |                      | 7952.16                              | >                     | 5783.00                         |                 |          | ок  |
| AVAILABLE | TENSILE STRE         | NGTH                                 |                       |                                 |                 |          |     |
|           |                      |                                      | f <sub>rv</sub>       | 13.4                            | ksi             | (WIND LO | AD) |
|           |                      |                                      | F' <sub>nt</sub>      | 28.83                           | ≤               | 45       |     |
|           |                      |                                      |                       | . *04                           | 0.400           | lle e    | ok  |
|           |                      |                                      | R <sub>n</sub> = φ* F | <sub>nt</sub> ∠A <sub>b</sub> = | 8490            | lbs      | ок  |

### W5x19 TO COLUMN PLATE CONNECTION

### W5X19 SPLICE CONNECTION

(Details 2 & 3 on SOS E2)

 $A_n^* U = A_e$ 

 $\phi A_{e}{}^{*}F_{v}\underline{>}7.87^{k}$ 

| A <sub>e</sub> =   | =  | 0.5625 | in²  |             |                   |    |
|--------------------|----|--------|------|-------------|-------------------|----|
| F <sub>v</sub>     | =  | 21.6   | ksi  |             |                   |    |
| φA <sub>e</sub> *F | v= | 9.1125 | kips | <u>&gt;</u> | 7.87 <sup>k</sup> | ок |

### 1/2" A325 bolts

| $F_n A_b = R_n$ | = | 10.60 | kips |             |                   |    |
|-----------------|---|-------|------|-------------|-------------------|----|
| φR <sub>n</sub> | = | 7.95  | kips | <u>&gt;</u> | 7.87 <sup>k</sup> | ок |

| C15X33.9  | C15X33.9 to C8X11.5 MODULE CONNECTION |                                    |                       |                 |                 |       |       |  |  |
|-----------|---------------------------------------|------------------------------------|-----------------------|-----------------|-----------------|-------|-------|--|--|
| MODULE A  | ТОВ                                   | Detail 4 on S                      | SOS E2                |                 |                 |       |       |  |  |
|           |                                       |                                    |                       |                 |                 |       |       |  |  |
| LOADS     |                                       |                                    |                       |                 |                 |       |       |  |  |
|           | $W_{\text{wind.}}$                    | 5122                               | lb                    | * (Wind Gov     | verns)          |       |       |  |  |
|           | $W_{seismic}$                         | 4569                               | lb                    |                 |                 |       |       |  |  |
|           |                                       |                                    |                       |                 |                 |       |       |  |  |
|           |                                       | -                                  | 1                     | A307 threaded   | l bolt          |       |       |  |  |
|           |                                       |                                    |                       |                 |                 |       |       |  |  |
| ALLOWABL  | e shear str.                          | ENGTH                              |                       |                 |                 |       |       |  |  |
|           |                                       |                                    | $F_{nv}$              | 27              | ksi             |       |       |  |  |
|           |                                       |                                    | A <sub>b</sub>        | 0.785           | in <sup>2</sup> |       |       |  |  |
|           |                                       |                                    | ф                     | 0.75            |                 |       |       |  |  |
|           |                                       | R <sub>n</sub> = φ *F <sub>r</sub> | w*A₀                  | 15904.31        | lbs             |       |       |  |  |
|           |                                       | 15904.31                           | >                     | 5122.00         |                 |       | ок    |  |  |
| AVAILABLE | TENSILE STRE                          | INGTH                              |                       |                 |                 |       |       |  |  |
|           |                                       |                                    | f <sub>rv</sub>       | 6.5             | ksi             | (WIND | LOAD) |  |  |
|           |                                       |                                    | F' <sub>nt</sub>      | 44.01           | ≤               |       | 45    |  |  |
|           |                                       |                                    |                       |                 |                 |       |       |  |  |
|           |                                       |                                    | R <sub>n</sub> = φ* F | $T_{nt}^*A_b =$ | 25923           | lbs   | ок    |  |  |

| C15x33.9    | C15x33.9 to C8x11.5 MODULE CONNECTION |                    |                              |                                    |                 |       |         |  |  |
|-------------|---------------------------------------|--------------------|------------------------------|------------------------------------|-----------------|-------|---------|--|--|
| MODULE E    | в то с                                | Detail 4 on S      | SOS E2                       |                                    |                 |       |         |  |  |
|             |                                       |                    |                              |                                    |                 |       |         |  |  |
| loads       |                                       |                    |                              |                                    |                 |       |         |  |  |
|             | $W_{\text{wind.}}$                    | 7866               | lb                           | * (Wind Gov                        | /erns)          |       |         |  |  |
|             | $W_{\text{seismic}}$                  | 7001               | lb                           |                                    |                 |       |         |  |  |
|             |                                       |                    |                              |                                    |                 |       |         |  |  |
|             |                                       |                    | -                            | 1" A307 threaded                   | l bolt          |       |         |  |  |
|             |                                       |                    |                              |                                    |                 |       |         |  |  |
| ALLOWABI    | E SHEAR STR                           | ength              |                              |                                    |                 |       |         |  |  |
|             |                                       |                    | F <sub>nv</sub>              | 27                                 | ksi             |       |         |  |  |
|             |                                       |                    | A <sub>b</sub>               | 0.785                              | in <sup>2</sup> |       |         |  |  |
|             |                                       |                    | φ                            | 0.75                               |                 |       |         |  |  |
|             |                                       | $R_n = \phi * F_n$ | <sub>w</sub> *A <sub>b</sub> | 15904.31                           | lbs             |       |         |  |  |
|             |                                       | 15904.31           | >                            | 7866.00                            |                 |       | ок      |  |  |
| avalı arı f | TENSILE STRE                          | NGTH               |                              |                                    |                 |       |         |  |  |
| , ,         |                                       |                    | f <sub>rv</sub>              | 10.0                               | ksi             | (WINI | D LOAD) |  |  |
|             |                                       |                    | F' <sub>nt</sub>             | 36.24                              |                 | (     | 45      |  |  |
|             |                                       |                    | • ni                         | 00.24                              | -               |       |         |  |  |
|             |                                       |                    | R <sub>n</sub> = φ*          | F' <sub>nt</sub> *A <sub>b</sub> = | 21349           | lbs   | ок      |  |  |

### TEMPORARY BRACING : L2X2X1/4

### For Transportation

|             | Design Load :                         |                                                      | kips | in tension or o | compressio | on   |
|-------------|---------------------------------------|------------------------------------------------------|------|-----------------|------------|------|
| TENSION     |                                       |                                                      |      |                 |            |      |
|             | A <sub>g</sub>                        | 0.944                                                | in²  |                 |            |      |
|             | $A_e = 0.75 A_g$                      | 0.708                                                | in²  |                 |            |      |
| Ava         | ilable Strength in<br><i>Yielding</i> | Axial Tension                                        |      |                 |            |      |
|             | φ <sub>t</sub> P <sub>n</sub>         | 30.6                                                 | kips | >               | 20         | kips |
|             | Rupture                               |                                                      |      |                 |            |      |
|             | $\phi_t P_n$                          | 30.8                                                 | kips | >               | 20         | kips |
| COMPRESSION | N                                     |                                                      |      |                 |            |      |
|             | 0.45√E/F <sub>y</sub>                 | 12.77                                                |      |                 |            |      |
|             | b/t                                   | 8                                                    |      |                 |            |      |
| b/          | /t < 0.45√E/F <sub>y</sub> —          | nonslender                                           |      |                 |            |      |
|             | $P_n = F_{cr}A_g$                     |                                                      |      |                 |            |      |
|             | KL/r                                  | 261.47                                               |      |                 |            |      |
|             | 4.71√E/F <sub>y</sub>                 | 133.68                                               |      |                 |            |      |
| KI          | _/r > 4.71√E/F <sub>y</sub> -         | $\rightarrow$ F <sub>cr</sub> = 0.877 F <sub>e</sub> |      |                 |            |      |
|             | F <sub>cr</sub>                       | 3.672                                                | ksi  |                 |            |      |
|             | Pn                                    | 3.466                                                | kips | Per brace       |            |      |

 $\rightarrow$  Need 6 braces per module B to take 20 kips load in compression and tension

 $\rightarrow$  Add bracing in other modules for additional support to their existing shear walls

# CONNECTIONS

| DTT2Z-SDS2.5 HOLDOWN CONNECTION      |      |         |     |
|--------------------------------------|------|---------|-----|
| NORTH SIDE                           |      |         |     |
| LOAD                                 |      |         |     |
| (12.027 PSF)*(7'/2)*(41.5'/2) =      |      | 873.46  | LBS |
| $(12.027PSF)^*(9.2'/2)^*(21.1'/2) =$ |      | 583.67  | LBS |
| (12.0211 01 ) (0.272) (21.172) =     | Σ    | 1457.13 | LBS |
|                                      | Z    | 1407.10 | LDO |
| HOLDOWN:                             |      |         |     |
| DTT2Z-SDS2.5                         |      |         |     |
| 2145 LBS > 1457.13 LBS               | ок   |         |     |
|                                      |      |         |     |
| SOUTH SIDE                           |      |         |     |
| LOAD                                 |      |         |     |
| (12.027 PSF)*(7')*(41.5'/2) =        |      | 1746.92 | LBS |
| (12.027PSF)*(7'/2)*(16.8'/2) =       |      | 353.59  | LBS |
|                                      | Σ    | 2100.52 | LBS |
|                                      |      |         |     |
| PERCENT THAT GOES TO HOLDOWN : 51.3% |      |         |     |
| HOLDOWN:                             |      |         |     |
| DTT2Z-SDS2.5                         |      |         |     |
| 2145 LBS > 1077.56 LBS               | ; OI | ĸ       |     |
|                                      | ; OI | ĸ       |     |

ROOF MODULE

# **STEEL** ROOF BOTTOM STEEL ANGLE : L8X4X1/2

### SUPPORTS AT : 0.1667', 9.75', 31.21', 40.79'

### LOADS

| W <sub>Live Load</sub> | 20   | psf | 120   | plf |                     |       |    |
|------------------------|------|-----|-------|-----|---------------------|-------|----|
| W <sub>Dead Load</sub> | 15.5 | psf |       |     | Tributary Width     | 6     | ft |
| D+L                    | 35.5 | psf | 212.7 | plf | Average Wall Height | 6.083 | ft |
|                        |      |     |       |     |                     |       |    |
| PROPERTIES             |      |     |       |     |                     |       |    |
|                        |      |     |       |     |                     |       |    |

| W | 19.6 | lb/ft | S <sub>x</sub> | 7.48     | in²             |
|---|------|-------|----------------|----------|-----------------|
| А | 5.8  | in²   | I <sub>x</sub> | 38.6     | in <sup>4</sup> |
| d | 4    | in    | L              | 0.1667   | ft              |
| b | 8    | in    | E              | 29000000 | psi             |
| t | 0.5  | in    | Fy             | 36       | ksi             |

### DEFLECTION

| Beam       | $\Delta_{ m allowable}$         | = | 1/480    | =  | 0.537 in |
|------------|---------------------------------|---|----------|----|----------|
|            | $\Delta_{ m max}$ (21.46' span) | = | 0.272 in | =  | ОК       |
|            |                                 |   |          |    |          |
| Cantilever | $\Delta_{	ext{allowable}}$      | = | 1/480    | =  | 0.004 in |
|            | ∆ <sub>max(0.1667' span)</sub>  | = | 0.000    | in | ОК       |

#### FLEXURE

Yielding

| My | 215.42           |   | kip-in |      |        |        |
|----|------------------|---|--------|------|--------|--------|
|    | Mn               | = | 1.5*My | =    | 26.93  | kip-ft |
|    | M <sub>max</sub> | = |        | 7.63 | kip-ft | ОК     |

SHEAR

| $h/t_w = b/t$ |                  | 18.7 | <                    | 63.58 |      |      |
|---------------|------------------|------|----------------------|-------|------|------|
|               | Vn               | =    | $.6F_yb^{*}t^{*}C_v$ | =     | 57.6 | kips |
|               | V <sub>max</sub> | =    |                      | 2.542 | kips | ОК   |

### LATERAL TORSIONAL BUCKLING

Continuous Lateral Support - N/A

LEG LOCAL BUCKLING

Compact Section - N/A

#### CHECK INTERNAL BENDING

Load (1' span)

P = (35.5 psf \* cos (24) + 12.027 psf )\*11.25 ft<sup>2</sup> = 500.15 lb I 8 in b 5.625 in

| M <sub>max</sub> =       | P*b =         | 234.45  | lb-ft | ОК |
|--------------------------|---------------|---------|-------|----|
| M <sub>allowable</sub> = | $0.8S_xF_y =$ | 2585088 | lb-ft |    |

| $\Delta_{\text{allowable}} =$ |   | 1/360                        | = | 0.0222 | in           |  |
|-------------------------------|---|------------------------------|---|--------|--------------|--|
| $\Delta_{max}$                | = | (Pb <sup>2</sup> /6EI)(3I-b) | = | 0.0201 | in <b>OK</b> |  |

# **STEEL** ROOF BOTTOM STEEL ANGLE : L8X4X1/2

### SUPPORTS AT : 0.1667', 9.75', 31.21', 40.79'

### LOADS

| W <sub>Live Load</sub> | 120   | plf |                     |       |
|------------------------|-------|-----|---------------------|-------|
| $W_{\text{Dead Load}}$ | 114.8 | plf | Tributary Width     | 6     |
| D + L                  | 234.8 | plf | Average Wall Height | 6.083 |

### PROPERTIES

| W | 19.6 | lb/ft | S <sub>x</sub> | 7.48     | in²             |
|---|------|-------|----------------|----------|-----------------|
| А | 5.8  | in²   | l <sub>x</sub> | 38.6     | in <sup>4</sup> |
| d | 4    | in    | I              | 0.1667   | ft              |
| b | 8    | in    | E              | 29000000 | psi             |
| t | 0.5  | in    | Fy             | 36       | ksi             |

### DEFLECTION

| Beam       | $\Delta_{ m allowable}$         | = | 1/480 | =   | 0.537 |
|------------|---------------------------------|---|-------|-----|-------|
|            | $\Delta_{ m max}$ (21.46' span) | = | 0.356 | =   | OK    |
|            |                                 |   |       |     |       |
| Cantilever | $\Delta_{	ext{allowable}}$      | = | 1/480 | =   | 0.004 |
| 4          | ∆ <sub>max(0.1667' span)</sub>  | = | 0.000 | in. | OK    |

#### FLEXURE

Yielding

| $M_{\rm y}$ | 215              | 5.42 | kip-in             |      |        |        |
|-------------|------------------|------|--------------------|------|--------|--------|
|             | Mn               | =    | 1.5*M <sub>y</sub> | =    | 26.93  | kip-ft |
|             | M <sub>max</sub> | =    |                    | 8.19 | kip-ft | ОК     |

SHEAR

| $h/t_w = b/t$ |                  | 18.7 | <          | 63.58 |      |      |
|---------------|------------------|------|------------|-------|------|------|
|               | Vn               | =    | .6FybtCv/Ω | =     | 57.6 | kips |
|               | V <sub>max</sub> | =    |            | 2.73  | kips | ОК   |

### LATERAL TORSIONAL BUCKLING

Continuous Lateral Support - N/A

LEG LOCAL BUCKLING

Compact Section - N/A

#### CHECK INTERNAL BENDING

Load (1' span)

P = (35.5 psf \* cos (24) + 12.027 psf )\*11.25 ft<sup>2</sup> = 500.15 lb l 8 in b 5.625 in

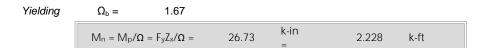
| M <sub>max</sub> =       | P*b                | = | 234.45  | lb-ft | ОК |
|--------------------------|--------------------|---|---------|-------|----|
| M <sub>allowable</sub> = | $0.8S_{x}F_{y} \\$ | = | 2585088 | lb-ft |    |

| $\Delta_{ m allowab}$ | ole = | 1/360                        | = | 0.0222 | in |    |
|-----------------------|-------|------------------------------|---|--------|----|----|
| $\Delta_{max}$        | =     | (Pb <sup>2</sup> /6EI)(3I-b) | = | 0.0201 | in | OK |

### NORTH WALL ROOF STEEL COLUMNS : C3X3.5

### loads

| $W_{\text{wind E-W}}$ | 12.027  | psf           | 144.32 | plf          | Tributary Width | 12.00 | ft |
|-----------------------|---------|---------------|--------|--------------|-----------------|-------|----|
| W <sub>seismic</sub>  | 7499.52 | lb            | 308.20 | plf          | Beam Length     | 6.083 | ft |
| W <sub>seismic</sub>  | 1874.88 | lb per column |        | * (Seismic G | Governs)        |       |    |


### SECTION PROPERTIES

| Weight         | 3.5   | lb/ft | Weight         | 85.167 | lb per column   |                  |          |     |
|----------------|-------|-------|----------------|--------|-----------------|------------------|----------|-----|
| А              | 1.09  | in    | I <sub>x</sub> | 1.57   | in⁴             | E                | 29000000 | psi |
| d              | 3     | in    | Z <sub>x</sub> | 1.24   | in <sup>3</sup> | Fy               | 36       | ksi |
| b <sub>f</sub> | 1.37  | in    | S <sub>x</sub> | 1.04   | in <sup>3</sup> | Fu               | 58       | ksi |
| t <sub>w</sub> | 0.132 | in    | ۲ <sub>x</sub> | 1.2    | in              | b/t              | 5.02     |     |
| t <sub>f</sub> | 0.273 | in    | L              | 6.0833 | ft              | h/t <sub>w</sub> | 14.5     |     |

### DEFLECTION

| $\Delta_{ m allowable}$        | = | 1/480        | = | 0.152  | in |    |
|--------------------------------|---|--------------|---|--------|----|----|
| Δ <sub>max</sub> (21.46' span) | = | 5wL4/(384EI) | = | 0.0024 | in | ОК |

### FLEXURE



### SHEAR

|    | Vn               | = | .6FyAwCv/Ω       | =       | 5.7024           | kips |
|----|------------------|---|------------------|---------|------------------|------|
|    | V <sub>max</sub> | = |                  | 0.93744 | kips             | OK   |
| Ω= | 1.5              |   | k <sub>v</sub> = | 5       | C <sub>v</sub> = | 1    |

#### LATERAL TORSIONAL BUCKLING

| L <sub>p</sub>         | 147.929     | in         |
|------------------------|-------------|------------|
| L <sub>b</sub>         | 6.083       | in         |
| L <sub>b</sub>         | <u>&lt;</u> | Lp         |
| $\rightarrow$ NO LATER | AL TORSIONA | L BUCKLING |

| $M_{\text{max}}$ | $= wl^2/12$ | = | 0.95 | kip-ft | ок |
|------------------|-------------|---|------|--------|----|
| $M_p$            |             | = | 2.23 | kip-ft |    |

kips

### TENSION

 $P_{max} = 0.1259$  kips **OK** Yielding  $P_n = F_y A_g / \Omega = 23.50$ 

Rupture

 $P_n = F_u A_e / \Omega$  = 33.27 kips

### NORTH WALL ROOF - TIMBER FRAMING

### DOUG FIR LARCH 2X6 STUDS

loads

| W <sub>Live Load</sub> | 20     | psf | 120   | plf |          |           |
|------------------------|--------|-----|-------|-----|----------|-----------|
| $W_{\text{Dead Load}}$ | 18     | psf | 108   | plf | fc = P/A | 126.7 psi |
| $V_{\text{wind N-S}}$  | 12.027 | psf | 55.1  | plf | fb = M/S | 404.6 psi |
| D + L +W               | 50.027 | psf | 283.1 | plf |          |           |
|                        |        |     |       |     | M 254.99 | lb-ft     |

### SECTION PROPERTIES

| b           | 1.5   | in              | W                       | 1.9     | plf | 219.213    | lb        |
|-------------|-------|-----------------|-------------------------|---------|-----|------------|-----------|
| d           | 5.5   | in              | E                       | 1600000 | psi | 5.219      | plf over  |
| А           | 8.25  | in <sup>2</sup> | E <sub>min</sub>        | 580000  | psi |            | northwall |
| Sx          | 7.563 | in <sup>3</sup> | F <sub>b</sub>          | 900     | psi |            |           |
| $I_{\rm x}$ | 20.8  | in <sup>4</sup> | F <sub>c</sub>          | 1350    | psi |            |           |
| $S_{y}$     | 2.063 | in <sup>4</sup> | F <sub>v</sub>          | 180     | psi |            |           |
| $I_{\rm y}$ | 1.547 | in <sup>4</sup> |                         |         |     |            |           |
|             |       |                 | Grav Tributary Width    | 6       | ft  |            |           |
|             |       |                 | Wind Tributary Width    | 4.58    | ft  | MAX TRIB L | ENGTH     |
|             |       |                 | Average Wall Height = I | 6.08    | ft  |            |           |

#### BEAM COLUMN ANALYSIS

# $(f_{o}/F'_{c})^{2} + (F_{b1}/(F'_{b1}*(1-(f_{o}/F_{cE1})))) + (f_{b2}/(F'_{b2}*(f_{o}/F_{cE2})-(f_{b1}/F_{bE})^{2})) \leq 1.0$

### Adjustment Factors:

| CD                         | 1.6 | $\mathbf{C}_{fu}$ | 1.0 |
|----------------------------|-----|-------------------|-----|
| $C_{\text{F}_{\text{Fc}}}$ | 1.1 | C <sub>T</sub>    | 1.0 |
| $C_{\text{F}_{\text{Fb}}}$ | 1.3 | Ci                | 1.0 |
| Ct                         | 1.0 | $C_{M\_Fb}$       | 1.0 |
| Cr                         | 1.0 | $C_{M_E}$         | 1.0 |
| $C_{M\_Fc}$                | 1.0 |                   |     |

#### STRUCTURAL ANALYSIS

| Major Axis Bending |         |       |                          |
|--------------------|---------|-------|--------------------------|
| $M_{x\_Max}$       | 1309.7  | lb-ft | (Simple Assumed)         |
| F <sub>b1</sub>    | 2078.0  | psi   |                          |
| Minor Axis Bending |         |       |                          |
| F <sub>b1</sub>    | 0       | psi   | (Concentric Axial Force) |
| Axial Load         |         |       |                          |
| P <sub>axial</sub> | 1722.33 | lb    |                          |
| Fc                 | 208.77  | psi   |                          |

#### MEMBER CAPACITIES

Axial Capacity  $\mathsf{F'_c}$  $F'_{c} = F_{c} C_{D} C_{M} C_{t} C_{F} C_{i} C_{P}$ 1743.95 psi  $E'_{min} = E_{min} C_M C_t C_i C_T$ E'<sub>min</sub> 580000 psi  $\mathsf{F}_{\mathsf{cE}}$ .822(E'min)/(Ie/d)2 2706.32 psi  $K_{e}$ 1  $I_{e}$ 6.083 l₀/d 13.27 ок  $F_{c}^{*} = F_{c} C_{D} C_{M} C_{t} C_{F} C_{i}$ F\*<sub>c</sub> 2376 psi  $C_{p}$ 0.734 Flexural Capacity  $\mathsf{F'}_{\mathsf{b}}$  $F'_{b} = F_{b} C_{D} C_{M} C_{t} C_{L} C_{F} C_{i} C_{fu} C_{r}$ 1872 psi CHECK  $(f_{c}/F_{c})^{2} + (F_{b1}/(F_{b1}^{*}(1-(f_{c}/F_{cE1})))) + (f_{b2}/(F_{b2}^{*}(f_{c}/F_{cE2})-(f_{b1}/F_{bE})^{2})) \leq 1.0$ 0.232 ≤ 1.0 ОК

# TJI $^{\mbox{\scriptsize B}}$ 230 JOISTS PROVIDED INFORMATION

TJI Depth = 9 1/2 "

16" o.c.

| ROOF JOISTS                   |                                                                                 |                |      |    |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------|----------------|------|----|--|--|--|--|--|
| 40 PSF Live Load/20 PSF D     | 40 PSF Live Load/20 PSF Dead Load > 20 PSF Live Load/16 PSF Dead Load <b>OK</b> |                |      |    |  |  |  |  |  |
|                               |                                                                                 |                |      |    |  |  |  |  |  |
| L/480 Live Load Deflection    |                                                                                 |                |      |    |  |  |  |  |  |
|                               | 40 PSF Live Load/20 PS                                                          | SF Dead Load   |      |    |  |  |  |  |  |
|                               | Spacing                                                                         | Allowable Span |      |    |  |  |  |  |  |
|                               | 16" o.c.                                                                        | 16'-8"         | >13' | ОК |  |  |  |  |  |
|                               |                                                                                 |                |      |    |  |  |  |  |  |
| L/360 Live Load Deflection (I | Minimum criteria per code)                                                      |                |      |    |  |  |  |  |  |
|                               | 40 PSF Live Load/20 PS                                                          | SF Dead Load   |      |    |  |  |  |  |  |
|                               | Spacing                                                                         | Allowable Span |      |    |  |  |  |  |  |

18'-1"

>13'

ок

# ROOF CHORD FORCES

|                        | Chord Force      | =                 |                                 | M/d           | =    | т                    | =                     | С                 |
|------------------------|------------------|-------------------|---------------------------------|---------------|------|----------------------|-----------------------|-------------------|
| loads                  |                  |                   |                                 |               |      |                      |                       |                   |
| W <sub>Live Load</sub> |                  | 0                 | psf                             | 0             | plf  |                      |                       |                   |
| WDead Load             |                  | 18                | psf                             |               |      | Chord Depth<br>(d) = | 12                    | ft                |
| D+L                    |                  | 18                | psf                             | 216           | plf  | Length (I) =         | 43.00                 | ft                |
| CHORD FOR              | ce analysis      |                   |                                 |               |      |                      |                       |                   |
|                        | $M = WI^{2}/8 =$ |                   | 49923                           | lb-ft         |      |                      |                       |                   |
|                        |                  |                   | M/d =                           | 4.16025       | kips |                      |                       |                   |
| MEMBER ALL             | OWABLE           |                   |                                 |               |      |                      |                       |                   |
|                        | A36 - L8X4X      | 1/2 -             | Braced Col                      | lumn Analysis |      |                      |                       |                   |
|                        |                  |                   | $T_{allow}$                     | 188           | kips | (Table 5-2) AISC     | C Steel Constru       | uction Manual     |
|                        |                  |                   | $\boldsymbol{C}_{\text{allow}}$ | 34.6          | kips | (Table 4-11) AIS     | C Steel Const         | ruction Manual    |
|                        | Chord Fo         | rce <sub>Ca</sub> | <sub>pacity</sub> =             | 34.6          | >    | Chord Force          | Ə <sub>Demand</sub> = | 4.16025 <b>OK</b> |

# SLOPED ROOF DIAPHRAGM

### ROOF MODULE

|                    | Unblocked Diaph    | ragm Design                                           |         |     |
|--------------------|--------------------|-------------------------------------------------------|---------|-----|
| Direction 1        | Height of Story    | H <sub>1</sub>                                        | 6.00    | ft  |
| N-S                | Dead Load          | DL                                                    | 16.00   | psf |
|                    | Length of Building | L <sub>B1</sub>                                       | 41.06   | ft  |
|                    |                    | L <sub>B2</sub>                                       | 12.00   | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H₁                        | 72.16   | plf |
|                    | Seismic            | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$                        | 131.40  | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                               | 432.97  | lb  |
|                    | Seismic            | V <sub>smax</sub> =W <sub>s</sub> *L <sub>B2</sub> /2 | 788.38  | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd}=V_{wmax}/L_{B1}$                              | 10.54   | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd}=V_{smax}/L_{B1}$                              | 19.20   | plf |
| Nominal Capacities | Ω                  |                                                       | 2       |     |
|                    | Vwdnom             | $v_{wdnom} = v_{wd} * \Omega$                         | 21.09   | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd} * \Omega$                         | 38.40   | plf |
|                    |                    |                                                       |         |     |
| Direction 2        | Height of Story    | H <sub>1</sub>                                        | 6.00    | ft  |
| E-W                | Dead Load          | DL                                                    | 16.00   | psf |
|                    | Length of Building | L <sub>B1</sub>                                       | 12.00   | ft  |
|                    |                    | L <sub>B2</sub>                                       | 41.06   | ft  |
| Applied Load       | Wind               | W <sub>L</sub> =(12.027psf)*H <sub>1</sub>            | 72.16   | plf |
|                    | Seismic            | $W_{S}=0.2^{*}D_{L}^{*}L_{B1}$                        | 38.40   | plf |
| V <sub>max</sub>   | Wind               | $V_{wmax}=W_L*L_{B2}/2$                               | 1481.55 | lb  |
|                    | Seismic            | $V_{smax}=W_s*L_{B2}/2$                               | 788.38  | lb  |
| V <sub>wd</sub>    | Wind               | $v_{wd} = V_{wmax} / L_{B1}$                          | 123.46  | plf |
| V <sub>sd</sub>    | Seismic            | $v_{sd}=V_{smax}/L_{B1}$                              | 65.70   | plf |
| Nominal Capacities | Ω                  |                                                       | 2       |     |
|                    | Vwdnom             | $v_{wdnom} = v_{wd} * \Omega$                         | 246.92  | plf |
|                    | Vsdnom             | $v_{sdnom} = v_{sd}^* \Omega$                         | 131.40  | plf |
|                    |                    |                                                       |         |     |

\*Use 3/4" T&G, 8d nails @ 6 inch edge nail spacing \*Use 15 gauge staples @ 12 inches for field stapling

# CONNECTIONS REFER TO PAGE S-531

### C15X33.9 TO C8X11.5 INTERMODULAR CONNECTION

| 015755.  | 510000               |                             | DULAN               | CONNECTION            |         |          |           |     |    |
|----------|----------------------|-----------------------------|---------------------|-----------------------|---------|----------|-----------|-----|----|
| loads    |                      |                             |                     |                       |         |          |           |     |    |
|          | $W_{\text{wind.}}$   | 3146                        | lb                  | * (Wind Governs       | s)      |          |           |     |    |
|          | $W_{\text{seismic}}$ | 1857.6                      | lb                  |                       |         |          |           |     |    |
|          | _                    |                             |                     |                       |         |          |           |     |    |
|          |                      |                             | 1/2                 | 2" A307 threaded      | bolt    |          |           |     |    |
| ALLOWAE  | BLE SHEAR S          | STRENGTH                    |                     |                       |         |          |           |     |    |
|          |                      |                             | F <sub>nv</sub>     | 27                    | ksi     |          |           |     |    |
|          |                      |                             | A <sub>b</sub>      | 0.196                 | in²     |          |           |     |    |
|          |                      |                             | ф                   | 0.75                  |         |          |           |     |    |
|          |                      | $R_n = \phi * F_{nv} * A_b$ |                     | 3976.08               | lbs     |          |           |     |    |
|          |                      | 3976.08                     | >                   | 3146.07               |         |          |           | ок  |    |
| AVAILABL | .e tensile s         | STRENGTH                    |                     |                       |         |          |           |     |    |
|          |                      |                             | frv                 | 16.0                  | ksi     |          | (WIND LOA | AD) |    |
|          |                      |                             | F'nt                | 22.89                 |         | ≤        | 45        |     |    |
|          |                      |                             | R <sub>n</sub> = φ* | F'nt*A <sub>b</sub> = |         | 3371     | lbs       | ок  |    |
| NODTU    |                      | IBER STUDS                  |                     |                       |         |          |           |     |    |
| NORTH    | WALL III             | IDER STUDS                  |                     |                       |         |          |           |     |    |
|          |                      | Simpso                      | n Strong            | g-Tie A34 Connec      | tion Fi | raming A | Angle     |     |    |
| L        |                      |                             |                     |                       |         |          |           |     |    |
|          |                      | Max Load =                  | 490                 | psf                   |         | >        | 50.03     | psf | OK |
|          |                      |                             |                     |                       |         |          |           |     |    |
| JOIST H  | ANGER C              | ONNECTION                   |                     |                       |         |          |           |     |    |
|          |                      |                             |                     |                       |         |          |           |     |    |
|          |                      | Sim                         | oson Str            | ong-Tie LSSU135       | 5 Slope | ed Hang  | er        |     |    |
|          |                      |                             |                     |                       |         |          |           |     |    |
|          |                      | Max Load =                  | 1275                | psf                   |         | >        | 38        | psf | ок |
|          |                      |                             |                     |                       |         |          |           |     |    |

### C3X3.5 TO L8X4X1/2 : TOP & BOTTOM CONNECTION

### LOADS

| W <sub>wind.N-s</sub><br>W <sub>seismic</sub> | 3146.07<br>1857.6 | lb<br>Ib | 73.164396 plf<br>43.2 plf       |          | *(Wind Gove    | erns)    |
|-----------------------------------------------|-------------------|----------|---------------------------------|----------|----------------|----------|
|                                               |                   |          | Tributar<br>Wall Height = 'Beam |          | 12.00<br>6.083 | ft<br>ft |
|                                               | Ind               | ustry    | Designed Filet Welded Cor       | nnection |                |          |

# SUNPLANTER

### (2) 5/16" Ceramic Coated lag screw

### UPLIFT

| SA                  | = | 546         | ft <sup>2</sup> |   |                 |
|---------------------|---|-------------|-----------------|---|-----------------|
| WIND <sub>lat</sub> | = | 12.027      | psf             |   |                 |
| $WIND_{perp}$       | = | 12.027tan(2 | 4)              | = | 5.34 psf        |
|                     | = | 21.86       | lb              |   |                 |
|                     |   |             |                 |   |                 |
| UPLIFT              | = | 2915.64     | lb              |   | over whole roof |
| UPLIFT              | = | 208.26      | lb              |   | per column end  |
|                     |   |             |                 |   |                 |
| GRAVITY             | = | 96.6        | lb              |   | per column end  |

### CAPACITY

| TENSION | =   |    | 893 | lb | per bolt |    |    |
|---------|-----|----|-----|----|----------|----|----|
| SHEAR   | =   |    | 432 | lb | per bolt |    |    |
| T&S     | =   |    | 447 | lb | per bolt |    |    |
|         | 893 | lb |     | >  | 208      | lb | ок |
|         | 431 | lb |     | >  | 21.86    | lb | ОК |

# DECK

# DECK GIRDER CALCULATIONS

### DFL No. 2 - 4x6

| Length         | 96    | in              |  |
|----------------|-------|-----------------|--|
| Depth          | 5.5   | in              |  |
| Width          | 3.5   | in              |  |
| Area           | 19.25 | in <sup>2</sup> |  |
| S <sub>x</sub> | 17.65 | in <sup>3</sup> |  |
| l <sub>x</sub> | 48.53 | in <sup>4</sup> |  |

### **Reference Design Values**

| Fb | 900     | psi |
|----|---------|-----|
| Fv | 180     | psi |
| E  | 1600000 | psi |

#### Adjustment Factors - NDS Table 4.3.1

| CD | C <sub>M_b</sub> | Ct | CF  | Ci | Cr | C <sub>M_v</sub> |
|----|------------------|----|-----|----|----|------------------|
| 1  | 0.85             | 1  | 1.3 | 1  | 1  | 0.97             |

### **Structural Analysis**

| Dead Load           | 1.96     | psf   |
|---------------------|----------|-------|
| Live Load           | 100      | psf   |
| W: D+L              | 135.95   | plf   |
| M <sub>load</sub> : | 13050.88 | lb-in |

### **Design Calculations**

| Bending Chec                        | k                                                              |                                                                 |
|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Depth <sub>nominal</sub>            | 4                                                              | in                                                              |
| Widthnominal                        | 2                                                              | in                                                              |
| Dn/Wn :                             | 2                                                              | ОК                                                              |
| CL                                  | 1                                                              |                                                                 |
| F'b                                 | F <sub>b</sub> *C <sub>M</sub> *C <sub>t</sub> *C <sub>D</sub> | *C <sub>r</sub> *C <sub>F</sub> *C <sub>i</sub> *C <sub>L</sub> |
| F'b                                 | 994.5                                                          | psi                                                             |
| f <sub>b</sub> : M/S                | 739.6                                                          | psi                                                             |
| f <sub>b</sub> <f'<sub>b ?</f'<sub> | ОК                                                             |                                                                 |

#### Shear Check

| F'v                    | Fv *CD*CM | *Ct*Ci |
|------------------------|-----------|--------|
| F'v =                  | 174.6     | psi    |
| V: wL/2                | 543.79    | lb     |
| f <sub>v</sub> : 3V/2A | 42.4      | psi    |
| $f_v < F'_v$ ?         | ОК        |        |

# O.C. spacing 16 in

| Deflection | Check |
|------------|-------|
|            |       |

| Length/360          | 0.267        | in.        |
|---------------------|--------------|------------|
| L                   | 11.111       | lb/in      |
| Δ                   | 5*L*Length^4 | /(384*E*I) |
| Δ                   | 0.158        | in         |
| $\Delta$ < Length/3 | ОК           |            |

# DECK JOIST CALCULATIONS

### DFL No. 2 - 2x6

| Length         | 48    | in              |  |
|----------------|-------|-----------------|--|
| Depth          | 5.5   | in              |  |
| Width          | 1.5   | in              |  |
| Area           | 8.25  | in <sup>2</sup> |  |
| S <sub>x</sub> | 7.56  | in <sup>3</sup> |  |
| l <sub>x</sub> | 20.80 | in⁴             |  |

# Reference Design Values

| Fb | 900     | psi |
|----|---------|-----|
| Fv | 180     | psi |
| E  | 1600000 | psi |

#### Adjustment Factors - NDS Table 4.3.1

| CD | C <sub>M_b</sub> | Ct | CF  | Ci | Cr   | C <sub>M_v</sub> |
|----|------------------|----|-----|----|------|------------------|
| 1  | 0.85             | 1  | 1.3 | 1  | 1.15 | 0.97             |

### **Structural Analysis**

| Dead Load           | 1.96    | psf   |
|---------------------|---------|-------|
| Live Load           | 100     | psf   |
| W: D+L              | 135.95  | plf   |
| M <sub>load</sub> : | 3262.72 | lb-in |

#### **Design Calculations**

| Bending Chec                        | k                                                 |                                                                 |
|-------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|
| Depthnominal                        | 6                                                 | in                                                              |
| Widthnominal                        | 2                                                 | in                                                              |
| Dn/Wn :                             | 3                                                 | ОК                                                              |
| CL                                  | 1                                                 |                                                                 |
| F' <sub>b</sub>                     | F <sub>b</sub> *C <sub>M</sub> *Ct*C <sub>D</sub> | *C <sub>r</sub> *C <sub>F</sub> *C <sub>i</sub> *C <sub>L</sub> |
| F'b                                 | 1143.675                                          | psi                                                             |
| fb : M/S                            | 431.4                                             | psi                                                             |
| f <sub>b</sub> <f'<sub>b ?</f'<sub> | OK                                                |                                                                 |

#### Shear Check

| F'v                                          | Fv *CD*CM*Ct*Ci |     |  |
|----------------------------------------------|-----------------|-----|--|
| F'v                                          | 174.6           | psi |  |
| V: wL/2                                      | 271.89          | lb  |  |
| f <sub>v</sub> : 3V/2A                       | 49.4            | psi |  |
| fv <f'v?< td=""><td>ОК</td><td></td></f'v?<> | ОК              |     |  |

# O.C. spacing 16 in

### **Deflection Check**

| Length/360          | 0.133        | in.        |
|---------------------|--------------|------------|
| L                   | 11.111       | lb/in      |
| Δ                   | 5*L*Length^4 | /(384*E*I) |
| Δ                   | 0.023        | in         |
| $\Delta$ < Length/3 | ОК           |            |

# DECK SLATS

### TIGER DECK

| Length         | 16     | in              |
|----------------|--------|-----------------|
| Depth          | 3.44   | in              |
| Width          | 0.94   | in              |
| Area           | 3.2336 | in²             |
| Sx             | 1.85   | in <sup>3</sup> |
| l <sub>x</sub> | 3.19   | in⁴             |

| Bending Strength (psi @ 12%)      | 16620 |
|-----------------------------------|-------|
| Max Crushing Strength (psi @ 12%) | 10320 |
| Weight (lb/cu.ft.)                | 77    |

| JOIST SPACING<br>(in) | ALLOWABLE LOAD<br>(psf) | MAX DEFLECTION | MAX FLEXURAL STRESS<br>(psi) | Δ       |
|-----------------------|-------------------------|----------------|------------------------------|---------|
| 12                    | 40                      | 0.00022        | 37                           | L/54096 |
| 16                    | 40                      | 0.0007         | 66                           | L/22822 |
| 19.2                  | 40                      | 0.00145        | 95                           | L/13207 |
| 24                    | 40                      | 0.00355        | 148                          | L/6762  |
| 12                    | 60                      | 0.00033        | 58                           | L/38085 |
| 16                    | 60                      | 0.00105        | 99                           | L/15215 |
| 19.2                  | 60                      | 0.00218        | 143                          | L/6805  |
| 24                    | 60                      | 0.00532        | 224                          | L/4508  |
| 12                    | 90                      | 0.0005         | 84                           | L/24043 |
| 16                    | 90                      | 0.00158        | 149                          | L/10143 |
| 19.2                  | 90                      | 0.00327        | 215                          | L/5870  |
| 24                    | 90                      | 0.00799        | 335                          | L/3005  |
| 16                    | 100                     | 0.00176        | 165.6                        | L/9090  |

### THROUGH EXTRAPOLATION:

| FLEXURE    | 165.6  | psi | < | 335   | psi | OK |
|------------|--------|-----|---|-------|-----|----|
| DEFLECTION | L/9090 |     | < | L/360 |     | OK |

# DECK FOUNDATION

|   |                               | D            | L       | <u>Total</u> | <u>Trib B</u> | <u>w</u> |         |             |         |
|---|-------------------------------|--------------|---------|--------------|---------------|----------|---------|-------------|---------|
|   |                               | (psf)        | (psf)   | (psf)        | (ft)          | (plf)    |         |             |         |
|   |                               | 20.00        | 100     | 120.00       | 4.00          | 480      |         |             |         |
|   |                               | $\downarrow$ |         |              |               |          |         |             |         |
| A |                               |              | В       | w =          | 480           | plf      |         |             |         |
|   | 1                             |              | 5       | L =          | 8.00          | ft       |         |             |         |
|   | 6'                            |              |         |              |               |          |         |             |         |
|   |                               |              | Ŧ       |              | $R_A = R_B =$ | 1920     | LBS     |             |         |
|   |                               |              | 4'      |              |               |          |         |             |         |
|   | AT 1500 <sub>PSF</sub> BEARIN | IG PRES      | SSURE T | HIS REQUIR   | ES:           |          | 1.3     | SQ FT FOR F | OOTINGS |
|   |                               |              |         |              |               | QTY      | AREA    |             |         |
|   | A:                            |              | SEISM   | IC PIERS     |               | 0        | 4       | SQ FT       |         |
|   |                               |              | STANE   | ARD PIERS    |               | 2        | 1.8     | SQ FT       |         |
|   |                               |              |         |              | -             | 3.6      | SQ FT   | PROVIDED    |         |
|   |                               |              |         |              |               | 533.3    | PSF PEF | RFOOTING    |         |
|   | AT 1500 <sub>PSF</sub> BEARIN | IG PRES      | SSURE T | HIS REQUIR   | ES:           |          | 1.3     | SQ FT FOR F | OOTINGS |
|   |                               |              |         |              |               | QTY      | AREA    |             |         |

|    |                | QTY   | AREA            |          |
|----|----------------|-------|-----------------|----------|
| B: | SEISMIC PIERS  | 0     | 4               | SQ FT    |
|    | STANDARD PIERS | 2     | 1.8             | SQ FT    |
|    |                | 3.6   | SQ FT           | PROVIDED |
|    |                | 533.3 | PSF PER FOOTING |          |

# DECK

### DECK CONNECTIONS

SLAT TO JOIST:

STANDARD: (2) No. 8 screws per slat per supporting joist

JOIST TO GIRDER:

16 penny nails NOTE: Blocking at ~ 4' intervals for rigidity

GIRDER TO SUPPORT:

Simpson Strong Tie: GLS & GLT

#### HOUSE LEDGER:

N/A - self supported deck via piers

#### SUPPORT TO PIER:

Central Piers: Marriage Top (201) to 4x6 In Place Girder

# AWNINGS

### DESIGN WIND LOAD

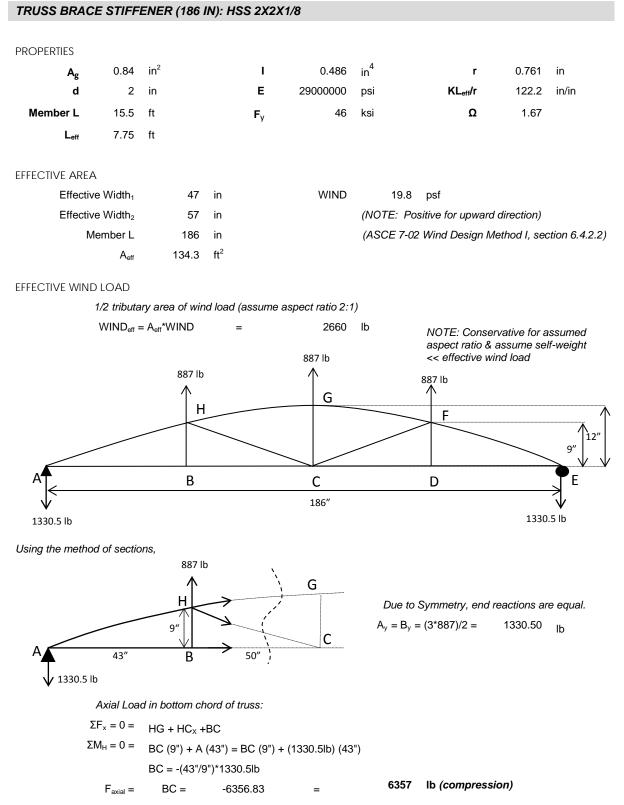
ASCE 7-02 6.4.2.2: WIND DESIGN METHOD I

```
P_{net}=\lambda^*I^*P_{net}^*30
```

BASIC WIND LOAD

| Angle (<7°)                          | 4.5        | 0               |
|--------------------------------------|------------|-----------------|
| Table 6.3 for permeable components & | cladding ( | 6.4.3)          |
| I                                    | 1          |                 |
| λ                                    | 1.21       |                 |
| Basic Wind Speed                     | 90         | mph             |
| P <sub>net30</sub>                   | -19.8      | psf             |
| (For Zone 2 @ 100 ft <sup>2</sup> )  |            |                 |
| P <sub>net30</sub>                   | -10        | psf             |
| (Minimum allowed per 6.4.2.2.1)      |            |                 |
| Approximate Effective Area           | 400        | ft <sup>2</sup> |
|                                      |            |                 |
| P <sub>net30</sub> =                 | -19.8      | psf             |

# AWNINGS


# MEMBER A (114 IN): HSS 2X2X1/8

| Ag                                                                                | 0.84             | in <sup>2</sup>             | z                   | 0.584              | in <sup>3</sup>             | r               | 0.761 in       |
|-----------------------------------------------------------------------------------|------------------|-----------------------------|---------------------|--------------------|-----------------------------|-----------------|----------------|
| ∽g<br>d                                                                           | 2                | in                          | -                   | 0.486              | in <sup>4</sup>             | KL/r            | 149.8 in       |
| L <sub>Member</sub>                                                               | 9.5              | ft                          | E                   | 29000000           | psi                         | Ω               | 1.67           |
| -member                                                                           | 0.0              | it.                         | –<br>F <sub>y</sub> | 46                 | ksi                         |                 | 1.07           |
|                                                                                   |                  |                             | ٩y                  | 10                 |                             |                 |                |
| EFFECTIVE AREA                                                                    |                  |                             |                     |                    |                             |                 |                |
| Effecti                                                                           | ve Width         | 50                          | in                  | WIND               | -19.8                       | psf             |                |
| Effective Length                                                                  |                  | 114                         | in                  | (ASCE 7-02 Wi      | nd Design Me                | thod I, sectior | n 6.4.2.2)     |
|                                                                                   | A <sub>eff</sub> | 39.6                        | ft <sup>2</sup>     |                    |                             |                 |                |
|                                                                                   |                  |                             |                     |                    |                             |                 |                |
| EFFECTIVE WIND                                                                    |                  | ion of wind lon             | d lassuma as        | pect ratio 2:1)    |                             |                 |                |
|                                                                                   |                  |                             | =                   | -783.8             | lb                          |                 |                |
| WIND <sub>eff</sub> = A <sub>eff</sub> *WIND<br>W = WIND <sub>eff</sub> /Member L |                  | =                           | -6.875              | lb/in              |                             |                 |                |
|                                                                                   |                  |                             |                     | 0.010              | 10,111                      |                 |                |
| DEFLECTION CHI                                                                    | ECK              |                             |                     |                    |                             |                 |                |
|                                                                                   |                  | $\Delta_{\text{allowable}}$ | =                   | L/80               | 1.43                        | in              | (conservative) |
|                                                                                   |                  | $\Delta_{max}$              | =                   | 5WL4/(384EI)       | 1.07                        | in              |                |
|                                                                                   |                  |                             | Δ <sub>max</sub>    | <                  | $\Delta_{\text{allowable}}$ | ОК              | 1              |
|                                                                                   |                  |                             |                     |                    |                             |                 |                |
| FLEXURE                                                                           | _                |                             | -6.9                | lb/in              |                             |                 |                |
|                                                                                   |                  |                             |                     |                    |                             |                 |                |
|                                                                                   | $\downarrow$     |                             | $\downarrow$        | $\checkmark$       |                             |                 |                |
|                                                                                   | A A              |                             |                     |                    |                             | $\rightarrow$   |                |
|                                                                                   |                  | •                           |                     | 114"               |                             | -               |                |
| Yield                                                                             | ling             |                             |                     |                    |                             |                 |                |
|                                                                                   |                  | Mn                          | =                   | F <sub>y</sub> *Z  | =                           | 26.9            | kip-in         |
|                                                                                   |                  | M <sub>allow</sub>          | =                   | Mn/Ω               | =                           | 1.3             | kip-ft         |
|                                                                                   |                  | M <sub>max</sub>            | =                   | WL <sup>2</sup> /8 | =                           | 0.9             | kip-ft         |
|                                                                                   |                  |                             |                     |                    |                             |                 |                |

FLEXURAL BUCKLING -

|           | Assume:                 | Fabric weight <     | << than ten | ision & wi            | ind loads | 3              |                |               |
|-----------|-------------------------|---------------------|-------------|-----------------------|-----------|----------------|----------------|---------------|
|           |                         | 75 lb tension/g     | romet (gro  | mets atta             | ched @    | 6" O.C. on fab | oric and weave | d into beams) |
|           |                         | Tensi               | ion Force   | =                     |           | 150            | plf            |               |
|           |                         | Length              | of Fabric   | =                     |           | 139            | in             |               |
|           |                         | Length              | of Beam     | =                     |           | 114            | in             |               |
|           | Interm                  | ediate Braces, N    | 1ember A    | =                     | -         | 3              | members        |               |
|           | Tota                    | l Axial Load on N   | 1ember A    | =                     | -         | 579            | lb             |               |
|           |                         | Factual             |             | =                     | =         | 0.689          | ksi            |               |
| When KL/r | >                       | 4.71*√(E/F          | -           |                       | 118.3     | in/in          |                |               |
|           | F <sub>cr</sub>         | =                   | 0.8         | 377*F <sub>e</sub>    |           |                |                |               |
|           |                         | where $F_e$         | =           | <u>π²E</u><br>(KL/r)² |           | =              | 12.8           | ksi           |
|           | F <sub>cr</sub>         | =                   | 11.19       | ksi                   |           |                |                |               |
|           | $F_n = F_{cr} / \Omega$ | =                   | 6.7         | ksi                   |           |                |                |               |
|           | Π                       |                     |             |                       |           |                | 1              |               |
|           |                         | Fn                  | =           |                       | 6.7       | ksi            |                |               |
|           |                         | $F_{actual}$        | =           |                       | 0.689     | ksi            |                |               |
|           |                         | F <sub>actual</sub> | <           | Fn                    |           | ок             | a              |               |

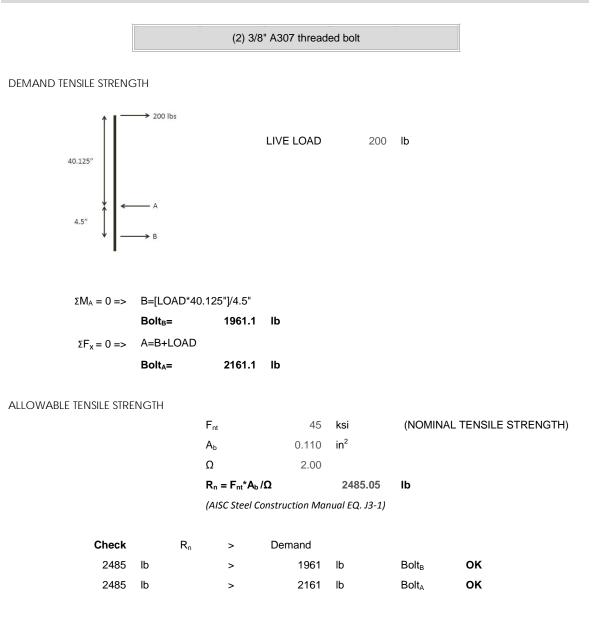
### AWNINGS



### FLEXURAL BUCKLING

Due to axial force from uplift

| When            | KL/r          | >                    | 4.71*√ (E/ $F_y$ ) =  | 118.3 | in/in |      |     |
|-----------------|---------------|----------------------|-----------------------|-------|-------|------|-----|
| F <sub>cr</sub> | =             | 0.877*F <sub>e</sub> |                       |       |       |      |     |
|                 | where $F_{e}$ | =                    | <u>π²E</u><br>(KL/r)² | =     |       | 19.2 | ksi |
|                 |               |                      | (1(2,1))              |       |       |      |     |


16.81 ksi  $\mathsf{F}_{\mathsf{cr}}$ =

| Fn           | =       | $F_{cr}$ / $\Omega$   | =  | 10.1 | ksi |
|--------------|---------|-----------------------|----|------|-----|
| $F_{actual}$ | =       | $F_{axial}$ / $A_{g}$ | =  | 7.57 | ksi |
|              | Factual | <                     | Fn | ок   |     |

 $\mathsf{F}_{\mathsf{actual}}$ Fn <

## RAILINGS

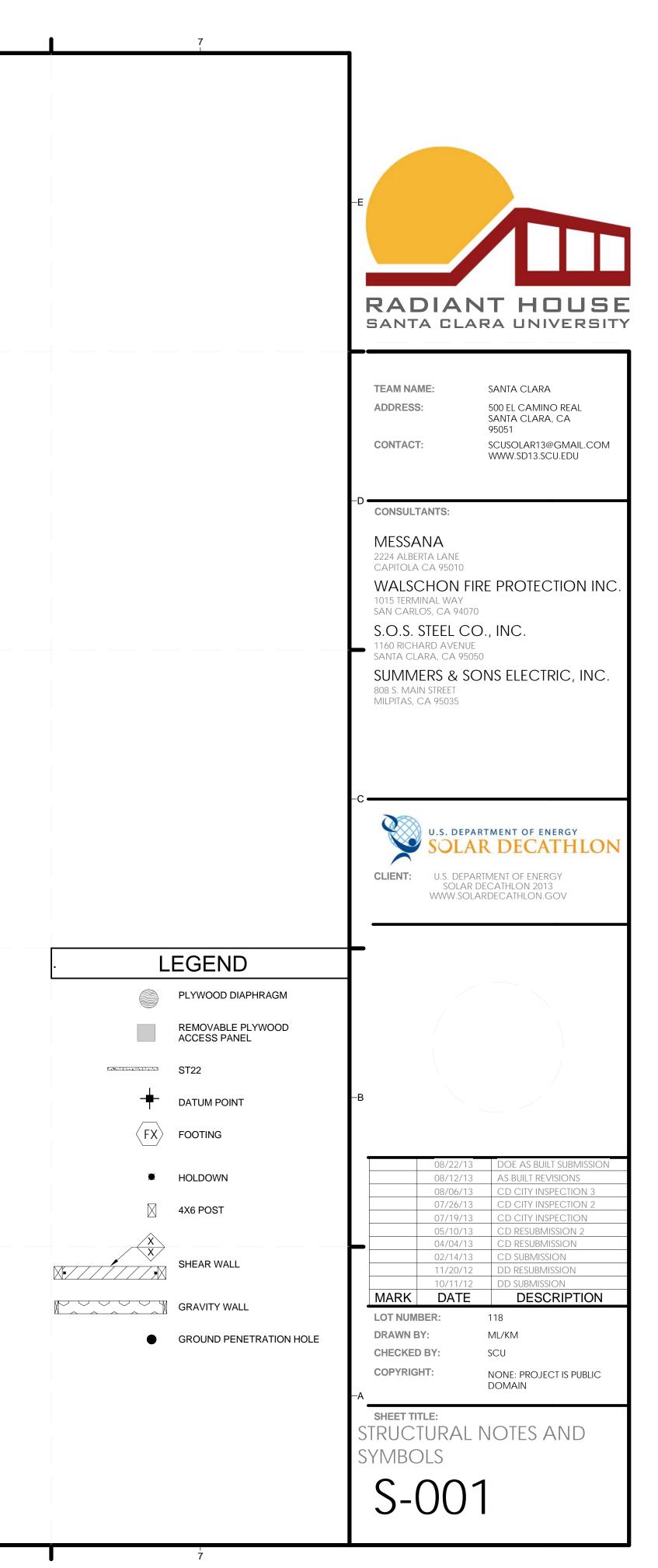
DESIGN BOLT STRENGTH FOR TYPICAL GUARDRAIL POST

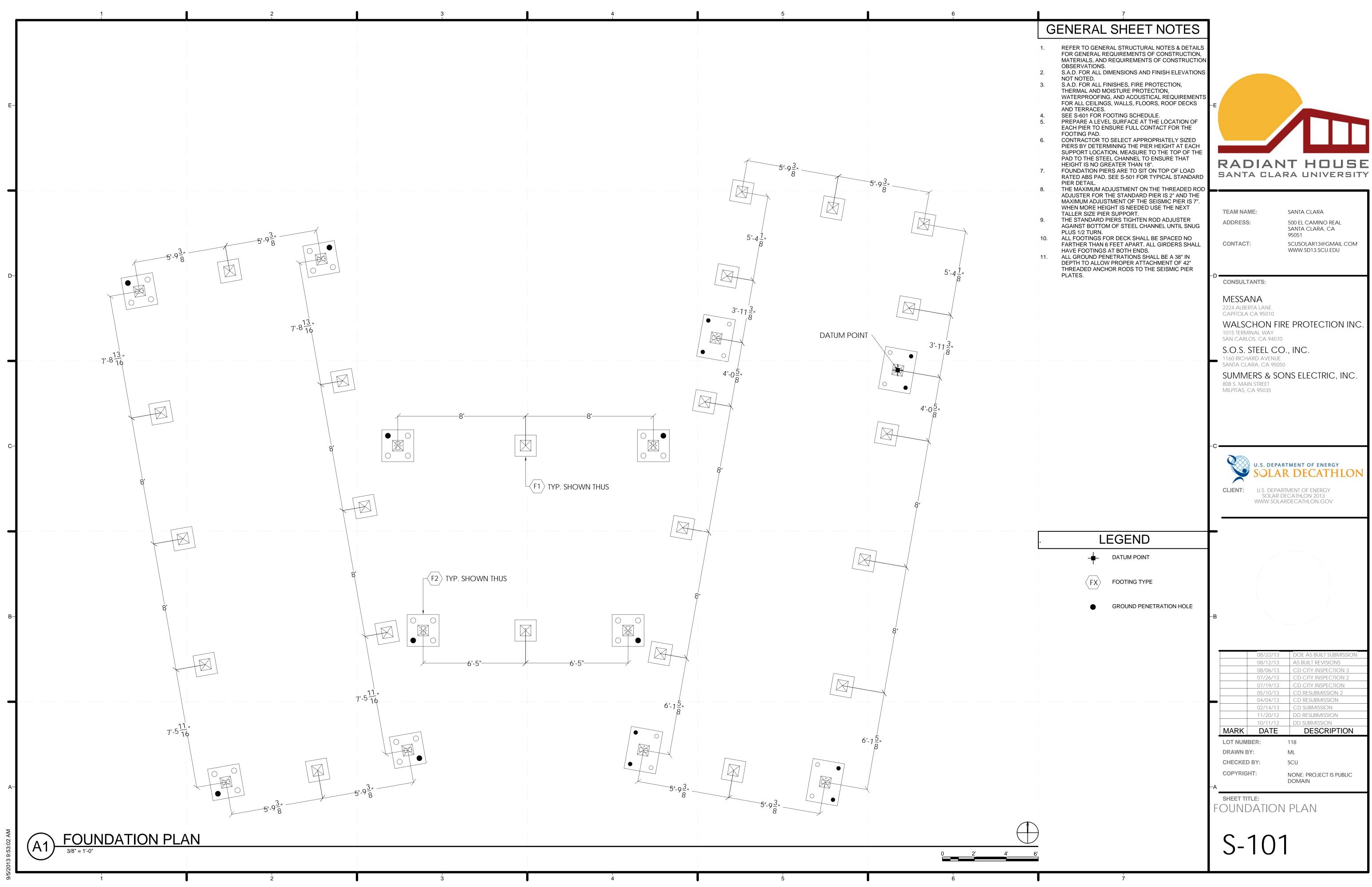


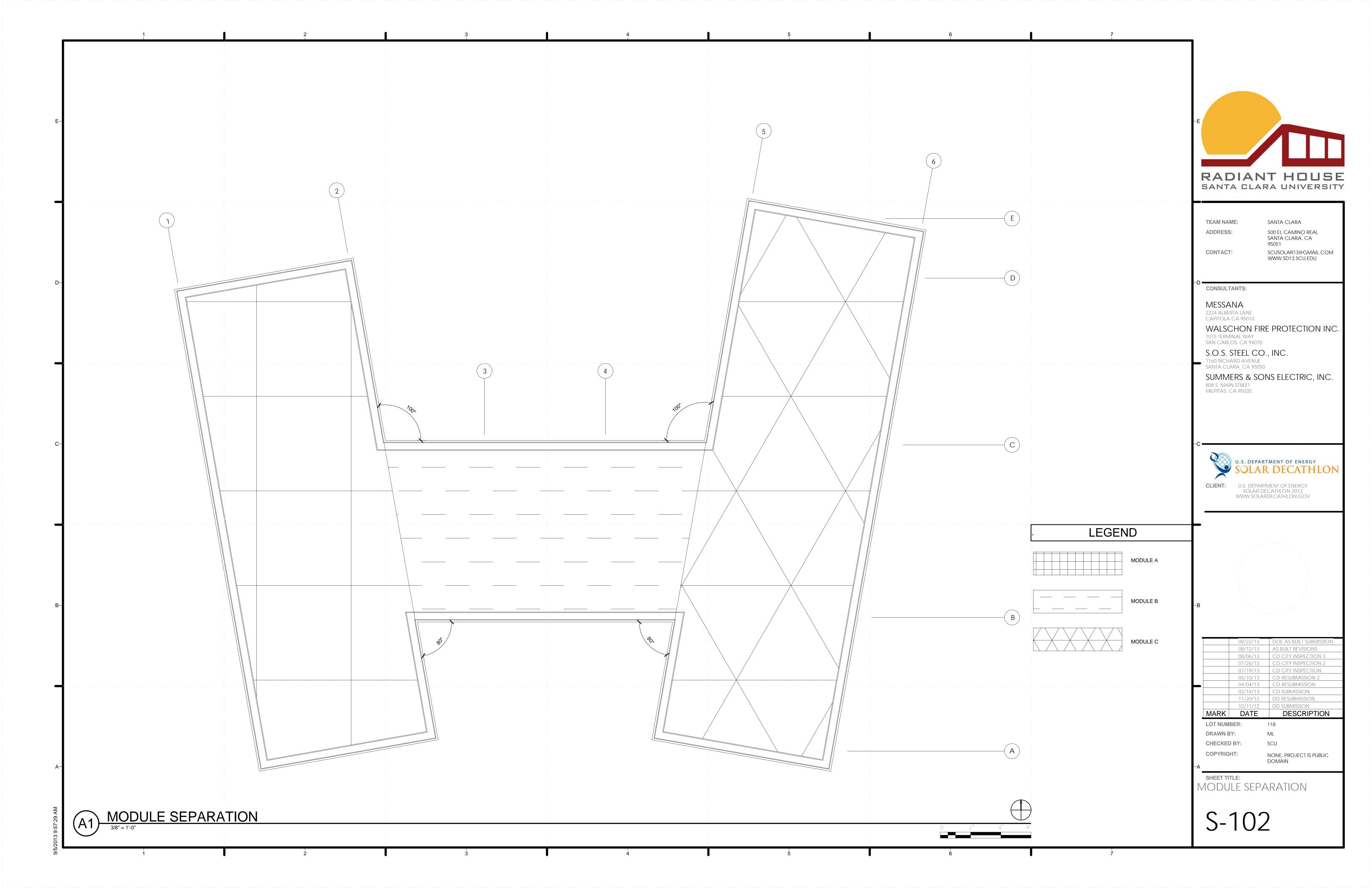


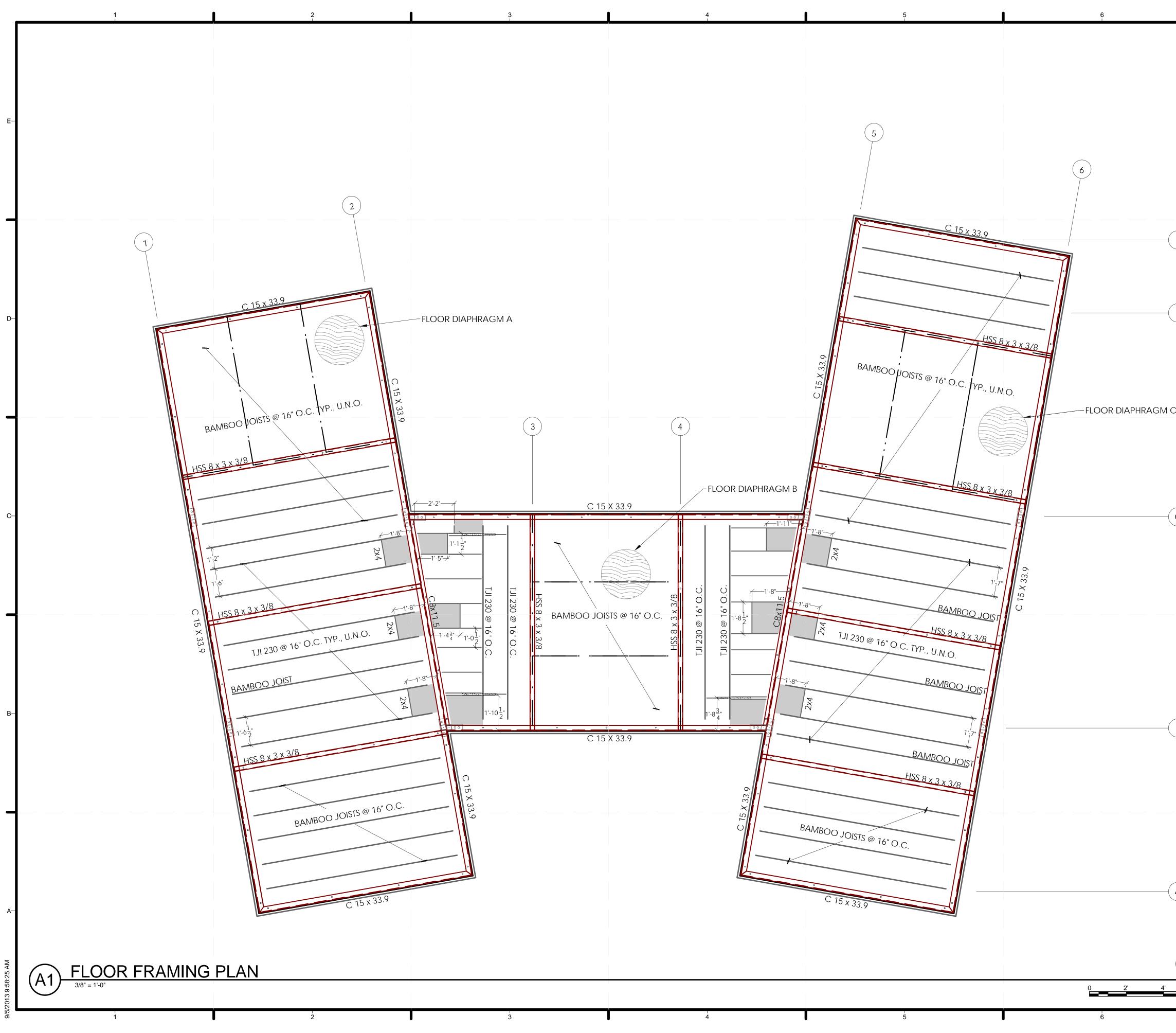
# CONSTRUCTION DRAWINGS

4

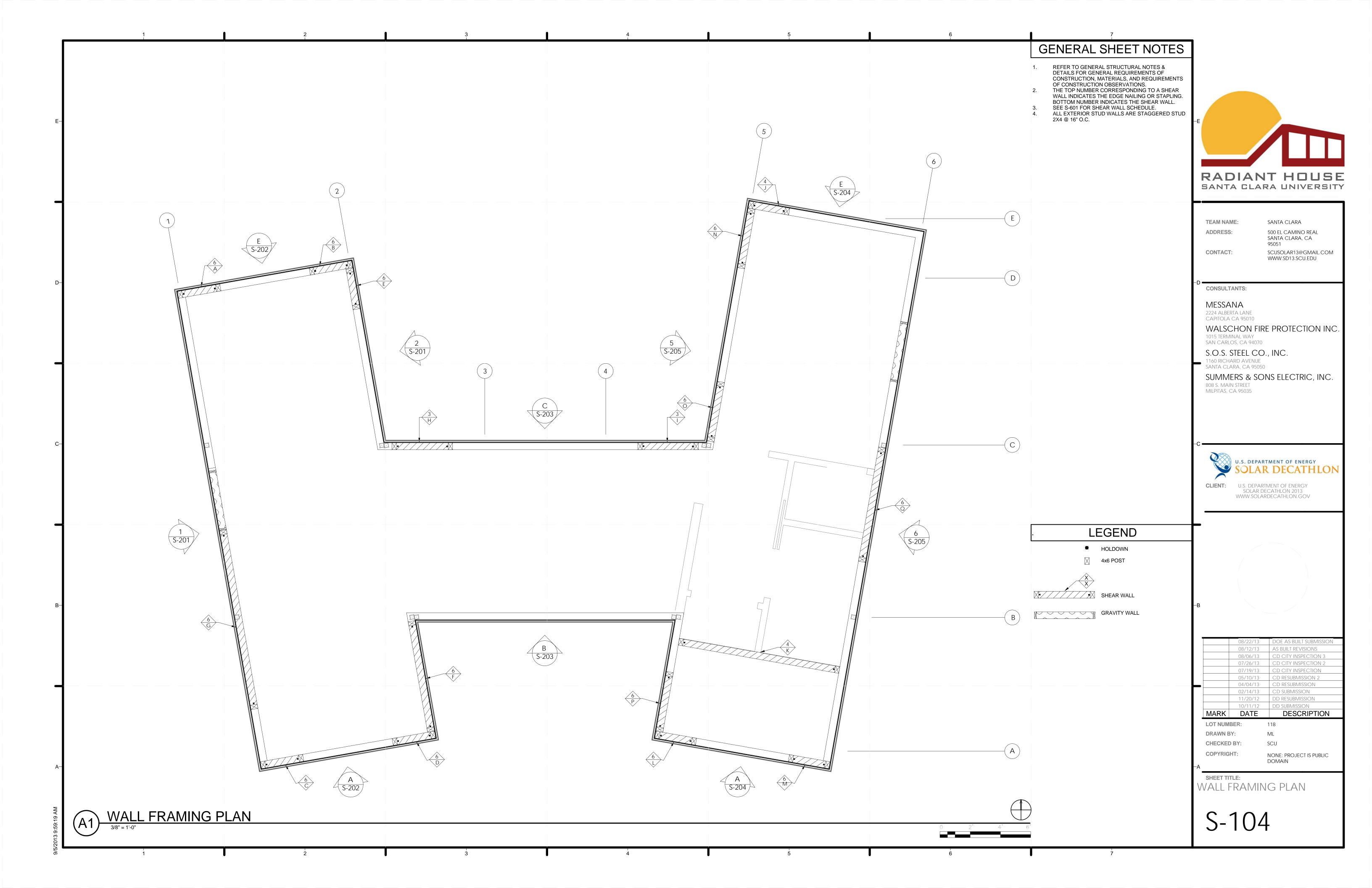

## SANTA CLARA UNIVERSITY RADIANT HOUSE

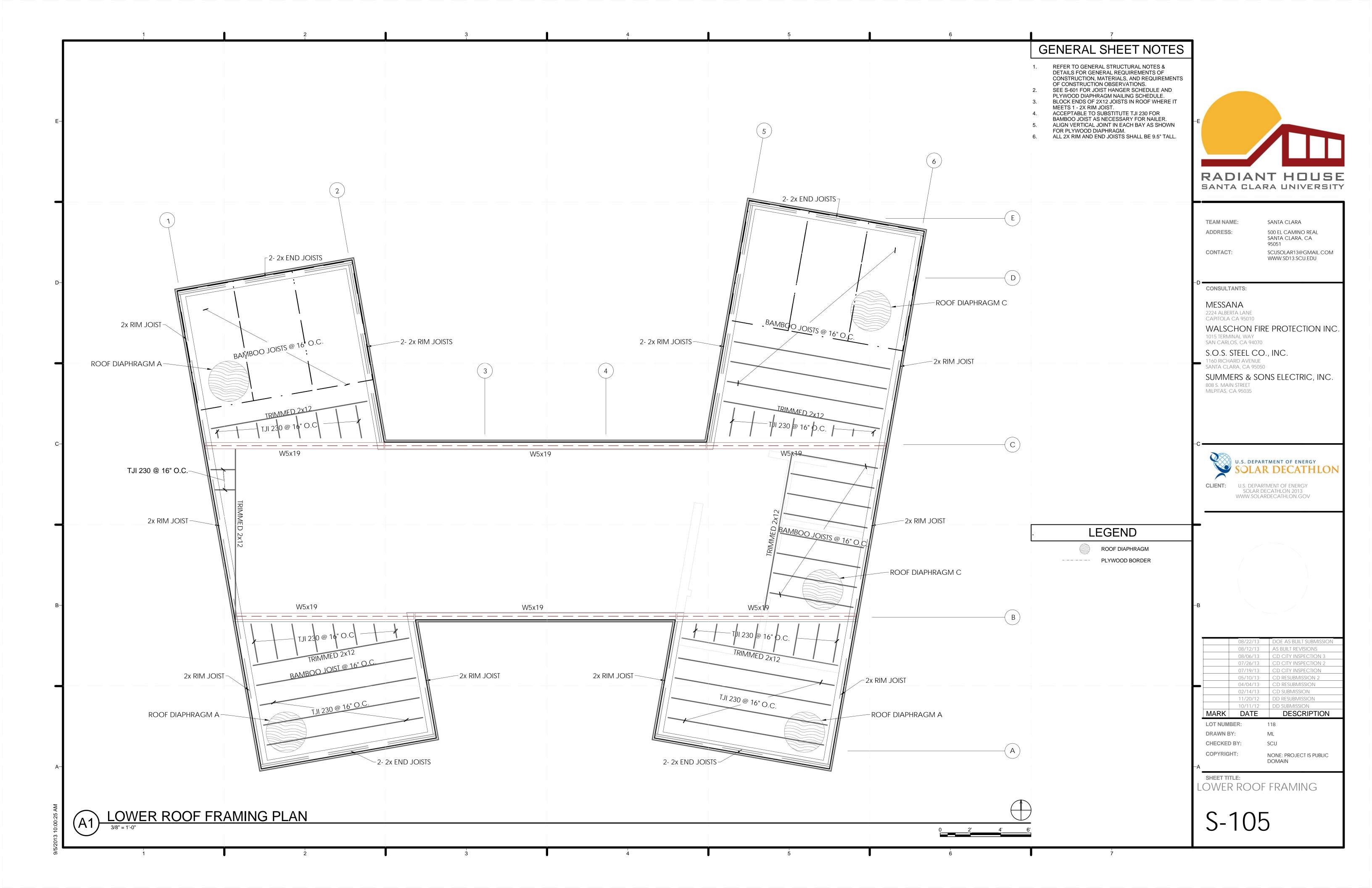

5

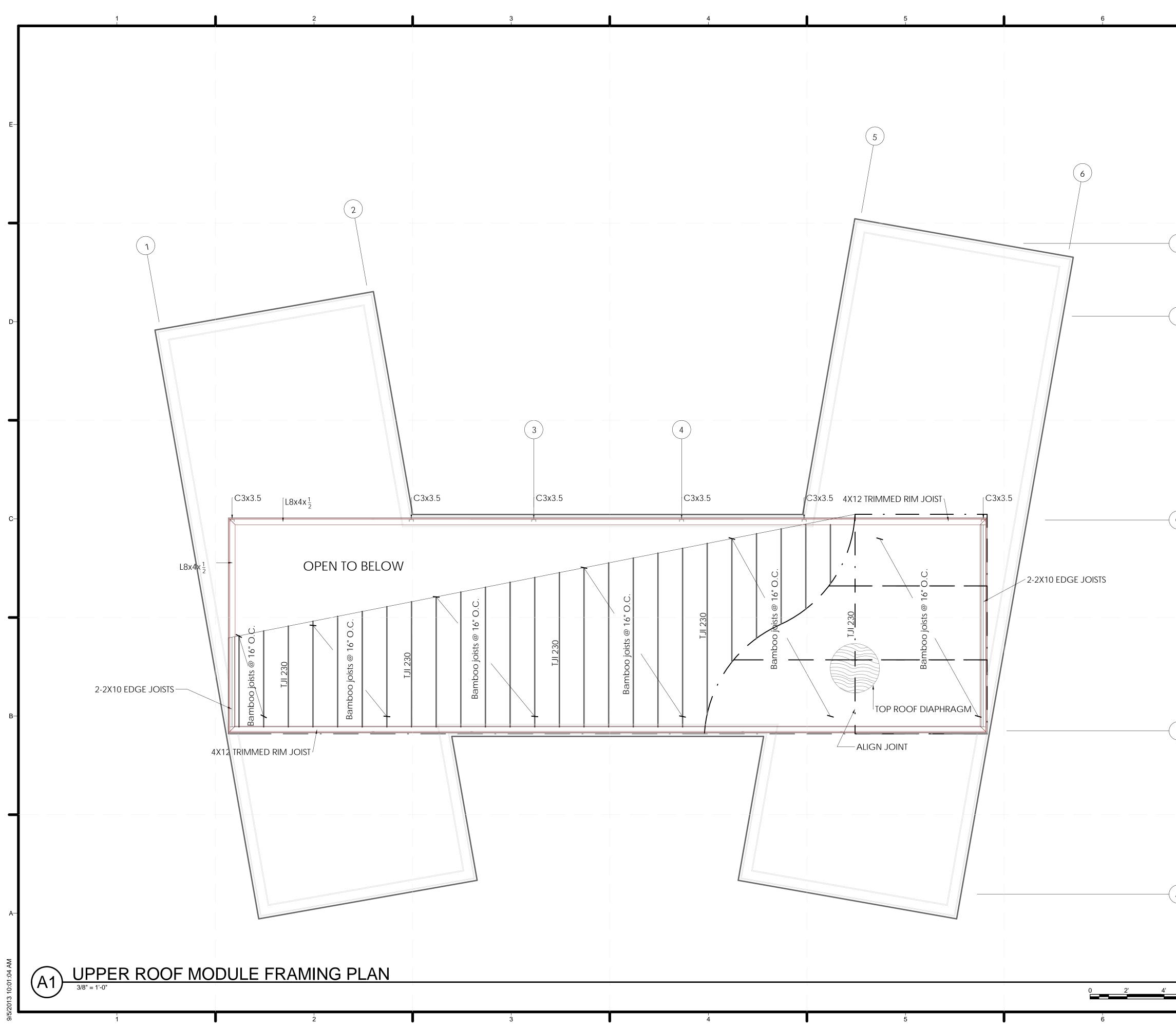




|                     |                                                | 1                                                                                                  |                                                        | 2                                       | 1                           | 3               |
|---------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------|-----------------|
|                     | GENERAL STRUCTURAL NO                          | TES                                                                                                |                                                        |                                         |                             |                 |
|                     | 1. GENERAL NOTES AN                            | ND TYPICAL DETAILS APPLY TO ALL                                                                    | STRUCTURAL FEATURES U                                  | NLESS OTHERWISE SHOWN OR N              | IOTED                       |                 |
|                     | 2. IF CERTAIN FEATUR                           | ES ARE NOT FULLY SHOWN OR CAI                                                                      | LLED FOR ON THE DRAWING                                | S OR SPECIFICATIONS, THEIR CC           | ONSTRUCTION SHALL BE OF THE | E SAME CHARAC   |
|                     |                                                | CIFICATIONS FORM A PART OF THE                                                                     |                                                        |                                         |                             | _               |
|                     |                                                | ODES AND STANDARDS NOTED IN T                                                                      |                                                        |                                         |                             |                 |
|                     | TO BEST PRACTICE A                             | ND SHALL BE THE CONTRACTOR'S                                                                       |                                                        | HONS MEREOF FROM THE DRA                |                             |                 |
| E-                  | 6. DIMENSIONS SHALL                            |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                | ONFORM TO THE MINIMUM STANDA                                                                       |                                                        |                                         |                             |                 |
|                     |                                                | ATERIALS SHALL BE APPROVED BY                                                                      | THE CONTRACTOR PRIOR T                                 |                                         | S OF THOSE APPROVALS SHAL   |                 |
|                     |                                                | FEATURES NOT FULLY SHOWN OR I                                                                      |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     | II. SIZE                                       | E AND LOCATIONS OF ALL DOOR AN<br>E AND LOCATION OF ALL NON-BEAR<br>E AND LOCATION OF ALL FLOOR DR | RING PARTITIONS                                        | AREAS                                   |                             |                 |
|                     | IV. CHA<br>V. SIZE                             | NGES IN LEVEL, CHAMFERS, GROC<br>E AND LOCATION OF ALL FLOOR AN                                    | DVES, INSERTS, ETC.<br>ID ROOF OPENINGS                |                                         |                             |                 |
|                     | B. MECHANICA                                   | ENSIONS NOT SHOWN IN THE STRU<br>AL, PLUMBING AND ELECTRICAL FEA                                   | ATURES                                                 |                                         |                             |                 |
|                     | II. ELE                                        | E RUNS, SLEEVES, HANGERS, TREN<br>CTRICAL CONDUIT RUNS, BOXES, C<br>CHORAGE AND BRACING FOR ELEC   | DUTLETS IN WALLS                                       |                                         | N OR NOTED.                 |                 |
|                     | IV. ANC                                        | CHOR BOLTS FOR MOTOR MOUNTS<br>E AND LOCATION OF MACHINE AND                                       |                                                        |                                         |                             |                 |
|                     |                                                | S, ETC. SHALL NOT BE PLACED IN S                                                                   |                                                        | ESS SPECIFICALLY DETAILED ON            | N THE STRUCTURAL DRAWINGS   | . NOTIFY THE ST |
| _                   | 11. THE CONTRACTOR                             | AL MEMBERS NOT SHOWN ON THE S                                                                      |                                                        | L TRADES AND SHALL CHECK AL             | L DIMENSIONS AND HOLES AND  |                 |
| D–                  | CALLED TO THE ATT                              | ENTION OF THE ARCHITECT AND SI                                                                     |                                                        |                                         | INSTRUCTION THE CONTRACT    | OR SHALL PROV   |
|                     | DURING CONSTRUC                                | TION. SUCH MEASURES SHALL INCL<br>LUDE INSPECTION OF THE ABOVE I                                   | LUDE BUT ARE NOT LIMITED                               |                                         |                             |                 |
|                     |                                                | L BE RESPONSIBLE FOR ALL SAFE                                                                      |                                                        |                                         |                             |                 |
|                     |                                                | OR DIRECT RESPONSIBILITY FOR T                                                                     |                                                        |                                         |                             |                 |
|                     | ANTICIPATED.                                   |                                                                                                    |                                                        |                                         |                             |                 |
| _                   |                                                | EM OF THE STRUCTURE IS DESIGNI<br>ONTACTOR SHALL PROVIDE TEMPO                                     | -                                                      |                                         |                             | -               |
|                     | 16. UNLESS OTHERWIS                            | E NOTED, FOLLOW MANUFACTURE                                                                        | R'S RECOMMENDATIONS FO                                 | R ALL STRUCTURAL PRODUCTS I             | JSED IN THIS PROJECT        |                 |
|                     |                                                | ATED CHANGES SHALL BE SUBMITT<br>SATISFY THIS REQUIREMENT.                                         | ED IN WRITING TO THE ARC                               | HITECT AND STRUCTURAL ENGIN             | IEER FOR APPROVAL PRIOR TO  | FABRICATION C   |
|                     |                                                | ED GENERAL AND TYPICAL DETAILS                                                                     |                                                        |                                         | ICALLY INDICATED BUT ARE OF | SIMILAR CHARA   |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| C–                  | -                                              |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| _                   |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     | INSPECTION, OBSERVATION<br>1. THIS SECTION SUM | N, AND TESTING<br>MARIZES THE SPECIFIC REQUIREM                                                    | IENTS OF CHAPTER 17 OF TH                              | E 2010 CBC AS THEY APPI Y               |                             |                 |
|                     |                                                | SPECTION, STRUCTURAL OBSERVA                                                                       |                                                        |                                         |                             |                 |
|                     |                                                | RK LISTED IN THE FOLLOWING TABL                                                                    |                                                        |                                         |                             |                 |
|                     | PERFORMED BY A (                               | ATED AS EITHER "CONTINUOUS" OF<br>CERTIFIED SPECIAL INSPECTION FR<br>OWNER OR AGENT OF THE AGENT   | ROM AN INDEPENDENT TEST                                | NG AGENCY WHO IS                        |                             |                 |
|                     | A. THE SPECIA                                  | AL INSPECTOR SHALL OBSERVE TH                                                                      | E WORK ASSIGNED FOR CO                                 | -                                       |                             |                 |
| B–                  | APPROVED                                       | DESIGN DRAWINGS AND SPECIFIC                                                                       | ATIONS.                                                |                                         |                             |                 |
|                     | ENGINEER                                       | AL INSPECTOR SHALL FURNISH INSI<br>OF RECORD, AND OTHER DESIGNA<br>IEDIATE ATTENTION OF THE CONTR  | TED PERSONS. ALL DISCREF                               | ANCIES SHALL BE BROUGHT                 |                             |                 |
|                     |                                                | R DESIGN AUTHORITY AND TO THE                                                                      | ,                                                      | THEN, IF UNCONNECTED, TO                |                             |                 |
|                     | REQUIRING                                      | L INSPECTOR SHALL SUBMIT A FIN<br>INSPECTION WAS, TO THE BEST O                                    | F THE SPECTOR'S KNOWLED                                | GE, IN CONFORMANCE WITH                 |                             |                 |
|                     |                                                | VED PLANS AND SPECIFICATIONS A<br>S OF QUALITY OF THE 2010 CBC                                     | AND THE APPLICABLE WORK                                | MANSHIP PROVISIONS AND                  |                             |                 |
|                     | D. CONTINUOL                                   | JS AND PERIODICAL SPECIAL INSPE                                                                    | ECTIONS SHALL BE IN ACCO                               | RDANCE WITH CBC 1701.6                  |                             |                 |
| _                   | THE STRUCTURAL E                               | STED IN THE FOLLOWING TABLE SHENGINEER WHEN INDICATED AS "ST                                       | <b>FRUCTURAL OBSERVATION</b> ".                        | CONTRACTOR IS                           |                             |                 |
|                     | RESPONSIBLE FOR                                | NOTIFYING STRUCTURAL ENGINEE<br>SE VISITS DO NOT CONSTITUTE SP                                     | R 48 HOURS BEFORE WORK                                 | IS READY FOR                            |                             |                 |
|                     |                                                | PECTION BY THE SPECIAL INSPECT                                                                     |                                                        |                                         |                             |                 |
|                     | NOTIFY THE STRUC<br>STRUCTURAL ITEM            | TURAL ENGINEER AT LEAST FIVE W<br>S. THE STRUCTURAL ENGINEER WI                                    | VORKING DAYS PRIOR TO CO<br>LL THEN DETERMINE IF A SIT | NCEALING ANY<br>E VISIT IS APPROPRIATE. |                             |                 |
|                     | NOTIFICATIONS SHA<br>AND STRUCTURAL            | ALL INCLUDE REINFORCEMENT AND FRAMING AND PANEL SHEAR WALL                                         | D EMBEDDED ITEMS, PRIOR                                | TO CONCRETE PLACEMENT                   |                             |                 |
|                     | SURFACES.<br>5. THE CONTRACTOR                 | SHALL HOLD A PRE-CONSTRUCTIO                                                                       |                                                        |                                         |                             |                 |
| A—                  |                                                | SHALL HOLD A PRE-CONSTRUCTIO<br>NSPECTOR IN ORDER TO DISCUSS                                       |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
|                     |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| Σ                   |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| 1:29 F              |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| 9/5/2013 3:41:29 PM |                                                |                                                                                                    |                                                        |                                         |                             |                 |
| 07/9/6/6            |                                                | 1                                                                                                  |                                                        | 2                                       |                             | -               |

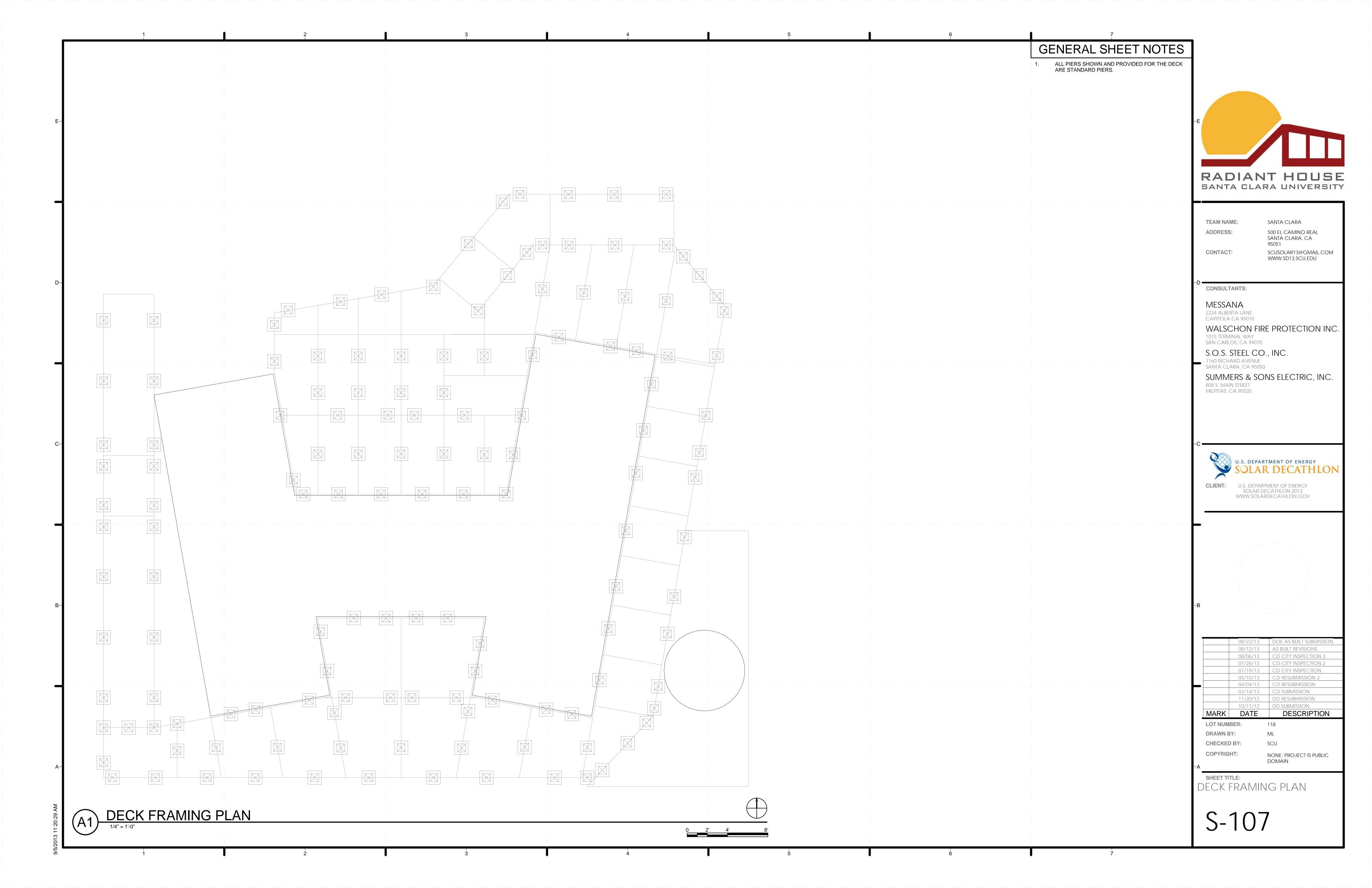
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 6<br>DESIGN DATA                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPLY TO ALL STRUCTURAL FEATURES UNLESS OTHERWISE SHOWN OR NOTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. CODE: 2010 CALIFORNIA BUILDING CODE<br>OCCUPANCY CATEGORY: II                                                                                                                     |
| HOWN OR CALLED FOR ON THE DRAWINGS OR SPECIFICATIONS, THEIR CONSTRUCTION SHALL BE OF THE SAME CHARACTER AS FOR SIMILAR CONDITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SITE CLASS: D                                                                                                                                                                        |
| DS NOTED IN THE CONTRACT DOCUMENTS SHALL BE OF THE LATEST EDITION UNLESS OTHERWISE NOTED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. DESIGN LIVE LOADS:<br><u>AREA</u> <u>DESIGN LIVE LOADS</u> <u>REMARKS</u><br>ROOF: 20 PSF PER SD 2013 BUILDING CODE                                                               |
| JOB CONDITIONS AND DIMENSIONS. VARIATIONS THEREOF FROM THE DRAWINGS MUST BE REPORTED TO THE STRUCTURAL ENGINEER. DETAILS INDICATED ON THE DRAWINGS SHALL CONFORM<br>DNTRACTOR'S RESPONSIBILITY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLOORS:50 PSFPER SD 2013 BUILDING CODEDECKS:100 PSFPER SD 2013 BUILDING CODE                                                                                                         |
| IMUM STANDARDS OF THE FOLLOWING CODES: THE 2010 BUILDING CODE, THE 2013 SOLAR DECATHLON BUILDING CODE, THE INTERNATIONAL RESIDENTIAL CODE (2012 EDITION), AND ANY<br>THE AUTHORITY OVER ANY PORTION OF THE WORK, INCLUDING THE STATE OF CALIFORNIA DIVISION OF INDUSTRIAL SAFETY, AND THOSE CODES AND STANDINGS LISTED IN THESE NOTES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3. EARHTQUAKE DESIGN LOADS:<br>SEISMIC DESIGN CATEGORY: D<br>EQUIVALENT LATERAL FORCE PROCEDURE USED<br>ZIP CODE 95053<br>Fa = 1.0 (FOR SITE CLASS D)<br>Ss = 1.5                    |
| APPROVED BY THE CONTRACTOR PRIOR TO THEIR USE. ALL REQUIREMENTS OF THOSE APPROVALS SHALL BE FOLLOWED.<br>Y SHOWN OR NOTED ON THE STRUCTURAL DRAWINGS INCLUDE BUT ARE NOT LIMITED TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sms = Fa x Ss = 1.5<br>Sds = 2 x Sms/3 = 1.000 G<br>LONGITUDINAL AND TRANSVERSE DIRECTION                                                                                            |
| ALL DOOR AND WINDOW OPENINGS.<br>ALL NON-BEARING PARTITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R = 6.5<br>I = 1.0<br>CS = Sds/(R/I) = 0.154                                                                                                                                         |
| ALL FLOOR DRAINS, SLOPES, DEPRESSED AREAS<br>MFERS, GROOVES, INSERTS, ETC.<br>ALL FLOOR AND ROOF OPENINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $W = EFFECTIVE SEISMIC DEAD LOAD$ $V = CS \times W = 0.154 W (DESIGN BASE SHEAR)$                                                                                                    |
| N IN THE STRUCTURAL DRAWINGS<br>ECTRICAL FEATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P = 1.3<br>E = P x V = 0.200 W                                                                                                                                                       |
| NGERS, TRENCHES, WALL, ROOF AND FLOOR OPENINGS, ETC. NOT SHOWN OR NOTED.<br>JNS, BOXES, OUTLETS IN WALLS<br>NG FOR ELECTRICAL, MECHANICAL OR PLUMBING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. WIND DESIGN LOADS:<br>BASIC WIND SPEED 85 MPH<br>EXPOSURE C                                                                                                                       |
| TOR MOUNTS<br>MACHINE AND EQUIPMENT BASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |
| BE PLACED IN STRUCTURAL MEMBERS UNLESS SPECIFICALLY DETAILED ON THE STRUCTURAL DRAWINGS. NOTIFY THE STRUCTURAL ENGINEER WHEN WORK REQUIRES OPENINGS POCKETS, OWN ON THE STRUCTURAL DRAWINGS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |
| BLE FOR COORDINATING THE WORK OF ALL TRADES AND SHALL CHECK ALL DIMENSIONS AND HOLES AND OPENINGS REQUIRED IN STRUCTURAL MEMBERS. ALL DISCREPANCIES SHALL BE<br>HITECT AND SHALL BE RESOLVED BEFORE PROCEEDING WITH WORK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |
| IT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY TO PROTECT LIFE AND PROPERTY<br>ES SHALL INCLUDE BUT ARE NOT LIMITED TO BRACING AND SHORING FOR LOADS DUE TO CONSTRUCTION EQUIPMENT AND MATERIALS. OBSERVATION VISITS TO THE SITE BY THE STRUCTURAL<br>THE ABOVE ITEMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      |
| FOR ALL SAFETY PRECAUTIONS AND THE METHODS, TECHNIQUES, SEQUENCES OR PROCEDURES REQUIRED TO PERFORM THE CONTRACTORS WORK. THE STRUCTURAL ENGINEER HAS NO<br>SIBILITY FOR THE SPECIFIC WORKING CONDITIONS AT THE SITE AND/OR FOR ANY HAZARDS RESULTING FROM THE ACTIONS OF ANY TRADE CONTRACTOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |
| PREAD OUT. IF PLACED ON FRAMED FLOORS OR ROOFS. LOAD SHALL NOT EXCEED THE DESIGN LIVE LOAD PER SQUARE FOOT. PROVIDE ADEQUATE SHORING WHERE OVERLOAD IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |
| RE IS DESIGNED WITH LATERAL RESTRAINT AT EACH LEVEL. STRUCTURAL WALLS OR FRAMES ARE NOT LATERALLY SELF SUPPORTING UNTIL THE ENTIRE DESIGN LATERAL RESTRAINT<br>ROVIDE TEMPORARY BRACING FOR THE STRUCTURE AND STRUCTURAL COMPONENTS UNTIL ALL FINAL CONNECTIONS HAVE BEEN COMPLETED IN ACCORDANCE WITH THE PLANS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      |
| ANUFACTURER'S RECOMMENDATIONS FOR ALL STRUCTURAL PRODUCTS USED IN THIS PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FOUNDATION NOTES                                                                                                                                                                     |
| L BE SUBMITTED IN WRITING TO THE ARCHITECT AND STRUCTURAL ENGINEER FOR APPROVAL PRIOR TO FABRICATION OR CONSTRUCTION OR CONSTRUCTION. CHANGES SHOWN ON SHOP<br>REMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. CONTRACTOR SHALL CONFORM TO THE REQUIREMENTS OF THE SOLAR DECATHLON OFFICIALS<br>REGARDING SITE PREPARATION AND FOUNDATION                                                        |
| PICAL DETAILS OF CONSTRUCTION, WHERE CONDITIONS ARE NOT SPECIFICALLY INDICATED BUT ARE OF SIMILAR CHARACTER TO DETAILS SHOWN, SIMILAR DETAILS OF SHALL CONSTRUCTION ROVAL BY THE ARCHITECT AND THE STRUCTURAL ENGINEER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. METAL PIER STANDS AND PIER AND PIER STAND CAPS SHALL BE MANUFACTURED BY CENTRAL PIER INC.<br>MANUFACTURE AND INSTALLATION SHALL BE IN STRICT ACCORDANCE WITH THE CALIFORNIA STATE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. ABS PIER PADS SHALL BE MANUFACTURED BY TIE-DOWN ENGINEERING. MANUFACTURE AND                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>INSTALLATION SHALL BE IN STRICT ACCORDANCE WITH THE DETAIL DRAWINGS</li> <li>FOUNDATION TYPE: TEMPORARY SEISMIC PIERS AND STANDARD PIERS FOR MODULAR STRUCTURES.</li> </ol> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOOTING DESIGN VALUES:                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOOTINGS     ALLOWABLE BEARING PRESSURES       SEISMIC PIER     1500 PSF                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD PIER 1500 PSF                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |
| TIC REQUIREMENTS OF CHAPTER 17 OF THE 2010 CBC AS THEY APPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |
| RAL OBSERVATION AND TESTING OF THE STRUCTURAL PORTIONS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>NSPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>OF THE AGENT AND NOT THE CONTRACTOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>INSPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>SPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>FTHE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>OF THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BEST OF THE SPECTOR'S KNOWLEDGE, IN CONFORMANCE WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONFRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>DF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>D THE BEST OF THE SPECTOR'S KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>E 2010 CBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>USPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>IF THE AGENT AND NOT THE CONTRACTOR.<br>.OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>.FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>DF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>.SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>D THE BEST OF THE SPECTOR'S KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>NTINUOUS" OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>IF THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL., THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BEST OF THE SPECTOR'S KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2 2010 CBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>INTINUOUS' OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>IF THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE SUBMIT A FINAL SIGNED REPORT STATING VIETHER THE WORK<br>O THE BUILDING OFFICIAL.<br>SUBMIT A FINALE AS STRUCTURAL DE SECTION SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL DESERVED TON TOTO FILE OBC<br>SUBMIT THE STRUCTURAL DESERVED FOR WORK IS READY FOR<br>SONSTITUTE SPECIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>CIAL INSPECTOR, THE STRUCTURAL ENVIRENCE WILL REVIEW THE<br>KMANCE WITH THE STRUCTURAL DESINGER WILL REVIEW THE<br>KMANCE WITH THE STRUCTURAL REMINES. THE CONTRACTOR SHALL                                              |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>INTINUOUS "OF "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>IF THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>NUD SPECIFICATIONS.<br>IFURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>DF THE CONTRACTOR FOR CORRECTION. THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>D THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>D THE BUSTOR'S KNOWLEDGE. IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2 2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>//ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS STRUCTURAL DESERVICION' CONTRACTOR IS<br>//RAL ENGINEER 48 HOURS BEFORE WORK IS READY FOR<br>DNSTITUTE SPECIAL INSPECTION NER SECTION 170 OF THE CBC<br>CIGLI INSPECTOR, THE STRUCTURAL ENGINEER WILL REVIEW THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>TINUOUS' OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT ROWTH CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>IFURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>THE BEST OF THE SPECTORS KNOWLEDGE, IN CONFORMANCE WITH<br>CIFCATIONS AND THE APPLICABLE WORKMAINSHIP PROVISIONS AND<br>2 2010 CBC<br>SPECIAL INSPECTION SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OASERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>SINGL ENGINEER AH OURS BEFORE WORK IN READY FOR<br>DONSTITUTE SPECIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>CICAL INSPECTION, DAYS PRIOR TO CONCREMER WITH<br>CICATED AS "STRUCTURAL DESERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL DESERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL DESERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL DESERVED TO TO 100 F THE CBC<br>CICAL INSPECTOR, THE STRUCTURAL DENGER WILL REVIEW THE<br>MINACE WITH THE STRUCTURAL DENGER WILL REVIEW THE<br>REMARCE WITH THE STRUCTURAL DENGER WILL REVIEW THE<br>MINACE WITH THE STRUCTURAL DENGER WILL REVIEW THE<br>REMARCE WITH THE STRUCTURAL DENGER WILL REVIEW THE<br>REMARCE WITH THE STRUCTURAL DENGER WILL REVIEW THE<br>REMARCE WITH THE STRUCTURAL DAVINGES THE CONTRACTOR SHALL<br>LEAST FIVE WORKING DAYS PRIOR TO CONCRETE PLACEMENT<br>SHEAR WALL PRIOR TO CONCREAL BUSING ANY<br>REQUINE THE STRUCTURAL DENGER WILL REVIEW THE<br>REMARCE WITH THE STRUCTURAL DAVINGES THE CONTRACTOR BHALL<br>LEAST FIVE WORKING DAYS PRIOR TO CONCRETE PLACEMENT<br>SHEAR WALL PRIOR TO CONCREALMENT BY FIREPROOFING OR FINISH                                                                                                                                  |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>ITVILUOUS 'OR "PERIODIC". ALL TESTS AND INSPECTIONS SHALL BE<br>ISPECTION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>FT HE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>AND SPECIFICATIONS.<br>IFURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORPECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBMIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>O THE BEST OF THE SPECTOR'S KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2 2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN SECTION 1701 OF THE CBC<br>CIAL INSPECTION. SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.0<br>ING THE SECIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>CIAL INSPECTION THE STRUCTURAL DRAWINGS. THE CONTRACTOR SHALL<br>LEAST FIVE WORKING DAYS PRIOR TO CONCERLE THE ACCOMENTATION SHALL<br>LEAST FIVE WORKI |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>VITULOUS OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>INNO SPECIFICATIONS.<br>IPURINSH INSPECTION REPORTS TO THE BUILDING OFFICIAL. THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBBIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>OT THE SPECTRON SK KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION. THE SPECTRONE WILL REPORT WITH CBC 1701.6<br>ING TABLE SHALL BE ODSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION UNDER SECTION 1701 OF THE CBC<br>SOLIN, INSPECTION INSPECTION UNDER SHALL DE INSPECTION INDER SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IF A SITE VISIT S APPROPRIATE<br>RECEMENT AND UNDERS PRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER WILL HENDEL SPIRIOR TO CONCEALING AND<br>SHALL SHORE ON DEMEDDED DITIONS, PHICH TO CONCEALING AND<br>SHALL SHORE ON DEMEDEDDED TO THES, PRIOR TO CONCEALING AND<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER<br>CONSTRUCTION MEETING INVOLVING THE STRUCTURAL ENGINEER                                                                        |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>VITULOUS OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>INNO SPECIFICATIONS.<br>IPURINSH INSPECTION REPORTS TO THE BUILDING OFFICIAL. THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBBIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>OT THE SPECTRON SK KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION. THE SPECTRONE WILL REPORT WITH CBC 1701.6<br>ING TABLE SHALL BE ODSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION UNDER SECTION 1701 OF THE CBC<br>SOLIN, INSPECTION INSPECTION UNDER SHALL DE INSPECTION INDER SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IF A SITE VISIT S APPROPRIATE<br>RECEMENT AND UNDERS PRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER WILL HENDEL SPIRIOR TO CONCEALING AND<br>SHALL SHORE ON DEMEDDED DITIONS, PHICH TO CONCEALING AND<br>SHALL SHORE ON DEMEDEDDED TO THES, PRIOR TO CONCEALING AND<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER<br>CONSTRUCTION MEETING INVOLVING THE STRUCTURAL ENGINEER                                                                        |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>VITULOUS OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>INNO SPECIFICATIONS.<br>IPURINSH INSPECTION REPORTS TO THE BUILDING OFFICIAL. THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBBIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>OT THE SPECTRON SK KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION. THE SPECTRONE WILL REPORT WITH CBC 1701.6<br>ING TABLE SHALL BE ODSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION UNDER SECTION 1701 OF THE CBC<br>SOLIN, INSPECTION INSPECTION UNDER SHALL DE INSPECTION INDER SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IF A SITE VISIT S APPROPRIATE<br>RECEMENT AND UNDERS PRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER WILL HENDEL SPIRIOR TO CONCEALING AND<br>SHALL SHORE ON DEMEDDED DITIONS, PHICH TO CONCEALING AND<br>SHALL SHORE ON DEMEDEDDED TO THES, PRIOR TO CONCEALING AND<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER<br>CONSTRUCTION MEETING INVOLVING THE STRUCTURAL ENGINEER                                                                        |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>VITULOUS OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>INNO SPECIFICATIONS.<br>IPURINSH INSPECTION REPORTS TO THE BUILDING OFFICIAL. THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBBIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>OT THE SPECTRON SK KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION. THE SPECTRONE WILL REPORT WITH CBC 1701.6<br>ING TABLE SHALL BE ODSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION UNDER SECTION 1701 OF THE CBC<br>SOLIN, INSPECTION INSPECTION UNDER SHALL DE INSPECTION INDER SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IF A SITE VISIT S APPROPRIATE<br>RECEMENT AND UNDERS PRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER WILL HENDEL SPIRIOR TO CONCEALING AND<br>SHALL SHORE ON DEMEDDED DITIONS, PHICH TO CONCEALING AND<br>SHALL SHORE ON DEMEDEDDED TO THES, PRIOR TO CONCEALING AND<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER<br>CONSTRUCTION MEETING INVOLVING THE STRUCTURAL ENGINEER                                                                        |                                                                                                                                                                                      |
| LOWING TABLE SHALL BE INSPECTED IN ACCORDANCE WITH CBC<br>VITULOUS OR "PERIODIC" ALL TESTS AND INSPECTIONS SHALL BE<br>SPECIFICATION FROM AN INDEPENDENT TESTING AGENCY WHO IS<br>F THE AGENT AND NOT THE CONTRACTOR.<br>OBSERVE THE WORK ASSIGNED FOR CONFORMANCE WITH THE<br>INNO SPECIFICATIONS.<br>IPURINSH INSPECTION REPORTS TO THE BUILDING OFFICIAL. THE<br>HER DESIGNATED PERSONS. ALL DISCREPANCIES SHALL BE BROUGHT<br>OF THE CONTRACTOR FOR CORRECTION, THEN, IF UNCORRECTED, TO<br>Y AND TO THE BUILDING OFFICIAL.<br>SUBBIT A FINAL SIGNED REPORT STATING WHETHER THE WORK<br>OT THE SPECTRON SK KNOWLEDGE, IN CONFORMANCE WITH<br>CIFICATIONS AND THE APPLICABLE WORKMANSHIP PROVISIONS AND<br>2010 CBC<br>SPECIAL INSPECTIONS SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE IN ACCORDANCE WITH CBC 1701.6<br>ING TABLE SHALL BE OBSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION. THE SPECTRONE WILL REPORT WITH CBC 1701.6<br>ING TABLE SHALL BE ODSERVED DURING PERIODIC SITE VISITS BY<br>ICATED AS "STRUCTURAL OBSERVATION". CONTRACTOR IS<br>DIAL INSPECTION UNDER SECTION 1701 OF THE CBC<br>DOIL INSPECTION UNDER SECTION 1701 OF THE CBC<br>SOLIN, INSPECTION INSPECTION UNDER SHALL DE INSPECTION INDER SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IF A SITE VISIT S APPROPRIATE<br>RECEMENT AND UNDERS PRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL CONTRACTOR SHALL<br>LEAST FILV WORKING AXY SPIRIOR TO CONCEALING ANY<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER WILL HENDEL SPIRIOR TO CONCEALING AND<br>SHALL SHORE ON DEMEDDED DITIONS, PHICH TO CONCEALING AND<br>SHALL SHORE ON DEMEDEDDED TO THES, PRIOR TO CONCEALING AND<br>ENGINEER WILL THEN DETERMINE IS A STRUCTURAL ENGINEER<br>CONSTRUCTION MEETING INVOLVING THE STRUCTURAL ENGINEER                                                                        |                                                                                                                                                                                      |

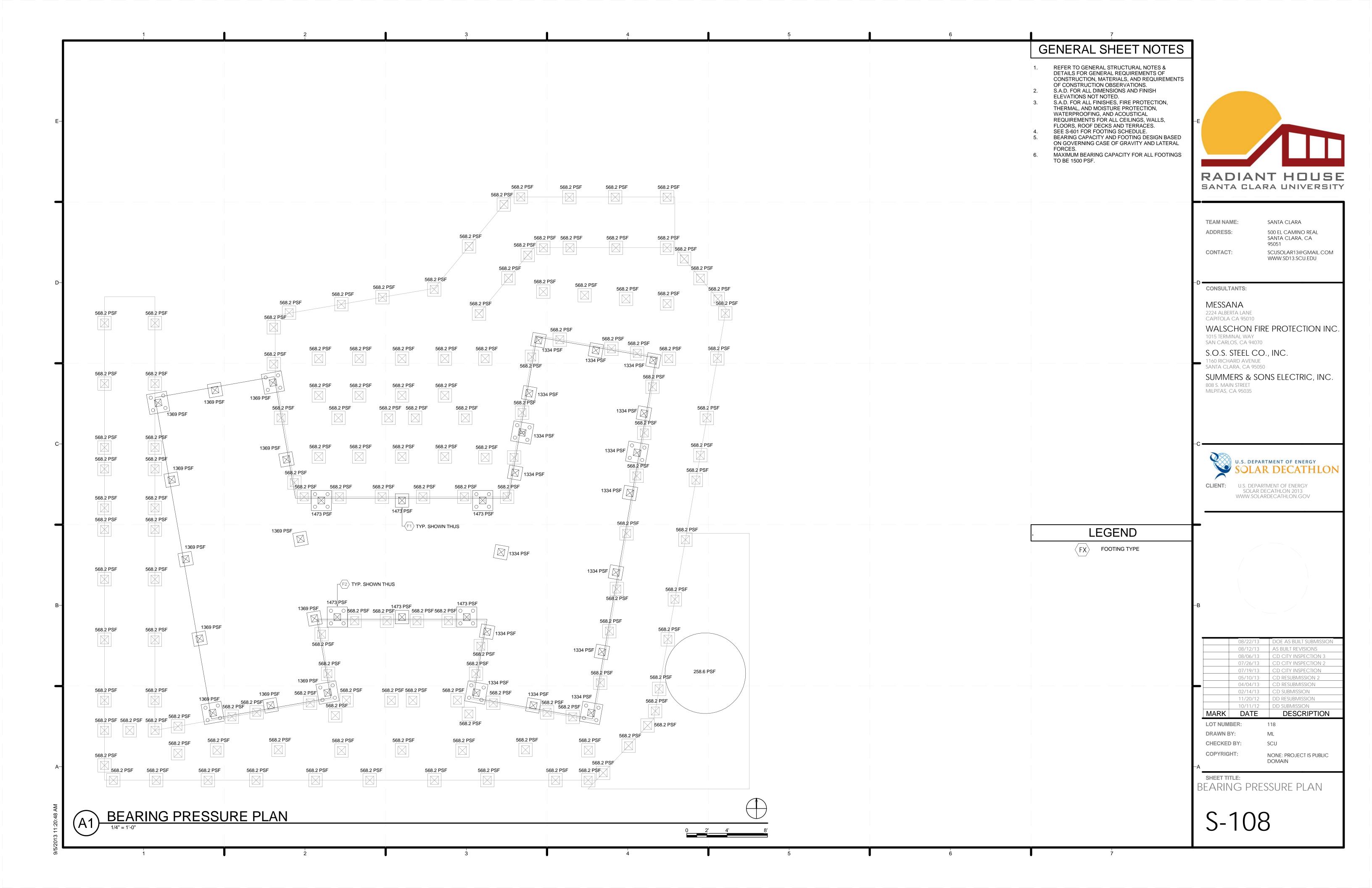


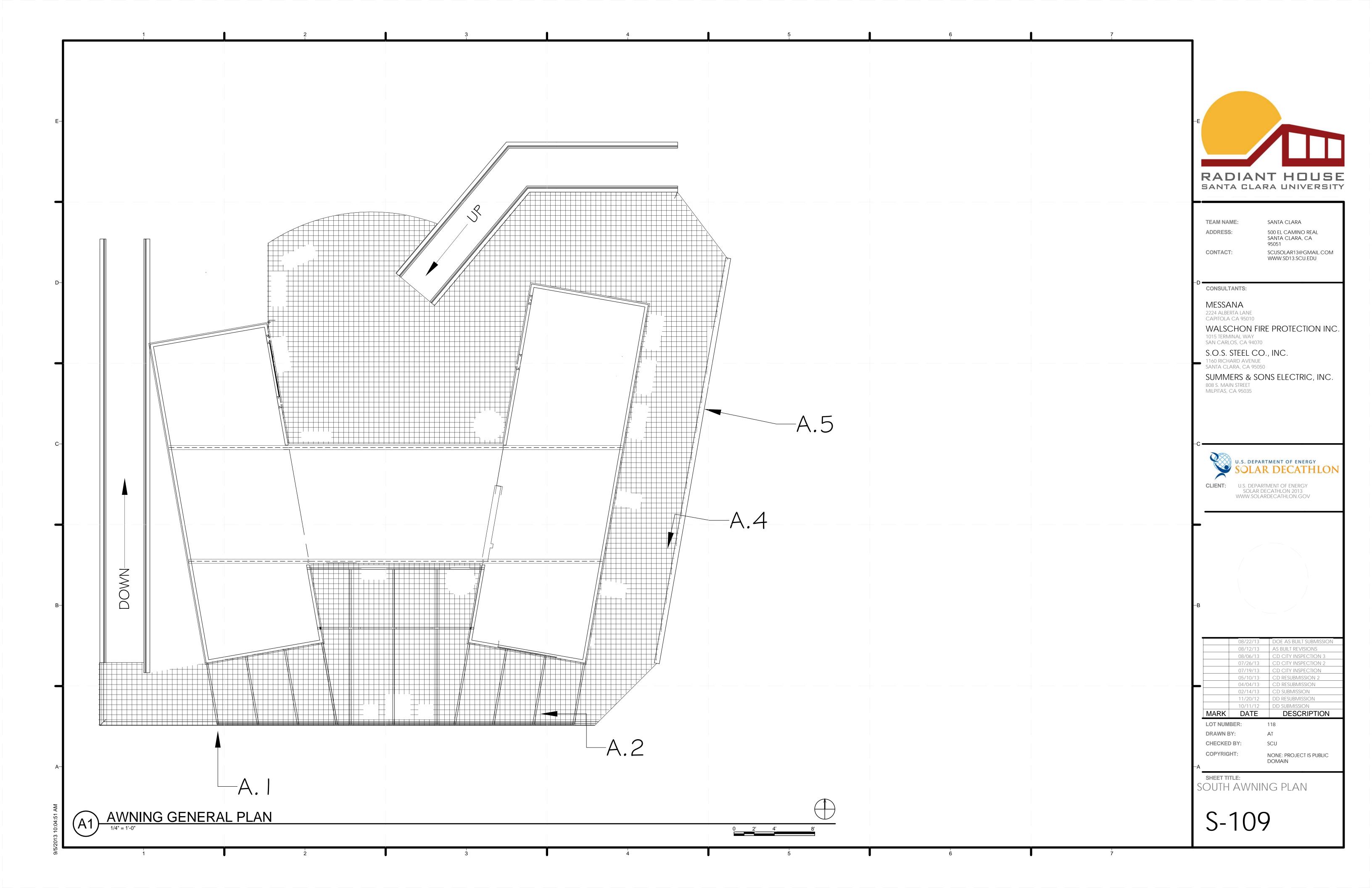



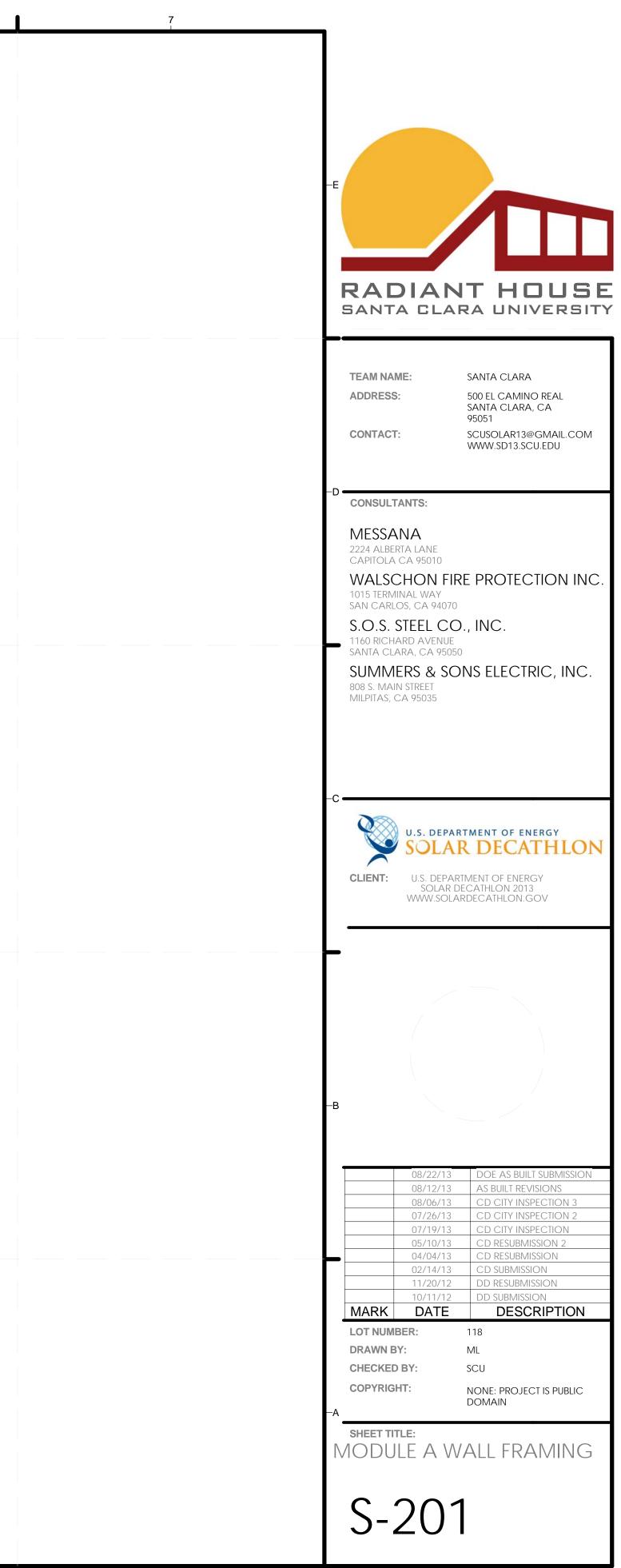




|        | <ol> <li>REFER TO GENERAL STRUCTURAL NOTES &amp;<br/>DETAILS FOR GENERAL REQUIREMENTS OF<br/>CONSTRUCTION, MATERIALS, AND REQUIREMENTS<br/>OF CONSTRUCTION OBSERVATIONS.</li> <li>SEE S-601 FOR JOIST HANGER SCHEDULE.</li> <li>SEE S-601 FOR JOIST HANGER SCHEDULE.</li> <li>ACCEPTABLE TO SUBSTITUTE TJI 230 FOR BAMBOO<br/>JOIST AS NECESSARY FOR NAILEN</li> <li>2 - 2X12 TRIMMED RIM JOIST NAILED TOGETHER<br/>SHALL RUN CONTINUOUSLY INSIDE C15X33.9.</li> <li>A LIGN VERTICAL JOINT IN EACH BAY AS SHOWN FOR<br/>PLYWOOD DIAPHRAGM.</li> <li>2X4 TYP. LINES "2" TO "2.5" AND "4.5" TO "5"<br/>SPACING 16" O.C., U.N.O.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TEAM NAME:       SANTA CLARA         ADDRESS:       500 EL CAMINO REAL         SANTA CLARA, CA         95051         CONTACT:       SCUSOLAR13@GMAIL.COM         WWW.SD13.SCU.EDU                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>D CONSULTANTS:</li> <li>MESSANA<br/>224 ALBERTA LANE<br/>CAPITOLA CA 95010</li> <li>MALSCHON FIRE PROTECTION INC.<br/>1015 TERMINAL WAY<br/>SAN CARLOS, CA 94070</li> <li>S.O.S. STEEL CO., INC.<br/>1160 RICHARD AVENUE<br/>SANTA CLARA, CA 95050</li> <li>SUMMERS &amp; SONS ELECTRIC, INC.<br/>808 S. MAIN STREET<br/>MILPITAS, CA 95035</li> </ul> |
| C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CU.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON<br>CLIENT: U.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON 2013<br>WWW.SOLARDECATHLON.GOV                                                                                                                                                                                                                            |
| В      | .       LEGEND         .       PLYWOOD SUBFLOOR         .       REMOVABLE PLYWOOD         .       ACCESS PANEL         .       ST22         .       PLYWOOD BORDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08/22/13DOE AS BUILT SUBMISSION08/12/13AS BUILT REVISIONS08/06/13CD CITY INSPECTION 307/26/13CD CITY INSPECTION 207/19/13CD CITY INSPECTION05/10/13CD RESUBMISSION 204/04/13CD RESUBMISSION02/14/13CD SUBMISSION11/20/12DD RESUBMISSION10/11/12DD SUBMISSIONMARKDATEDRAWN BY:MLCHECKED BX:SCIL                                                                  |
| A<br>6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHECKED BY: SCU<br>COPYRIGHT: NONE: PROJECT IS PUBLIC<br>DOMAIN<br>SHEET TITLE:<br>FLOOR FRAMING PLAN<br>S-103                                                                                                                                                                                                                                                  |

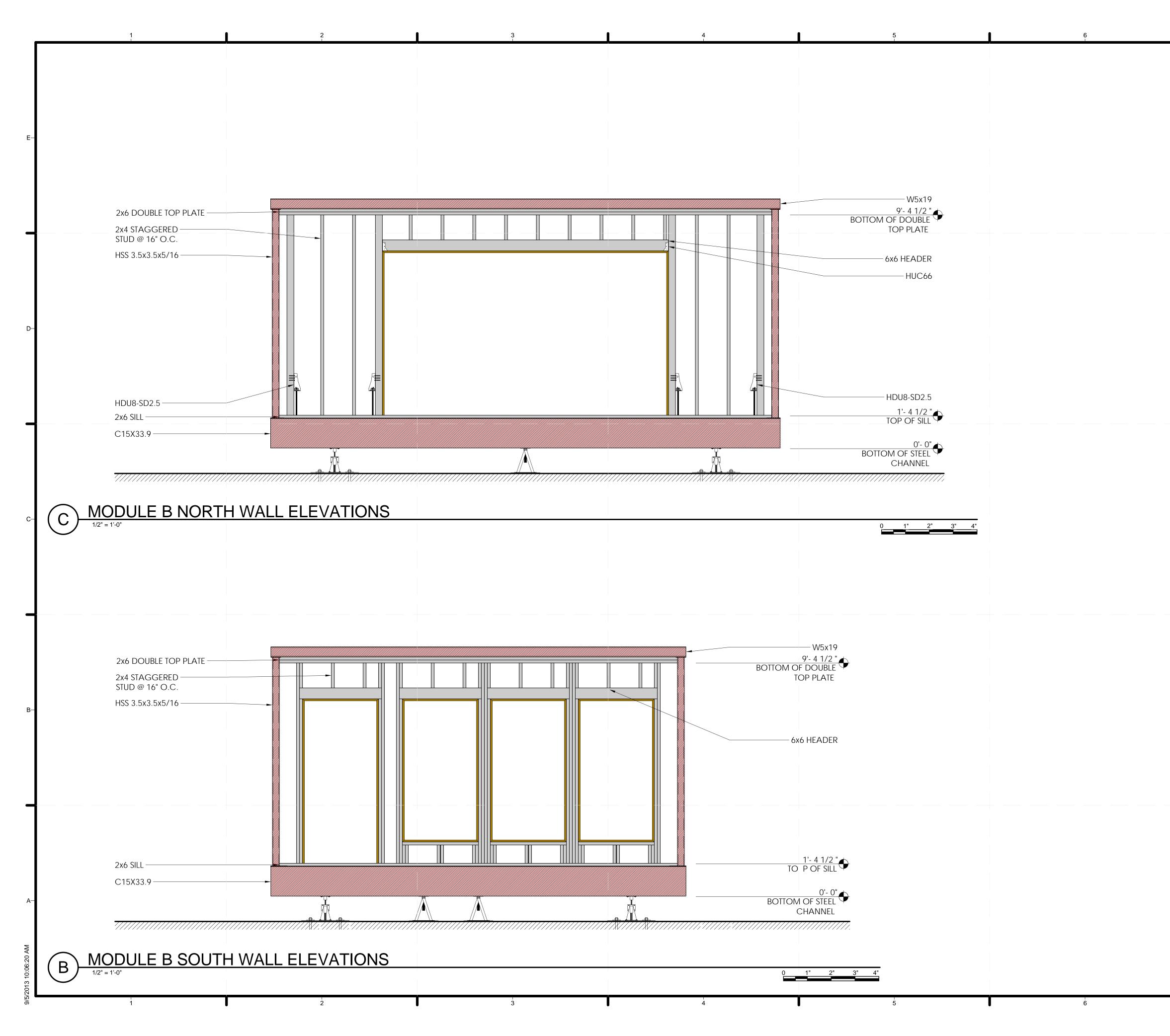


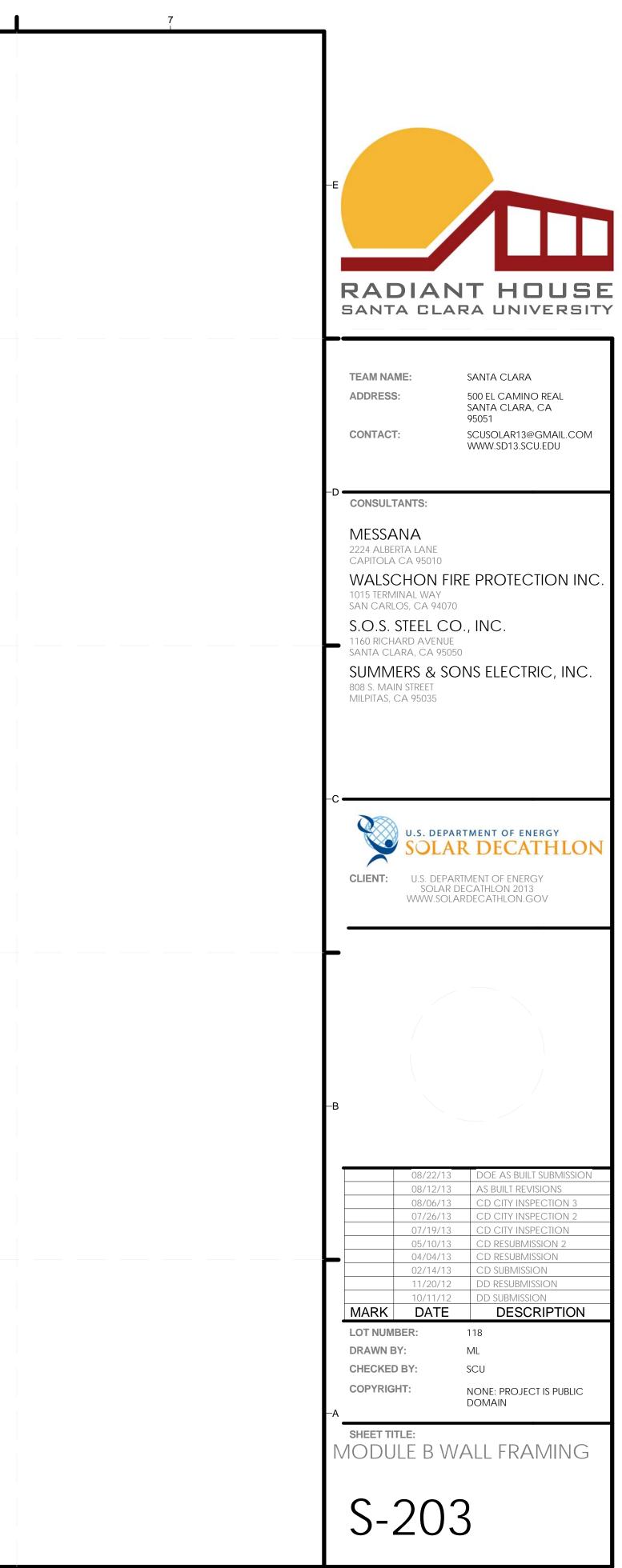





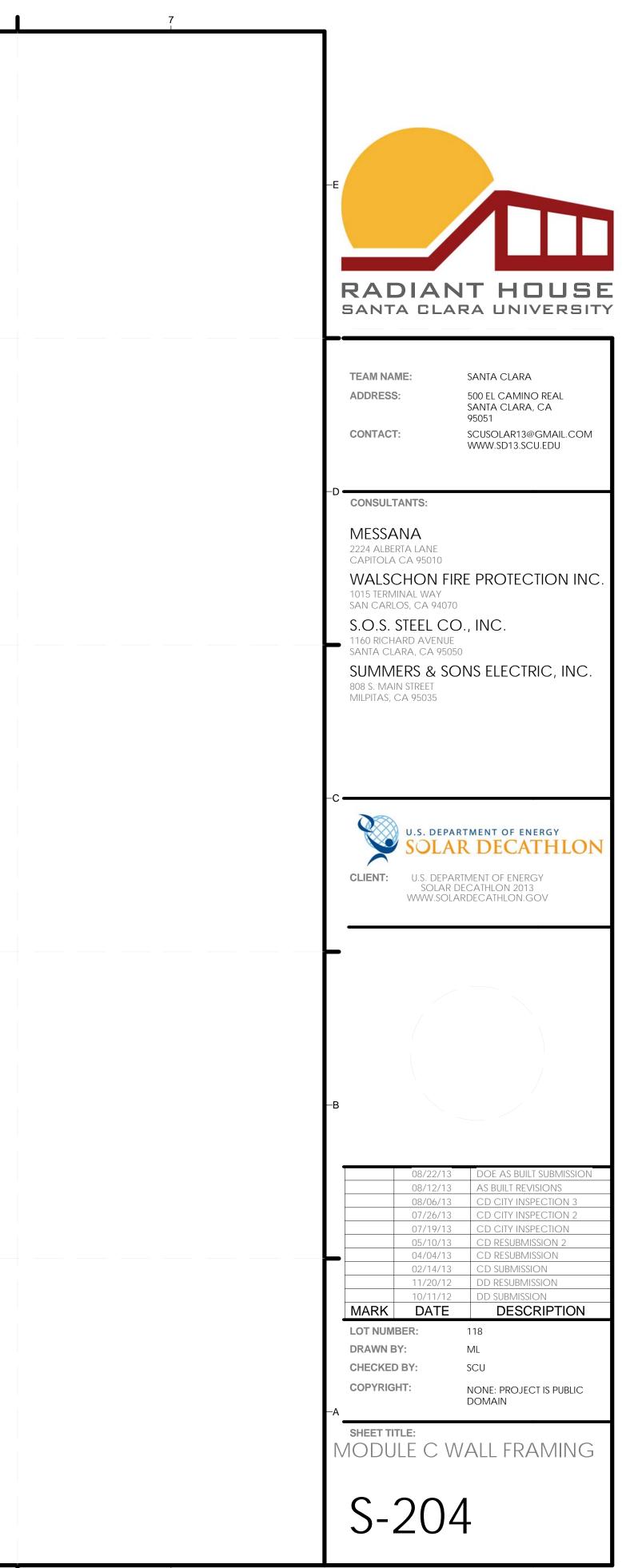


|             | 7                                                                                                                                                                                                               |                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|             | GENERAL SHEET NOTES                                                                                                                                                                                             |                                                                                                                                     |
|             | 1. REFER TO GENERAL STRUCTURAL NOTES &<br>DETAILS FOR GENERAL REQUIREMENTS OF<br>CONSTRUCTION, MATERIALS, AND REQUIREMENTS                                                                                      |                                                                                                                                     |
|             | <ul> <li>OF CONSTRUCTION OBSERVATIONS.</li> <li>2. SEE S-601 FOR JOIST HANGER SCHEDULE.</li> <li>3. SEE S-601 FOR PLYWOOD DIAPHRAGM SCHEDULE.</li> <li>4. 1 - 4X12 TRIMMED RIM JOIST NAILED TOGETHER</li> </ul> |                                                                                                                                     |
|             | 4. 1 - 4X12 TRIMMED RIM JOIST NAILED TOGETHER<br>SHALL RUN CONTINUOUSLY INSIDE STEEL ANGLE.                                                                                                                     |                                                                                                                                     |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
|             |                                                                                                                                                                                                                 | RADIANT HOUSE                                                                                                                       |
|             |                                                                                                                                                                                                                 | SANTA CLARA UNIVERSITY                                                                                                              |
| E           |                                                                                                                                                                                                                 |                                                                                                                                     |
|             |                                                                                                                                                                                                                 | TEAM NAME:SANTA CLARAADDRESS:500 EL CAMINO REAL<br>SANTA CLARA, CA                                                                  |
|             |                                                                                                                                                                                                                 | 95051<br>CONTACT: SCUSOLAR13@GMAIL.COM<br>WWW.SD13.SCU.EDU                                                                          |
|             |                                                                                                                                                                                                                 | WWWW.3D13.3CU.LDU                                                                                                                   |
| D           |                                                                                                                                                                                                                 | -D CONSULTANTS:                                                                                                                     |
|             |                                                                                                                                                                                                                 | MESSANA<br>2224 ALBERTA LANE                                                                                                        |
|             |                                                                                                                                                                                                                 | CAPITOLA CA 95010<br>WALSCHON FIRE PROTECTION INC.<br>1015 TERMINAL WAY                                                             |
|             |                                                                                                                                                                                                                 | SAN CARLOS, CA 94070<br>S.O.S. STEEL CO., INC.                                                                                      |
|             |                                                                                                                                                                                                                 | 1160 RICHARD AVENUE<br>SANTA CLARA, CA 95050<br>SUMMERS & SONS ELECTRIC, INC.                                                       |
|             |                                                                                                                                                                                                                 | 808 S. MAIN STREET<br>MILPITAS, CA 95035                                                                                            |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
| С           |                                                                                                                                                                                                                 | -C                                                                                                                                  |
|             |                                                                                                                                                                                                                 | U.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON                                                                                        |
|             |                                                                                                                                                                                                                 | CLIENT: U.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON 2013                                                                           |
|             |                                                                                                                                                                                                                 | WWW.SOLARDECATHLON.GOV                                                                                                              |
|             | LEGEND                                                                                                                                                                                                          | -                                                                                                                                   |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
|             | PLYWOOD BORDER                                                                                                                                                                                                  |                                                                                                                                     |
|             |                                                                                                                                                                                                                 |                                                                                                                                     |
| $\frown$    |                                                                                                                                                                                                                 | –В                                                                                                                                  |
| В           |                                                                                                                                                                                                                 |                                                                                                                                     |
|             |                                                                                                                                                                                                                 | 08/22/13 DOE AS BUILT SUBMISSION<br>08/12/13 AS BUILT REVISIONS                                                                     |
|             |                                                                                                                                                                                                                 | 08/06/13         CD CITY INSPECTION 3           07/26/13         CD CITY INSPECTION 2           07/19/13         CD CITY INSPECTION |
|             |                                                                                                                                                                                                                 | 05/10/13         CD RESUBMISSION 2           04/04/13         CD RESUBMISSION                                                       |
|             |                                                                                                                                                                                                                 | 02/14/13         CD SUBMISSION           11/20/12         DD RESUBMISSION           10/11/12         DD SUBMISSION                  |
|             |                                                                                                                                                                                                                 | MARKDATEDESCRIPTIONLOT NUMBER:118                                                                                                   |
|             |                                                                                                                                                                                                                 | DRAWN BY: ML<br>CHECKED BY: SCU                                                                                                     |
| A           |                                                                                                                                                                                                                 | COPYRIGHT: NONE: PROJECT IS PUBLIC<br>DOMAIN                                                                                        |
|             |                                                                                                                                                                                                                 | SHEET TITLE:<br>UPPER ROOF MODULE                                                                                                   |
| $\bigwedge$ |                                                                                                                                                                                                                 | FRAMING PLAN                                                                                                                        |
|             |                                                                                                                                                                                                                 | S-106                                                                                                                               |
| 6'          |                                                                                                                                                                                                                 |                                                                                                                                     |
|             | 7                                                                                                                                                                                                               |                                                                                                                                     |





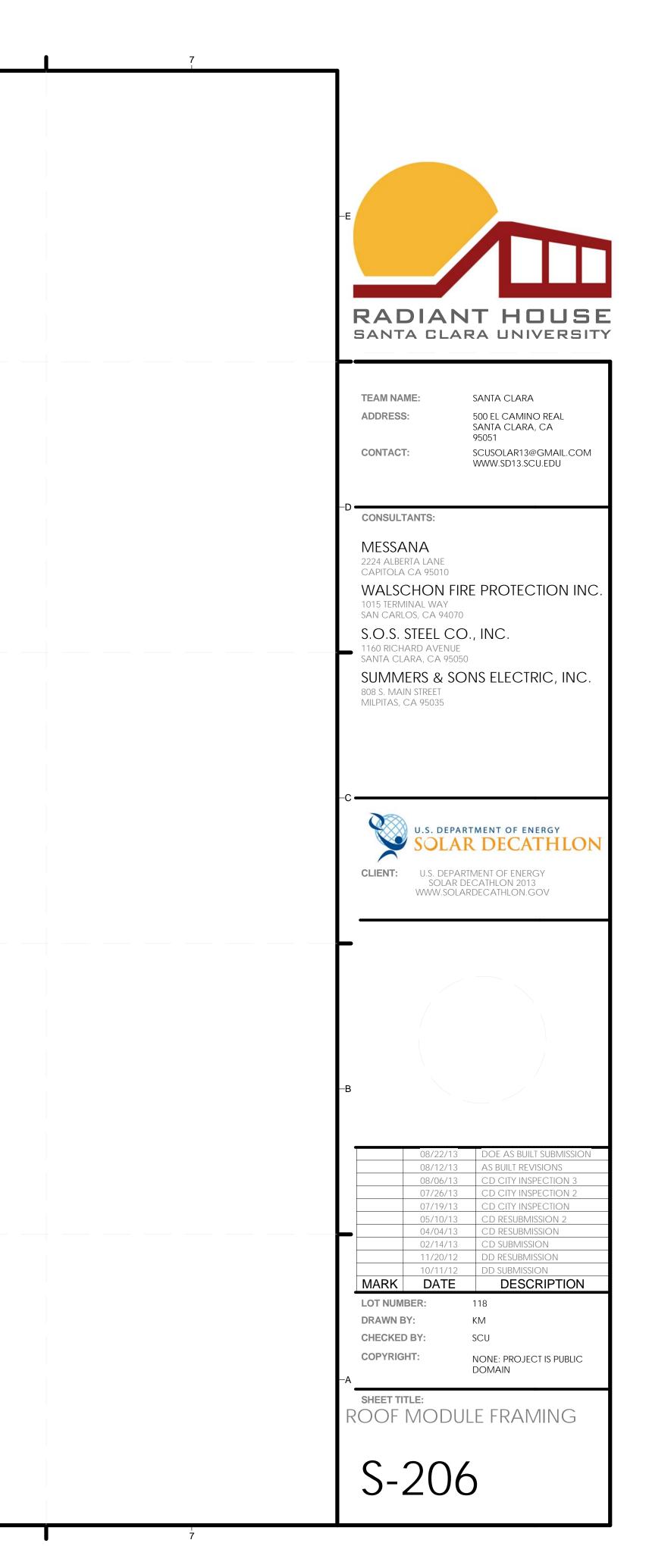



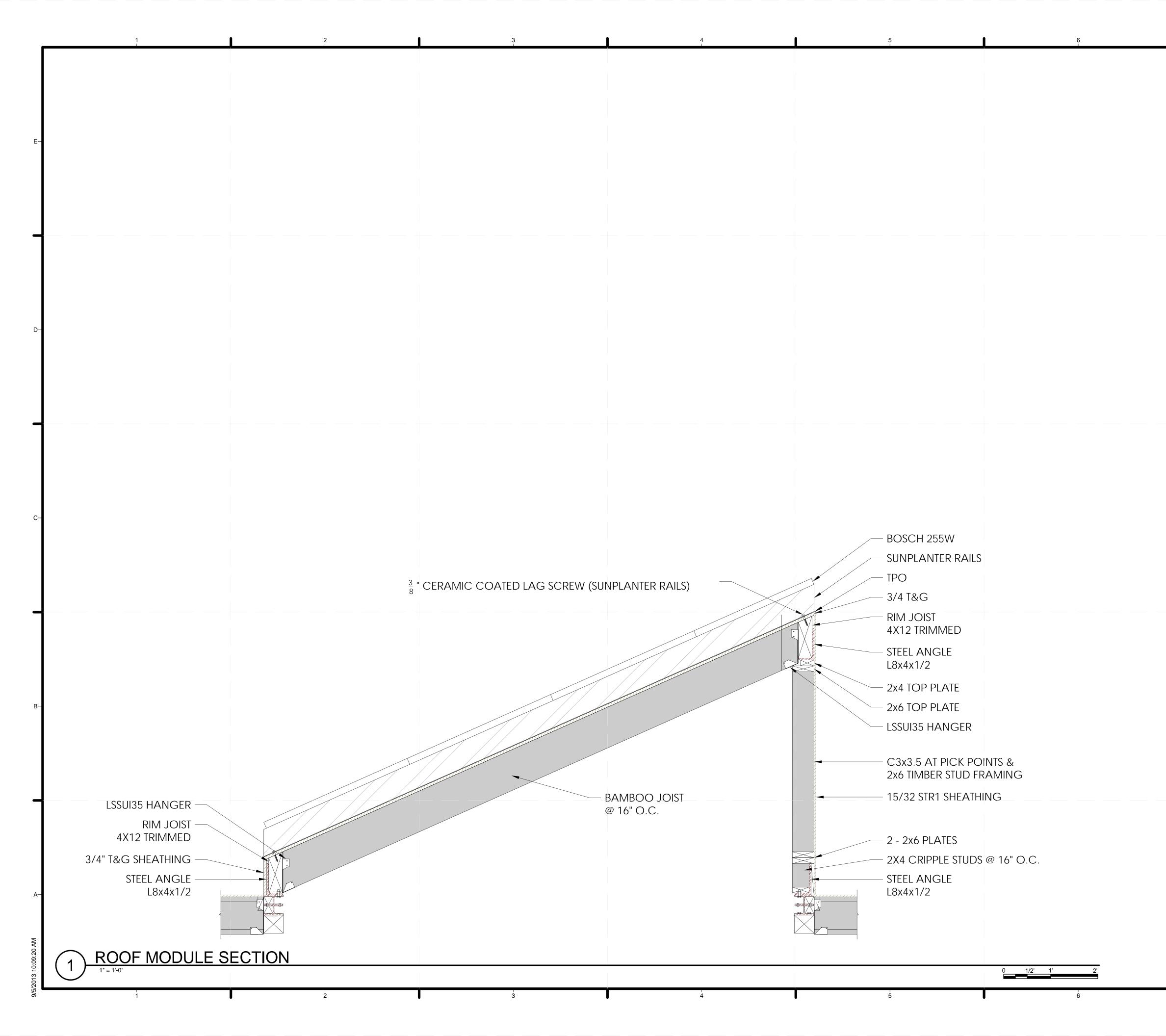


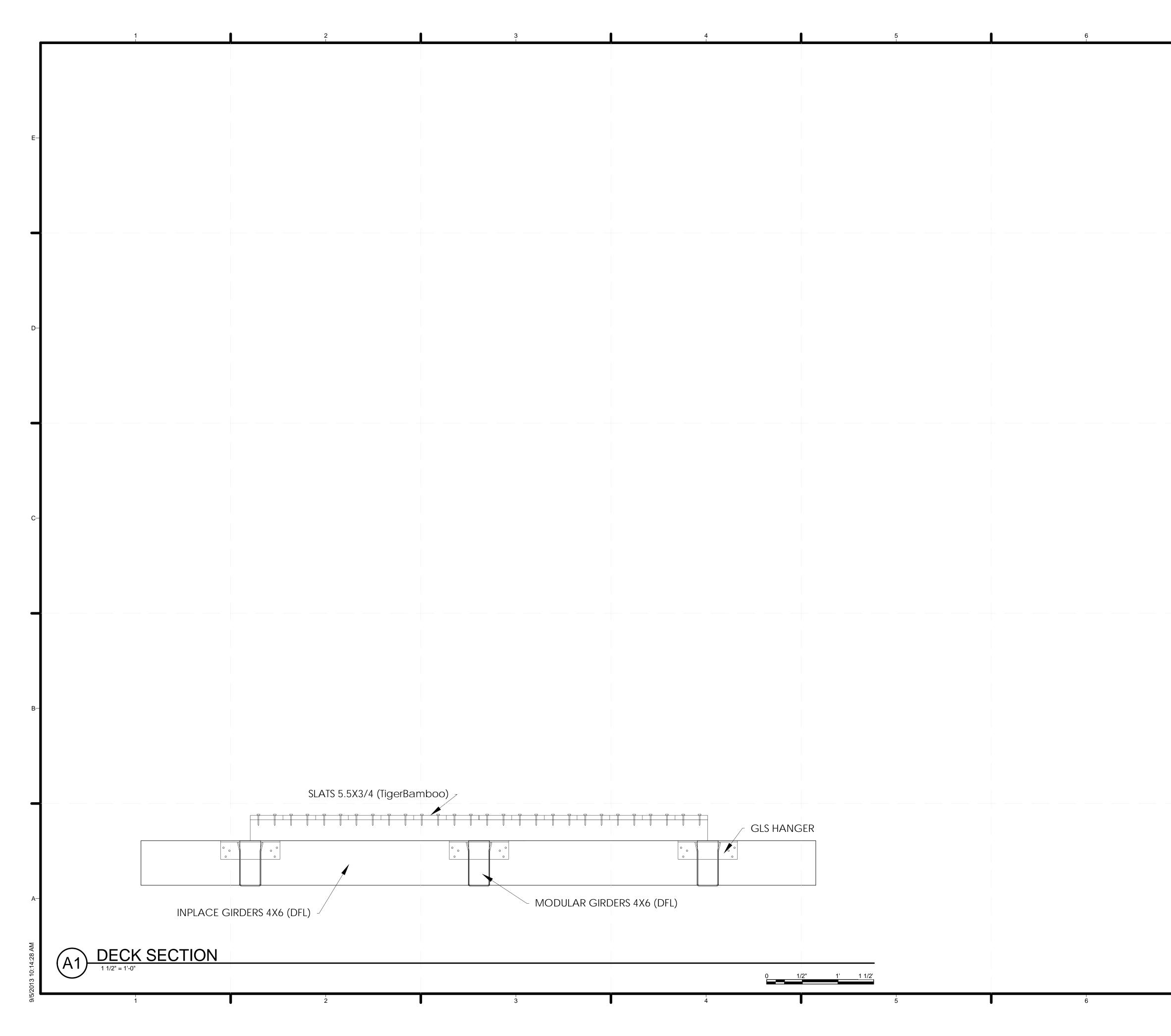


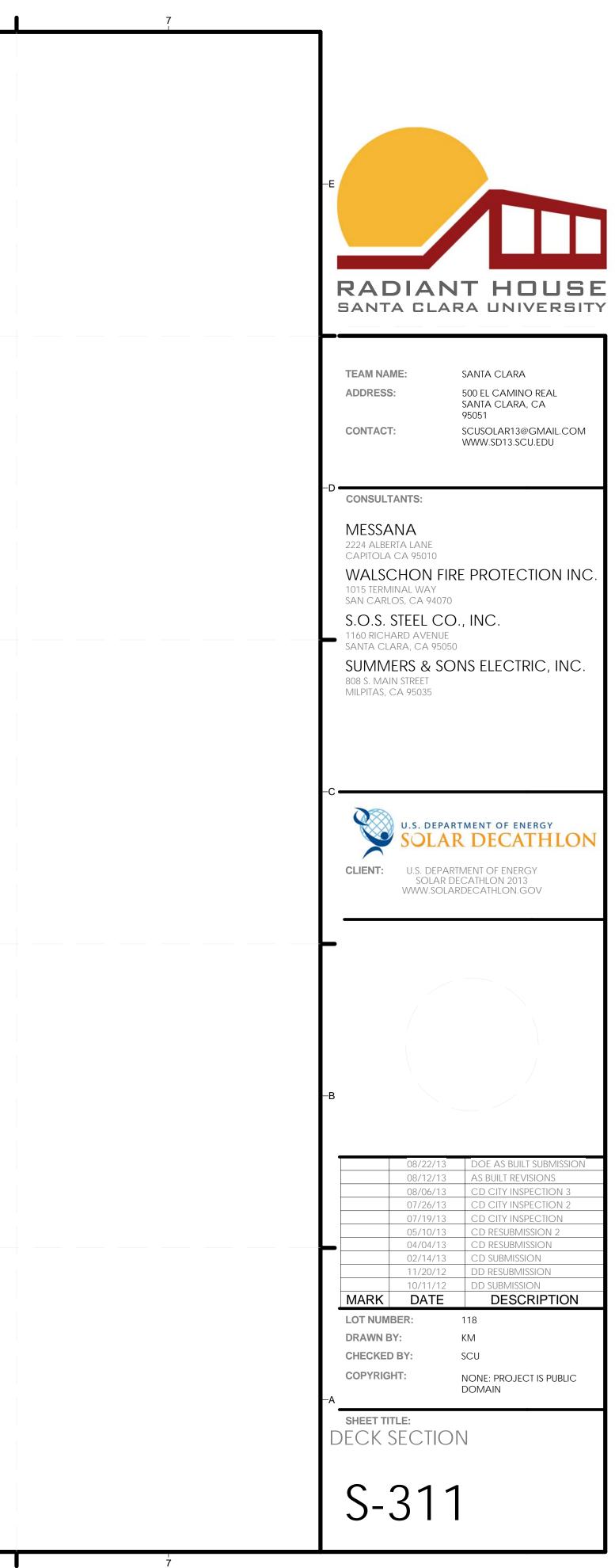


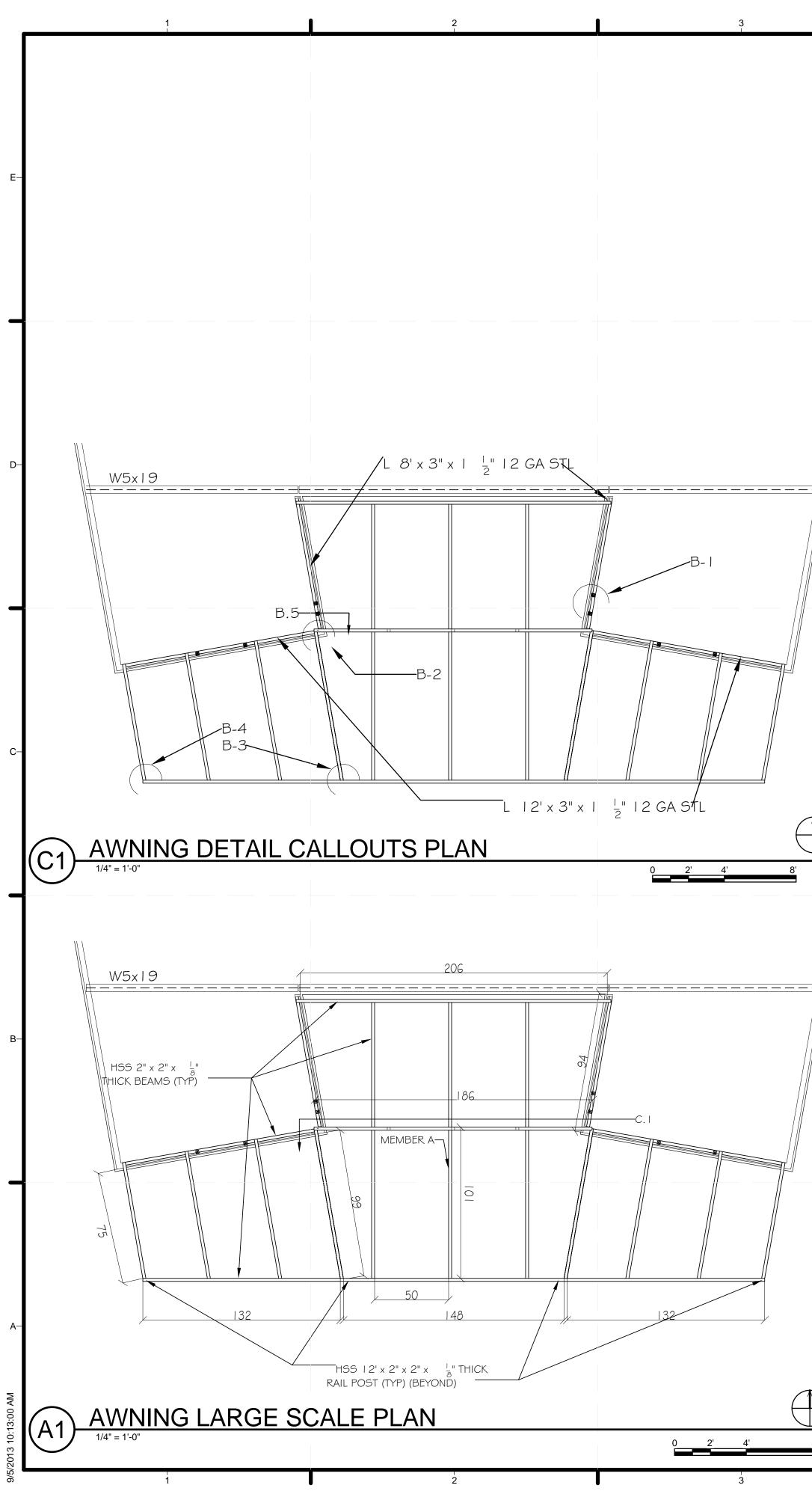



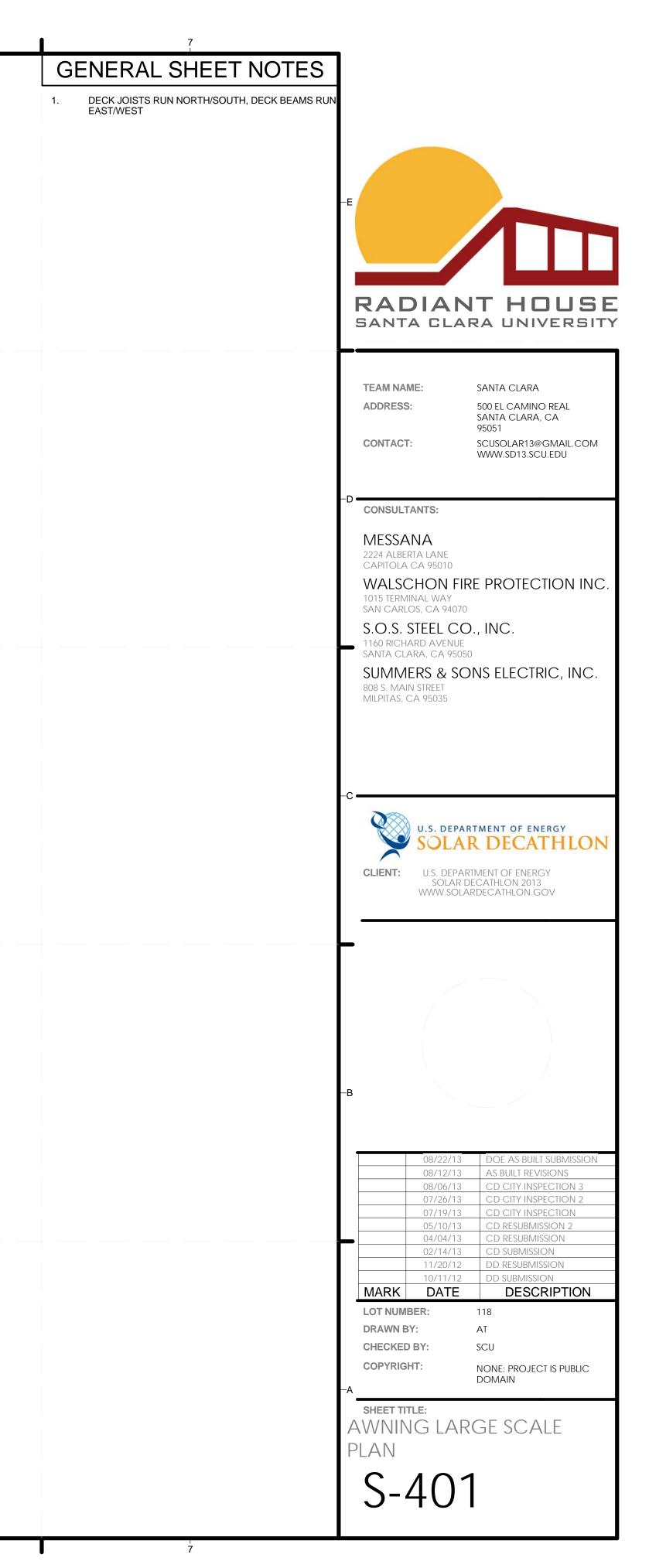


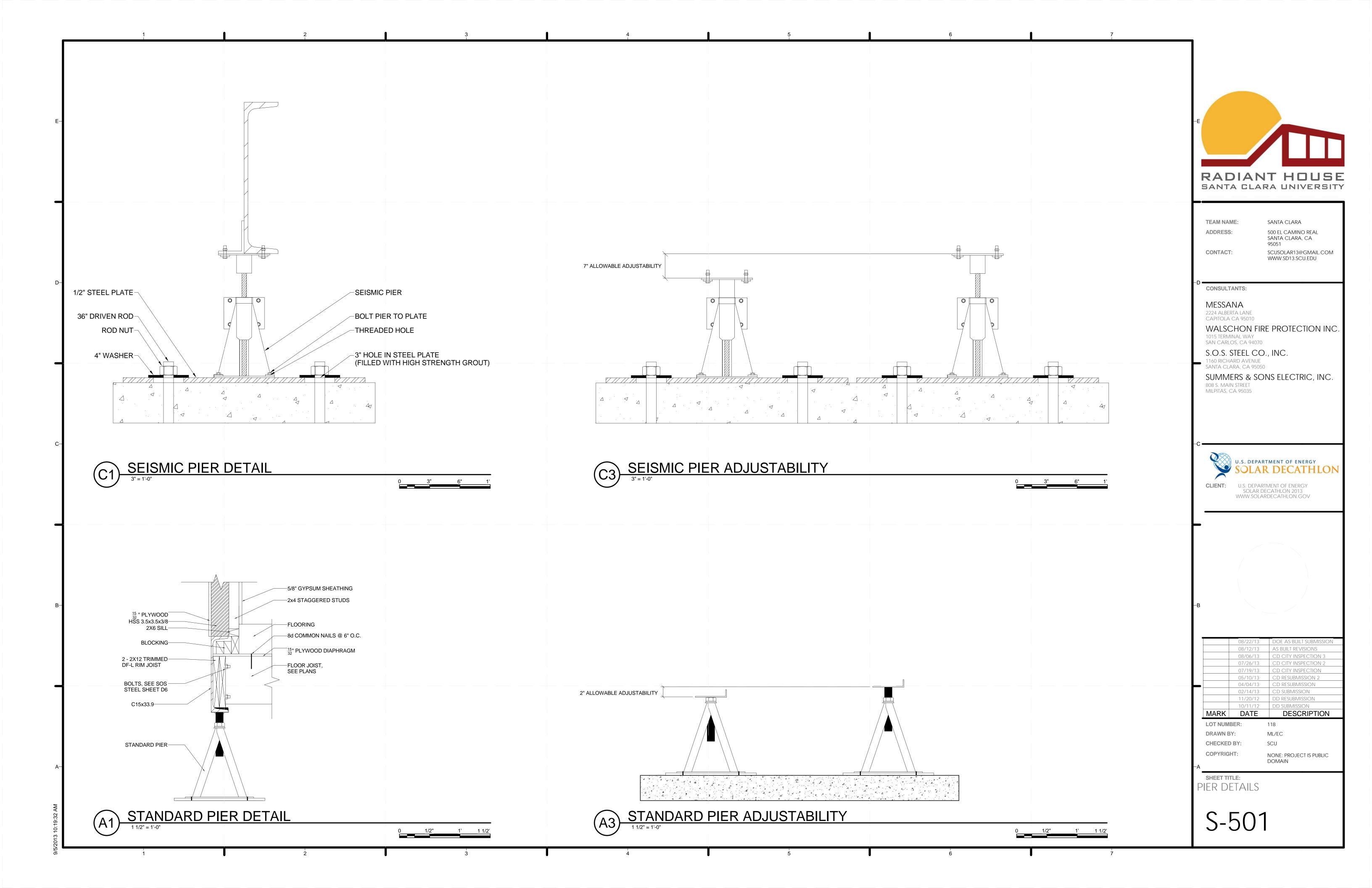



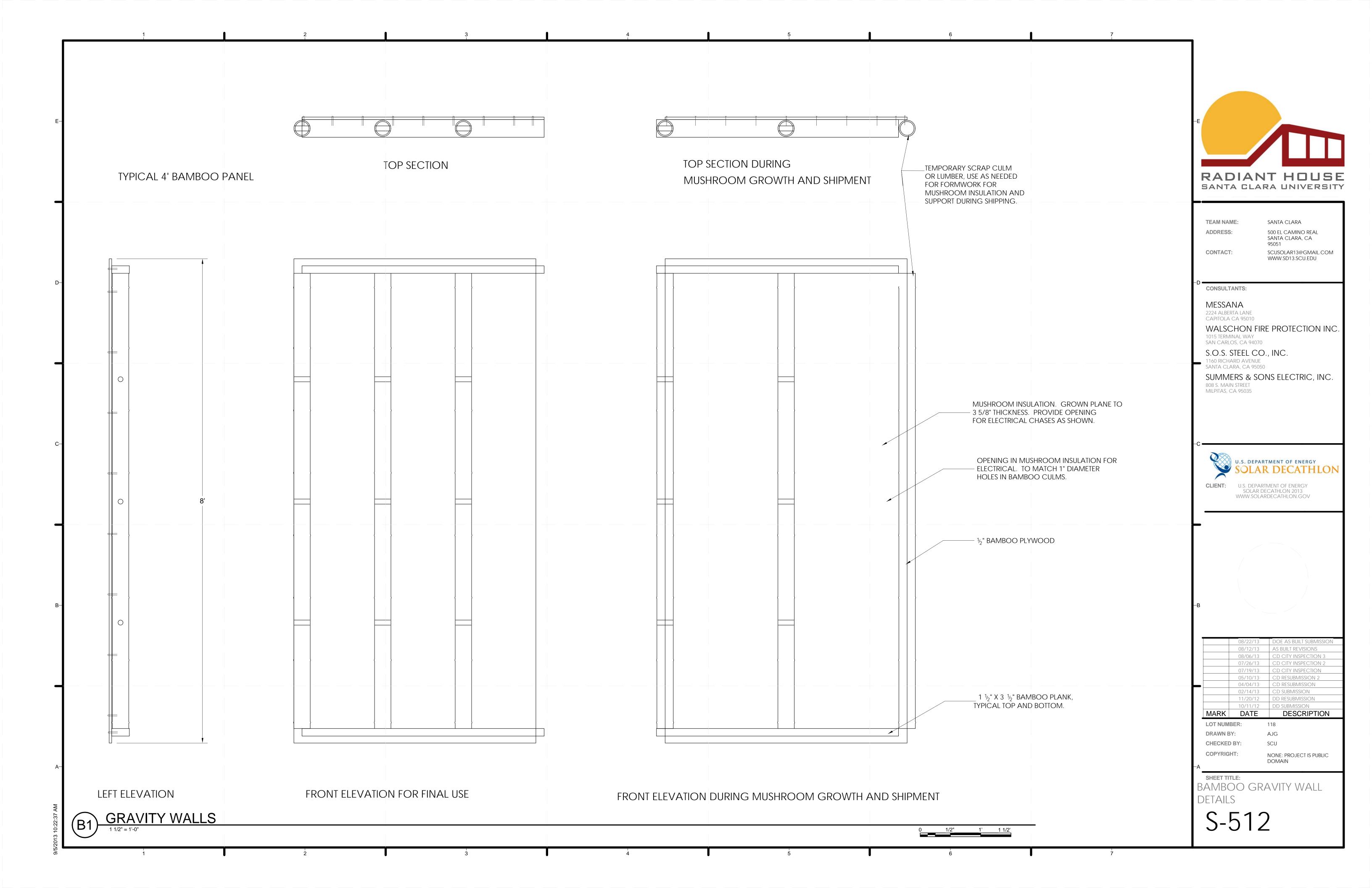


|                                                      | 1                          | 2                                            | 3 | 4                                                    | 5                                                        | 6          |
|------------------------------------------------------|----------------------------|----------------------------------------------|---|------------------------------------------------------|----------------------------------------------------------|------------|
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      | F_                         |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      | D-                         |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      | C-                         |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
| B                                                    | В-                         |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            | <u>IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIII</u> |   | <u>IIII KUUNANANANANANANANANANANANANANANANANANAN</u> | <u>IIII AMARANA INA INA INA INA INA INA INA INA INA </u> |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
|                                                      | A-                         |                                              |   |                                                      |                                                          |            |
|                                                      |                            |                                              |   |                                                      |                                                          |            |
| $\frac{1}{1/2" = 1'-0"} = \frac{1}{2} = \frac{1}{2}$ | $\frac{1}{2}$ 1/2" = 1'-0" |                                              |   |                                                      |                                                          | 0 1' 2' 4' |
|                                                      | 1                          | 2                                            | 3 | 4                                                    | 5                                                        | 6          |

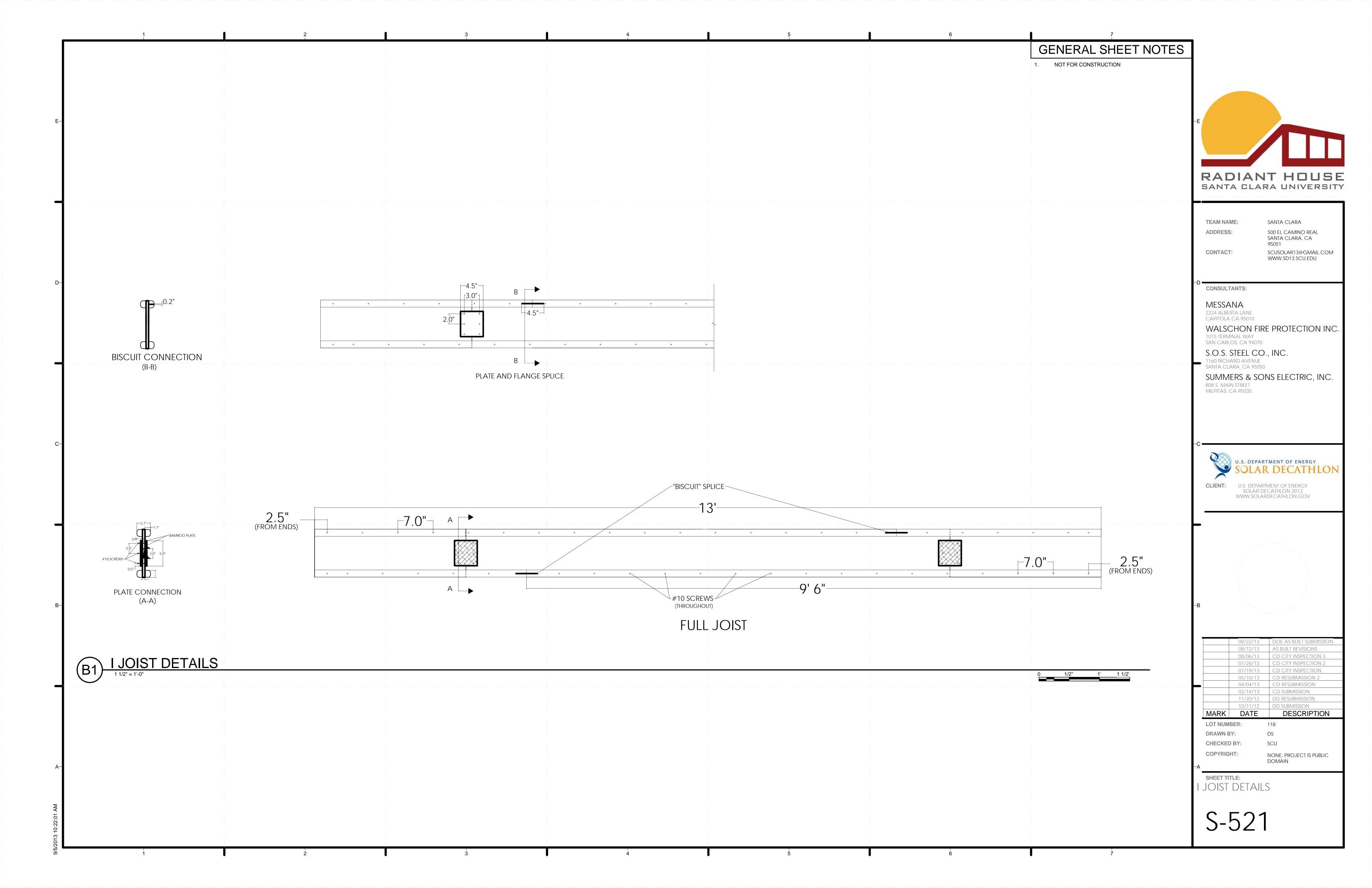


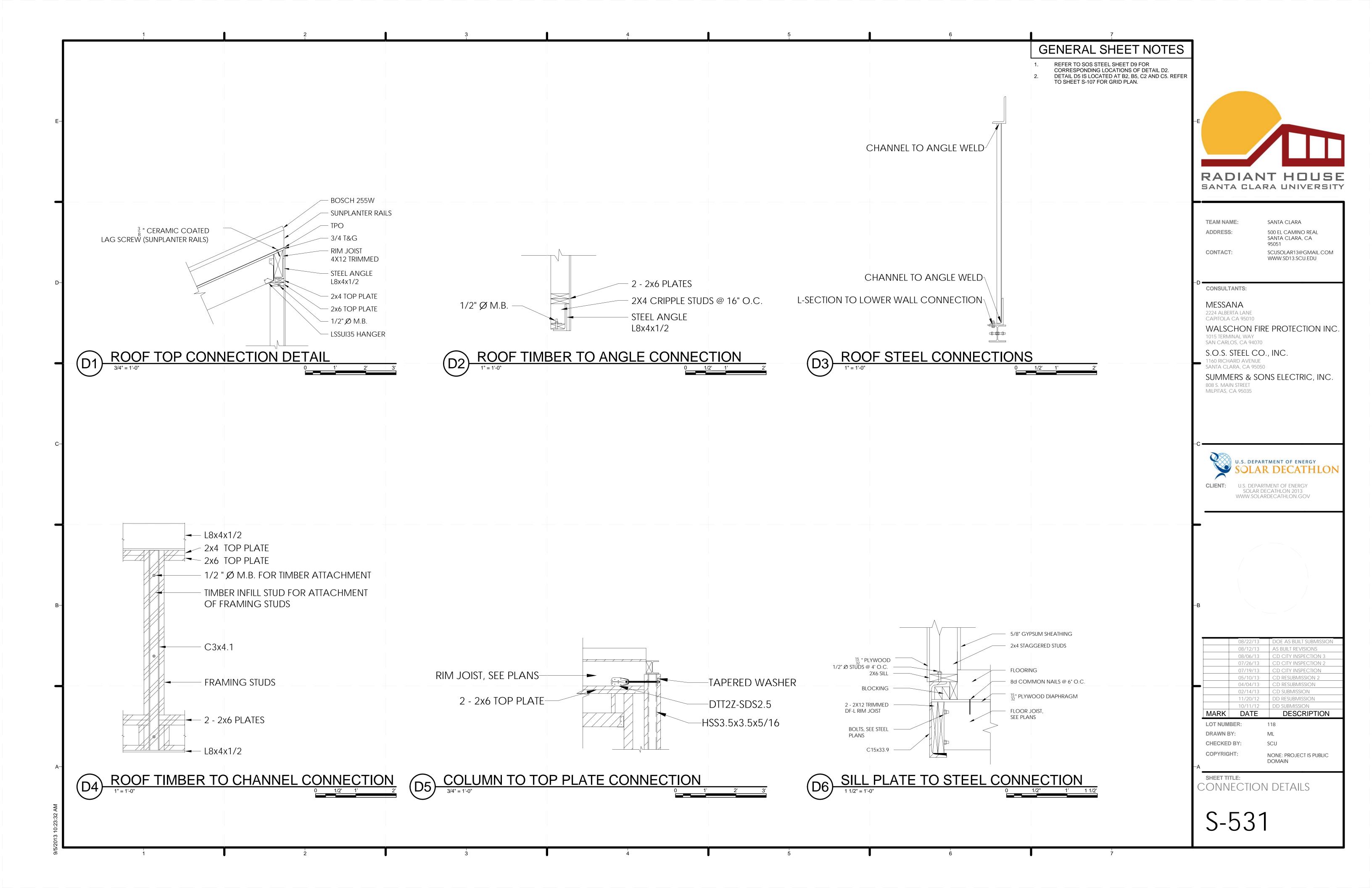


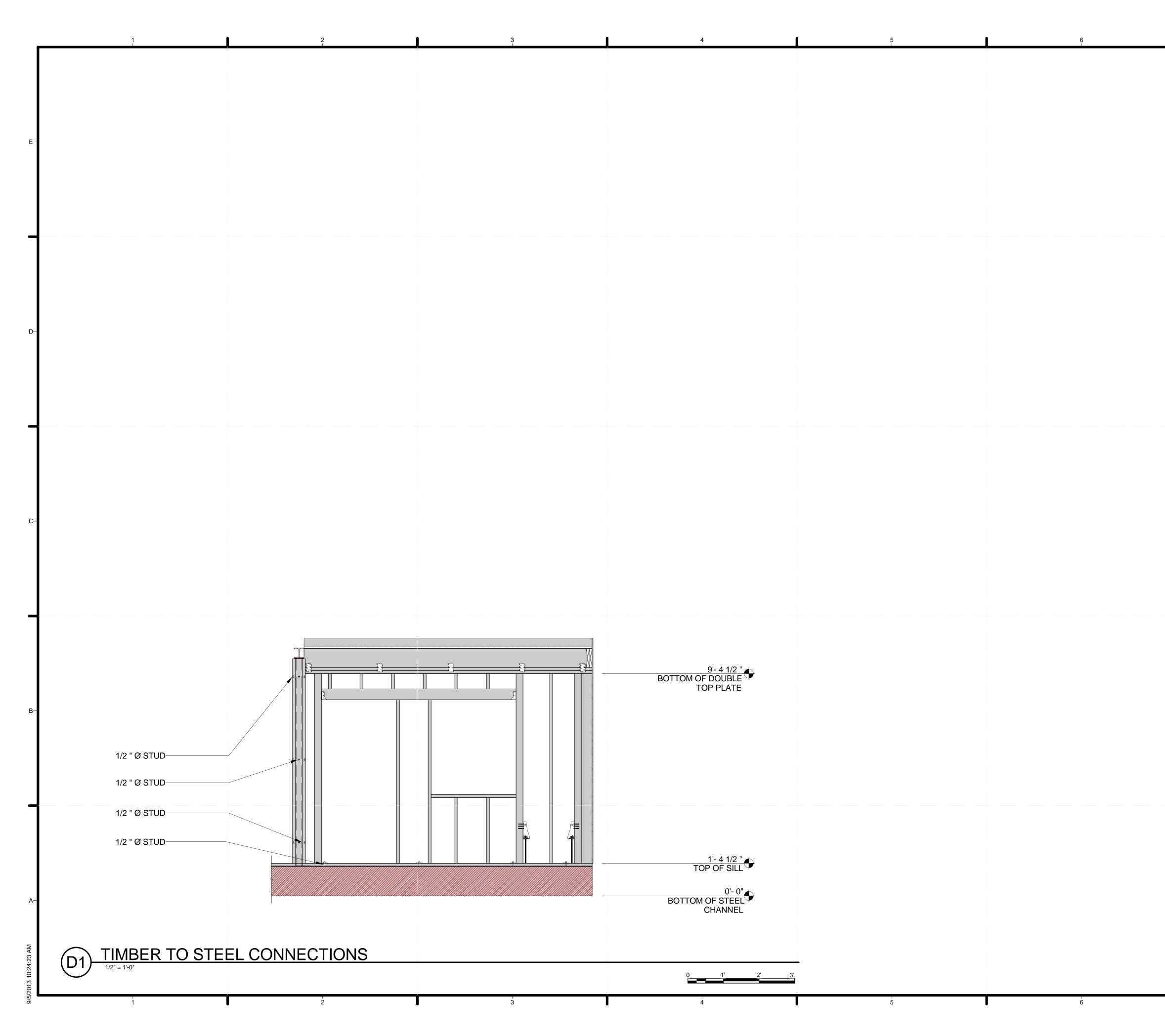


| 7                                                                                                                                                                         | -                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| GENERAL SHEET NOTES                                                                                                                                                       | _                                                                                                                                |
| 1. REFER TO GENERAL STRUCTURAL NOTES &<br>DETAILS FOR GENERAL REQUIREMENTS OF<br>CONSTRUCTION, MATERIALS, AND REQUIREMENTS<br>OF CONSTRUCTION OBSERVATIONS.               |                                                                                                                                  |
| <ol> <li>S.A.D. FOR ALL DIMENSIONS AND FINISH ELEVATION<br/>NOT NOTED.</li> <li>S.A.D. FOR ALL FINISHES, FIRE PROTECTION,<br/>THERMAL AND MOISTURE PROTECTION,</li> </ol> | s                                                                                                                                |
| WATERPROOFING, AND ACOUSTICAL<br>REQUIREMENTS FOR ALL CEILINGS, WALLS,<br>FLOORS, ROOF DECKS, AND TERRACES.                                                               | -E                                                                                                                               |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           | RADIANT HOUSE                                                                                                                    |
|                                                                                                                                                                           | SANTA CLARA UNIVERSITY                                                                                                           |
|                                                                                                                                                                           | TEAM NAME: SANTA CLARA                                                                                                           |
|                                                                                                                                                                           | ADDRESS: 500 EL CAMINO REAL<br>SANTA CLARA, CA<br>95051                                                                          |
|                                                                                                                                                                           | CONTACT: SCUSOLAR13@GMAIL.COM<br>WWW.SD13.SCU.EDU                                                                                |
|                                                                                                                                                                           | -D -CONSULTANTS:                                                                                                                 |
|                                                                                                                                                                           | MESSANA                                                                                                                          |
|                                                                                                                                                                           | 2224 ALBERTA LANE<br>CAPITOLA CA 95010<br>WALSCHON FIRE PROTECTION INC.                                                          |
|                                                                                                                                                                           | 1015 TERMINAL WAY<br>SAN CARLOS, CA 94070                                                                                        |
|                                                                                                                                                                           | S.O.S. STEEL CO., INC.<br>1160 RICHARD AVENUE<br>SANTA CLARA, CA 95050                                                           |
|                                                                                                                                                                           | SUMMERS & SONS ELECTRIC, INC.<br>808 S. MAIN STREET<br>MILPITAS, CA 95035                                                        |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           | -C                                                                                                                               |
|                                                                                                                                                                           | U.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON                                                                                     |
|                                                                                                                                                                           | CLIENT: U.S. DEPARTMENT OF ENERGY<br>SOLAR DECATHLON 2013                                                                        |
|                                                                                                                                                                           | WWW.SOLARDECATHLON.GOV                                                                                                           |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           | -В                                                                                                                               |
|                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                           | 08/22/13DOE AS BUILT SUBMISSION08/12/13AS BUILT REVISIONS08/06/13CD CITY INSPECTION 3                                            |
|                                                                                                                                                                           | 07/26/13         CD CITY INSPECTION 2           07/19/13         CD CITY INSPECTION           05/10/13         CD RESUBMISSION 2 |
|                                                                                                                                                                           | 04/04/13         CD RESUBMISSION           02/14/13         CD SUBMISSION           11/20/12         DD RESUBMISSION             |
|                                                                                                                                                                           | 10/11/12         DD SUBMISSION           MARK         DATE         DESCRIPTION                                                   |
|                                                                                                                                                                           | LOT NUMBER: 118<br>DRAWN BY: ML                                                                                                  |
|                                                                                                                                                                           | CHECKED BY: SCU<br>COPYRIGHT: NONE: PROJECT IS PUBLIC<br>DOMAIN                                                                  |
|                                                                                                                                                                           | -A<br>SHEET TITLE:                                                                                                               |
|                                                                                                                                                                           | ROOF MODULE SECTION                                                                                                              |
|                                                                                                                                                                           | S-301                                                                                                                            |
|                                                                                                                                                                           | 5-201                                                                                                                            |

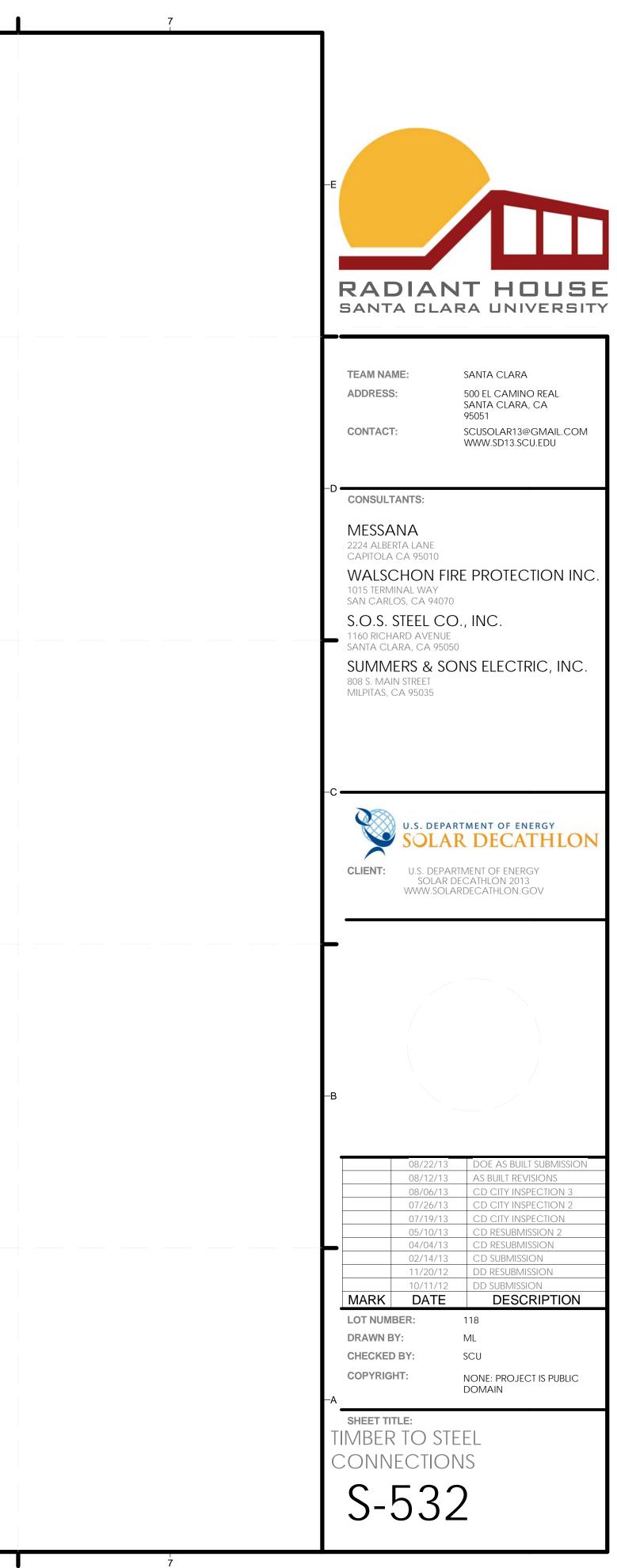


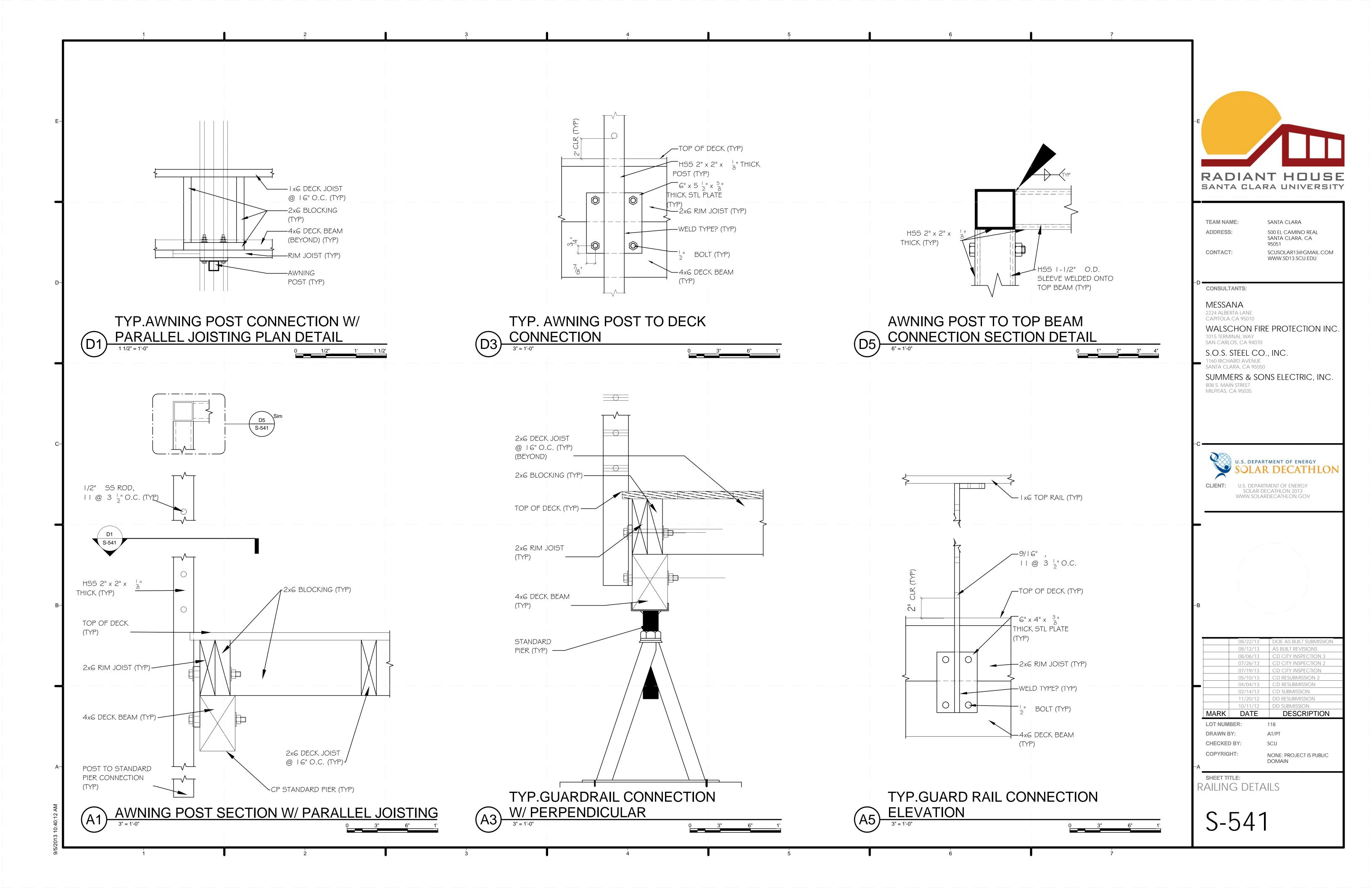



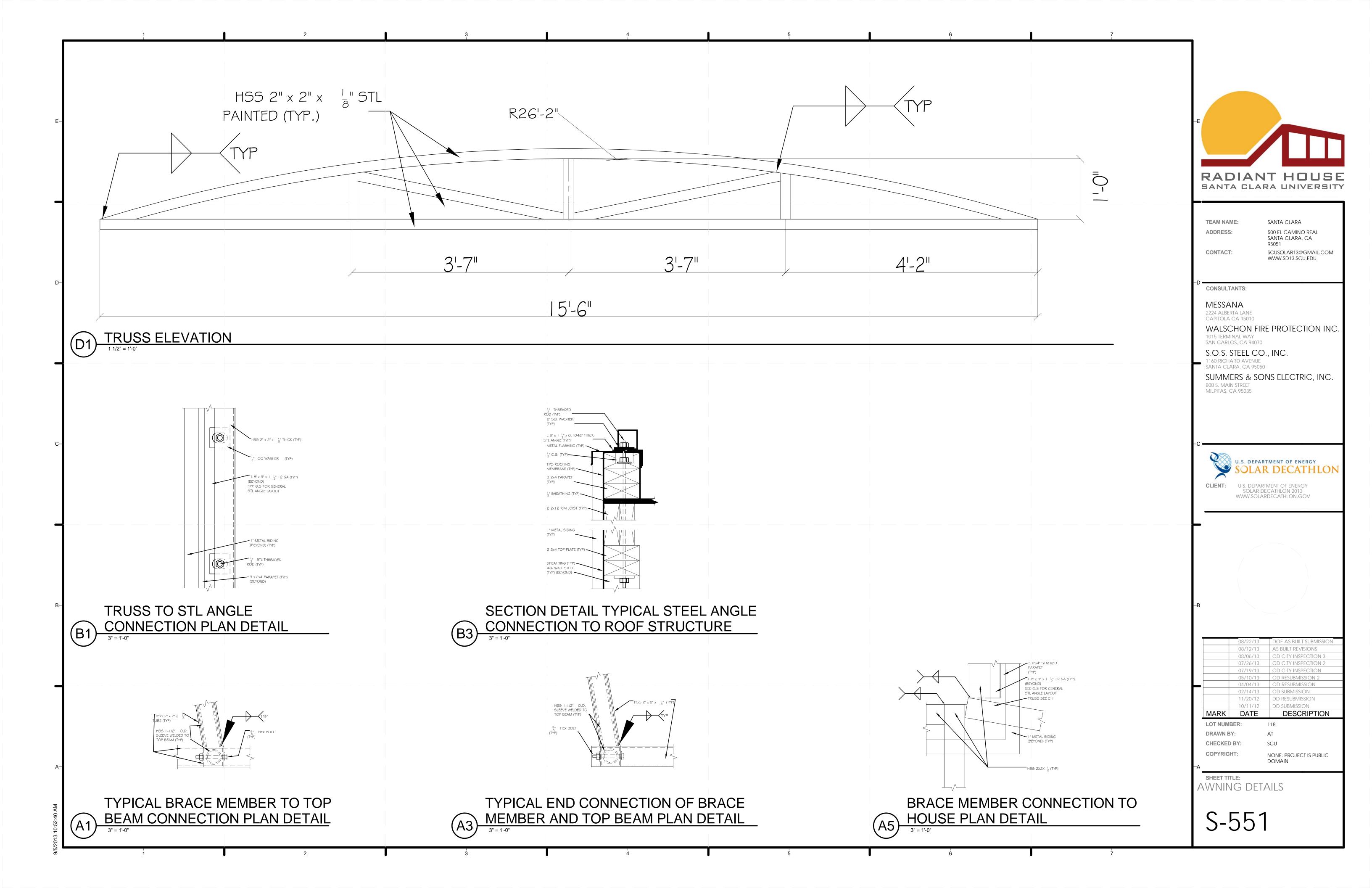





|    | 4      | <u> </u> | 5 | 6 | 3 |
|----|--------|----------|---|---|---|
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
|    |        |          |   |   |   |
| 8' | 1<br>4 |          | 5 |   | 3 |














| SHEAR WALL SCHEDULE           WALL         MIN.<br>BASK<br>WOTH         CAPACITY<br>SPIC.         SHEAR WALL SCHEDULE           A         2-10.187         351         5127*570/CTURA         10.016         SHEAR         VERTICAL           A         2-10.187         370.0         1392*5780/CTURA         10.016         SHEAR         VERTICAL           A         2-10.187         475.0         1392*5780/CTURA         10.016         SHEAR         VERTICAL           C         2-10.187         475.0         1392*5780/CTURA         10.016         SHEAR         VERTICAL           C         2-10.187         475.0         1392*5780/CTURA         10.016         SHEAR         VERTICAL           C         2-10.187         476.0         1392*5780/CTURA         10.016         SHEAR         VERTICAL           C         2-10.187         460.0         1592*5780/CTURA         10.016         SHEAR         VERTICAL           C         2-10.27         480.0         1592*5780/CTURA         10.016         SHEAR         VERTICAL           C         12-24.047         490.0         1592*5780/CTURA         10.016         SHEAR         VERTICAL           K         10-24.427         150.0         1592*5780/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>MOL2 502.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>ACCUPS 0F<br>27'' 0.C         PU02 502.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>27'' 0.C         PU02 502.5           F         2'-3' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>100 2.052.5         PU02 502.5           I         4'-0"         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>10''''''''''         PU02 502.5           I         2'-8/4''         4''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 1                          |                               |              |                             | <u> </u>      |                         |             |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------|-------------------------------|--------------|-----------------------------|---------------|-------------------------|-------------|---|
| WALL         MN.<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NALING         SHEAR<br>CLPS         VERTICAL<br>HOLDOWN           A         2:00.18*         475.0         15/32*STRUCTURAL 1         100 de 6         ASCUPE de<br>ASCUPE dE<br>ASCUP DE<br>ASCUPA DE<br>ASCUPE DE<br>ASCUPE DE<br>ASCUPE DE<br>ASCUPE DE<br>A                                                                                                                                                                                                 | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>MOL2 502.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>ACCUPS 0F<br>27'' 0.C         PU02 502.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>27'' 0.C         PU02 502.5           F         2'-3' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>100 2.052.5         PU02 502.5           I         4'-0"         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>10''''''''''         PU02 502.5           I         2'-8/4''         4''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                            |                               |              |                             |               |                         |             |   |
| WALL         BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NALING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2*0.01%         475.0         15/32*STRUCTURAL         100.01%         A         200.2582.5           B         2*0.01%         475.0         15/32*STRUCTURAL         100.01%         A         200.2582.5           C         2*30.12%         475.0         15/32*STRUCTURAL         100.01%         A         200.2582.5           C         2*30.12%         475.0         15/32*STRUCTURAL         100.01%         A         200.2582.5           F         2*9*         340.0         15/32*STRUCTURAL         100.01%         A         35:CUS & H00.2592.5           F         7*5         340.0         15/32*STRUCTURAL         100.01%         A         35:CUS & H00.2592.5           I         4*0*         665.0         15/32*STRUCTURAL         100.01%         A         35:CUS & H00.2592.5           I         2*0*0.2         15/32*STRUCTURAL         100.01%         A         35:CUS & H00.2592.5           I         2*0*0.2         15/32*STRUCTURAL         100.01%         A         35:CUS & H00.2592.5           I         2*0.02         15/32*STRUCTURAL         100.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>MOL2 502.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>ACCUPS 0F<br>27'' 0.C         PU02 502.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>27'' 0.C         PU02 502.5           F         2'-3' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>100 2.052.5         PU02 502.5           I         4'-0"         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>10''''''''''         PU02 502.5           I         2'-8/4''         4''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                            |                               |              |                             |               |                         |             |   |
| WALL         MAXE<br>MASE<br>MODTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2:101/8"         475.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           B         2:101/8"         475.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           C         2:401/8"         475.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           C         2:401/8"         475.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           C         2:401/8"         470.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           G         12:40"         300.0         15/22" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           G         12:40"         665.0         15/32" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           L         2:83/4"         475.0         15/32" STRUCTURAL 1         104/6/6         435.0018/6         HOLD SDD.5.           L         2:83/4"         475.0         15/32" STRUCTURAL 1         104/6/6         435.0018/6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>MOL2 502.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>ACCUPS 0F<br>27'' 0.C         PU02 502.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>27'' 0.C         PU02 502.5           F         2'-3' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUPS 0F<br>100 2.052.5         PU02 502.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>100 2.052.5         PU02 502.5           I         4'-0"         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUPS 0F<br>10''''''''''         PU02 502.5           I         2'-8/4''         4''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                            |                               |              |                             |               |                         |             |   |
| WALL         MAS.<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NALING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2*10.1/8*         475.0         15/32* STRUCTURAL 1         104.0*         4.35.00*6         HOU2502.3           B         2*10.1/8*         475.0         15/32* STRUCTURAL 1         104.0*         4.35.00*6         HOU2502.3           C         2*20.1/8*         475.0         15/32* STRUCTURAL 1         104.0*         A.35.00*6         HOU2502.3           C         2*20.1/8*         475.0         15/32* STRUCTURAL 1         104.0*         A.35.00*6         HOU2502.3           C         2*3.0*         400.0         15/32* STRUCTURAL 1         104.0*         A.35.00*6         HOU2502.3           C         12*0*         340.0         15/32* STRUCTURAL 1         104.0*         A.35.00*6         HOU2502.3           J         2*3.0*         15/32* STRUCTURAL 1         104.0*         A.50.0*6         HOU2502.3           J         2*3.0*         15/32* STRUCTURAL 1         104.0*         A.50.0*6         HOU2502.3           J         2*3.0*         15/32* STRUCTURAL 1         104.0*         A.35.00*6         HOU2502.3           J         2*3.0*         15/32* STRUCTUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           F         2'-9' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           I         4'-6'         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUIPS 6P         HOU2 5052.5           I         2'-8/4'         4'75.0         15/32' STRUCTURAL 1         100 6.4         ASCUIPS 6P         HOU2 5052.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                            |                               |              |                             |               |                         |             |   |
| WALL         BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NALING         SHEAR<br>CLPS         VERTICAL<br>HOLDOWN           A         2'-0.01%         475.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           B         2'-0.01%         475.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           C         2'-10.01%         475.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           C         2'-10.01%         475.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           E         2'.9         360.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           G         12'.4'         360.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           J         2'8 1/2*         510.0         15/32*STRUCTURAL 1         100.004         AMOUSDOUT         100.2502.3           J         2'8 1/2*         510.0         15/32*STRUCTURAL 1         100.004         ASCUPS 0         100.2502.3           J         2'8 3/4*         475.0         15/32*STRUCTURAL 1         100.004         ASCUPS 0         100.2502.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WALL         MIN,<br>BASE<br>WIDTH         CAPACITY<br>(PLF)         SHEATHING         EDGE<br>NAILING         SHEAR<br>CLIPS         VERTICAL<br>HOLDOWN           A         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           B         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           C         2'101/8"         475.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           F         2'-9' 340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           G         12'-4"         340.0         15/32' STRUCTURAL 1         100 6.6         ASCUIPS 6P         HOU2 5052.5           I         4'-6'         665.0         15/32' STRUCTURAL 1         100 6.4         ASCUIPS 6P         HOU2 5052.5           I         2'-8/4'         4'75.0         15/32' STRUCTURAL 1         100 6.4         ASCUIPS 6P         HOU2 5052.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                            |                               |              |                             |               |                         |             |   |
| WALL         PASE<br>WIDTH         (PLF)         SHEAT<br>MAILING         EDGE<br>SHEAT<br>MAILING         SHEAT<br>SCIPS &<br>MAILING         VERTICAL<br>MAILING           A         2:101/8"         475.0         15/32"STRUCTURAL 1         10d @ 6         435 CUPS @<br>MOU 2505.5           B         2:401/8"         475.0         15/32"STRUCTURAL 1         10d @ 6         435 CUPS @<br>MOU 2505.5           C         2:401/8"         475.0         15/32"STRUCTURAL 1         10d @ 6         435 CUPS @<br>MOU 2505.5           C         2:401/8"         473.0         15/32"STRUCTURAL 1         10d @ 6         435 CUPS @<br>MOU 2505.5           F         7:5"         340.0         15/32"STRUCTURAL 1         10d @ 6         435 CUPS @<br>MOU 2505.5           G         12:4"         340.0         15/32"STRUCTURAL 1         10d @ 4         435 CUPS @<br>MOU 2505.5           I         d*0"         665.0         15/32"STRUCTURAL 1         10d @ 4         335 CUPS @<br>MOU 2505.5           J         2:8 1/4"         97.0         15/32"STRUCTURAL 1         10d @ 4         335 CUPS @<br>MOU 2505.5           J         2:8 3/4"         475.0         15/32"STRUCTURAL 1         10d @ 4         335 CUPS @<br>MOU 25052.5           M         2:8 3/4"         475.0         15/32"STRUCTURAL 1         10d @ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WALL         BASE         CAPACITY         SHEATHING         EDGE         SHEAR         VENTICAL           A         2:011/8"         475.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           B         2:011/8"         475.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           C         2:101/8"         475.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           D         2:101/8"         475.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           C         2:401/8"         440.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           F         7:-5"         340.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           G         12'-4"         340.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           J         2'-41/2"         510.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U23032.5           J         2'-41/2"         510.0         15/32" STRUCTURAL 1         10d #6         A35 CUPS #0         H0U43032.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Γ |                            |                               | S            | HEAR WALL SCHEDU            | ILE           |                         |             |   |
| A         2:10.0°         07:00         15/32         STRUCTURAL 1         100 @ 6         2:10.0°         PROCESSUES           B         2:10.1/8         475.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         PODU 5032.5           D         2:10.1/8         475.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         PODU 5032.5           D         2:10.1/8         475.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         PODU 5032.5           F         7.5*         340.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         PODU 5032.5           G         137.0*         340.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         PODU 5032.5           I         4-0*         665.0         15/32*STRUCTURAL 1         100 @ 6         ASCUPS @         HOU 4:5032.5           J         2:3.12"         510.0         15/32*STRUCTURAL 1         100 @ 4         ASCUPS @         HOU 4:5032.5           J         2:3.12"         510.0         15/32*STRUCTURAL 1         100 @ 4         ASCUPS @         HOU 4:5032.5           J         2:3.0.1         15/32*STRUCTURAL 1         100 @ 4         ASCUPS @         HOU 4:5032.5           J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A         2-10 JA         4/3 JU         1/3/2 STRUCTURAL 1         1/0/4 #S         2/2*0_C         P/0/2 SU23           B         2*10 J/8*         4/75.0         15/32* STRUCTURAL 1         1/0/4 #S         2/2*0 J/8*         P/0/2 SU23           C         2*10 J/8*         4/75.0         15/32* STRUCTURAL 1         1/0/4 #S         2/2*0 J/8*         P/0/2 SU23           D         2*10 J/8*         4/75.0         15/32* STRUCTURAL 1         1/0/4 #S         2/2*0 J/8*         P/0/2 SU23           F         7*5*         3/40.0         15/32* STRUCTURAL 1         1/0/4 #S         2/2*0 J/8*         P/0/2 SU23           G         12*2*         3/40.0         15/32* STRUCTURAL 1         1/0/4 #S         2/2*0 J/8*         P/0/2 SU23           I         4/0*         665.0         15/32* STRUCTURAL 1         1/0/4 #S         3/0*0 J/8*         P/0/2 SU23           J         2*3 1/2*         510.0         15/32* STRUCTURAL 1         1/0/4 #A         3/0*0 J/8*         P/0/2 SU23           J         2*3 1/2*         510.0         15/32* STRUCTURAL 1         1/0/4 #A         A/0*         P/0/2 SU23           J         2*3 1/2*         510.0         15/32* STRUCTURAL 1         1/0/4 #A         A/0*         A/0*         A/0* <td></td> <td>WALL</td> <td>BASE</td> <td></td> <td>SHEATHING</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | WALL                       | BASE                          |              | SHEATHING                   |               |                         |             |   |
| B         2-10.28         475.00         15/32 "STRUCTURAL 1         100.89         2.77.0.2         HOU2-302.5           D         2-10.21/8"         475.00         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.70.02         HOU2-302.5           E         2-2"         340.0         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.70.02         HOU2-302.5           G         12-2"         340.0         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.80.02         HOU2-302.5           G         12-2"         340.0         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.80.02         HOU2-302.5           H         4.0"         665.0         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.80.02         HOU2-302.5           J         2.8 J/2"         51.00         15/32" STRUCTURAL 1         100.89         A 35 CUPS @<br>2.00.2         HOU3-502.5           J         2.8 J/2"         51.00         15/32" STRUCTURAL 1         100.49         A 35 CUPS @<br>2.00.2         HOU4-502.5           J         2.8 J/2"         51.00         15/32" STRUCTURAL 1         100.49         A 35 CUPS @<br>2.00.2         HOU4-502.5           M         19.9/4"         715.00         15/32" STRUCTURAL 1         100.49         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B         2*20 /0         4*3.0         13/32 3 inductional. 1         100 #         27" GL         H0025023           C         2*20 1/6"         475.0         15/32" STRUCTURAL 1         100 # 6         23" GL         H0025023           D         2*10 1/6"         475.0         15/32" STRUCTURAL 1         100 # 6         23" GL         H0025023           E         2*9"         340.0         15/32" STRUCTURAL 1         100 # 6         23" GL         H0025023           F         7*5"         340.0         15/32" STRUCTURAL 1         100 # 6         33" GL         H0025023           G         12*0"         340.0         15/32" STRUCTURAL 1         100 # 6         33" GL         H0025023           H         4*0"         665.0         15/32" STRUCTURAL 1         100 # 3         -         H0085052.5           J         2*8 10" 91/4"         715.0         15/32" STRUCTURAL 1         100 # 4         33" GL         H0025052.5           L         2*8 3/4"         475.0         15/32" STRUCTURAL 1         100 # 4         33" GL         H0025052.5           M         2*8 3/4"         475.0         15/32" STRUCTURAL 1         100 # 6         26" GL         H0025052.5           M         4*0"         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | А                          | 2'-10 1/8"                    | 475.0        | 15/32" STRUCTURAL 1         | 10d @ 6       | 27" O.C.                | HDU2-SDS2.5 | _ |
| C         2-10/18         4/3/2         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3         10/2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C         210 J/8         43.3         10/32 3 mOUTONE, 1         100 #6         27" O.C.         H0025023           D         2'10 J/8         475.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H0025023           F         7'5"         340.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H00250225           G         12'-0"         340.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H00250225           G         12'-0"         340.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H00250225           I         4'-0"         665.0         15/32" STRUCTURAL, 1         10d #3         -         H0085052.5           J         2'-8 1/2"         510.0         15/32" STRUCTURAL, 1         10d #4         ASCUPS #         H0045052.5           I         4'-0"         665.0         15/32" STRUCTURAL, 1         10d #4         ASCUPS #         H0045052.5           I         2'-8 1/4"         715.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H0025052.5           I         2'-8 3/4"         475.0         15/32" STRUCTURAL, 1         10d #6         ASCUPS #         H0025052.5           N         4'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - |                            |                               |              |                             |               | 27" O.C.                |             | _ |
| E         2'-9'         340.0         15/22' STRUCTURAL 1         10d @ 5         A35 CUPS @<br>26' O.C.         HoU2-SDS25           F         7'-5''         340.0         15/22''STRUCTURAL 1         10d @ 6         A35 CUPS @<br>40''O'SDS25         HoU2-SDS25           G         12'0''         340.0         15/22''STRUCTURAL 1         10d @ 6         A35 CUPS @<br>40''O'SDS25         HOU2-SDS25           H         4'0''         665.0         15/22''STRUCTURAL 1         10d @ 3         -         HOU2-SDS25           J         2'4''STRUCTURAL 1         10d @ 4         A35 CUPS @<br>40''O'SO         HOU2-SDS25           J         2'4''STRUCTURAL 1         10d @ 4         A35 CUPS @<br>40''SO'SO         HOU2-SDS25           L         2'4''STRUCTURAL 1         10d @ 4         A35 CUPS @<br>40''SO'SO'SO'SO'SO'SO'SO'SO'SO'SO'SO'SO'SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E         2:9"         340.0         15/32" STRUCTURAL 1         10d @ 6         20" OL;<br>20" OL;<br>30" OL;         HOU2-5052.5           F         7:5"         340.0         15/32" STRUCTURAL 1         10d @ 6         30" OL;         HOU2-5052.5           G         12" O"         340.0         15/32" STRUCTURAL 1         10d @ 6         30" OL;         HOU2-5052.5           H         41-0"         665.0         15/32" STRUCTURAL 1         10d @ 3         -         HOU2-5052.5           I         41-0"         665.0         15/32" STRUCTURAL 1         10d @ 4         35" CUPS @<br>@ M4" OC         HOU2-5052.5           I         2" S1/2"         S10.0         15/32" STRUCTURAL 1         10d @ 4         A35" CUPS @<br>MOL4-5052.5           L         2" S1/2"         S10.0         15/32" STRUCTURAL 1         10d @ 4         A35" CUPS @<br>MOL2-5052.5           K         10" 91/4"         715.0         15/32" STRUCTURAL 1         10d @ 6         A35" CUPS @<br>24" OL;         HOU2-5052.5           M         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A5" CUPS @<br>24" OL;         HOU2-5052.5           O         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A5" CUPS @<br>24" OL;         HOU2-5052.5      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |                            |                               |              |                             |               | 27" O.C.<br>A35 CLIPS @ |             | _ |
| F         7'-S'         340.0         15/32' STRUCTURAL 1         10d @ 6         AST CUPS @<br>30' 0.C.           G         12' 0'         340.0         15/32' STRUCTURAL 1         10d @ 3         .         H0U2 5052.5           H         4'0'         665.0         15/32' STRUCTURAL 1         10d @ 3         .         H0U2 5052.5           J         2'8 1/2'         510.0         15/32' STRUCTURAL 1         10d @ 4         AST CUPS @         H0U4 5052.5           J         2'8 1/2'         510.0         15/32' STRUCTURAL 1         10d @ 4         AST CUPS @         H0U4 5052.5           K         10'9 1/4'         715.0         15/32' STRUCTURAL 1         10d @ 4         AST CUPS @         H0U4 5052.5           K         10'9 1/4'         715.0         15/32' STRUCTURAL 1         10d @ 6         AST CUPS @         H0U2 5052.5           N         4'47'         360.0         15/32' STRUCTURAL 1         10d @ 6         AST CUPS @         H0U2 5052.5           Q         4'47'         360.0         15/32' STRUCTURAL 1         10d @ 6         AST CUPS @         H0U2 5052.5           Q         4'47'         360.0         15/32' STRUCTURAL 1         10d @ 6         AST CUPS @         H0U2 5052.5           Q <t< td=""><td>F         7.5°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS<br/>(30° 0.C.)         HOU2 5052.5           G         12° 0°         340.0         15/32° STRUCTURAL 1         100.0 6         (30° 0.C.)         HOU2 5052.5           H         4° 0°         665.0         15/32° STRUCTURAL 1         100.0 8         -         HOU8 5052.5           J         2° 8 1/2°         510.0         15/32° STRUCTURAL 1         100.0 8         -         HOU8 5052.5           J         2° 8 1/2°         510.0         15/32° STRUCTURAL 1         100.0 8         A35 CUPS (NO.C.)         HOU8 5052.5           K         10°-91/4°         715.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           L         2° 83/4°         475.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           N         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           Q         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           Q         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>A35 CLIPS @</td><td></td><td>_</td></td<></td></t<> | F         7.5°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS<br>(30° 0.C.)         HOU2 5052.5           G         12° 0°         340.0         15/32° STRUCTURAL 1         100.0 6         (30° 0.C.)         HOU2 5052.5           H         4° 0°         665.0         15/32° STRUCTURAL 1         100.0 8         -         HOU8 5052.5           J         2° 8 1/2°         510.0         15/32° STRUCTURAL 1         100.0 8         -         HOU8 5052.5           J         2° 8 1/2°         510.0         15/32° STRUCTURAL 1         100.0 8         A35 CUPS (NO.C.)         HOU8 5052.5           K         10°-91/4°         715.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           L         2° 83/4°         475.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           N         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           Q         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.)         HOU2 5052.5           Q         4°-0°         340.0         15/32° STRUCTURAL 1         100.0 6         A35 CUPS (NO.C.) <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>A35 CLIPS @</td><td></td><td>_</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - |                            |                               |              |                             |               | A35 CLIPS @             |             | _ |
| G         I.2.0         34.0         IS/X SINCLOME I         IDD # 0         #0.870.C.         HOURSD23           H         4'.0"         665.0         15/22"STRUCTURAL I         10.0 # 0         -         HOURSD25           I         4'.0"         665.0         15/22"STRUCTURAL I         10.0 # 0         -         HOURSD25           J         2'.8 J/2"         510.0         15/22"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U4 SDS2.5           K         10'.9 J/4"         715.0         15/22"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U4 SDS2.5           M         2'.8 J/4"         475.0         15/22"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U2 SDS2.5           N         4'.0"         340.0         15/22"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U2 SDS2.5           Q         4'.0"         340.0         15/32"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U2 SDS2.5           Q         4'.0"         340.0         15/32"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U2 SDS2.5           Q         7'.8"         340.0         15/32"STRUCTURAL I         10.0 # 0         ASCUPS @         H0U2 SDS2.5           Q         7'.8" <td>G         12-0         340.0         13/32 SINULUDAL 1         100 @ 6         @ @46" O.C.         NUU2-S03-3           H         4'-0"         665.0         15/32" STRUCTURAL 1         100 @ 3         -         HOU8-S03-3           J         2' # J/2"         510.0         15/32" STRUCTURAL 1         100 @ 3         -         HOU8-S03-3           J         2' # J/2"         510.0         15/32" STRUCTURAL 1         100 @ 4         A35 CUPS @ HOU4-S03-25           K         10" 3 J/4"         715.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           L         2' # 3/4"         475.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           M         2' # 3/4"         475.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           N         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         Q         7'8"         340.0         15/32" STRUCTURAL 1</td> <td></td> <td>F</td> <td>7'-5"</td> <td>340.0</td> <td>15/32" STRUCTURAL 1</td> <td>10d @ 6</td> <td>A35 CLIPS @</td> <td>HDU2-SDS2.5</td> <td></td>  | G         12-0         340.0         13/32 SINULUDAL 1         100 @ 6         @ @46" O.C.         NUU2-S03-3           H         4'-0"         665.0         15/32" STRUCTURAL 1         100 @ 3         -         HOU8-S03-3           J         2' # J/2"         510.0         15/32" STRUCTURAL 1         100 @ 3         -         HOU8-S03-3           J         2' # J/2"         510.0         15/32" STRUCTURAL 1         100 @ 4         A35 CUPS @ HOU4-S03-25           K         10" 3 J/4"         715.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           L         2' # 3/4"         475.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           M         2' # 3/4"         475.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           N         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         4'-0"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CUPS @ HOU2-S03-25           Q         Q         7'8"         340.0         15/32" STRUCTURAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | F                          | 7'-5"                         | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       | A35 CLIPS @             | HDU2-SDS2.5 |   |
| I       4'0"       665.0       15/32" STRUCTURAL 1       10d @ 3       -       HOU8 5052.5         J       2' 8 1/2"       510.0       15/32" STRUCTURAL 1       10d @ 4 $\frac{35}{30"}$ CLO <sup>®</sup> HOU4 5052.5         K       10' 9 1/4"       715.0       15/32" STRUCTURAL 1       10d @ 4 $\frac{35}{30"}$ CLO <sup>®</sup> HOU4 5052.5         L       2' 8 3/4"       475.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{26"0.C.}$ HOU2 5052.5         M       2' 8 3/4"       475.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{26"0.C.}$ HOU2 5052.5         N       4' 0"       340.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{22"0.C.}$ HOU2 5052.5         Q       4' 0"       340.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{30"0.C.}$ HOU2 5052.5         Q       7'.8"       340.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{30"0.C.}$ HOU2 5052.5         Q       7'.8"       340.0       15/32" STRUCTURAL 1       10d @ 6 $\frac{435}{30"0.C.}$ HOU2 5052.5         NOTES        NOTES          A       A         1       MALI PLYWOOD SHALL BE YOLH HEIGHT       MAU2 SIG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I         4'0"         665.0         15/32" STRUCTURAL 1         10d @ 3         ·         HDU8 SDS2.5           J         2'8 1/2"         510.0         15/32" STRUCTURAL 1         10d @ 4         A35 CLIPS @<br>A30" O.C.         HDU4-SDS2.5           K         10'9 1/4"         715.0         15/32" STRUCTURAL 1         10d @ 4         A35 CLIPS @<br>A30" O.C.         HDU3-SDS2.5           L         2'8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           M         2'8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           N         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           Q         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           Q         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           Q         7'8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>28" O.C.         HDU2-SDS2.5           2         ALL MALE S SMALL BE OOMMOW WIRE GAUGE         30" O.C.         HDU2-SDS2.5 <td></td> <td>G</td> <td>12'-0"</td> <td>340.0</td> <td>15/32" STRUCTURAL 1</td> <td>10d @ 6</td> <td></td> <td>HDU2-SDS2.5</td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | G                          | 12'-0"                        | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       |                         | HDU2-SDS2.5 | _ |
| J       2'8 1/2"       510.0       15/32" STRUCTURAL 1       10d @ 4       A35 CLIPS @ HOU4 SDS2.5         K       10'9 1/4"       715.0       15/32" STRUCTURAL 1       10d @ 4       A35 CLIPS @ HOU2 SDS2.5         L       2'8 3/4"       475.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         M       2'8 3/4"       475.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         N       4'0"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       4'0"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       4'0"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       7'.9"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       7'.9"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       7'.9"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         Q       7'.9"       340.0       15/32" STRUCTURAL 1       10d @ 6       A35 CLIPS @ HOU2 SDS2.5         MOTES       10.15/32" STRUCTURAL 1       10d @ 6       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J         2' 8 1/2"         510.0         15/32" STRUCTURAL 1         10d @ 4         A35 CUPS @<br>30" O.C.         HDU4 SDS2.5           K         10'-9 1/4"         715.0         15/32" STRUCTURAL 1         10d @ 4         A35 CUPS @<br>21" O.C.         HDU3 SDS2.5           L         2'-8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>22" O.C.         HDU2 SDS2.5           M         2'-8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>22" O.C.         HDU2 SDS2.5           N         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>22" O.C.         HDU2 SDS2.5           Q         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>22" O.C.         HDU2 SDS2.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24" O.C.         HDU2 SDS2.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24" O.C.         HDU2 SDS2.5           X         ALANIS SHALL BE COMMON VIRE GAUGE.         10d @ 6         A35 CUPS @<br>24" O.C.         HDU2 SDS2.5           Y         MINTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C.         A         HDU2 SDS2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Н                          | 4'-0"                         | 665.0        | 15/32" STRUCTURAL 1         | 10d @ 3       | -                       | HDU8-SDS2.5 | _ |
| J       Z + 8 //Z       S100       13/32 STRUCTURAL 1       100 (9 4)       30° 0.C.       PUD4/3502.5         k       10° 9 1/4°       715.0       15/32° STRUCTURAL 1       104 (9 4)       A35 (UPS (9 20 - C))       PUD2 S052.5         M       2*8 3/4°       475.0       15/32° STRUCTURAL 1       104 (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         N       4*0°       340.0       15/32° STRUCTURAL 1       10d (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         Q       4*0°       340.0       15/32° STRUCTURAL 1       10d (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         Q       4*0°       340.0       15/32° STRUCTURAL 1       10d (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         Q       7*8°       340.0       15/32° STRUCTURAL 1       10d (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         Q       7*8°       340.0       15/32° STRUCTURAL 1       10d (9 6)       A35 (UPS (9 20 - C))       PUD2 S052.5         NOTES       .       .       .       .       .       .       .       .       .       .         1       11100 (9 6)       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J       2:8 J/2       310.0       15/32* STRUCTURAL 1       10 @ # 4       30° 0.C.       H004SUS25         K       10°-9 1/4"       715.0       15/32* STRUCTURAL 1       10 @ @ 4       A35 CLIPS @ 21*0 C.         L       2*8 3/4"       475.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         M       2*8 3/4"       475.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         M       2*8 3/4"       475.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         N       4*0"       340.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         Q       4*0"       340.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         Q       7*8"       340.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         Q       7*8"       340.0       15/32* STRUCTURAL 1       10 @ Ø 6       A35 CLIPS @ H002:SDS2.5         NOTES       INTERMEDIATE (FIELD) NAULING SHALL BE 10 @ 12" O.C       2       30° O.C.       H002:SDS2.5         NOTES       INTERMEDIATE (FIELD) NAULING SHALL BE 10 @ 12" O.C       2"       30° O.C.       1         STANDARD PIER       11"       MAX HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | Ι                          |                               |              | -                           |               |                         |             | _ |
| L $2^{1} 8 3/4^{"}$ $475.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 26^{\circ} 0.C.$ M $2^{2} 8 3/4"$ $475.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 26^{\circ} 0.C.$ HDU2 SDS2.5N $4^{4} 0"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 24" 0.C.$ HDU2 SDS2.5O $4^{4} 0"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 24" 0.C.$ HDU2 SDS2.5Q $4^{4} 0"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ $24" 0.C.$ Q $7^{2} 8"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ Q $7^{2} 8"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ Q $7^{2} 8"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ Q $7^{2} 8"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ Q $7^{2} 8"$ $340.0$ $15/32"$ STRUCTURAL 1 $10d \oplus 6$ $A35 CUPS \oplus 1002 SDS2.5$ NOTES1.INTERMEDIATE (FIELD) NAILING SHALL BE 10d $\oplus 12" O.C.$ $2.$ $A35 CUPS \oplus 1002 SDS2.5$ 3SHEAR WALL DE COMMON WIRE GAUGE $21" O.C.$ $2.$ 3SHEAR WALL DE COMMON WIRE GAUGE $2" O.C.$ $2.$ 4SEISMIC PIER $7"$ $111"$ $4"$ 5SEISMIC PIER $111"$ $18"$ $2"$ 5STANDARD PIER $6"$ $8"$ $2"$ <tr< tr="">5TANDARD PI</tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - |                            |                               |              |                             |               | 30" O.C.<br>A35 CLIPS @ |             | _ |
| M         2'8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>AS CUPS @<br>24" O.C.         HOU2 SDS2.5           N         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>24" O.C.         HOU2 SDS2.5           O         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>24" O.C.         HOU2 SDS2.5           P         4'0"         340.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>24" O.C.         HOU2 SDS2.5           Q         7'8"         340.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>24" O.C.         HOU2 SDS2.5           Q         7'8"         340.0         15/32" STRUCTURAL 1         10d @ 6         AS CUPS @<br>24" O.C.         HOU2 SDS2.5           X         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C.         INTERMEDIATE (FIELD) NAILING SHALL BE FULL HEIGHT         AS CUPS @<br>HOU2 SDS2.5           Y         ALL NAILS SHALL BE COMMON WIRE GAUGE         STANDARD PLER         TI'         11"         4"           SEISMIC PIER         7"         111"         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         11"         18"         7"         STANDARD PIER         2"           STANDARD PIER         6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M         2'-8 3/4"         475.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A35 CLIPS @<br>A26" O.C.           N         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A24" O.C.           Q         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A24" O.C.           P         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A24" O.C.           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A24" O.C.           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A24" O.C.           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CLIPS @<br>A35 CLIPS @<br>A30" O.C.           NOTES         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C.         2         A         A           1         10d @ 6         A35 CLIPS @<br>A30" O.C.         HDU2-SDS2.5         A           1         NIN HEIGHT         MAX HEIGHT         A 14"         A           2         MILN HEIGHT         MAX HEIGHT         ADJUSTABILITY           5         STANDARD PIER         11"         14"         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                            |                               |              |                             |               | A35 CLIPS @             |             | _ |
| N         4'-0'         340.0         15/32'' STRUCTURAL 1         10d @ 6         A35 CUPS @<br>A35 CUPS @<br>24''0.C         HDU2-SDS2.5           P         4'-0'         340.0         15/32'' STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24''0.C         HDU2-SDS2.5           Q         7'-8''         340.0         15/32'' STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24''0.C         HDU2-SDS2.5           Q         7'-8''         340.0         15/32'' STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24''0.C         HDU2-SDS2.5           Q         7'-8''         340.0         15/32'' STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24''0.C         HDU2-SDS2.5           X         Intermediate (FIELD) NAILING SHALL BE 100 @ 12''0.C.         E         A         A         HDU2-SDS2.5           30''0.C.         ALL NAILS SHALL BE COMMON WIRE GAUGE.         STANDARD PLER         MIN HEIGHT         MAJUSTABILITY           SEISMIC PIER         7''         111''         4'''         4'''         A'''           SEISMIC PIER         7''         111''         4'''         2''         A'''           SEISMIC PIER         11''         18''         7''         S'''         A'''         A'''         A'''         A'''         A''''         A'''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           0         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24' 0.0"         HDU2:SD52.5           NOTES         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12' 0.0"         A35 CUPS @<br>30' 0.0"         HDU2:SD52.5           3         SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         11"         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         11"         18"         7"           STANDARD PIER         4"         6"         2"           STANDARD PIER         10"         12"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - |                            |                               |              |                             |               | A35 CLIPS @             |             | _ |
| 0         4'-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A3 CUPS @<br>A3 CUPS @<br>24" O.C.         HDU2-SDS2.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A3 CUPS @<br>A3 CUPS @<br>30" O.C.         HDU2-SDS2.5           Q         7'-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A3 CUPS @<br>A3 CUPS @<br>30" O.C.         HDU2-SDS2.5           NOTES         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C         A3 CUPS @<br>30" O.C.         HDU2-SDS2.5           3         SHEAR WALL PLYWOOD SHALL BE FOUL #EIGHT         MAX HEIGHT         ADJUSTABILITY           YPE         MIN HEIGHT         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         7"         11"         4"           STANDARD PIER         4"         6"         2"           B         6"         8"         2"           STANDARD PIER         10"         12"         2"           D         10"         12"         2"           STANDARD PIER         10"         12"         2"           B         6"         8"         2"           STANDARD PIER         10"         12"         2"           D         10"         12"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0         4-0"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24" 0.C.         HDU2-SDS2.5           Q         7-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24" 0.C.         HDU2-SDS2.5           Q         7-8"         340.0         15/32" STRUCTURAL 1         10d @ 6         A35 CUPS @<br>24" 0.C.         HDU2-SDS2.5           NOTES         1         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" 0.C.         A35 CUPS @<br>30" 0.C.         HDU2-SDS2.5           2         ALL NAILS SHALL BE COMMON WIRE GAUGE.         SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         A35 CUPS @<br>30" 0.C.         HDU2-SDS2.5           STANDARD PIER         7"         11"         4"         SEISMIC PIER         7"           STANDARD PIER         6"         8"         2"         STANDARD PIER         2"           STANDARD PIER         10"         12"         2"         STANDARD PIER         10"         2"           STANDARD PIER         10"         12"         2"         STANDARD PIER         10"         2"           STANDARD PIER         10"         12"         2"         STANDARD PIER         14"         2"           STANDARD PIER         10"         12"         2"         STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - | Ν                          | 4'-0"                         | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       | A35 CLIPS @             | HDU2-SDS2.5 | _ |
| p4-0340.019/32SIROCUORAL 1100 @ 624" O.C.HDU2-SD2.5Q7'-8"340.015/32" STRUCTURAL 1100 @ 6A35 CLIPS @HDU2-SD2.5NOTES1.INTERMEDIATE (FIELD) NAILING SHALL BE 100 @ 12" O.C.2.ALL NAILS SHALL BE COMMON WIRE GAUGE.3 SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.TYPE MIN HEIGHT MAX HEIGHT ADJUSTABILITYSEISMIC PIER 7"11"4"6"2"STANDARD PIER10"2"STANDARD PIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P         4-0         340.0         15/32         STRUCTURAL 1         100 @ 6         24" O.C.         PHOU2SDS2.5           Q         7'8"         340.0         15/32" STRUCTURAL 1         100 @ 6         A35 CLIPS @<br>30" O.C.         HDU2SDS2.5           NOTES          INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C          A35 CLIPS @<br>30" O.C.         HDU2-SDS2.5           2.         ALL NAILS SHALL BE COMMON WIRE GAUGE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0                          | 4'-0"                         | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       | A35 CLIPS @             | HDU2-SDS2.5 | _ |
| U         7.8         340.0         13/32         SIRUCIONAL 1         100 (9.8         30" O.C.         H00230323           NOTES         .         .         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C.         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U         7-3         340.0         15/32         STRUCTORAL I         100.8         30" O.C.         HD02/302.3           NOTES         1         INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C.         2         ALL NAILS SHALL BE COMMON WIRE GAUGE.           3.         SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         ADJUSTABILITY SCHEDULE           TYPE         MIN HEIGHT         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         7"         11"         4"           SEISMIC PIER         11"         18"         7"           STANDARD PIER         4"         6"         2"           STANDARD PIER         8"         2"         5TANDARD PIER           D         10"         12"         2"           STANDARD PIER         10"         2"         5TANDARD PIER           D         10"         12"         2"           STANDARD PIER         12"         14"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ | Р                          | 4'-0"                         | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       | 24" O.C.                | HDU2-SDS2.5 | _ |
| 1.INTERMEDIATE (FIELD) NAILING SHALL BE 100 @ 12" O.C2.ALL NAILS SHALL BE COMMON WIRE GAUGE.3.SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT. $\hline$ FOOTING ADJUSTABILITY SCHEDULE $\hline$ TYPEMIN HEIGHTMAX HEIGHTADJUSTABILITYSEISMIC PIER7"11"4"SEISMIC PIER11"18"7"STANDARD PIER4"6"2"A2"STANDARD PIER6"8"2"STANDARD PIER10"2"2"STANDARD PIER10"12"2"STANDARD PIER10"14"2"STANDARD PIER10"10"2"STANDARD PIER10"10"2"STANDARD PIER10"10"2"STANDARD PIER10"10"2"STANDARD PIER10"10"2"STANDARD PIER16"16"2"F14"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"STANDARD PIER16"16"2"16 <td>1.       INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C         2.       ALL NAILS SHALL BE COMMON WIRE GAUGE.         3.       SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         3.       SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         4.       MIN HEIGHT         MIN HEIGHT       MAX HEIGHT         A       7"         SEISMIC PIER       11"         A       4"         STANDARD PIER       6"         B       6"         C       8"         STANDARD PIER       10"         C       8"         STANDARD PIER       10"         C       2"         STANDARD PIER       10"         STANDARD PIER       10"         C       10"         STANDARD PIER       10"         STANDARD PIER       10"         G       16"         STANDARD PIER       16"         STANDARD PIER       16"         Yes       2"</td> <td></td> <td>Q</td> <td>7'-8"</td> <td>340.0</td> <td>15/32" STRUCTURAL 1</td> <td>10d @ 6</td> <td></td> <td>HDU2-SDS2.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.       INTERMEDIATE (FIELD) NAILING SHALL BE 10d @ 12" O.C         2.       ALL NAILS SHALL BE COMMON WIRE GAUGE.         3.       SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         3.       SHEAR WALL PLYWOOD SHALL BE FULL HEIGHT.         4.       MIN HEIGHT         MIN HEIGHT       MAX HEIGHT         A       7"         SEISMIC PIER       11"         A       4"         STANDARD PIER       6"         B       6"         C       8"         STANDARD PIER       10"         C       8"         STANDARD PIER       10"         C       2"         STANDARD PIER       10"         STANDARD PIER       10"         C       10"         STANDARD PIER       10"         STANDARD PIER       10"         G       16"         STANDARD PIER       16"         STANDARD PIER       16"         Yes       2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Q                          | 7'-8"                         | 340.0        | 15/32" STRUCTURAL 1         | 10d @ 6       |                         | HDU2-SDS2.5 |   |
| TYPEMIN HEIGHTMAX HEIGHTADJUSTABILITYSEISMIC PIER7"11"4"SEISMIC PIER11"18"7"STANDARD PIER4"6"2"A4"6"2"STANDARD PIER6"8"2"STANDARD PIER6"8"2"STANDARD PIER8"10"2"STANDARD PIER10"12"2"STANDARD PIER10"12"2"STANDARD PIER12"14"2"STANDARD PIER14"16"2"STANDARD PIER16"18"2"STANDARD PIER16"18"30"STANDARD PIER16"18"30"STANDARD PIER16"18"30"STANDARD16"18"30"<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYPE         MIN HEIGHT         MAX HEIGHT         ADJUSTABILITY           SEISMIC PIER         7"         11"         4"           SEISMIC PIER         11"         18"         7"           STANDARD PIER         4"         6"         2"           A         4"         6"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         10"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         12"         14"         2"           STANDARD PIER         12"         14"         2"           STANDARD PIER         14"         16"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"           MOTES         NOTES         SEE S-101 FOR FOUNDATION PLAN.         SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 | 2. ALL N                   | VAILS SHALL E                 | BE COMMON WI | RE GAUGE.<br>E FULL HEIGHT. |               |                         |             |   |
| SEISMIC PIER         11"         18"         7"           STANDARD PIER         4"         6"         2"           A         4"         6"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         10"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         12"         14"         2"           STANDARD PIER         14"         16"         2"           STANDARD PIER         14"         16"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"           MOTES         VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.         2.           SEE S-101 FOR FOUNDATION PLAN.         STANDARDILITY         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SEISMIC PIER         11"         18"         7"           STANDARD PIER         4"         6"         2"           A         4"         6"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         8"         2"           STANDARD PIER         6"         10"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         10"         12"         2"           STANDARD PIER         12"         14"         2"           STANDARD PIER         14"         16"         2"           STANDARD PIER         14"         16"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"           STANDARD PIER         16"         18"         2"           MOTES         .         SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | TY                         | PE                            |              |                             |               | ADJU                    | ISTABILITY  | _ |
| STANDARD PIER<br>A4"6"2"STANDARD PIER<br>B6"8"2"STANDARD PIER<br>C8"10"2"STANDARD PIER<br>D10"12"2"STANDARD PIER<br>D10"12"2"STANDARD PIER<br>E12"14"2"STANDARD PIER<br>F14"16"2"STANDARD PIER<br>F16"18"2"STANDARD PIER<br>G16"18"2"NOTES<br>1.VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.2.2.SEE S-101 FOR FOUNDATION PLAN.2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STANDARD PIER<br>A4"6"2"STANDARD PIER<br>B6"8"2"STANDARD PIER<br>C8"10"2"STANDARD PIER<br>D10"12"2"STANDARD PIER<br>D10"12"2"STANDARD PIER<br>E12"14"2"STANDARD PIER<br>F14"16"2"STANDARD PIER<br>G16"18"2"NOTES<br>1.VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                            |                               |              |                             |               |                         |             | _ |
| A       A       A         STANDARD PIER       6"       8"       2"         STANDARD PIER       8"       10"       2"         STANDARD PIER       10"       12"       2"         STANDARD PIER       10"       12"       2"         STANDARD PIER       10"       14"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       16"       18"       2"         STANDARD PIER       16"       18"       2"         MOTES       1       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.         SEE S-101 FOR FOUNDATION PLAN.       SEE S-101 FOR FOUNDATION PLAN.       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A       A         STANDARD PIER       6"       8"       2"         STANDARD PIER       8"       10"       2"         STANDARD PIER       10"       12"       2"         STANDARD PIER       10"       12"       2"         STANDARD PIER       10"       14"       2"         STANDARD PIER       12"       14"       2"         STANDARD PIER       12"       14"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       2"       14"         STANDARD PIER       14"       2"       14"         STANDARD PIER       16"       18"       2"         NOTES       1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.         SEE S-101 FOR FOUNDATION PLAN.       2"       10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | STANDA                     | RD PIER                       |              |                             |               |                         | -           | _ |
| B       Image: Standard Pier       8"       10"       2"         STANDARD Pier       10"       12"       2"         D       10"       12"       2"         STANDARD Pier       12"       14"       2"         F       14"       16"       2"         STANDARD Pier       14"       16"       2"         STANDARD Pier       14"       16"       2"         STANDARD Pier       16"       18"       2"         STANDARD Pier       16"       18"       2"         MOTES       1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.       SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B       III       B         STANDARD PIER       8"       10"       2"         STANDARD PIER       10"       12"       2"         D       10"       12"       2"         STANDARD PIER       12"       14"       2"         STANDARD PIER       12"       14"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       16"       18"       2"         STANDARD PIER       16"       18"       2"         MOTES       1       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.         SEE S-101 FOR FOUNDATION PLAN.       STE VARIABILITY.       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |                            |                               |              |                             |               |                         |             | - |
| C       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C       Image: Constraint of the second |   | STANDA                     | RD PIER                       |              |                             |               |                         |             | _ |
| D       J         STANDARD PIER       12"       14"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       16"       18"       2"         MOTES       1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.       SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D       Image: Standard Pier       12"       14"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       14"       16"       2"         STANDARD PIER       16"       18"       2"         STANDARD PIER       16"       18"       2"         MOTES       1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.       SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | STANDA                     | RD PIER                       | 10'          |                             |               |                         |             | _ |
| STANDARD PIER       14"       16"       2"         F       STANDARD PIER       16"       18"       2"         G       16"       18"       2"         NOTES         1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.         2.       SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STANDARD PIER       14"       16"       2"         F       14"       16"       2"         STANDARD PIER       16"       18"       2"         G       16"       18"       2"         NOTES       .       .       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.         2.       SEE S-101 FOR FOUNDATION PLAN.       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | STANDA                     | RD PIER                       | 12'          |                             | 14"           |                         | 2"          | _ |
| STANDARD PIER     16"     18"     2"       G     16"     18"     2"       NOTES     1.     VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.       2.     SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STANDARD PIER     16"     18"     2"       G     16"     18"     2"       NOTES     Image: State of the state of th                                                                                     |   | STANDA                     | RD PIER                       | 14'          | 1                           | 16"           |                         | 2"          | _ |
| NOTES         1.       VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.         2.       SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOTES1.VARIOUS SIZED PIERS PROVIDED TO ACCOMODATE 18" SITE VARIABILITY.2.SEE S-101 FOR FOUNDATION PLAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | STANDA                     | RD PIER                       | 16'          | 1                           | 18"           |                         | 2"          | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | NOTES<br>1. VARI<br>2. SEE | OUS SIZED PII<br>S-101 FOR FO | UNDATION PLA | TO ACCOMODATE 18"<br>N.     | SITE VARIABIL | LITY.                   |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                            |                               |              |                             |               |                         |             |   |

1

DTES PLYWOOI

3

| 1 |  |
|---|--|
| 4 |  |

TES FOR TYPICAL DETAILS SEE S-501 FOUNDATION DETAILS. SEE S-101 FOR FOUNDATION PLAN. SEE FOOTING ADJUSTABILITY SCHEDULE FOR FOOTING SIZES AND GRADE VARIABILITY.

| MARK      | TYPE          | SIZE      | MOUNTING<br>OBJECT |
|-----------|---------------|-----------|--------------------|
| (F1)      | STANDARD PIER | 16" X 16" | STEEL CHANNEL      |
| <b>F2</b> | SEISMIC PIER  | 24" X 24" | STEEL CHANNEL      |
|           |               |           |                    |

PLYWOOD DIAPHRAGM NAILING SCHEDULE

SHEATHING EDGE NAILING

INTERMED.

STAPLING

3/4" T&G 8d @ 6" O.C. 15gauge at 12" O.C. UNBLOCKED

3/4" T&G 8d @ 6" O.C. 15gauge at 12" O.C. UNBLOCKED

3/4" T&G 8d @ 6" O.C. 15gauge at 12" O.C. UNBLOCKED

3/4" T&G 8d @ 6" O.C. 15gauge at 12" O.C. UNBLOCKED

REMARKS

|      | FOOTING SC    | CHEDULE   |                    |
|------|---------------|-----------|--------------------|
| MARK | TYPE          | SIZE      | MOUNTING<br>OBJECT |
| F1   | STANDARD PIER | 16" X 16" | STEEL CHANNEL      |

| OD IS TO BE GLU | JED TO JOISTS | USING LOCTITE | PREMIUM ADHESIVE. |
|-----------------|---------------|---------------|-------------------|
|                 |               |               |                   |

|  | FLOO   |
|--|--------|
|  | FLOO   |
|  | 14/411 |

| TYPICAL JOIST HANGER SCHEDULE |                                     |                              |               |                                       |                                                                   |
|-------------------------------|-------------------------------------|------------------------------|---------------|---------------------------------------|-------------------------------------------------------------------|
| LOCATION                      | MEMBER SIZE                         | SUPPORT                      | HANGER SERIES | REMARKS                               | ATTACHMENT                                                        |
| ROOF                          | TJI 230 (9.5"),<br>BAMBOO<br>JOISTS | TOP PLATE &<br>RIM JOIST     | IUS 2.37/9.5  | -                                     | 8 - SD#9X1.5 INTO<br>FACE                                         |
| ROOF                          | TJI 230 (9.5")                      | STEEL BEAM &<br>LEDGER       | LSSUI35       | FOR SKEWED JOISTS                     | 9 - 10d INTO TOP &<br>7 - 10dX1.5 INTO FACE                       |
| ROOF                          | TJI 230 (9.5")                      | 2X12 TRIMMED<br>JOIST        | ITS2.37/9.5   | FOR SKEWED JOISTS                     | 4 - 10d INTO TOP &<br>2 - 10dX1.5 INTO FACE                       |
| ROOF                          | TRIMMED 2X12                        | TOP PLATE &<br>RIM JOIST     | LUS28         | FOR USE ON SIDE<br>WITH 2-2X HEADER   | 6 - 10d INTO HEADER &<br>4 - 10d INTO JOIST                       |
| ROOF                          | TRIMMED 2X12                        | STEEL BEAM &<br>LEDGER       | LUS210        | -                                     | 8 - 8d INTO HEADER &<br>4 - 10d INTO JOIST                        |
| TOP ROOF                      | TJI 230 (9.5"),<br>BAMBOO<br>JOISTS | 4X12 TRIMMED<br>RIM JOIST    | LSSUI35       | FOR SLOPED JOISTS                     | 9 - 10d INTO TOP &<br>7 - 10dX1.5 INTO FACE<br>STIFFENER REQUIRED |
| TOP ROOF                      | 2-2X10 EDGE<br>JOISTS               | 4X12 TRIMMED<br>RIM JOIST    | HUC210-2      | FOR SLOPED EDGE<br>JOISTS             | 18-16d INTO HEADER<br>& 10-10d INTO JOIST                         |
| FLOOR                         | TJI 230 (9.5")                      | 2- 2X12 TRIMMED<br>RIM JOIST | IUS 2.37/9.5  | RIM JOIST RUNS<br>INSIDE THE C15X33.9 | 8 -10d INTO FACE                                                  |
| FLOOR                         | 2X4                                 | TJI 230 OR<br>2x4 LEDGER     | JPF24         | 2X4 LEDGER RUNS<br>OVER THE C8X11.5   | 2 - 10d INTO TOP &<br>2 - 10d INTO JOIST                          |
| WALLS                         | 6X6 HEADER                          | 2x6 STUD OR<br>4x6 POST      | HUC66         | FOR 6X6 HEADERS<br>OVER OPENINGS      | MIN. 8 - 16d INTO<br>HEADER & 4 - 16d<br>INTO JOIST               |
|                               |                                     |                              |               |                                       |                                                                   |

| FLOOR | TJI 230 (9.5°) |  |
|-------|----------------|--|
| FLOOR | 2X4            |  |
|       |                |  |

<u>NOTES</u> 1.

2. 3.

5

ACTUAL SIZE OF THE TRIMMED 2X12 IS 1.5X9.5. FOR SKEWED LSSUI HANGERS, THE INNER MOST FASTENERS ON THE ACUTE ANGLE SIDE ARE NOT INSTALLED. OK TO SUBSTITUTE FASTENERS WITH FASTENERS OF EQUAL OR GREATER STRENGTH.

6



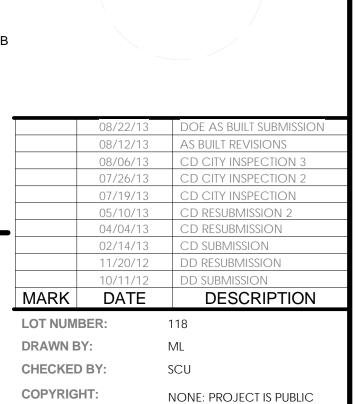
| TEAM NAME: |  |
|------------|--|
| ADDRESS:   |  |
|            |  |

CONTACT:

SANTA CLARA 500 EL CAMINO REAL SANTA CLARA, CA 95051 scusolar13@gmail.com WWW.SD13.SCU.EDU

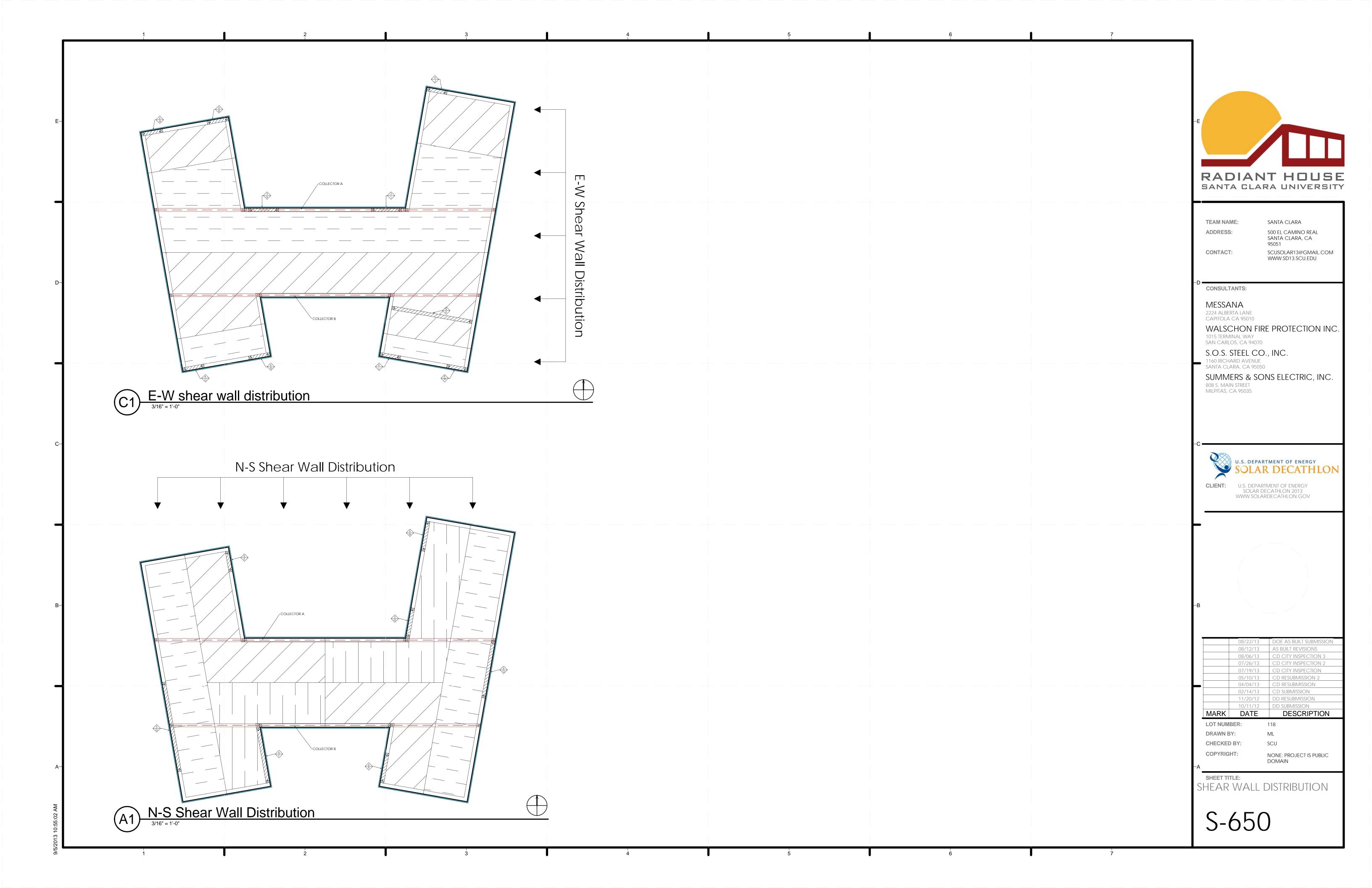
CONSULTANTS:

MESSANA 2224 ALBERTA LANE CAPITOLA CA 95010 WALSCHON FIRE PROTECTION INC. 1015 TERMINAL WAY SAN CARLOS, CA 94070


S.O.S. STEEL CO., INC. 1160 RICHARD AVENUE SANTA CLARA, CA 95050

SUMMERS & SONS ELECTRIC, INC. 808 S. MAIN STREET MILPITAS, CA 95035






CLIENT: U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 WWW.SOLARDECATHLON.GOV



|    | CHECKED BY:  | SCU                  |
|----|--------------|----------------------|
|    | COPYRIGHT:   | NONE: PROJ<br>DOMAIN |
| —A |              | 2011/1               |
|    | SHEET TITLE: |                      |
| S  | CHEDULES     |                      |

S-601

