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ABSTRACT 

 The purpose of this project was to improve upon the functionality of a micro-motion controller 

designed by another senior design group at this university. The original controller design facilitated 

motion in only two dimensions, and by modifying the platform of the design to accommodate another 

axis of rotation, we were able to achieve a full range of 3-D motion in our own product. Additionally, we 

designed a new system in which a motor could be mounted on the base plate of the device which would 

rotate the upper platform on its own through a simple belt-and-pulley system. And lastly, we designed 

and added a gripper to the end of the rotating arm that can effectively grab and move objects.  Ideally, 

this project exists as a rudimentary display of the concepts used in various other micro-motion output 

devices in the biotech industry, such as the DaVinci robotic surgery machine. Practically, we were able to 

produce a product that was an effective redesign of a system that lacked any sort of 3-D motion.  
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1. Introduction 

1.1 Background Information 

Need for Micro-Motion Control 

 One of the primary focuses of the bioengineering field as a whole is to create technologies that 

synergize or mimic the functions of the human body in order to improve the efficiency and effectiveness 

of the physician and the quality of life for the patient. In the field of robotic surgery, for instance, the 

DaVinci surgical machine has been used to accomplish over 1.5 million different kinds of surgical 

procedures, and is continually being developed to accomplish even more. But why do we even need a 

machine to do surgery for us? Isn’t that what our hands are for? Quite simply, the DaVinci surgery 

machine works better than our own hands do. It is more precise, less shaky, and less invasive than a 

traditional surgeon could ever hope to be by just using his hands.  

 One of the mechanisms that makes the Da Vinci surgery machine so effective at assisting 

surgeons in being both precise and non-invasive is the advanced motion control system that allows the 

operator to use the arms of the machine as if they were controlling an extension of their own hands.  As 

can be seen in Figure 1.1, the control system functions via the surgeon strapping his thumb and index 

finger to the device with Velcro straps.  
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Figure 1.1: Close up of Da Vinci controller interface. 

As shown above, this part of the controller can be squeezed in order to interact with a variety of tools 

that can be attached to the end of the arm. For example, squeezing the controller can activate a scissor 

tool, a clamp for grabbing suture needles or tissues, or even a syringe attachment.   

1.2 Market Status at Present – Major Manufacturers and Market Opportunities 

Currently, the biggest player in the robotic surgery market is Intuitive Surgical, the maker of the Da 

Vinci surgery machine and all of its extension tools (~68% market share). As more advanced surgery 

techniques are developed for more delicate procedures, the human hand will become more and more 

limited in what it can accomplish, and the need for more advanced surgery techniques will grow, and 

along with it, market opportunities for new systems. As can be seen in Table 1.1 below, Intuitive 

Surgical’s financial growth over the past 5 years has been simply astonishing.  

Table 1.1: The sources below represent the current adaptation of the  
micro-motion controller.     
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The likely reason for the roughly $4 million boom in 2013 was Intuitive’s response to hospitals' and 

medical practices’ demand for low-cost systems with limited features that could be used to provide a 

high volume of similar surgical procedures. As they continue to tailor their products to meet more 

specific demands, it is likely that their market share will increase even more. 

As this is such a lucrative market with such a high potential for helping to improve the medical 

treatment of patients, our goal with this project was to gain an understanding of the basic mechanical 

principles of micro-motion control as well as create our own rudimentary system from another group’s 

design.  

1.3 Literature Review 

The previous SCU micro motion controller project provided the foundation for our own design. 

We redesigned the previous team’s rotating arm assembly to fit a different need. The original design  

was a revolving drum mechanism that rotated around a fixed z-axis to provide a full range of motion in  

 

Figure 1.2: Revolving drum mechanism.   
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1: Rubber O-ring damping  
2: Cap stand from motor 
3: Revolving base of proximal 
arm 
4: Proximal Arm 
5: Tungsten Wire 



  

9 

The purpose of the previous project was to find a micro-control technology for reducing tremors from 

the surgeon’s hands during microsurgery. Microsurgery requires precise procedures and delicate motor 

control, so the steadiness of the surgeon’s hand can have a direct effect on how invasive the operation 

is. One small micro tremor or slip can cause tremendous damage to the patient if it occurs. One of many 

reasons that the Da Vinci surgical system has been so successful is that it significantly dampens the 

motion of the surgeon’s hand to prevent him from causing unnecessary harm to the patient should they 

make the slightest error in moving their hands and fingers.  

 The previous Micro Motion Control design group achieved damped motion by placing rubber O-

rings around the revolving shafts that are connected to the drum via tungsten wires. This can be seen in 

Figure 1.3 on the next page.  

 

Figure 1.3: The previous group’s O-ring damping mechanism. 
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In repurposing the original design, we decided that we would not incorporate this feature into our own 

product because we aren’t particularly concerned with steadiness in our device. The stepper motors we 

used proved to be capable of moving steadily enough to accomplish the desired task.  Additionally, we 

were looking to create an output mechanism that would amplify the motions that a disabled person 

would potentially put into the controller, not dampen them.  

 In the previous project, there was no facilitation of 3-D motion whatsoever. An important 

distinction between our project and the previous group’s work is that the plate from the previous design 

project was not free to revolve, as illustrated in Figure 1.4 on the next page:   

 

 

 

 

 

 Figure 1.4: The fixed range of motion of the previous project 

 The fixed plate was sufficient for the original design because the previous project was only 

intended to explore options in damped motion for microcontrollers.  It was specifically meant to imitate 

the micro-movement of the human hand as its movements are damped in a linear motion. It was never 

intended to create a system capable of picking up objects, which was a primary goal of ours. We 
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therefore removed one of the posts from their design to allow our plate to revolve, which facilitated the 

“pseudo 3-D” motion used to move the gripper. 

1.4 Starting Project Goals and Objectives 

● CAD – To create a workable model that achieves the design requirements   

● Test – To pass our CAD design for physical stress and durability. 

● 3D model – To prototype the mechanical functionality of the design 

● Redesign – To make any necessary improvements to the foundation of our rotational controller add-

on.  

1.5 Customer Needs 

 The end goal of this project is to provide the user with the ability to fully move and rotate 

objects with small wrist movements. The idea originated from the Intuitive Surgical, Inc. DaVinci robotic 

surgery platform used to perform robotic operations. The goal of the DaVinci is to expand the 

capabilities of arthroscopic surgery, or minimally invasive surgery done through the use of an 

arthroscope, that allows for a lower risk of complication and increased healing time by definition. 

However, in distancing the surgeon from the patient’s internals, the decreased risk of infection can be 

mitigated by decreased accessibility. Designing a micro-motion controller allows for smaller and more-

precise movements to better emulate handheld surgical scalpels. 

 Applying the micro-motion controller design to an isolated system differentiated our system 

from the other team. Rather than interface this design with the larger DaVinci robot, our team created 

an isolated system that provides those without upper body movement the ability to manipulate objects. 

Simply put, our system allows for the paralyzed to play chess without bionic limbs. Our research on 

medical device industry led us to the following conclusions: 

● The paralyzed will be frugal in purchasing a device that has such a specific purpose.  
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● Having increased ability at a lower price than bionics is a luxury, which will be entirely funded by 

the patient. 

Those who suffer from tetraplegia require greater flexibility in their bionic devices. The social response 

to physical actions with another person is much more powerful to the patient than the interaction with 

virtual systems. 

1.6 System Capabilities 

The aim of the system is to improve the capability of the micro-motion controller by allowing it to 

function in the z-axis. Although this will not qualify as a freely moving z-axis rotation, the angular 

rotation in the z direction allows for increased torque and much more stable movement in turn. Beyond 

the motor-pulley system, a ‘gripper’ attachment is affixed to the baseplate’s rotational arm. The gripper 

is actuated by a solenoid and a small pneumatic compressor. 

1.7 Performance Requirements 

1. Rotation of the motor-pulley system must occur to move the arm from level to 45° in 0.5-1.5 

seconds. 

2. Micro-motion controller must act in the Z-direction to lift and drop chess pieces. Adding a Z-axis 

allows greater device functionality. 

 

Angular Z-axis movement achieves functionality with more stability of the mechanical arm. Rotating 

the x-y axis original micro motion controller angularly gives necessary functionality in such a confined 

space with great precision. 
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1.8 Functional Analysis 

At the most basic level, our micro-motion device contains motor-driven pulleys and a pneumatic 

gripper to achieve basic robotic function. The first pulley system is driven by a large motor in the rear 

attached to a belt that allows the upper platform to rotate in the angular Z-direction. The next pulley 

system is driven by two stepper motors underneath the upper platform. These motors are connected to 

tungsten wires that control moving the plastic arms in the X and Y directions. Finally the pneumatic 

gripper is an air-driven gripper that opens and closes to pick up chess pieces. All of these components 

are controlled by an electronic motor control board.  

 

 

Figure (1.5) Solidworks Isometric View of the Micro Motion II device (above). 
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Figure (1.6) Rear view of Micro Motion II device (left) and Phidgets® Motor Control Board (right). 

1.9 Benchmarking   

In terms of benchmarking, our primary goal was to deliver a prototype that provided motion to the 

quadriplegic user. Our model reflects the need for the robotic gripper to be able to grasp and 

manipulate a chess piece in 3 dimensions to move the pieces. Due to the small market size for bionics, 

there are limited models to compare this device to. However, there is a basic capability to manipulate 

objects that enables basic usability for tetraplegics. 

 The most basic biodevice is the U-Cuff that tetraplegics use to manipulate objects with a simple 

tenodesis pinch. In our interview with Catherine Curtin, M.D., we were able to understand the abilities 

this simple wrist support device contains. The device itself has the simple capability to aid grip and the 

bending of the wrist for the tenodesis pinch. Our device allows for basic pinch functionality through the 

pneumatic gripper.  

 More advanced devices such as the Ottobock® Michelangelo Prosthetic Hand allows for physical 

gripping as an extension of nervous system. This below elbow prosthesis allows for electrode connection 

to skeletal muscles that activates a ‘main drive.’ This main drive controls an active thumb, index finger, 

and middle finger. Unfortunately, this devices is only suited to those who are upper limb amputees with 
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fully functioning nervous system. However, this device, which enables user-controlled grip and hold 

strength, makes a fantastic end goal for our design. 

1.10 Project Scope 

As noted above, the scope of this project was to design a rudimentary pick-and-place machine 

meant to mimic delicate motions of the human hand to accomplish delicate and precise tasks, such as 

playing chess. We acknowledge that our project is presently far from practical for industry standards, 

but we hope that this project will contribute to the development of better micro motion systems. We 

modified an existing design of a damped input device operating in a single plane by adding  additional 

components, improving the range of motion, and turning an input device into an output device. 

1.11 Budget 

 Unlike the original micro-motion controller design, this project was funded entirely by the Santa 

Clara University Undergraduate School of Engineering. In February, 2015, the team was appropriated a 

$1,500 grant to build a physical model of the micro-motion controller. Budget funding can be found in 

Appendix  B.1.  

 Funding allowed for the prototype molding and 3D printing of the components for the micro-

motion controller. In addition, mechanical assemblies were purchased with the Undergraduate School of 

Engineering grant that allow for a functional motorized system. The team also worked in the Santa Clara 

University ‘Maker Lab’ to construct particular pieces. Instructional training and access to the 3D printing 

and tooling was similarly provided.  

 Considering the limited timeline mentioned earlier, the budget did not constrain our project. In 

addition, the concepts were created with the budget in mind. A CAD and motion analysis approach was 

undertaken in Solidworks®, with a physical assembly built as a proof of concept. In addition, materials 
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were chosen based on the budget. Due to the small size of the device, printed ABS plastic and machined 

aluminum parts provided adequate tensile strength and frugal cost. 

 

1.12 Timeline 

The team undertook the project week 6 of the Winter Quarter and worked quickly to establish a 

baseline for the project. The immediate goal by the end of the Winter quarter was to construct a CAD 

prototype and outline the necessary tests for the modified micro-motion controller. All CAD designs and 

mechanical analyses were completed by the end of the Winter Quarter (mid-March, 2015). 

The second aspect of the micro-motional controller with a rotational add-on was the physical 

construction and virtual testing of the design during the first 4 weeks of the undergraduate Spring 

Quarter, 2015. Due to the limited time to build the prototype, any breakage in physical stress-strain 

tests could not be rebuilt in a timely manner. Outside of this limitation, the timeline worked well for the 

design and testing of the micro-motion controller model. 

The team followed the timeline closely during the Winter Quarter and purchased all parts by the one-

week break. This break allowed for a lead-time on the parts supplied from distributors to build the 

model. It also evenly divided the two time segments of design and testing.  

1.13 Risks and Mitigations 

One of the major risks for the project was for the movement to be inhibited in the physical 

prototype. In re-designing the micro-motional controller in such a short period of time, limited effort 

could be allocated to Solidworks® Motion Analysis before ordering the physical components. Especially 

with the gripper mechanism, gravitational forces had to be accounted for in allowing the bearings to sit 

the gripper vertically. Fortunately in our initial design assembly, this was not an issue.  

Table 1.2: Risk Matrix 

Probability (P) = [0,1]; Severity (S) = [1,10]; Impact (I) I=P*S 
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Risks Consequences P S I Mitigation Strategy 

Limited Motion 

Analysis Before PO 

Non-functional prototype;  

Run out of funds 

.1 7 .7 Discuss forces with 

Independent Advisor 

3D Printed Parts 

Not to Specified 

Dimensions 

Dysfunctional prototype .3 4 1.2 Check dimensions 

of each part; Mill 

down components 

ABS Part Breaks Dysfunctional prototype .2 .4 .8 Order additional 

components 

Limited Computer 

Hardware for CAD 

Lagged Motional Analysis .8 1 .8 Speak with System Admin 

CAD file loss or 

file corruption 

Loss of time; restart 

design 

.05 10 .5 Backup to Dropbox® 

 

1.14 Team Management:  

When the project began, all group members were assigned specific tasks to be completed since we did 

not have enough time to work together on all tasks. For a detailed chart of assigned duties to each 

group member prior week 5 of Spring Quarter, see Appendix B.2. 

Starting week 5 of Spring Quarter, duties were split as follows:  

• McNaul: Finalize design details, assemble product, seek outside help for the GUI. 

• Shushnar & Antell: Prepare presentation for Senior Design Conference, write thesis 

document, and take finished product to VA hospital for feedback.  
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2. Design Components 

2.1 Motor-Pulley System 

 

The motor-pulley system was the concept that we utilized in order to facilitate what we will refer to as 

“pseudo 3-D” motion of the device. This is illustrated in the figures below.  

As can be seen, our device is actually incapable of true 3-D movement. Although it has full range 

of motion in the x-y plane in front of the base plate, it cannot actually move straight up and down along 

the z-axis as labeled on the right. This is because the drum is locked into position on the base plate. The 

way that we obtained an extra degree of freedom was by rotating the base plate while simultaneously 

moving the arms of the mechanism in and out. The base plate is connected to a rotating pulley system 

which is powered by the motor, as can be seen behind the rotating drum in the picture above. As the 

motor rotates, the revolving motion is transferred to the pins that hold the base plate by a rubber cable. 

The pins are held in place by force-fitting them into the holes in the posts of the device. We originally 

intended to use a gear assembly, but we abandoned this design plan in the sake of getting the project  

Figure 2.1: The revolving “pseudo-3D” motion 
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done on time. We kept the simple cable-pulley since it was a quick simple solution to getting the 

plate to rotate with the limited time that we had.  

2.2 Pneumatic Gripper Control 

 For this project we decided to use a type RH 901k pneumatic gripper from Schunk with our own 

added 3-D printed gripping prongs.  

 

 

This gripper places about 2.759 N/m2 of force on the chess pieces, which is a fitting for simple pick-and-

place actions. We needed to 3D print custom prongs to grip the chess pieces. Unfortunately, this 

product as a whole is not yet capable of being used with an off-the-shelf chess set. For the intents of this 

project we had to calculate the total range of motion in the x-y plane by the device and cut and laser our 

own custom chess board to fit the gripper. The gripping prongs are therefore limited to this specific 

chess setup, and aren’t workable for any other chess set.  

  

Figure 2.2: 3-D gripper “fingers “and rotational top joint 
created in Solidworks™ 
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2.3 Previous Design to New Design Comparison 

The original Micro Motion I design (Figure 2.3) served the simple purpose to take feedback from 

a pressure input at the end of the arm. The motors depicted underneath the top plate act to sense the 

pressure input transferred through the moving arm.  In the Micro Motion II design, the back post is 

removed so that the arm mechanism can move in the vertical direction with the help of a motor. 

Additionally, the sensory motors are “flipped” so that they may move the arms to a desired location. 

Additionally, a gripper was added to the end of the arm so that chess pieces or objects can be picked up. 

 

  

Figure 2.3. Micro Motion I 
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2.4 Design Using Solidworks™ 

The computer aided design was done through Solidworks to build our specific parts and model the 

system. Our design began with the Micro Motion I input device design. The process completed as 

followed: deconstruct the original system; re-construct with additional components; and test the motion 

and stresses.  

2.5 Deconstruction 

The main purpose of deconstructing the original Micro Motion I CAD file was to allow the 

gripper platform to rotate in the third dimension. This method involved removing the backmost post of 

the Micro Motion I to successfully allow for rotation with the other two. Additionally, mates between 

parts were re-configured to accommodate movements not present in the Micro Motion I device. 

Figure 2.4 Micro Motion II 
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2.6 Manufactured Parts  

Manufacturing of the components was done through custom machining and 3-D printing. In 

reconstructing the CAD model, we had to begin with expanding the baseplate to fit the large motor 

pulley system in the rear. Many of the fixtures were created to fit the purchased stock pneumatic 

gripper and stepper motors. For instance, the 3-D printed gripper ends created in Solidworks® were 

better able to grip the chess pieces than the stock gripper ends (See Figure 2.5).   

 

 

 

Figure 2.5: End Pivot shaft built around XY baseplate and pulley system. 

Our design for the pivot shafts were custom machined from stock shaft specifications to hold the Z-axis 

pulley wheel. 
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2.7 Stress Analysis 

Stress analysis gives us the ability to look at both the strength and power transfer within our 

system, as well as the manufacturability. Making a prototype involves figuring out what the best 

materials are for the system. The stress analysis in Solidworks® allows for us to have more than a simple 

educated guess as to what loads the system can hold. For this first prototype, computer modeling must 

use materials similar to those used in fabrication. For the intents and purposes of this project, we used 

PVC since it closely resembles the physical properties of ABS plastic.  This is a necessary step in 

accurately estimating the cost of manufacturing, and what will happen physically if we expand the 

model size.  

There are two key areas for motion analysis: the motor pulley systems and the pneumatic 

gripper. We did not have access to the force gauges necessary to measure the tensile strength of the 

tungsten wire and Z-axis belt and subsequently were not able to calculate this power transfer due to 

friction. We were, however, able to calculate the material stress of the pneumatic gripper upon 

actuating at full force. 

 Figure 2.6 below allows us to understand the forces affecting the gripper ends as the gripper is 

actuated. In our current design, the gripper is programmed to actuate on and off. For future designs, we 

wanted to find out how much load the gripper hands could handle. The shaft calls for specific tolerances 

that allow for a close fit between the XY motor plate, pulley wheel, and support stands. Figure 2.6 below 

shows a stress gradient for fracture stress between the different material components.  
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Fig 2.6: Stress Analysis done in Solidworks® 

2.8 Gripper Research 

 In understanding the relevance of our gripper to the human hand, we first had to find what scale 

force the human ‘pinch’ had. Our research found that in order for the human index finger and thumb to 

grip an object a constant minimum of .45 pounds was necessary. Moreover, according to a study at 

McGill University in Canada, 2-2.25 lbs was the maximum pressure exerted by the human ‘pinch’ 

(Ramsay et. al 1994). By implementing a virtual linear actuator (linear-driven motor), we were able to 

find that gripper contact force was able to reach approximately 18 lbs of force. This puts our device with 

high weight polyethylene grippers (UHMWPE) well within range for use. Moreover, the contact force 

graph (Figure 2.7, left) denotes the initial ‘jump’ to approximately 2 lbs of force. This result  represents a 

similar [Similar to what, though? Note entirely clear, but I may have missed something.] minimum grip 
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force by the pneumatic gripper before it begins to deform the gripper ‘hands’ connected to the motor. 

This allows for promising results in the future as a gripper with multiple pressure modes. 

 

Figure 2.7: Solidworks Motion Analysis of Micro Motion II gripper (left); Gripper pinch 
strength of the human thumb and index finger (right). 
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3. Product Interactions 

3.1 Software Application Overview 

 
 Our script works by talking the motor control boards which in turn tell the stepper motors how 

much to rotate. The stepper motors operate by the motor control board giving them a certain number 

of steps that they must rotate in order to achieve the desired distance. The commands are input with 

images from the GUI as shown in the figure below. The full script can be found in Appendix A. 

These arrows control the arm 

that is distal to the rotating drum. 

These arrows control the arm that is 

proximal to the rotating drum. 

These arrows control the 

rotation of the base plate which 

moves the arms up and down. 

 

Figure 3.1: Graphical User Interface 
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3.2 Product Demonstration  

See demonstration video attached in portfolio.  

4. Professionalism Standards and Social Impact 

 

4.1 Manufacturability 

 The current role for bionic solutions is few-to-none because they are not insurable and a 

comparably small population compared to cardiovascular diseases. In terms of manufacturability, the 

goal is to create this device as an open-source minimal cost device. With the exception of the base plate, 

the gripper, and the motor, our micro motion II device can be made via injection molding. This allows for 

all of the rotational components to be made with low cost plastics at a near 100 percent yield.  

4.2 Ethics 

 One of the most rewarding aspects of being an engineer in bioengineering is that it gives us the 

opportunity to help those in need. The ethical implications of this project are sound, as we are providing 

the disabled with an option to function as though they had a working hand of their own. There is no way 

this product could be used to harm, although there are concerns with recyclability and use of electricity, 

although we believe that with future research and development this could be mitigated.  

4.3 Social Impact for the Disabled 

  

Dr. Curtin explained that the psychological needs from isolation are quite large in people with 

tetraplegia. More so is the isolation from veterans who cannot afford to have personal care-takers at 

home. Most of these veterans live poorly on veteran housing and have limited financial means. Dr. 

Curtin explained that social integration is most easily done via computer games that are interactive 

across the internet. She has had success teaching them to play and interact via the game “Clash of 
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Clans,” which requires a rudimentary single-touch input. A specific patient who has large intelligence is 

noted to have improved his psychological state via this game, as he cannot afford game consoles 

proctored toward tetraplegics. Such game consoles at $1000 are out of many people's price range with 

tetraplegia. Dr. Curtin asserts that there is a significant price constraint with our device, which is the 

main thing that prevents this product from being capable of helping those who are actually disabled. 

Fortunately, this is only a prototype device, and we remain optimistic that manufacturing a similar 

product would be far less expensive than the hefty price tag we’ve placed on the device right now.  

4.3.1 Bringing the Product to the Disabled 

Catherine Curtin, M.D. is an associate professor of surgery at the Stanford University Medical 

Center. Dr. Curtin’s specialties are plastic and reconstructive surgery, specializing in hand, peripheral 

nerves, brachial plexus, and entrapment neuropathies. For the purpose of our project, Dr. Curtin was 

kind enough to explain her surgical experience on patients with tetraplegia at the Veterans Affairs 

Hospital in Palo Alto, CA.  

4.3.2 Surgical Parts 

 Dr. Curtin explained that there are a variety of skills and abilities in patients with tetraplegia. 

Tetraplegia is resultant from spinal cord injuries. In the C1-C4 upper vertebrae, patients have no ability 

to use their hands and upper limbs. Patients with C5-C6 injuries are the most common patient group. 

These patients are unable to have fine motor control of their hands. However, C5-C6 patients are able to 

use a tenodesis pinch that allows for basic facilitation of movement. The tenodesis pinch is simply the 

flexis of the wrist that mechanically contracts the thumb to the index finger without muscular skeletal 

motion. One great feature of the tenodesis pinch is that it can be held for an unlimited duration, 

meaning that the patient would be able hold a grip on our device. Finally, the C7 spinal tetraplegics are 

able to have more control of gripping by rotating the pinch using supination and pronation. These 
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patients are able to grip to a small extent some extent using natural pinch. Additionally, all patients C5 

and below are able to grip a fork using a U-cuff wrist brace. 

 

 

 
Figure 3.2: U-Cuff brace control via tenodesis pinch 

https://ssl.cdn.ncmedical.com/items/fullsize/2012_04_17_12_29_56__8_NC35331_wc.jpg 
 

4.3 Design Implementations 

4.3.1 Input Functions 

Dr. Curtin acknowledged that in terms of making this device feasible in the future, input to the 

micro motion II device is crucial. Those with C4 injuries and up are going to need a “sip and puff” maxial-

facial input device. Meanwhile, those with C5 and lower injuries will be able to use a modified joystick 

that works in the 3rd dimension. 

4.3.2 Output Functions 

In terms of function, there are a variety of options Dr. Curtin referenced. To name a few: feeding 

oneself with a fork, iPad and digital device control, bowel care, and urinary catheters are a few to name. 

As mentioned previously, feeding oneself with a fork is accomplished well with the U-cuff brace. As far 
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as the latter two are concerned, these require a high level of flexibility and precision on the device side. 

With this in mind, Dr. Curtin suggested that iPad and touch screen integration was the key to 

implementing our Micro Motion II prototype for future development. 

5.  Future Development and Potential Business Proposal 

5.1 Base Model 

 

In terms of the base model, the future improvements proposed will be to have a DC motor unit with 

an encoder. This will allow for the motors to properly move in the XY plane at the specified level should 

there be any slippage between gears. Additionally, we propose that there be a geared Z-axis, rather than 

a pulley system. This will allow for greater control in vertical motion, should the device take on more 

advanced and repetitive tasks than playing chess. For the two stepper motors on the XY plane, we will 

use belts, rather than Tungsten wire. This will allow for more freeing motion and decrease the amount 

of friction towards movement. Lastly, we propose to replace the pneumatic gripper joint with a 

solenoid. This will allow for the gripper to be automated and potentially move on its own. 

 

5.2 Future Modifications 

 

As we learned in our interview with Dr. Curtin, we propose to take an approach of implementing 

both input and more advanced output mechanisms. In terms of input, the would be benefit through 

maxial-facial inputs for C3 and above tetrapegics. Those with C4 and below tetraplegia will need to use a 

tenodesis pinch control input. This will be a response-based input that has the potential ability for 

angular rotation by the user’s forearm pronation. 
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5.3 Business Applications 

 

In terms of potential business enterprise, the device may be able to work with iPads in the XY plane 

along the screen. The Z-axis could be used for pressure input. This is a huge market for the tetraplegics 

because many use iPads and other touchscreen devices for communication, entertainment, and calling 

an attendant.  

5.4 Market Scalability 

 

The scalability of this device largely depends on the cost. Our platform has the advantage of being 

easily modifiable with a multitude of motors that are mass manufactured. Also, if pieces could be 

injection molded in mass quantity, we could see the price being well under the $1000 ceiling Dr. Curtin 

defined. This ceiling exists because many accessories are not covered by health insurance as a necessity.  
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6. Conclusion 

 

6.1 Opportunities for Future Improvements 

It is our hope that the micro motion controller design will be further improved by future senior 

design groups at this university. Although we are pleased with what has been accomplished, there is still 

a lot of room for improvement and additional development. The next few sections describe some 

opportunities for future work. 

6.2 Pulley system slippage  

 Although a number of issues with the cable system reduce its effectiveness in rotating the plate 

the rotating drum rests on, the main problem is slippage. Often times when the motor suddenly applies 

torque to the system, the band will slip, preventing the plate from moving at all. This is a huge design 

flaw of the product because it frequently prevents the device from moving in the z-axis, essentially 

preventing 3-D motion entirely. A number of mechanical changes could improve the current design. 

However, what we believe would be the most significant improvement would be to replace the cable 

pulley system with a rotating gear assembly.  

6.3 Variation in rubber cable elasticity.  

 Varying or unpredictable elasticity in the pulley cable system prevents direct transfer of 

movement from the motor, introducing error. Some of the energy from the motor simply ends up being 

stored as tension in the cable. This is problematic in micro-motion controller design because it makes 

the system inefficient, and it would make any sort of motion readout inaccurate.  

6.4 Replace pneumatic gripper with electronic gripper.  

We originally chose a pneumatic gripper because of its simple binary operation. With the air 

compressor for the pneumatic gripper turned on, a simple on/off function is all that is necessary to open 
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and close the gripper of the device. However, the on/off option presents a very serious problem. When 

the air tubes from the air compressor are connected to the gripper they sag onto the table surface, 

creating extra drag the motor must work against in order to rotate the arms of the assembly. In fact, 

when assembling the device, we soon found that the first pair of motors we were using did not provide 

sufficient torque to move the arms against this drag. We actually had to order new, more powerful 

motors to move the device, which in turn required us to drill new mounting holes in the rotating plate.  

The drag from these tubes required us to redesign the product with motors that were complete and 

utter overkill because they provide much more torque than would be necessary if they didn’t have to 

work against the drag from the air tubes. They are very heavy, very large, and run so hot that they can 

seriously burn the user if they aren’t being careful.  

6.5 Add bearings to ease rotation drag.  

Another improvement would be to add bearings where the shafts rotate within the posts. Currently, the 

device uses a rudimentary force-fit to rotate the plate that holds the rotating drum, which introduces 

drag into the system that wears down the plastic post over time. Bearings would essentially eliminate 

this source of wear. 

6.6 Replace tungsten wires with toothed belt or gears.  

Although there aren’t any issues with elasticity with these wires, there are still problems with drag and 

slipping. When we tested and demonstrated the product, we ran into constant problems with the wires 

coming loose, migrating along the length of the motor shafts, or becoming disconnected entirely from 

the rotating drum. When it comes to motor control, it is best if everything in the system that requires 

movement is driven directly by the motor with as few intermediate components as possible that 

introduce drag into the system. Some possible solutions to this problem are the use of toothed belts 
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instead of wires, or by introducing a gearing system that translates directly from the motor to the 

drums.  

6.7 Future Design Projects 

 There is a lot of room for future senior design projects to build off of this project. The main 

feature that we would like to see added is to have a detailed graphical user interface that is 

programmed to automatically move chess pieces from one square to another without requiring the user 

to manually move the arm, activate the gripper, or move the piece. Additionally, we would hope to see 

future design teams move beyond the chess board application. The reason that we originally chose a 

chess board as our application for the device is that getting our device to move small chess pieces is a 

simple “stepping stone” towards having the device be practical for a disabled person who would want to 

use it for a variety of tasks.  

 Our group has already implemented a basic GUI to move the arms and activate the gripper, but 

it is far from what would be practical if a disabled person were to try to move the device. Currently, the 

motor that we are using is not capable of making small enough movements in order to be practical. 

During testing of the device with our GUI, we had a very hard time moving the chess pieces from one 

square to another. Our best effort took us about a minute and a half to pick up a piece, move the arm 

above the square we wanted to place the piece, and put the piece down without the piece falling over. 

This obviously falls far short of what the natural human hand is capable of doing, and is a clear indicator 

that there is still more work that needs to be done to make this device even remotely practical for a 

disabled person. 

 Our GUI operates through graphical images of both components of the arms with arrows 

representing which way they would rotate if the user was sitting behind the device (with the motor right 

next time  to them on the base plate  and the end with the gripper on the opposite side of the plate). [A 

simple drawing—a simpler version of the graphic on page 30 would work--to illustrate this operation 
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would help here.] The user clicks the arrows for whichever way they want the arms and base plate to 

rotate. (A more detailed visual representation can be seen in the Software Application Overview 

section.) There is also a control button for the pneumatic gripper which opens and closes it. This GUI is 

still far from being user friendly for a number of reasons largely because it requires the user to actually 

figure out how to get the device to pick objects up for them. The user must look at the board and figure 

out through trial and error how to revolve and extend the arms in order to place the gripper over the 

chess piece. What we would like to see in the future is the implementation of some sort of programmed 

detection system that makes the device automatically move to where the piece is, and pick it up with 

just a simple input command. We would also like it to be able to automatically move the piece to a new 

square and place it without the piece ever falling over, as it often does in its current state.  

6.8 Summary 

Previously, we stated that our project goals were as follows: 

● CAD – To create a workable model that achieves the design requirements   

● Test – To pass our CAD design for physical stress and durability. 

● 3D model – To prototype the mechanical functionality of the design 

● Redesign – To make any necessary improvements to the foundation of our rotational controller add-

on.  

 Over the course of this project we were able to design a project in Solidworks, model stress 

values using motion analysis, and create a tangible device using 3-D printing and attachable 

components. This covers the first 3 points listed; however, we did not have time to do any significant 

structural redesign, which means we fell short of the final point. However, this does not mean the 

project was a failure; we believe this project to be a resounding success. With limited time and 

resources, we were able to create a device that fulfilled its original design parameters: to pick up and 

move small chess pieces through the use of micro-motion design concepts. Moreover, this project 
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leaves plenty of room for future design groups to learn from it and build upon it. We measure our 

success not just by the end-product we created, but by the potential we have introduced for future 

design projects at this university by presenting this idea.  

6.9 Learning Opportunity 

 One of the many reasons that working on this project was such a great learning opportunity was 

that it gave us hands-on experience dealing with practical problems and constraints that we had to 

overcome to get the job done. We had to take an original product that fell short of our desired design 

parameters and modify it to meet them. It was a unique experience which encompassed everything we 

learned in the classrooms as engineers and applied it to the real world.  

6.10 Undergraduate Course Applicability 

PHYS 31: Basic understanding of friction, force, moments of inertia, and torque.   

MECH 10: Use of Solidworks for designing and doing motion analysis for stress calculations.  

ELEN 50: Basic use of electric circuits to power DC motors and motor control boards.  

COEN 10/11: Basic programming skills as the basis for coding in Python. 
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Appendix A: GUI Code and Operations Map 

from Tkinter import * 
from PIL import ImageTk, Image 
import time 
from Phidgets.PhidgetException import * 
from Phidgets.PhidgetLibrary import * 
from Phidgets.Devices.Stepper import * 
from Phidgets.Devices.MotorControl import * 
import RPi.GPIO as GPIO 
  
GPIO.setmode(GPIO.BCM) 
GPIO.setup(4, GPIO.OUT) 
GPIO.setup(5, GPIO.OUT) 
  
global flag 
flag = False 
  
global fa 
global ua 
  
# Calibrate Steppers 
class Init(): 
    def cal(self): 
        global fa 
        global ua 
        for i in range(2): 
            try: 
                stepper.setEngaged(i,True) 
                print('Motor %i engaged. Calibrating...' % (i+1)) 
            except PhidgetException as e: 
                print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
                exit(1) 
  
        try: 
            stepper.setTargetPosition(0, 400) 
        except PhidgetException as e: 
            print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
            exit(1) 
  
        try: 
            stepper.setTargetPosition(1, -400) 
        except PhidgetException as e: 
            print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
            exit(1) 
  
        time.sleep(5) 
  
        for i in range(2): 
            try: 
                stepper.setCurrentPosition(i, 0) 
                stepper.setEngaged(i, False) 
                print('Motor %i Calibrated.' % (i+1)) 
            except PhidgetException as e: 
                print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
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                exit(1) 
        fa = 0 
        ua = 0 
  
# Create 
global stepper 
try: 
    stepper = Stepper() 
except RuntimeError as e: 
    print("Runtime Error: %s" % e.message) 
  
# Open 
try: 
    stepper.openPhidget() 
except PhidgetException as e: 
    print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
    exit(1) 
  
# Create 
global DC 
try: 
    DC = MotorControl() 
except RuntimeError as e: 
    print("Runtime Error: %s" % e.message) 
  
# Open 
try: 
    DC.openPhidget() 
except PhidgetException as e: 
    print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
    exit(1) 
  
  
  
root = Tk() 
  
  
  
  
class Forearm(): 
    def right(self): 
        fa = fa + 1 
        stepper.setTargetPosition(2, fa) 
  
    def left(self): 
        fa = fa-1 
        stepper.setTargetPosition(2, fa) 
  
class Uarm(): 
    def right(self): 
        ua = ua + 1 
        stepper.setTargetPosition(1, ua) 
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    def left(self): 
        ua = ua - 1 
        stepper.setTargetPosition(1, ua) 
  
class StepEn(): 
  
    def En(self): 
        print('Engaging') 
        for i in range(2): 
            try: 
                stepper.setEngaged(i, True) 
                print('Motor %i engaged.' % (i+1)) 
            except PhidgetException as e: 
                print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
                exit(1) 
  
    def Dis(self): 
        print('Disengaging') 
        for i in range(2): 
            try: 
                stepper.setEngaged(i, False) 
                print('Motor %i disengaged.' % (i+1)) 
            except PhidgetException as e: 
                print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
                exit(1) 
  
  
class DCM(): 
  
    def on(self): 
        try: 
            DC.setVelocity(0, 100) 
        except PhidgetException as e: 
            print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
            exit(1) 
        time.sleep(0.5) 
        try: 
            DC.setVelocity(0, 0) 
        except PhidgetException as e: 
            print ('Phidget Exception %i: %s' % (e.code, e.detail)) 
            exit(1) 
  
  
    def rev(self): 
        DC.setVelocity(0, -100) 
        time.sleep(0.5) 
        DC.setVelocity(0, 0) 
        print('Motor On') 
  
class Grip: 
    def close(self): 
        GPIO.output(4, True) 
      
    def enable(self): 
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    GPIO.output(5, True) 
      
    def open(self): 
    GPIO.output(4, False) 
  
    def disable(self): 
    GPIO.output(5, False) 
  
  
class App: 
    def __init__(self, root, Arrow, r, c, motor, dir): 
        self.root = root 
        self.mouse_pressed = False 
        self.f = Arrow 
        self.f.grid(row=r, column=c) 
        self.f.bind("<ButtonPress-1>", self.OnMouseDown) 
        self.f.bind("<ButtonRelease-1>", self.OnMouseUp) 
        self.motor = motor 
        self.dir = dir 
  
  
    def do_work(self): 
        global fa 
        global ua 
        global stepper 
        global DC 
        print(self.dir) 
        print(self.motor) 
        if self.dir == 0 and self.motor == 0: 
            ua = ua-5 
            stepper.setTargetPosition(0, ua) 
            print(ua) 
        elif self.dir == 1 and self.motor == 0: 
            ua = ua+5 
            stepper.setTargetPosition(0, ua) 
            print(ua) 
        elif self.dir == 0 and self.motor == 1: 
            fa = fa-5 
            stepper.setTargetPosition(1, fa) 
            print(fa) 
        elif self.dir == 1 and self.motor == 1: 
            fa = fa+5 
            stepper.setTargetPosition(1, fa) 
            print(fa) 
        elif self.dir == 0 and self.motor == 2: 
            DC.setVelocity(0, 40) 
            time.sleep(.1) 
            DC.setVelocity(0,0) 
        elif self.dir == 1 and self.motor == 2: 
            DC.setVelocity(0, -40) 
            time.sleep(.1) 
            DC.setVelocity(0,0) 
        x = self.root.winfo_pointerx() 
        y = self.root.winfo_pointery() 
        print "button is being pressed... %s/%s" % (x, y) 
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    def OnMouseDown(self, event): 
        self.mouse_pressed = True 
        self.poll() 
  
    def OnMouseUp(self, event): 
        self.root.after_cancel(self.after_id) 
  
    def poll(self): 
        if self.mouse_pressed: 
            self.do_work() 
            self.after_id = self.root.after(25, self.poll) 
  
  
  
fImage = Image.open('forearm.gif') 
fphoto=ImageTk.PhotoImage(fImage) 
forearm = Label(image=fphoto) 
  
rimage = Image.open('RT.gif') 
limage = Image.open('LT.gif') 
rphoto=ImageTk.PhotoImage(rimage) 
lphoto=ImageTk.PhotoImage(limage) 
LT = Label(image=lphoto) 
RT = Label(image=rphoto) 
  
r1image = Image.open('RT1.gif') 
l1image = Image.open('LT1.gif') 
r1photo=ImageTk.PhotoImage(r1image) 
l1photo=ImageTk.PhotoImage(l1image) 
LT1 = Label(image=l1photo) 
RT1 = Label(image=r1photo) 
  
UImage = Image.open("Uarm.gif") 
Uphoto=ImageTk.PhotoImage(UImage) 
Uarm = Label(image=Uphoto) 
Uarm.grid(row=1, column=1) 
  
DTImage = Image.open("DN.gif") 
DTphoto=ImageTk.PhotoImage(DTImage) 
DT = Label(image=DTphoto) 
DT.grid(row=2, column=2) 
  
UPImage = Image.open('UP.gif') 
UPphoto=ImageTk.PhotoImage(UPImage) 
UP = Label(image=UPphoto) 
UP.grid(row=2, column=0) 
  
forearm.grid(row=0, column=1) 
  
app = App(root, LT, 0, 0, 1, 0) 
app1 = App(root, RT, 0, 2, 1, 1) 
app2 = App(root, LT1, 1, 0, 0, 0) 
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app3 = App(root, RT1, 1, 2, 0, 1) 
app4 = App(root, DT, 2, 2, 2, 0) 
app5 = App(root, UP, 2, 0, 2, 1) 
  
motor = DCM() 
gripper = Grip() 
enabler = StepEn() 
start = Init() 
  
#Button(root, text='Down', command=motor.on).grid(row=2, column=0) 
#Button(root, text='Up', command=motor.rev).grid(row=2, column=2) 
Button(root, text='Calibrate', command=start.cal).grid(row=3, column=1) 
Button(root, text='Enable Steppers', command=enabler.En).grid(row=3, 
column=0) 
Button(root, text='Disable Steppers', command=enabler.Dis).grid(row=3, 
column=2) 
Button(root, text='Close', command=gripper.close).grid(row=4, column=0) 
Button(root, text='Open', command=gripper.open).grid(row=4, column=1) 
Button(root, text='Enable Gripper', command=gripper.enable).grid(row=4, 
column=2) 
Button(root, text='Disable Gripper', command=gripper.disable).grid(row=5, 
column=1) 
  
start.cal() 
enabler.En() 
  
  
#RTB = Button(root, image=rimage, width=100, height=243, bd=0, command=call1) 
root.mainloop() 
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Appendix B: Project Management Data 

B.1 Budget 

Item Supplier Cost 

DC Power Supply McMaster $80 

Mechanical Hardware -- (4 Gears + 
Bushings) 

McMaster $100 

Mockup of Intuitive Surgical Inc. Micro-
Controller Platform 

ProtoLabs $300 

Motor Bracket & Base Plate ProtoLabs $500 

Misc Electrical Wiring McMaster $80 

Mounting Hardware McMaster $40 

Gripper Prototype ProtoLabs $300 

Spring (Gripper) McMaster $15 

Solenoid (x2) McMaster $80 

Total ------------ $149
5 
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B.2 Group Management 

 

 

 

  



  

47 

Appendix C: Parts Used 

C.1 Bill of Materials 

ITEM 
NO. PART NUMBER DESCRIPTION QTY. 

1 10Maxon Plate_Micromo Main Plate 1 
2 10Pulley_drum_1 Bottom Drum and Link 1 

3 
10STOCK_DRIVE_PRODUCTS_FLANGED 
BEARING_A 7Y55-F3118 

.3125 OD .1915 ID 
Flanged Bearing 6 

4 10Pulley_drum_2 Top Drum 1 
5 10Link_1 Forearm Link 1 

6 10END_PIVOT 
Plate Pivot and Large 
Pulley Mount 1 

7 10Rope Forearm Belt 1 
8 10SHAFT_MAIN Drum and Link Axle 2 
9 93365A122 #4 Long Ultrasert 5 

10 93365A132 #6 Long Ultrasert 4 
11 10POST Support Post 2 
12 Large pulley 

 
1 

13 SCHUNK-- RH-901 K-FS OC 5 1 
14 SCHUNK--Grundbacke RH 901 2 
15 Motor Phidgets 3260_0 1 
16 Small pulley 

 
1 

17 END_PIVOT2 Right Side Pivot 1 
18 square key_ai 0.09375x0.09375x0.5 1 
19 Motor shaft {Software-only part  part of Motor} 
20 pan cross head_am 

 
2 

21 CR-PHMS 0.112-40x0.25x0.25-N #4-40 x 3/8 1 

22 5225K559 
4mm OD Tubing PTC 
Fitting 2 

23 
SCHUNK-0309476 Drehdeckel MV 15 radialer 
Kabelabgang MV15 Radial Cover 2 

24 10SCHUNK-0309502 Schalldämpfer M5 Silencer 2 

25 
10SCHUNK-0309262 3_2-Ventilpatrone MV 15 -
Druck MV15 Valve Cartridge 2 

26 
10SCHUNK-0309298 Schwenkverschraubung SV 
15-SP-ID4-M5 MV15 Banjo Fitting 2 

27 pan cross head_ai #4-40x1 4 
28 CR-PHMS 0.138-32x0.25x0.25-N #6-32x1/4 5 
29 pan cross head_ai #6-32x3/8 4 
30 5225K77 4mm OD PTC T-Fitting 1 
31 52065K529 4mm OD PTC Female M5 2 
32 flat washer type a selected narrow_ai #4 Washer 1 
33 Belt3-4^Assem9 1/8" O-ring Belt 1 
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34 flat washer type b wide_ai #6 Fender Washer 1 
35 Base Panel 

 
1 

36 Motor Bracket 
 

1 
37 Valve Bracket 

 
2 

38 Air Tube 1^Assem9 4mm OD Tubing 1 
39 Air Tube 2^Assem9 4mm OD Tubing 1 
40 Air Tube 3^Assem9 4mm OD Tubing 1 
41 Long Capstan 

 
2 

42 Foot 
 

4 
43 CR-PHMS 0.112-40x1x1-N #4-40 x 1" 2 
44 MSHXNUT 0.112-40-S-N #4 Nut 2 
45 Preferred Narrow FW 0.164 #8 Washer 2 

46 
B18.6.7M - M2.5 x 0.45 x 6 Type I Cross 
Recessed PHMS --6N M2.5 x 0.45 x 6 Screw 4 

47 Motor 4 
 

2 
48 Fixed Carriage 

 
1 

49 Finger 2 Gripper Finger 2 
50 Foam insert 

 
2 
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