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Abstract 

In recent years, much attention has been given to the effects of radiation on bone deterioration. 

Past research has demonstrated that radiation acts to alter the balance between osteoblasts and 

osteoclasts, promoting a net osteoclastic activity in the affected bone tissue, but specific 

molecular mechanisms remain unknown. Gene expression of many osteoclast markers is 

upregulated early in response to radiation, leading to bone resorption. This problem is especially 

prominent in space, as astronauts are regularly exposed to full body ionizing radiation that, over 

extended periods of time, may lead to significant bone loss. Research suggests that radiation 

leads to an inflammatory response in bone tissue, which leads to oxidative stress damage and 

increased osteoclast activity. Numerous natural compounds have been studied in vitro and have 

been observed to reduce the gene expression of bone resorption genes and their protein 

derivatives. We have attempted to take a closer look at the mechanisms by which radiation 

impairs bone health by examining the microarchitecture of mouse bones and the gene expression 

of osteoclast, osteoblast, and osteocyte markers. Much research has been devoted to studying 

osteoclastic activity because this is believed to play the most influential role in bone loss. Our 

gene expression findings show that radiation increases bone resorption and oxidative stress. 

Oxidative damage analysis indicated a higher level of malondialdehyde (MDA) in the irradiated, 

control diet samples compared to non-irradiated mice on the control diet and suggested that dried 

plum may protect bones by a systemic reduction in oxidative damage. Physical characterization 

results that we obtained from microCT demonstrate that a dried plum diet increased the bone 

mass compared to the control diet, but failed to show an effect from radiation on bone. The 

microCT data collected is not sufficient to confirm that dried plum has a radio-protective effect 

in vertebrae. Although at this stage, we have limited data to fully understand the mechanisms by 

which dried plum protects bone, we show that dried plum can increase bone mass in vertebrae 

and systemically reduces MDA levels in circulation. Our research increases the current medical 

and biological understanding of bone physiology in response to radiation and proposed dietary 

countermeasures, and is of relevance to astronauts in extended space missions, cancer patients, 

and patients with osteoporosis.  

 

 

Keywords: osteoblast, osteoclast, resorption, oxidative stress, qPCR, 

malondialdehyde, microCT, BV/TV, Tb.Th.  
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1. Introduction 

1.1 Background and Motivation 

Astronauts are increasingly undertaking extended space missions. With advancing technology 

and the desire to explore the unexplored, astronauts may be in outer space for longer periods of 

time than before. Because of this, it is useful to understand how radiation in space affects bone 

health, resulting in bone loss. It is also beneficial to study potential dietary countermeasures that 

may influence osteoblast or osteoclast activity and determine how effectively they can protect 

from bone loss and promote bone formation. Research of this nature is also relevant to cancer 

patients undergoing radiotherapy, patients with osteoporosis, and postmenopausal women. It is 

known that osteoclasts have the primary role in bone resorption, as these macrophage-derived 

cells are known for breaking down bone during remodeling. It is also known that in space, both 

radiation and microgravity can lead to bone loss due to tissue damage and increased osteoclast 

activity. Most of the current treatments or supplements are limited because they only address 

bone resorption, not bone formation, or are otherwise too expensive or inadequate for the long 

term. For example, commonly used bisphosphonates are limited because they only reduce bone 

resorption rather than promote bone formation and the side effects include gastrointestinal 

discomfort, dizziness, and osteonecrosis in the jaw among others [8]. To this end, we are driven 

to continue research that is aimed at promoting bone health by studying the microarchitecture of 

irradiated bone and analyzing the gene expression primarily of bone markers in order to try to 

understand relevant molecular mechanisms of bone loss and formation. We additionally plan on 

analyzing potential protective effects of dried plum to determine its efficiency in mitigating bone 

damage from radiation. We envision that any findings will shed light on mechanisms involved in 

bone loss and/or formation.  

The experiments conducted in this project are part of a more extensive study analyzing 

dried plum. At the time of these experiments, tissue samples had already been collected from 

mice (Figure 1). The project goals include bone and bone marrow cell analysis, gene expression, 

and microarchitecture analysis. Ultimately, the findings here should help advance the 

understanding of the mechanisms by which dried plum protects bone from the negative effects of 

radiation. 
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Figure 1.  Timeline of experiments.  A and B denote two different experimental set ups from which we will be 

analyzing samples. Two slashes indicate point at which our experimental design began. 

1.2 Relevant Literature Review 

1.2.1 Harmful Effects of Ionizing Radiation 

Ionizing radiation’s (IR) harmful effects have long been studied and findings have been 

presented in many ways to the common news consumer. Ionizing radiation is particularly 

harmful due to its ability to disrupt molecular interactions in tissues and organs. This occurs 

when radioactive atoms remove electrons from target atoms thereby altering its stability and 

molecular bonds. Moreover, ionizing radiation can induce DNA damage, including DNA double 

stranded breaks of the affected cells. Excessive numbers of double stranded breaks can 

overwhelm the DNA damage repair machinery, resulting in inadequate repair of the damage. The 

result will be mutations that are propagated during mitosis and, depending on the mutation 

combinations in question, cancer can result. Moreover, ionizing radiation can react with water 

within a tissue and cells to produce reactive oxygen species (ROS), which are reactive molecules 

that contain oxygen and can destabilize proteins and damage cell membranes [1]. Increased 

exposure to such radiation can lead to compounded damage, which raises concerns for the health 

of astronauts. Moreover, as Willey et al. points out, there is also a serious concern about 

astronauts’ skeletal health besides the possibility of cancer, such as osteoporosis [2]. This 

therefore necessitates a closer study of the effects of radiation on bone health. 
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1.2.2 Measuring Radiation 

Willey et al. explains the general terminology to measure radiation in [2]. The Gray (Gy) is the 

international unit of measure that represents the absorbed dose of radiation (D) in energy per unit 

mass, specifically Joules/kg [2]. But not all radiation is equal; for example, gamma radiation can 

be expected to differ in energy when compared to X-rays. Hence, Q is the symbol used to 

represent the quality of radiation and H represents the absorbed dose equivalent to yield the 

relationship that H = D * Q. For reference, the level of radiation to which cancer patients are 

exposed during radiation therapy for a gynecological tumor is about 54 Gy over six weeks, 

localized to the tumor [2]. In contrast, an astronaut may be exposed to up to 1-2 Gy of total body 

irradiation on an extended space mission outside low-earth orbit over a few years [3]. It is 

important to note that though the dose is lower in quantity, the difference between the two 

numbers above is that the astronaut receives full-body irradiation (as opposed to localized to a 

specific tissue) and the space radiation environment can be more damaging than the typical 

radiotherapy session, which often and mainly is composed of gamma rays and x-rays. 

1.2.3 Space Radiation Environment 

In order to allow for astronauts to embark on extended space missions, it is critical to first study 

the adverse conditions of space, particularly radiation, and to explore the viability of safety 

countermeasures to ensure the good health of space explorers. The space environment can be 

particularly dangerous to astronauts. Even though their vehicles have shielding to protect when 

inside, leaving the vehicle can expose astronauts to higher levels of radiation, especially during 

solar particle events. Solar particle events (SPE), otherwise known as solar flares, and galactic 

cosmic radiation are major sources of radiation in space. Galactic cosmic radiation is composed 

of protons and to a lesser extent of other ions that are “heavier than helium” such as iron; but in 

general all these particles are regarded as having a high charge (Z) as well as energy (E) [2].  The 

high-energy particles found in space can be referred to as high (H) charge (Z) and energy (E) 

particles, or HZE particles. Barcellos-Hoff et al. point out that radiation dose to which astronauts 

can be exposed depends on whether they are in the International Space Station (ISS), or on the 

surface of the moon or in deep space and furthermore adds that different tissues and cells within 

those tissues are affected differently depending on their relative position within the target organ 

or region [4].  
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1.2.4 The Skeletal System 

The skeletal system is comprised of cartilage and bone as well as chondrocytes for cartilage 

production, osteoblasts for bone formation, and osteoclasts for bone resorption. During the 

development of the skeleton, a specific pattern - including the size, shape, and location - of bones 

is laid out often in large part by molecular cues, which lead to mesenchymal stem cells migrating 

and differentiating at the appropriate location [5]. Please refer to Figure 2. 

Mesenchymal cells initially form a cartilaginous template that later becomes bone through the 

function of osteoblasts in a process called endochondral ossification. Experiments have shown 

that osteoblasts are able to effectively differentiate and proliferated in the designated areas set 

out by the initial developmental patterning event by the osteoblast gene expression in the target 

tissues; for example, the Runx2 gene promotes osteoblast differentiation and high expression of 

this will induce osteoblasts to differentiate accordingly [5]. Though the knowledge of osteoblast 

and osteoclast differentiation pathways remains limited, it is evident that skeletal development 

and bone formation are complex processes. There are genes that promote bone formation and 

others that promote osteoclast function to resorb bone and molecular changes in these 

expressions are often the cause for certain degenerative diseases that affect bone mineralization, 

density, mass, strength, etc.  

Figure 2. Skeletal development 

progression and patterning. [5] 
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Throughout the general lifespan of a human, or any vertebrate organism, there is a 

frequent turnover of bone which is influenced by levels of use or disuse. It is important to 

recognize the distinction between the two types of bone tissue: cancellous and cortical. 

Cancellous, or trabecular bone, is usually found at the ends of bones (epiphysis) and contains 

vasculature to allow for blood and nutrient flow and other metabolic processes; furthermore, it is 

softer and more flexible. Cortical bone is the outer, hard layer of bone, which provides the 

mechanical strength and support. Both cancellous and cortical tissue can store and release 

calcium. Bone changes in response to physical stimulation or lack thereof. Experiments have 

shown that in response to loading, resorption occurs in the areas of the bone that receive low 

strain whereas bone forms where there is greater strains; moreover, axial compressive loading is 

a well-observed method to induce cortical bone formation [6]. This use/disuse bone remodeling 

aspect of bone physiology affects patients who undergo extended bed rest and the weightlessness 

that astronauts experience in space. The introduction of radiation into this system leads to an 

inflammatory response, which alters the delicate balance between osteoblasts and osteoclasts and 

as a result radiation leads to a net increase in osteoclast activity and therefore net increase in 

bone resorption, which leads to weaker bones. Cancellous bone is more sensitive to radiation and 

usually experiences most of the radiation-induced bone loss.  

1.2.5 Characteristics and Functions of Osteoblasts & Osteoclasts 

Osteoblasts always function as groups of connected cells and are responsible for bone formation. 

Osteoblasts that do not die become entrapped inside their collagenous-mineralized matrices, and 

then are considered to be more mature and termed osteocytes. In contrast, osteoclasts are 

responsible for bone resorption. They break down bone by secreting acid and collagenases often 

in areas of disuse. Both osteoblasts and osteocytes are derived from mesenchymal stem cells, 

which reside in the bone marrow near hematopoietic stem cell niches [19]. Osteoclasts arise from 

the differentiation of macrophages, which occurs when they encounter bone-like 

microenvironments produced by bone marrow stromal cells [20]. Osteoblasts and osteoclasts 

coexist simultaneously around the bone tissue but issues typically arise when the balance of 

osteoblast to osteoclast activity is altered. 



17 

 

1.2.6 Radiation Damage to Bone & Oxidative Stress 

Radiation negatively impacts bone health, primarily by inducing an inflammatory response and 

oxidative stress, which triggers an upregulation of osteoclastic activity while suppressing 

osteoblasts. As a result, there is a net increase in the function of osteoclasts.  

Nishio et al. evaluated the effects of certain treatments for endometrial, cervical, or 

ovarian cancer: platinum-based chemotherapy or chemo-radiation therapy, to determine what 

type of effect such procedures had on bone mineral density [12]. They found that the ovarian 

cancer and endometrial cancer groups showed slightly lower lumbar spine bone mineral density 

(BMD) while the cervical cancer group showed a significant decrease in lumbar spine BMD after 

surgery. This research has a different health application but still demonstrates the negative 

effects that radiation can have on bone mineral density in people.  

Willey et al. note that bone loss occurs quickly in response to exposure to gamma or 

proton ionizing radiation, as observed in Figure 3 in which female C57BL/6 mice were exposed 

to either 2 Gy of whole body gamma or 2 Gy of proton radiation [2]. The authors further state 

that exposure to radiation decreases bone strength, increases fracture risk and decreases bone 

mineral density due to damage to the osteoblasts and osteocytes.  

 

 

Radiation damage that leads to rapid bone loss is mainly caused by increased bone resorption, a 

process, which is mediated by osteoclasts. Kondo et al. observed notable responses of bone loss: 

there was a decrease in both tibia and vertebra BV/TV, increase in osteoclasts normalized to the 

bone surface, and a reduction in mineral apposition rate (decrease in osteoblast activity) [3].

 Lipid peroxidation is a process in which lipid moieties are oxidized; free radicals remove 

electrons from the cell membrane, thereby damaging the cell membrane. Kondo et al. measured 

lipid peroxidation by measuring the levels of malondialdehyde (MDA) and 4-hydroxynonenal 

levels, which are some of the end products of the process. They found that 2 Gy irradiation 

Figure 3. MicroCT images of trabecular bone. (A) Non-irradiated bone, 

(B) 2Gy gamma - whole body, (C) 2Gy proton radiation. [2] 
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increased lipid peroxidation after three days of exposure but no effect was presented from 

hindlimb unloading (Figure 4) [3]. Radiation leads to oxidative stress, which leads to damage in 

the bone tissue. These results suggest that potential dietary countermeasures with antioxidant 

properties may be able to mitigate radiation-induced bone loss. Many plants and fruits contain 

antioxidants that prevent reactive oxygen species from damaging cells and tissues, please refer to 

section 1.2.9 for more details. 

1.2.7 Protective Effects of Dried Plum on the Skeleton  

There has been an understanding that gonadal hormones contribute to skeletal health, and that 

the absence or change of hormonal makeup leads to skeletal deterioration. Franklin et al. tested 

this concept in combination with a dried plum diet with four groups of orchidectomized rats to 

determine the effects it would have on bone health [7]. This research demonstrated that even 

though orchidectomy (ORX) reduced the BMD of femurs and vertebra of these rats, a high dose 

of dried plum was able to restore BMD to levels similar to the sham group (Figure 5). Moreover, 

Franklin et al. showed that ORX decreased both the trabecular bone volume (BV/TV), as well as 

trabecular number (Tb.N) in the femur and vertebra, while increasing the trabecular separation 

(Tb.Sp) in the femur. Though there was no change in trabecular thickness due to ORX, every 

other physical characteristic was ameliorated by a high content of dried plum diet. This research 

Figure 4. Radiation and hindlimb unloading effects 

on lipid peroxidation. [3] 
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is significant because it presents dried plum as a viable supplement to promote bone health in the 

mouse osteoporosis model. 

Similar to the experiment above, Rendina et al. conducted an experiment to test the 

effects of dried plum, apple, apricot, grape, or mango on the whole body and spine BMD in 

several groups of ovariectomized (OVX) mice [8].  

These experiments showed that the OVX procedure reduced whole body and spine BMD 

two weeks after the surgery, but after eight weeks of dietary treatment, the dried plum, apricot, 

and grape mouse groups had a higher whole body and spine BMD. Furthermore, OVX mice on 

the control diet underwent a 40% loss of trabecular bone in the vertebra and tibia; of the diet 

treatment groups, only the dried plum and apricot groups showed a higher vertebral BV/TV and 

Figure 5. BMD results of dried plum acting on the effects 

of orchidectomy (ORX). [7] 

Figure 6. Changes in BV/TV of tibia in OVX mice in response to 

various dietary supplements. [8] 
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Tb.N (Figure 6). Rendina et al. used finite element analysis to study the mechanical properties of 

trabecular bone of vertebra of the OVX mice and sham mice and found a decrease in total force 

and stiffness in the bone of OVX mice, as compared to the sham group. This research once more 

underscores a relationship between gonadal hormones and bone health as well as the 

regenerative effects of certain fruits.  

In a separate study, Schreurs et al. evaluated several antioxidant or anti-inflammatory 

interventions, including dried plum, for their ability to reduce bone resorption and prevent bone 

loss. The following interventions were tested in mice: (1) antioxidant diet cocktail (AOX) 

consisting of ascorbic acid, N-acetyl cysteine, L-selenomethionine, dihydrolipoic acid, and 

vitamin E; (2) dihydrolipoic acid (DHLA); (3) ibuprofen; and (4) dried plum (DP), 25% w/v. 

They studied the bone marrow one day after the exposure to either 2 Gy gamma radiation or 1 

Gy proton/heavy ion exposure and found that genes related to bone resorption (osteoclast 

activity), such as Rankl and Mcp1, were upregulated as well as genes associated with the 

inflammatory response, such as Tnf-α. Schreurs et al. concluded that the most effective 

intervention was the dried plum-based diet [11]. 

However, in the presence of dried plum, the expression levels of the aforementioned genes 

returned to control levels. Schreurs et al. further note that while radiation led to a 32% decrease 

in BV/TV (Figure 7), 25% decrease in Tb.N, 13% increase in Tb.Sp in mice of the control group, 

mice with the dried plum diet did not exhibit any of the above structural changes [11]. Lastly, 

they observed that neither the AOX diet, ibuprofen, nor the DHLA diet prevented the radiation-

induced bone loss. Therefore, radiation led to significant bone alterations, which the dried plum 

Figure 7. Dried Plum prevents bone loss 

induced by radiation. IR refers to proton and 

iron radiation, CD1 is the control diet. 
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effectively prevented. This raises two questions that we aimed to address in our project. Firstly, 

how does dried plum protect bone from radiation damage? Secondly, does dried plum enhance 

any bone regeneration/osteoblastic response? Dried plum has shown promising capabilities to 

restore bone health, but further analysis is required. 

1.2.8 Effects of Dried Plum Diet on Osteoblast & Osteoclast Gene Expression  

The bone-protective and regenerative effects conferred by dried plum have been observed over 

the past decade. The previously described study has shown that dried plum, in sufficient 

amounts, can reverse the damaging effects of radiation-induced bone damage. Though dried 

plum seems effective and promising for bone-related problems, about fifty grams of daily dried 

plum consumption is required to observe increases in bone mineral density [24]. This may be an 

impractical diet for astronauts to consume in space. The first step is to analyze gene expression 

for osteoclast or osteoblast-related genes and proteins in relation to dried plum consumption. 

Phenolic acids are derived from the polyphenols found naturally in many fruits and 

vegetables. Polyphenols are suspected of being the driving force behind the bone protective 

effects seen by dried plum. Chen et al. conducted a study to analyze the effects of phenolic acids 

on bone formation gene expression [12]. In this research, they found that when hippuric acid, 

propionic acid, or the phenolic acid mixture was added to a bone marrow ST2 stromal cell line, it 

led to an upregulation of alkaline phosphatase (ALP) expression, which is responsible for 

osteoblast differentiation (Figure 8). In addition to stimulating osteoblast cells, hippuric acid and 

Figure 8. Effect on varying phenolic acids on ALP 

expression from rat serum. [11] 
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the phenolic acid mixture also inhibited adipocyte differentiation, as observed by cell culture 

proliferation assays of 3T3-L1 cells, which are pre-adipocytes. Though the results from this 

research are extensive and beyond the scope of this paper, it is important to note that when 

female mice were administered hippuric acid, they underwent significant trabecular bone 

accumulation and trabecular bone volume, and serum ALP levels were elevated too. Therefore 

the promising results shown by phenolic acids are observed both in cultured cells and in mice. 

In a different study, researchers observed the effect of dried plum polyphenols on 

osteoblast activity and mineralized nodule formation. In brief, Bu et al. found that the three doses 

(5, 10, and 20 µg/ml) of polyphenols increased intracellular activity of alkaline phosphatase and 

promoted mineralized nodule formation [13]. TNF-ɑ, tumor necrosis factor alpha, which is an 

inflammatory cytokine, decreased the expression of prominent bone formation markers such as 

Osterix and Runx2. However, polyphenols reversed this effect and also upregulated the IGF-1 

growth factor while suppressing the expression of Rankl. Rankl is the receptor activator of 

nuclear factor kappa-B ligand, which is a key factor involved in osteoclast differentiation. These 

findings lend credence to the observation that the inflammatory response (which can result from 

radiation among other factors) plays a key role in downregulating osteoblast-related factors while 

simultaneously upregulating osteoclast function. As before however, dried plum polyphenol 

extracts were able to attenuate these observed effects. These results suggest that either the 

polyphenol extract or a specific compound within the polyphenols promotes osteoblast function, 

very likely through antioxidant properties. 

 To complement the aforementioned findings, Bu et al. conducted a subsequent study to 

examine the effects on dried plum polyphenols specifically on osteoclasts and related factors, 

this time using lipopolysaccharide (LPS) to induce inflammatory conditions [14]. They measured 

production levels of nitric oxide (NO), a free radical, in RAW 264.7 macrophages as well as 

levels of TNF-ɑ, and found both of these to be suppressed by the addition of polyphenols. 

NFATc1 is a gene whose protein product can regulate expression of cytokines during the 

inflammatory response and induces osteoclast differentiation. In [14], Bu et al. found that dried 

plum polyphenols downregulated NFATc1 in order to decrease the activity of osteoclasts and 

inhibit the differentiation of osteoclasts. Primary cell culture from C57BL/6 male mice’s bone 

marrow cells were compared to RAW 264.7 macrophage cell cultures, and results indicated that 

dried plum polyphenols successfully inhibited osteoclast differentiation. In addition, their results 
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suggest that inflammation could be a source of bone loss and that dried plum appears to inhibit 

osteoclast proliferation.  

Hooshmand et al. studied the anti-inflammatory and antioxidative qualities of dried plum 

polyphenols on RAW 264.7 cells [15]. They used lipopolysaccharide to produce inflammatory 

conditions and found that this inflammatory induction did not affect the viability of the 

macrophages. However, dried plum polyphenols reduced the nitric oxide levels that had 

significantly increased due to the LPS treatment and significantly reduced the levels of COX-2 

protein, which is a prominent protein during the inflammatory response that produces 

prostaglandins. Inhibition of COX tends to alleviate symptoms of inflammation and pain and 

thus the dried plum polyphenols were able to attenuate the inflammation. 

1.2.9 Other Natural Compounds  

Fruits and vegetables (and the compounds contained within them) are widely known to contain 

many valuable nutrients essential to one’s health, though only more recently have their 

association with bone been examined. While there has been research into the protective effects 

from other natural compounds, dried plum has been one of the most extensively studied. Dried 

plums, unlike many other fruits, have a characteristically high polyphenolic compound content 

apart from vitamin K, potassium, and boron [7].  

 In their comprehensive review, Sacco et al. postulate that despite the importance of 

calcium and vitamin D to bone health, there may be important factors like phytonutrients that 

contribute to healthy bones: lycopene, tea and grape flavanols, citrus flavanones, and olive 

polyphenols [16]. Lycopene is a carotenoid responsible for the red color of fruits like tomatoes 

and vegetables like carrots and is known to be a strong antioxidant. They point to a study in 

which lycopene was associated with an increase in BMD and a decreased risk for hip fractures. 

Rodent trials have also shown lycopene’s protective effects against bone loss due to 

ovariectomy. Flavanols, the most common of which are catechin and epicatechin, are found in 

red wine, green tea, and grapes. The authors cite epidemiological studies that draw a connection 

between “habitual tea drinkers” and higher BMD and continue by pointing out that consumption 

of green tea leads to a higher serum level of alkaline phosphatase, which is a known osteoblastic 

marker [16]. Also, grape seed proanthocyanidins were shown to increase bone formation in 

developing rats [17]. Hesperidin is a major citrus flavanone found in oranges and has been 
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shown to protect against bone loss that arises in postmenopausal women [17]. Moreover, it has 

been shown to improve bone mass in rats and prevent bone-loss due to ovariectomy. Oleuropein 

is a major polyphenol found in olives and consumption of Mediterranean diets (with high 

contents of olive oil) were associated with increased bone mass. Though concrete evidence of 

such effects are still missing, preliminary investigations with developing rats have shown 

promising results with oleuropein’s ability to protect or enhance bone mass [16]. Sacco et al. 

lastly cover dried plum polyphenols and point to its many beneficial effects as seen in preclinical 

as well as animal studies: increase in bone formation markers including ALP and IGF-1, increase 

in BMD at the spine and ulna, increase in bone marrow myeloid and lymphoid populations to 

suppress the immunological responses from ovariectomy, and increase in bone mass and bone 

strength.  

 In a rat study, Johnson et al. found that fructooligosaccharides (FOS) in combination with 

dried plum was able to protect against bone loss and promote bone formation most successfully, 

in comparison to a soy protein-based diet, FOS alone, or dried plum alone [18]. FOS is a 

prebiotic and oligosaccharide composed of fructose unit chains, which is found in onions, garlic, 

bananas, artichoke and other plants. While FOS and DP on their own were able to promote 

femoral BMD, Tb.Th, Tb.Sp, and bone mineralization as well as a lower urinary Dpd expression 

(marker for bone resorption), the greatest benefit was seen with the combination of all 

components in the diet. This suggests that FOS has a particularly ameliorative effect on the 

skeletal system. As Johnson et al. point out, FOS promotes the absorption of minerals from the 

colon and increases bone mineralization [18]. Generally, the effects of dried plum on BMD, 

BV/TV, Tb.Th, Tb.N, and Tb.Sp more or less equaled those of FOS. This may be because this 

study only utilized a 7.5% w/v dried plum in experimental diets whereas other similar studies 

previously alluded to use considerably higher dried plum levels (up to 25%, as in [11]). 

However, it is difficult to undertake accurate comparisons since no study has compared a 25% 

dried plum diet with any level of FOS.  

 Numerous other natural compounds were mentioned in this section, all displaying some 

level of antioxidant and/or anti-inflammatory and/or bone protecting effects. To our knowledge 

there has been no comprehensive study aimed at comparing all these individual compounds 

against each other so it is not entirely plausible to rule out any of them completely due to a lack 

of bone protection capabilities. However, scientists have shown that dried plum-based diets 
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demonstrate positive bone effects in rat and mouse models [7-8, 11]. Promising results have also 

been observed in humans [24]. In any case, we have chosen to continue studying the effects of 

dried plum in this research project, acknowledging that even though other compounds may also 

confer valuable skeletal health boons, dried plum is the only dietary supplement shown to 

mitigate radiation damage in bone. Also, our time and funding is limited and so it is also 

impractical to attempt to expand beyond dried plum.  

1.3 Current Therapies 

In order to prevent the risk of fracture caused by loss of bone strength due to extended missions 

on the International Space Station (ISS) and possibly Mars, astronauts are required to follow a 

strict, daily exercise regimen. Exercise alone is not sufficient to overcome the increase in bone 

resorption as well as the decrease in bone formation.  Maintenance of bone homeostasis is crucial 

to the prevention of osteoporosis development in astronauts as well as in clinical osteoporosis 

patients. Bisphosphonates have held a clinical role in the treatment of osteoporosis for 

approximately 3 decades [9]. This therapy has been shown to inhibit the activity of osteoclasts in 

the bone. This inhibition is achieved primarily by advancing the apoptosis of these bone-

degrading cells. As a result, bisphosphonate has been prescribed to astronauts to mitigate bone 

loss. Therapeutic intervention with the administration of bisphosphonates has presented the 

possibility of several adverse side effects [10]. Short-term side effects include severe 

musculoskeletal pain, hypocalcemia if patient consumes inadequate amount of Calcium and 

Vitamin D, ocular inflammation, and long-term side effects include over-suppression of bone 

turnover and sub-trochanteric femoral fracture. These side effects remain to be a rarity, but the 

complication risks merit analysis of treatments that eliminate the possibility of these side effects. 

Dietary supplements of Calcium and Vitamin D have also been studied and have become part of 

the regiment of therapies for astronauts to protect against bone fracture [11]. The necessity to 

examine alternative therapies is due to the fact that all but one current therapy are anti-resorptive, 

but do not promote bone formation; alternative therapies are also necessary due to the possibility 

of adverse effects of bisphosphonate therapy. 
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1.4 Project Goals and Experimental Design 

Previously, four groups of mice were pre-fed and acclimatized to their laboratory environments 

for two weeks at which time they were irradiated with 2 Gy of gamma radiation and the first 

three groups of mice were euthanized (Day 0). Three more groups were sacrificed 11 days post 

irradiation. Another four groups of mice underwent the same experiment as just stated in the 

previous sentence, but were irradiated with 1 Gy iron radiation. 

Our research aims are to (1) determine the molecular responses of bone to radiation and 

evaluate the efficacy of a dietary countermeasure against bone loss caused by radiation and the 

underlying mechanisms for its protective effects, and (2) determine the ability of dried plum to 

protect the axial skeleton (vertebrae) from ionizing radiation. There are various options to mimic 

solar particle events and galactic cosmic radiation, which astronauts are exposed to during space 

travel. These include exposure to high and low linear energy transfer (LET) radiation. Gamma 

radiation (low LET) and Iron radiation (high LET) is thought to be a viable representation of 

actual radiation doses in outer space [2-3, 11]. Thus, irradiation of mice with gamma radiation 

and another study with Iron (56Fe) radiation was utilized to accomplish our research goals. Our 

experimental design will also included gene expression via Quantitative Polymerase Chain 

Reaction (qPCR), oxidative damage measurements, and micro-computed tomography 

(microCT). 

The dietary supplement in question has shown promise in bone remodeling, but has only 

recently been evaluated for its radio-protective effects [11]. Current treatment options only 

inhibit the activity of osteoclasts, as stated in the previous section, but our research aims to 

determine whether the dietary supplement in question in conjunction protects the progenitors and 

stem cells that differentiate into mature, bone forming osteoblasts, apart from its previously 

known ability to inhibit osteoclast activity. Thus, our project focuses on the hypothesis that the 

mechanism by which the dietary supplement acts to protect bone against effects of space 

radiation has the potential to be both anabolic (increasing the mechanistic cues for bone 

formation) as well as inhibiting osteoclast formation. 

1.5 Significance 

A journey to Mars and the future of long-term space travel depends heavily on knowledge and 

interventions surrounding the bone loss caused by the radiation present in the space environment. 
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These health concerns caused by radiation are not limited to astronauts, but extend to 

radiotherapy patients as well. The increase in bone loss seen in postmenopausal women and 

individuals suffering from osteoporosis is similar to the bone loss resulting from clinical and 

space environment radiation [2-3, 11]. Thus, our research may provide a better understanding of 

bone loss in these conditions. By analyzing the nature of osteoblast and osteoclast expression in 

response to radiation and attempting to reduce viable molecular mechanisms by which they are 

up or down regulated, we hope to advance current knowledge that may later help improve 

current treatments or methods for promoting bone health. 

1.6 Team and Management 

The success of this research project relied on the cohesive and enthusiastic nature of our team. 

Success was determined based on our involvement and team management collaboration with the 

larger Bone and Signaling Laboratory at NASA Ames Research Center. Our research was part of 

a greater experiment directed by our advisors, Dr. Ann-Sofie Schreurs, Dr. Candice Tahimic, and 

Dr. Ruth Globus. Dr. Prashanth Asuri served as our advisor through the Bioengineering 

Department at Santa Clara University.  

Regular meetings with Dr. Schreurs ensured that the project remained on schedule and 

that design problems or experimental deviations were discussed immediately. Bi-weekly 

meetings with Dr. Asuri were held to make certain that project process was being made and all 

thesis deadlines were met. 

1.6.1 Budget 

This senior design thesis project is funded by NASA grants. Please refer to Appendix A for a 

breakdown of estimated costs for this project. 

1.6.2 Timeline 

This senior thesis project progressed throughout the entirety of the 2015-2016 academic year. 

During our fall quarter we completed all necessary safety training in order to take part in 

functional laboratory protocols. This included, but was not limited to, animal safety training, 

biohazard safety training, radiation training, and general lab safety standard operating 

procedures. By the end of the fall quarter we also studied and reviewed a significant portion of 



28 

 

the applicable academic literature on our thesis topic and began training for lab-specific 

procedures.  

During winter quarter we delved more extensively into laboratory procedures related to 

gene expression analysis and oxidative damage analysis. 

Throughout our spring quarter we focused on micro-computed tomography (microCT) 

and finalized any necessary experiments while also determining future work that can and should 

be performed as a continuation to our experiments. 
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2. System Level Experimental Design 

2.1 System Level Overview 

Our literature research demonstrated several key observations, which we considered during the 

planning of our experimental approach. Ionizing radiation, which is prevalent in space and used 

during radiotherapy, induces DNA damage and causes increased generation of reactive oxygen 

species that lead to oxidative damage, ultimately resulting in tissue damage [1-4, 11]. Radiation-

induced bone loss is largely attributed to bone resorption, which is mediated by enhanced 

osteoclast activity. Dried plum has been shown to mitigate radiation-induced bone loss [11]. It is 

believed that polyphenols contribute specifically to this protection against bone loss and that they 

primarily function by blocking bone resorption. Hence, the main focus of this research project is 

to determine the mechanism by which dried plum protects bone.  

 Like any hypothesis-driven research in an educational setting, our project has changed its 

focus and schedule several times due to necessary adjustments and challenges encountered from 

week to week. Nevertheless, we were able to follow a general outline of experiments that 

facilitated the collection of relevant data at the gene expression and mechanical testing levels. An 

overview of the experiments performed follows (Figure 9).  

The first major procedure was the extraction of RNA from bone. At the commencement 

of this project we had access to several tissues from the radiation/dried plum experiment. 

Because we aimed to study the role of dried plum in bone loss prevention, we opted to use the 

frozen left femurs and marrow collected from animal experiments predating our tenure in the lab. 

Femurs were utilized in order to extract the greatest amount of RNA as possible per bone; while 

Figure 9. Overview of experiments we undertook for our senior 

design project. Our experimental design was divided into two phases: 

molecular screening and physical characterization. 
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the tibiae and vertebrae were scanned by microCT to analyze bone micro-architecture and in 

continuation, the vertebrae will be utilized for mechanical testing. We needed to extract RNA for 

the eventual purification, preparation, and analysis of gene expression (of osteoclast, osteoblast, 

and oxidative stress related genes) by qPCR.  Please refer to the Materials and Methods section 

of chapter 5 for a detailed description of the procedure. 

An intermediate step required prior to gene expression analysis via qPCR is to first 

convert the extracted RNA to cDNA. This step involves the use of a reverse transcriptase to 

convert the single stranded RNA into its complementary DNA, which can then be used as a 

template for the qPCR procedure. Though it is possible to perform this as a one-step assay that 

combines reverse transcription with qPCR in the same reaction tube, we opted to take the time to 

complete a dedicated cDNA conversion step on its own, for several reasons. Firstly, doing a two-

step procedure allows us to optimize the reagents and master mixes used specifically for the 

previously extracted RNA. Afterwards, these cDNA samples can be stored frozen for subsequent 

use in further qPCR analysis. Because we aimed to test numerous genes at various times 

throughout our time in this lab, having a store of cDNA was favorable. Our lab has also 

demonstrated that a more careful, two-step cDNA synthesis procedure leads to more reliable 

results. Please refer to the Materials and Methods section of chapter 6 for a detailed description 

of the procedure.  

The qPCR was conducted as follows: cDNA samples were first prepared from the 

original RNA samples through reverse transcription. Ultimately, qPCR was performed and the 

gene expression data analyzed. In brief, the genes we tested either in bone (flushed, devoid of 

marrow) or bone marrow cells are the following: Bglap, Foxo3, Nrf2, Postn, Sost, MTOR, 

Cdkn1a, Gadd45a, p53, BMP2, BMP4, Rankl, Opg, Runx2, and IGF-1. Please refer to Appendix 

I for a detailed description of the genes that we observed. 

Extensive gene expression analysis of this nature would potentially allow us to draw 

connections or observe correlations between osteoclast and osteoblast-related genes, the 

exposure to sham or ionizing radiation, and whether dried plum contributed to its respective 

increase or decrease. If dried plum protects bone and stimulates its formation, we should expect 

to see an increased expression of bone formation markers and/or a decrease in bone resorption 

markers in the dried plum compared to control diet group.  
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Apart from gene expression, we also aimed to measure oxidative stress and damage. The 

rationale behind such experiments is that radiation leads to increased production of reactive 

oxygen species followed by oxidative damage that can be measured via the malondialdehyde 

(MDA) quantification assay. It is known that MDA is a result of the oxidative stress response, 

and is one of the oxidative damage markers. A higher level of this organic compound can be 

attributed to a greater level of oxidative damage. Therefore, by measuring MDA levels in blood 

serum and bone samples we hoped to ascertain the extent that radiation increases MDA and dried 

plum reduces this same compound. To measure MDA levels, we used Thiobarbituric Acid 

Reactive Substances Assay (TBARS assay), which relies on the thiobarbituric acid compound 

reacting with MDA to produce a fluorometric response that can be measured at around 550nm 

wavelength with a plate reader. 

 The first step was to conduct an experiment to determine the adequate dilution 

concentrations of bone samples and serum samples such that readouts fall within the linear range 

of the assay. Doing this in conjunction with the microBCA assay to measure the total protein 

concentration present in all the samples, we could determine whether we had an adequate 

dilution or not. Depending on the sample type, we tested dilutions ranging from 1/50 to 1/10 (see 

Materials and Methods section of chapter 8 for details). The resulting data allowed us to 

conclude that further dilution experiments are required to obtain a more optimized dilution factor 

that is within the linear range for the TBARS assay. After the success of this dilution experiment, 

the actual TBARS assay was run on the available samples of bone and blood serum.  

 The abovementioned experiments focused on analyzing biochemical changes related to 

the extent of oxidative damage at the molecular level. While this information can provide 

insights into the mechanism by which dried plum protects bone, it is also of great benefit to 

analyze physical characteristics, namely bone micro-architecture (tibia and vertebrae) either in 

response to radiation or dried plum diet (trabecular number, trabecular thickness, bone volume 

per total volume, bone mineral density, etc.) as well as their mechanical properties, such as 

stiffness and compressive strength. Explanations of these terms and more details for this testing 

are provided in Chapter 9/Appendix K. The rationale behind analyzing the physical 

characteristics and mechanical properties is to better understand how dried plums affect bones at 

the molecular level as well as at the structural level. Mechanical testing can determine the 
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strength and elasticity of bone, and thus its quality. It complements the microCT results of 

mineralized structure. 

 At the beginning of our project we had planned to conduct an extensive in vitro 

experiment, but for several reasons priority was given to gene expression analyses, microCT 

scanning, and mechanical testing. The in vitro experiment would have involved MLO-Y4 cells 

(osteocyte cell line) and/or primary cell culture from bone marrow cells of mice. This experiment 

would have required the extraction and purification of polyphenols from the dried plum since the 

overall goal of this experiment is to determine the bioactive component in dried plums – and 

whether polyphenol(s), and in what combination, when applied to irradiated cells in culture, were 

the actual component responsible for bone protection and formation. Though the results from this 

experiment would have been incredibly interesting and a great complement to our overall results, 

we had limited time during this academic year and could only select a handful of experiments. 

The reason gene expression, TBARS, and microCT were prioritized is that these analyses result 

from in vivo experiments (MLO-Y4 is a transformed cell line). This allows us to study the direct 

effects that both radiation and dried plum had on mice bone and bone marrow cells, as well as 

determine the relevant pathways that play a role in bone loss and the protective affect of a dried 

plum, supplemented diet. 

2.2 System Level Constraints 

There are several constraints and limits to the research that we performed in the Bone and 

Signaling Lab. These constraints influenced the course of our experiment planning as well as 

experiment prioritization so that we could obtain viable results. 

 

RNA extraction 

The RNA extraction from bone procedure was labor-intensive and required several days of work 

and meticulous planning to ensure that all mouse left femur samples were properly processed. 

Each bone was homogenized with a handheld tissue homogenizer and was followed by Trizol-

based RNA extraction. As the procedure involves a Trizol reagent (details in the respective 

Methods section, chapter 5) and we desired to separate the homogenized samples into different 

phases to obtain the RNA, DNA, and protein sections, careful handling was also required. All 

steps of the RNA extraction post homogenization were time sensitive and needed to be 
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completed as fast as possible in order to ensure the highest level of RNA integrity. The technical 

goal of the RNA extraction process was to generate RNA of acceptable concentration and “RNA 

integrity number” (RIN). RIN measurements were determined using an Agilent Bioanalyzer, a 

chip-based instrument. All samples met target concentrations and RIN values and so were used 

for cDNA conversion and subsequent qPCR.  

 

Conversion to cDNA 

The cDNA conversion procedure also presented some technical challenges. This assay required 

the use of a thermocycler at fluctuating temperatures for set time durations and the proper 

addition of specific master mixes and primers to allow the single stranded RNA's to be converted 

into the corresponding complementary DNA. We encountered problems during our initial 

attempts to produce good cDNA both in quality and in quantity (which we found out in the 

qPCR step when there were poor or erratic results in the gene expression). Though not indicative 

of actual cDNA quality, we still tested the sample concentrations in the Nanodrop to confirm that 

the cDNA conversion procedure yielded sufficient amounts afterwards (data not shown).  

 

qPCR Analysis 

If our initial hypothesis is correct, then radiation should decrease the expression of genes 

associated with bone formation or protection and/or upregulate the expression of genes involved 

with bone resorption and cell cycle arrest. A dried plum diet should therefore lead to an 

upregulation of the expression of genes associated with bone formation or decrease bone 

resorption. Please refer to our table of genes (Appendix I) for more information on the specific 

genes analyzed for each of these categories. However, our analysis is limited because the 

changes we hoped to observe may not be apparent at 11 days post-irradiation, the time point at 

which the mice were euthanized and their tissues collected for this experiment. It is possible that 

some of the gene expression changes occurred at an earlier time point, such as at 1 or 2 days 

post-irradiation. In this case, the tissue samples that we analyzed may not have shown the 

expected results. Further analyses are required to determine whether this is the case. A future 

experiment that could confirm this hypothesis is to test tissues that were collected at different 

time points, ranging from 24 hours post-irradiation to 11 days.  
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 A limitation to our gene expression analysis was the low amount of RNA sample we had 

to work with. Due to a relatively low concentration of RNA we were able to extract, we could 

only obtain a limited amount of cDNA and thus only test a limited number of genes. The genes 

that we selected were prioritized on the basis of their general function, primarily those shown to 

be commonly involved in bone resorption, bone formation, oxidative stress, or cell cycle arrest, 

as well as on literature.  

 

Oxidative Damage Analysis (TBARS assay) 

One constraint of the analysis of oxidative damage by the TBARS assay is that there is a 

possibility that it is not 100% specific only to MDA. We are not positive if the assay is only 

measuring MDA/lipid peroxidation or if it is quantifying other compounds as well. 

 

Micro Computed Tomography 

The scanning of mouse vertebra is a time-consuming procedure, which limits the scanning to 

about four or five bones per day. Note that in total we had forty bones to process. This prevented 

us from undertaking a considerable portion of the actual mechanical testing. 

 Post-processing of the L4 vertebrae scans were also time-consuming. Initially we faced 

some challenges in setting the boundaries and volume of the L4 vertebrae to process. Due to 

inconsistencies from vertebra to vertebra, we had to test a variety of buffer region sizes and 

region of interest sizes in order to ensure all our vertebrae could be uniformly compared with one 

another. After extensive trial and error testing, we finally set the final region of interest to be 260 

slices (these slices collectively form the volume of interest that we analyzed), with no buffer 

zone above the growth plate at the caudal region of the vertebral body. 

2.3 Experimental Approach 

The project we have described in this thesis is notable for several reasons. In terms of senior 

design projects conducted at Santa Clara University, ours is the only project of this nature: one 

involving the study of a specific diet in its role to prevent bone loss that is of relevance to 

astronauts, as well as to post-menopausal women and radiotherapy patients. Our project 

ultimately aims to elucidate relevant molecular pathways by which dried plum inhibits bone 

resorption, knowledge that could, in the future, be used to develop strategies to maintain the bone 
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health of astronauts during and after space missions. With this overarching NASA goal in mind, 

we diligently delved into extensive literature research, laboratory training, and established a solid 

experiment schedule throughout the quarter.  

 Literature research was the basis for the experiments performed, as it gave us the 

background to learn about the relevant bone physiology resulting from exposure to radiation as 

well as observed effects of dried plum. By studying literature extensively, we were able to 

identify relevant genes that we could test in our experiments, and thus identify any possible role 

that dried plum had in bone resorption and formation.  

 The nature of this type of research necessitated a flexible schedule and experimental plan, 

as each week's results often provided critical information, such as whether or not we were 

conducting the experiments properly, whether the results we obtained were reasonable and 

promising, whether the assays or experiments were suitable for what we were trying to solve, or 

whether our results were altogether irrelevant or uninformative in the grand scheme of our final 

goal: to determine the mechanism by which dried plum protects bone. As such, the priorities for 

what we hoped to do shifted on a week-by-week basis and it was necessary to adapt accordingly.  

 As with any lab-intensive research project, we encountered several challenges along the 

way. This necessitated the repetition, namely when we were performing the conversion of RNA 

into cDNA, of said experiments. Overall, it was a truly enriching experience to work in the lab 

environment in which we found ourselves. We were surrounded by incredible and highly 

knowledgeable scientists who provided invaluable direction every step of the way.  

Though the research that we are working on is vast, we are confident that the results and 

accomplishments during our tenure in the lab are, on their own, solid contributions that will 

hopefully help promote a better understanding of the radio-protective effects of dried plum. 

2.4 Engineering Standards and Realistic Constraints 

Our research project in the Bone and Signaling lab is purely research-oriented that does not, at 

our stage in the lab, translate into any direct product for any consumer. What we hope to achieve 

is a greater understanding of the mechanism by which dried plum protects bone so that at some 

point in the near future, the active components or mechanism in question can be utilized to 

produce a treatment or supplement that will aid in bone health, especially, but not solely for 

astronauts. With this in mind, the final goal in mind is the bone health of astronauts as well as 
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patients with bone diseases. Thus, results from our research and future research with its 

accompanying results could have implications on the health and safety of astronauts as well as 

radiotherapy patients and individuals suffering from osteoporosis. 

As such, health is a significant, albeit distant, aspect of our research. A realistic constraint 

in the use of dried plum for bone formation is that in order for dried plum to produce the 

desirable effects described in section 1.2 above, a very large amount of dried plum must be 

consumed on a daily basis. This is, of course, impractical for anyone seeking to improve his or 

her bone health or promote bone formation. This is precisely why we seek to study the actual 

mechanism at the molecular level, so that we may observe what molecular pathways dried plum 

acts on, and moreover to eventually identify the active component within dried plum responsible 

for the regenerative effects on bone and use that to develop a better treatment. Thus, this active 

component could potentially be concentrated into a supplement tablet consumable by astronauts 

or patients with bone diseases. This lends itself as a societal implication related to 

manufacturability. It would be easier to extract and manufacture a supplement tablet from a 

naturally growing fruit, i.e. plum, in comparison to synthetically manufacturing a drug to serve 

the same purpose in a pharmaceutical company. 

 An ethical consideration related to our specific project, though we did not directly work 

with this part, is the use of mice. Though animals in scientific research can potentially raise 

moral objections by some people, it is important to consider that in this case, the mice used in the 

preceding procedures for our research were handled humanely and according to the American 

Association for Laboratory Animal Science (AALAS) standards for handling of laboratory mice. 

Also, all animal experiments were conducted following a standard set of protocols and guidelines 

pre-approved by the Institutional Animal Care and Use Committee (IACUC). The mouse was a 

suitable model because much like the bone loss seen in astronauts due to spaceflight, mice also 

experience bone loss due to radiation and hindlimb unloading (used to mimic a microgravity 

environment). Mice are the most developed species for experimental procedures and are viable 

for research of this nature. Ten mice were needed per group (four groups) and the justification 

for this amount is that this is the number that will allow for statistically significant results once 

the data is analyzed, due to the high variability of microCT and other assays. It can be said that 

the use of mice in our experiment was justified and essential in order to promote and advance the 



37 

 

scientific understanding that will one day lead to more effective treatments for astronauts’ bone 

health.  

 Other than what was mentioned above, there are no outstanding ethical concerns with the 

nature of the experiments we conducted, as we mostly worked at the molecular level, with 

tissues that had previously been collected. We mostly worked with RNA extractions, qPCR, and 

other molecular biology-based assays.  

 The future research prospect of this project also has economic implications. The 

overarching goal for this research, as stated above, is to extract the active components of dried 

plum and determine which components, either on their own or in a particular combination, serve 

to best protect bone against the damaging effects of radiation. The introductory work to 

determine the most effective active components can be performed through an in vitro cell culture 

experiment. In vitro experiments are much more cost effective than in vivo experiments. Thus, it 

is economically productive to first determine which active components are most effective in vitro 

and then confirm these successes and their efficacy in an in vivo experiment. 

 Though our project did not directly have any ethical implications, there are other 

considerations, should our research be expanded and developed into an actual consumer product 

(i.e. a dietary supplement) that people can take to better their bone health. Mainly, any product 

that arises from parts of this research must be safe and effective with the consumer; whatever the 

specific dried plum component that may be isolated must be formulated in such a way that it 

doesn't negatively affect the patient’s health, but rather promotes it. But again, this stage of the 

research remains distant and is not an immediate consideration that we had. 
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3. Design Description 

3.1 Design Overview  

To reiterate the general points of chapter two, we performed the following experiments: RNA 

extraction from the left femurs of mice, conversion to cDNA in preparation for qPCR, qPCR 

gene expression analysis of osteoblast, osteoclast, or oxidative stress related genes, TBARS 

assay, and scanning and analysis of mouse vertebrae to observe the physical structure of bone, 

either in response to radiation and/or after dried plum treatments.  

 As stated above, these experiments were all necessary for our research. RNA extraction, 

followed by conversion to cDNA, allowed us a tangible, molecular entity to manipulate and 

work with from which we could analyze gene expression. qPCR was the method by which gene 

expression was measured and quantified and we ended up testing a number of genes of interest; 

please refer to Appendix I for the list of specific genes. TBARS required initial dilution 

experiments and when performed on samples helped provide an idea of the relative level of 

oxidative stress in different tissues from the designated sample groups. Lastly, observing the 

characteristics of bone from these mouse groups proved to be a useful complement, as it allowed 

us to observe the overall microarchitecture of the bones after radiation and dried plum diet 

consumption. 

 The nature of the experiments we performed throughout this yearlong senior design 

project belonged either to the category of gene expression, protein/oxidative stress assay, or 

microCT and mechanical testing.  

QPCR was used for gene expression to study the levels of RNA transcribed from genes 

of interest and so provide information related to which genes are upregulated and expressed or 

downregulated in response to radiation or a dried plum diet.  

Experiments or assays to gauge oxidative damage at the protein or lipid level are 

particularly useful because proteins do the actual work in just about every biological process. 

During oxidative stress, certain proteins may be activated or repressed, etc. Experiments in this 

category can include the already mentioned TBARS assay as well as other procedures such as 

Western blots or ELISA assays. The TBARS assay will detect MDA (oxidative damage marker) 

within the total protein level found in the samples tested.  
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Scanning with microCT and undertaking mechanical testing procedures would validate or 

support the results found at the gene and protein levels. We should expect to see the bones from 

irradiated mice to have a compromised structural integrity compared to the bones collected from 

the dried plum group, as well as the ability to analyze how radiation and/or dried plum can 

influence the structural integrity and other mechanical characteristics of bone. Said 

characteristics can include bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular 

number (Tb.N), bone mineral density (BMD), etc. Mechanical testing can include three-point 

bend tests, axial compression tests, yield strength, and others. Each of these would allow us to 

see how irradiation or dried plum physically affects the structure and mechanical properties of 

axial and/or appendicular bones of mice. 

The following is the outline of procedures we performed:  

1. Phase 1, part 1: Gene Expression 

a. RNA extraction from bone. 

b. Conversion to cDNA. 

c. qPCR to analyze specific genes of interest. 

2.  Phase 1, part 2: Oxidative Damage Analysis 

a. TBARS assay, lipid based to analyze relative oxidative damage. 

3.  Phase 2: Physical Characterization 

a. MicroCT Scans of Mouse Vertebra. 

          i.   Vertebral scanning. 

          ii.  Post-processing (i.e. reconstruction, rotating, contouring, analysis) 

          iii. Mechanical testing (i.e. strength tests) 

 The experiments outlined above were performed in the order listed because gene 

expression was a faster, molecular biology-based experimental technique that we could perform 

more efficiently in the beginning of our time in the lab. From gene expression analysis we could 

easily obtain valuable information on the effects of radiation and dried plum diets at the 

molecular level. Results of the qPCR, specifically genes related to oxidative stress, were 

complemented and enhanced by the TBARS analysis of oxidative damage. TBARS assay was 

performed because it allowed us to study the effects of radiation and dried plum at the 

protein/lipid level. MicroCT provided us with information about the micro-architecture and bone 

mineral density of the L4 vertebrae. Mechanical testing, which takes the longest time (in terms of 
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training and execution), was left for the end. This provided valuable information about the 

structure and strength of bones in response to different treatments (radiation, dried plum, 

control). Mechanical testing was prioritized towards the end due to the possibility that the gene 

expression analysis may not be a wholly accurate indicator of the efficacy of dried plum diet as 

the tissues were collected relatively late, at 11 days post-irradiation. By studying changes in the 

mechanical properties, we could determine whether our gene expression experiments show any 

correlation with the bone microarchitecture. 

3.2 Expected Results 

The expectations for each facet of our research project are outlined below. These expectations 

are based largely on extensive literature research.  

For our first phase, we expected to extract RNA in high enough quality that our samples yielded 

a RIN number between 9 and 10. For the RNA Nanodrop concentration verification, we hoped to 

have a high RNA yield after homogenization of bone samples; if RNA quantities were high we 

would dilute them all to 100-150ng/uL.  

For the actual gene expression, we expected radiation to increase or upregulate many 

genes associated with bone resorption (Rankl, Opg, Sost, and Nfatc1) and oxidative stress or cell 

cycle arrest (Nfe2l2, Foxo3, Cdkn1a, Tp53, Gadd45a, MTor, and Sod1). This is because radiation 

is known to damage biological tissues through the production of reactive oxygen species, 

resulting in oxidative and DNA damage, among other injures; cell cycle arrest occurs as a 

protective response to radiation. In samples from mice that received the dried plum treatment, we 

would also expect these same values to be reduced or remain unchanged, relative to the controls. 

We also expected that the genes associated with bone formation (Runx2, Bmp4, Igf-1, and Bmp2) 

would be upregulated in the samples that belonged to the dried plum diet group. An increase in 

osteoblast-related genes would signify that dried plum acts not only to inhibit bone resorption, 

but also to promote bone formation.  

For the TBARS protein oxidative stress analysis, we hypothesized that samples from 

mice that were exposed solely to radiation and fed the control diet will exhibit a higher level of 

MDA.  We also hypothesized that samples whose respective groups received the dried plum 

diets will exhibit lower (or baseline level, similar to control) MDA levels.  
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For microCT scanning of mice L4 vertebra, we expect that samples derived from the 

mouse group that received the dried plum diet will show a microarchitecture with higher BV/TV, 

higher Tb.N, and overall structure with greater physical integrity. On the other hand, samples 

from mice that were exposed to radiation would exhibit lower BV/TV and Tb.N. 
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4. Historical System Setup 

4.1 Introduction 

Prior to the time that we joined the Bone and Signaling laboratory, the experiments discussed 

below had been completed, but tissue analysis had not been conducted yet. In order to 

understand the experimental protocols we conducted throughout this yearlong thesis project, the 

historical experimental set up needs to be introduced. Two experiments will be presented. Both 

experiments were designed to investigate the protective effect of dried plum on bone after 

exposure to ionizing radiation, but the species of radiation is the differing variable between the 

two experiments: (1) mice were irradiated with 2Gy Gamma radiation and (2) mice were 

irradiated with 1Gy Iron (56Fe) radiation. Although gamma and Iron are notably two different 

types of radiation, they are representative of different types of whole body radiation experienced 

by astronauts in the space flight environment. They have both been shown by the Bone and 

Signaling Lab to cause bone loss and thus, can be analyzed in parallel to answer our research 

questions for this senior design project. 

4.2 Design Description 

Both experiments were conducted in order to determine the effects of dried plum as a 

countermeasure against the damaging effects of radiation. The timeline of these two experiments 

can be seen in Figure 1. The only differences between the samples we are analyzing from these 

two studies are the species of radiation as well as the time point post exposure to radiation at 

which tissues were collected. For the dried plum + 2Gy gamma experiment, tissues were 

collected 11 days post IR, while for the dried plum + 1Gy Iron experiment, the specific tissues 

we will be analyzing were collected at 30 days post IR. 

 

The two studies will be denoted as such in order to differentiate between them: (a) ‘Dried plum + 

2Gy gamma’ versus (b) ‘Dried plum + 1Gy Iron.’ 

4.3 Methods and Materials 

*Protocols adapted from Dr. Ann-Sofie Schreurs’ paper “Dried plum diet protects from bone loss 

caused by ionizing radiation” [11] 



43 

 

4.3.1 Dried Plum + 2Gy Gamma 

Animals 

The mice utilized for this experiment were male C57BL/6J mice (Jackson Labs, Sacramento, 

CA). 14 days prior to date of irradiation, mice were randomly assigned by weight to 4 groups 

(n=8/group). Food and water was available for consumption ad libitum. Periodically throughout 

the experiment, mice were weighed and consumption of food was recorded in order to ensure the 

maintenance of health of the animals (data not shown). All animal procedures were conducted in 

accordance with NASA Ames Research Center procedures. 

 

Diets 

Control diet was AIN93M, which was the control against the DP-supplemented diet. The custom 

dried plum diet consisted of the same AIN93M control diet plus the addition of 25% by weight 

dried plum powder. Both diets were manufactured by Teklad (Madison, WI). 

 

Feeding 

14 days prior to irradiation, mice began to be pre-fed on their respective diets and continued until 

the conclusion of the experiment (Figure 1a). Mice were irradiated at 16 weeks of age and tissues 

were harvested at 11 days post irradiation. 

 

Radiation Exposure 

Mice were exposed to total body irradiation at 16 weeks while conscious with 2Gy Gamma 

radiation (137Cs at 83cGy/min, JL Shepherd Mark I, NASA ARC). This was performed at NASA 

Ames Research Center, Moffett Field, CA. Control groups were sham-irradiated, i.e. underwent 

same procedures as for irradiated group, but were not subject to 2Gy gamma radiation. 

4.3.2 Dried Plum + 1Gy Iron 

Animals 

The mice utilized for this experiment were male C57BL/6J mice (Jackson Laboratories, Bar 

Harbor, ME). 14 days prior to date of irradiation, mice were randomly assigned by weight to 4 

groups (n=10/group). Food and water was available for consumption ad libitum. Periodically 

throughout the experiment, mice were weighed and consumption of food was recorded in order 

to ensure the maintenance of health of the animals (data not shown). Approval of procedures was 

granted by the NASA Ames Research Center and the Brookhaven National Laboratory 
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Institutional Animal Care and Use Committee (IACUC) and conducted in accordance with the 

health and ethical standards of IACUC. 

 

Diets 

Control diet was AIN93M, which was the control against the DP-supplemented diet. The custom 

dried plum diet consisted of the same AIN93M control diet plus the addition of 25% by weight 

dried plum powder. Both diets were manufactured by Teklad (Madison, WI). 

 

Feeding 

14 days prior to irradiation, mice began to be pre-fed on their respective diets and continued until 

the conclusion of the experiment (Figure 1b). Mice were irradiated at 16 weeks of age and 

tissues were harvested at 30 days post irradiation. 

 

Radiation Exposure 

Mice were exposed to total body irradiation at 16 weeks while conscious with 1Gy Iron radiation 

to simulate aspects of space radiation (10cGy/min, at 600 MeV/ion). This was performed at the 

NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab (BNL), (Upton, NY). 

Control groups were sham-irradiated, i.e. underwent same procedures as for irradiated group, but 

were not subject to 1Gy Iron radiation. 

4.4 Results 

Body mass 

Body mass of all animals was consistently monitored throughout the entirety of the study as 

indicator of overall health. All animals, for both experiments, showed consistent weight and thus, 

were considered healthy throughout the duration for the experiment (data not shown). 

4.4.1 Dried Plum + 2Gy Gamma 

Please refer to Appendix B for table of sample numbers assigned to mice participating in this 

study as well as their respective treatments conditions: diet and ionizing radiation dose. One 

animal from this study expired before the end of the experiment and thus, 31 samples will be 

analyzed. The control diet, sham irradiated, control diet, irradiated, and dried plum, irradiated 

groups all have a sample size of 8 mice. The dried plum, sham irradiated group has a sample size 

of 7 mice. 
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4.4.2 Dried Plum + 1Gy Iron 

Please refer to Appendix C for table of sample numbers assigned to mice participating in this 

study as well as their respective treatment conditions: diet and ionizing radiation dose. In total, 

40 samples will be analyzed from this experiment. All experimental groups have a sample size of 

10 mice. 

 

4.5 Discussion 

The tissues collected from these experiments were the samples we analyzed for our research for 

the duration of this senior design project.  
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5. RNA Extraction from Bone 

5.1 Introduction 

In order to analyze the gene expression of several osteoblast, osteoclast, or oxidative stress 

related genes, it was first necessary to obtain RNA from the bone, specifically from the left 

femurs of mice in the ‘Dried plum + 2Gy gamma’ experiment (see chapter 4 for more details). 

The first phase of this procedure involved the homogenization of bone. Next, it was necessary to 

wash the homogenate and mix with several chemical reagents (see below). Ultimately, the main 

priority of this experiment was twofold: to extract high quality RNA (i.e. a high RNA integrity 

number), and to extract as much RNA as possible. The results of this experiment would greatly 

impact the following procedures of cDNA conversion and qPCR, and being able to extract more 

RNA would allow us to convert more cDNA, and thus run more qPCR experiments to test a 

larger number of genes of interest.  

5.2 Key Constraints 

The bone homogenization and RNA extraction procedure required several days of work to 

complete as well as careful handling of the different phases produced. A potential difficulty or 

inconsistency was the manual homogenization of bone with a handheld homogenizer. Because it 

cannot be said that every single sample was homogenized for the exact same period of time, to 

the same degree and because some bones were harder to break down than others, there may have 

been some inconsistency in terms of the final RNA yield. The RNA extraction procedure was 

time sensitive and required efficient progression in order to ensure as high RIN as possible. After 

the three phases were obtained in the test tube (RNA phase, DNA phase, protein phase), it was 

necessary to treat the samples with extreme care, as separating more than just the RNA phase 

from the very top would mean drawing other types of molecules or other impurities into our 

extracted RNA samples.  

5.3 Design Description 

Homogenization of Bone 

After the manual homogenization of mouse femurs, the homogenates were further processed and 

purified with a Trizol reagent (ThermoFisher Scientific). Trizol reagent contains phenol and 
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guanidine isothiocyanate to help isolate RNA specifically and moreover inhibits RNase activity. 

Please refer to the Appendix D for details of protocol. After isolation, RNA was purified with an 

RNease mini kit (Qiagen, Inc., Valenica, CA, USA). Please refer to the Appendix E for details of 

RNA cleanup protocol. 

 

Quantifying extracted RNA 

Lastly, the concentration of extracted RNA was measured with a Nanodrop spectrophotometer 

(Nanodrop, Wilmington, DE, USA). Only 1 µl of sample was required. Subsequent results 

showed high levels of RNA present (Table 1). These levels were variable from sample to sample, 

which is why all RNA samples were diluted to 150 ng/µl prior to the conversion to cDNA 

(Appendix F). The absorbance at 260nm (A260) measures RNA concentration and absorbance at 

280nm (A280) measures protein concentration.  

 

Analyzing RNA Quality 

RNA Nano Chip - Bioanalyzer (Agilent Technologies) were used to test the quality of all the 

thirty-one extracted RNA samples (Table 1). A 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA) was used to read the chip, and produced the respective RNA integrity numbers 

(RIN) for our samples. For RIN numbers, a value as close to ten as possible is desired, as this 

signifies RNA of high quality. This procedure was performed on the day after the bone 

homogenizations and RNA extraction procedures were fully completed. 

5.4 Methods and Materials 

Please refer to Appendix D, E, and F for complete protocols. RNA was extracted and purified 

from 31 mouse left femur bones. 

5.5 Results and Discussion 

The RNA Nano Chip indicated a consistently high integrity for all RNA samples that were 

extracted from bone (Figure 10, Table 1). This means that the experiment was successful, and the 

RNA obtained could be used reliably in the next experiment: conversion of RNA to cDNA.  

 Overall, the concentration of RNA that was extracted was relatively high across all 

samples, ranging from 47 ng/µl to almost 800 ng/µl (Table 1). Most samples were between 200 
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and 300 ng/µl. As mentioned before, these samples eventually had to be diluted with distilled 

water to obtain 150 ng/µl, except for the cases where the original concentrations were lower.  

 These results confirm that the RNA extraction procedure was successful, as we obtained 

both high quality and for the most part high quantities of RNA. The samples were stored in an -

80˚C freezer. The volume that we obtained allowed us to perform cDNA conversion several 

times for follow up gene expression analyses. 

 

 

 

 

 

Figure 10. Results from Bioanalyzer gel for 31 RNA samples indicating RNA 

integrity. 
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Table 1. Results of RNA concentrations (ng/uL) for each RNA sample (‘Dried plum + 2Gy gamma’ 

experiment) via NanoDrop and accompanying RIN#'s via Bioanalyzer. 
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6. RNA Conversion to cDNA 

6.1 Introduction 

Complementary DNA (cDNA) is required for qPCR. The main role of cDNA is to act as a 

template for the reaction. The cDNA procedure involves the use of a reverse transcriptase, which 

is the enzyme responsible for generating the complementary strand from a single strand of RNA. 

The conversion is a straightforward procedure (two-step) that involves the reverse transcription 

on its own (rather than in combination with the actual PCR), with special optimized buffers and 

primers. The reaction itself requires several other components, including a buffer to facilitate the 

reaction, dNTP's, random hexamers, etc. Please refer to the Methods section (Appendix G) for 

more details. The overarching reason for the RNA to cDNA conversion was because it is 

required for qPCR, and thus for gene expression analyses in which we hoped to study numerous 

genes of interest for bone formation or resorption.  

6.2 Key Constraints 

Our initial cDNA conversion experiments were unsuccessful. The procedure, in general, required 

meticulous additions and mixes and specific thermocycler program executions throughout its 

length; perhaps a problem could have been older reagents, primers, or other components or 

technical mistakes during the procedures. We did not have the time to isolate the specific 

problem. However, after careful repetition, we finally succeeded. The only other concern during 

our gene expression analysis was the limited supply of cDNA. Despite limited stocks, we were 

able to run qPCR for over ten genes in the end.  

6.3 Design Description 

The cDNA conversion procedure involves addition of different master mixes and other 

components required for the conventional reverse transcription process. Thirty-one PCR tubes 

were used for this experiment, one for each sample. It was important to carefully record the 

progress of reagent addition to each tube so as to ensure the quality and success of the procedure. 

For more details, please refer to Appendix G.  
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Success of cDNA conversion can only be elucidated once qPCR has been performed, in 

which the gene expression graphs are produced, showing successful detection of many different 

genes of interest. Therefore, success could not be determined in this phase of the project.  

6.4 Methods and Materials 

Please refer to Appendix G for complete protocol. cDNA was synthesized for 31 mouse left 

femur bones. RNA utilized for these procedures were the samples extracted and documented in 

chapter 5. 

6.5 Results and Discussion 

cDNA was converted at this point in the course of our experiment. There is no concrete 

validation available because we could not actually determine the success of this procedure until 

we ran the qPCR and determined whether genes of interest were actually expressed or not. The 

first time we performed this procedure, we did not succeed; we determined this after the qPCR 

when it became evident that no genes seemed to be expressed or in general there were no results 

to speak of (data not shown).   

 For the cDNA conversions afterwards, we measured the DNA concentration to ensure 

that there was an adequate level of cDNA present. Though, scientifically, this does not provide 

actual evidence for successful conversion, and DNA may still be detected in blanks, we still did 

this and proceeded under the assumption that the cDNA experiments were performed correctly. 

Therefore, if there was a substantial concentration of DNA detected, then most likely cDNA was 

converted properly from RNA (data not shown). Our results were further validated by successful 

detection of genes of interest in qPCR (please refer to results section in chapter 7). 
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7. Gene Expression Analysis 

7.1 Introduction 

Quantitative PCR (qPCR) is a measure of actual gene expression and depends on successful 

RNA extraction and cDNA conversion (chapters 5 and 6). qPCR uses a 5’ reporter dye and a 3’ 

MGB quencher, as part of the TaqMan® Probes unique for each gene of interest, to read the 

expression of a specific housekeeping gene and a gene of interest. When a complementary region 

of single stranded RNA binds to cDNA, the quencher emits a measurable fluorescent signal. And 

the process iterates repeatedly for about thirty cycles. Probes for the housekeeping gene and gene 

of interest have different 5’ reporter dyes in order to quantitatively measure differences between 

their expression levels. Expression levels of our gene of interest (GOI) are compared to a 

housekeeping gene (HKG). This housekeeping gene is considered a baseline because its 

expression level remains unaffected when exposed to each of the experimental conditions. For 

our housekeeping gene, L19, the 5’ reporter dye was VIC® (Applied Biosystems) and for each of 

our genes of interest, the 5’ reporter dyes was FAM (Applied Biosystems).  

qPCR can be performed as a one-step reaction in which reverse transcription and PCR is 

combined in the same tube or in two steps as we did. Two steps, in our case, were favorable for 

several reasons, which have already been mentioned in chapter 2. Once again, in brief, using 

separate steps for the reverse transcription and qPCR means that cDNA can be saved and stored 

for use in the future, as well as optimized buffers can be used for each specific step and therefore 

increase the quality of the end cDNA or gene expression analysis.  

 The goal of this procedure was to analyze the measured level of different genes, 

associated with osteoblast activity (bone formation), osteoclast activity (bone resorption), or 

oxidative stress (including cell cycle arrest). We hypothesized that genes related to bone 

formation would be upregulated in the dried plum groups, relative to the controls whereas bone 

resorption genes should be more prominent in the samples receiving only radiation. The genes 

that we tested are the following: Bglap, Foxo3, Nrf2, Postn, Sost, MTOR, Cdkn1a, Gadd45a, 

p53, BMP2, BMP4, Rankl, Opg, Runx2, and IGF-1 (refer to Appendix I for more details). Note 

that these genes were tested from both bone-derived samples as well as bone marrow cells, 

which had previously been collected before our arrival to the lab. The rationale behind testing 

bone marrow cells in addition to bone RNA is to observe both how radiation affected the actual 
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bone marrow cells, precursors that eventually lead to new osteoblast and osteoclast formation, as 

well as whether dried plum appeared to act on the actual bone marrow (as opposed to only the 

mineralized bone). Regardless of whether our samples came from bone or bone marrow cells, 

our expectations remained the same as described above. 

7.2 Key Constraints 

There are several challenges that we encountered when running qPCR reactions. The very first 

time that we ran qPCR the results indicated significant noise with little actual gene expression 

(data not shown). There could have been several reasons for this, but most likely it occurred due 

to an error in the cDNA conversion procedure (described in chapter 6). Repetition of the cDNA 

conversion corrected the problems with qPCR.  

 The samples on which we tested gene expression were collected from mice at 11 days 

post irradiation. This is a potential drawback to our gene expression analysis because the genes 

of interest could have or most likely were expressed at a considerable earlier time point after 

irradiation (i.e. 24 or 48 hours). Because of this, much of our gene expression shows little to no 

correlation with a few notable exceptions, which will be described in the Results section.  

7.3 Design Description 

Gene expression analysis was performed in duplicate, and each run tested between three and five 

genes at a time. The housekeeping gene was added into the same reaction well as the actual gene 

probes and primers in a 365 well plate. Each qPCR run required specific mixtures of a PCR 

mastermix, cDNA, primers for genes of interest, and distilled water. For a detailed description of 

the steps involved, please refer to the Methods section. The qPCR reaction took about one hour 

and forty-five minutes in most cases and afterwards, the resulting gene expression graphs either 

validated or negated the expression. The data was processed to convert CT values into gene 

expression level. Graphs were created and analyzed for statistical significance. 

7.4 Methods and Materials 

qPCR was performed using the GoTaq® RT-qPCR System (Promega, Madison, WI, USA) and 

Taqman gene expression assays were utilized (Applied Biosciences, Inc., Poster City, CA, USA). 

qPCR was performed with a 7300 RT-PCR System (Applied Biosystems, Foster City, CA, 
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USA). Final volume for each PCR reaction is 10uL. Please refer to Appendix H for protocol. 

Appendix I details the genes selected and utilized for gene expression analysis. Gene expression 

levels were calculated relative to the normalized expression levels of ribosomal protein L19 

(RPL19, assay ID: Mm02601633_g1). Method utilized to calculate these relative expression 

levels was by the comparative threshold cycle method (DeltaDeltaCt): 

DeltaCt = (GOI – HKG)  

DeltaDeltaCT = 2^(-DeltaCt) 

qPCR was performed on cDNA of bone samples (derived from bone through steps 

documented in chapters 5 and 6) as well as on cDNA of bone marrow cells (BMC). The 

extraction protocol of bone marrow cells from mouse left femur bones, isolation of RNA, and 

conversion to cDNA is not included in this thesis because this was performed prior to the time 

we joined the lab (March 2015). 

All graphs were formulated using the GraphPad Prism computer program. 

 

Statistics 

One-way and two-way analysis of variance (ANOVA) was calculated using JMP computer 

software analyzing diet and exposure to radiation as the main effects. Results were considered 

statistically significant if P<0.05 for one-factor ANOVA or for two-factor ANOVA representing 

an interaction effect. 

7.5 Results and Discussion 

Gene expression analysis was performed on both bone and bone marrow cell samples. 

Please note that the RNA was already extracted from the bone marrow cells when we began this 

project. Therefore, we only had to undertake the extensive RNA extraction procedure previously 

described for the left femur bone samples.  

 Figure 11 is a representative image of the raw qPCR data that is reported by the 7300 RT-

PCR System (Applied Biosystems, Foster City, CA, USA). This data was then analyzed via the 

method described in section 7.4. The gene expression data we collected for the genes listed in 

Appendix I are presented in figures 12-15. Gene expression data was categorized by either being 

bone remodeling or oxidative damage/cell cycle arrest related genes as well as if performed in 

Bone or BMC. 
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Figure 11. Raw qPCR data reported by 7300 RT-PCR System analyzed for gene expression information. 

Graph shows amplification over time for 4 selected genes of interest and the housekeeping gene (L19). Right panel 

shows all genes we analyzed during this qPCR run. 

Of all the genes tested, only three showed a clear, statistically significant correlation. 

These genes were Foxo3, Rankl, and Sost, all which showed statistically significant results in 

mineralized midshaft bone. 

Foxo3 is a transcriptional activator that is expressed in response to oxidative stress. As 

can be seen in Figure 15, and was confirmed by one-way ANOVA, IR induces oxidative stress in 

these bone samples even 11 days post IR. The osteocytes present in these bone samples 

seemingly have the capacity to retain stress markers even 11 days post IR. This confirms our 

hypothesis that ionizing radiation, in this experiment 1Gy gamma radiation, induces oxidative 

stress even 11 days post IR. We are not seeing any effect of dried plum from this analysis of 

Foxo3 gene expression in bone. 

Rankl, which activates osteoclasts and thus bone resorption activity, increases due to IR. 

This can be seen in Figure 14 and is confirmed by one-way ANOVA. This indicates that 

osteoclast activity is heightened when exposed to ionizing radiation and is in response causing 

osteoclasts to break down more bone in comparison to control. Interestingly though, the addition 

of the dried plum supplement also showed increased expression of Rankl. This is not consistent 
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with our hypothesis because interpretation would yield that dried plum is increasing resorption, 

which doesn't explain the bone phenotype of greater bone volume when on the dried plum diet. 

Our conclusion is that at 11 days post IR a very high rate of bone turnover is occurring, both 

resorption and formation, and the snapshot we are seeing from our data at day 11 is indicating 

high levels of bone resorption relative to mice fed control diets and sham-irradiated. 

Finally, Sost, which is encodes a protein that is produced by osteocytes has an anti-

anabolic affect on bone formation. This would mean that a high level of Sost indicates high 

levels of bone resorption and suppressed bone formation. Figure 14 indicates that the dried plum 

diet has an effect on bone formation/resorption. This was confirmed by one-way ANOVA. We 

are seeing that overall there is an increase in SOST expression when on the dried plum diet. As 

with the results of our FOXO3 gene expression analysis, since we are analyzing samples at a 

very late time point, 11 days post IR, the bone is most likely undergoing a high rate of bone 

turnover and thus the activity of bone formation and resorption is high. Our SOST results are just 

a snapshot of the 11 days post IR gene expression. 

 

Figure 12. Gene expression of bone related genes in bone marrow cells. Expression levels normalized to L19. IR 

exposure was 2Gy Gamma radiation. Dried plum (DP) diet was compared to control diets fed (CD) that were either 

irradiated (IR) or not (sham) (A) Rankl, (B) OPG, (C) BMP2, (D) IGF-1, (E) Runx2, (F) BMP4, (G) Nfatc1. Data is 

represented as mean  standard deviation. Bold denotes tendency, but not absolute statistical significance. 
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Figure 13. Gene expression of oxidative stress, DNA damage, and cell cycle related genes in bone marrow 

cells. Expression levels normalized to L19. IR exposure was 2Gy Gamma radiation. Dried plum (DP) diet was 

compared to control diets fed (CD) that were either irradiated (IR) or not (sham) (A) SOD1, (B) Foxo3, (C) Nf2l2, 

(D) p53, (E) Gadd45a, and (F) Cdkn1a. Data is represented as mean  standard deviation. 

 
Figure 14. Gene expression of bone related genes in mineralized midshaft bone samples. Expression levels 

normalized to L19. IR exposure was 2Gy Gamma radiation. Dried plum (DP) diet was compared to control diets fed 

(CD) that were either irradiated (IR) or not (sham) (A) Postn, (B) Bglap, (C) SOST, and (D) Rankl. Data is 

represented as mean  standard deviation. Bold and red denotes statistical significance. 
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Figure 15. Gene expression of oxidative stress, DNA damage, and cell cycle related genes in mineralized 

midshaft bone samples. Expression levels normalized to L19. IR exposure was 2Gy Gamma radiation. Dried plum 

(DP) diet was compared to control diets fed (CD) that were either irradiated (IR) or not (sham) (A) mTOR, (B) 

Foxo3, (C) Nf2l2, (D) p53, (E) Gadd45a, and (F) Cdkn1a. Data is represented as mean  standard deviation. Bold 

and red denotes statistical significance. 

There were no statistically significant differences in most other gene expression data. 

There could be several reasons for this. Firstly, it may be that neither radiation nor dried plum 

significantly affects the specific pathways for the specific genes chose to analyze as of that time. 

Secondly, it may simply mean that the gene expression was absent at day 11, and so we would 

need to analyze gene expression of tissues at an earlier time point. It would be informative to 

repeat the qPCR for all the genes at four different time points, such as 24 hours, 72 hours, 8 days, 

and 11 days to observe how gene expression changes over time. Another explanation could be 

that the genes were selected and analyzed were not the right set of genes to fully understand the 

mechanism of action for how dried plum protects bone. Further analysis and experimentation 

must be performed to confirm or refute this hypothesis.  

 Regardless of the true cause(s) for cases where gene expression was not affected by 

radiation or diet, our gene expression analysis suggests that other directions should be considered 

to confirm the results shown here. To this end, the next priority in light of these gene expression 

results was an assay for lipid damage and microCT scanning to analyze the actual physical 

structure of bones from mice in either the irradiated, dried plum, or control groups. 
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8. Oxidative Damage Analysis 

8.1 Introduction 

Ionizing radiation can be particularly harmful because it generates reactive oxygen species that 

remove electrons from the lipid bilayer of a cell, thereby destabilizing it, and can also damage 

DNA. The resulting imbalance between free radicals and antioxidant is referred to as oxidative 

stress. Oxidative stress then leads to oxidative damage. This damage to the lipid bilayer includes 

lipid peroxidation, in which free radicals remove electrons from the lipids of the cell membrane, 

thereby leading to its degradation. The attack by free radicals of polyunsaturated fatty acids in 

the cell membrane sparks a self-propagating chain reaction that destroys more lipids throughout 

the membrane [21]. The resulting lipid peroxides are unstable and readily decompose to form a 

variety of compounds, such as malondialdehyde (MDA) [22].  Measuring the MDA levels in a 

particular sample – whether a tissue homogenate, serum, or other sample type – will provide a 

reasonable idea of the relative oxidative damage present between samples.  

 The Thiobarbituric Acid Reactive Substances (TBARS) assay (Cayman Chemical 

Company) measures MDA levels in a sample of interest. This occurs through the interaction of 

the thiobarbituric acid reactive substance with MDA. The TBA reagent forms a complex with 

MDA at a high temperature. This complex can be measured fluorometrically at 530 nm 

excitation and 550 nm emission wavelengths. Though it can also be measured colorimetrically, 

there is a higher specificity in the fluorometric analysis [22].  

 By using the TBARS assay and measuring the MDA levels in samples of serum, bone 

supernatant, and bone pellet, then normalizing the values to the amount of protein in each 

sample, we hoped to observe the oxidative damage present in samples from each of four groups: 

control diet or dried plum diet, irradiated or non-irradiated. The rationale for doing this assay is 

to determine whether dried plum protects bone by a reduction of MDA levels and to determine 

the effects of radiation and dried plum beyond the gene expression. We expect to find elevated 

MDA levels in samples that received radiation without a dried plum diet. If dried plum does, in 

fact, protect from oxidative damage, then we should expect to find that the dried plum diet 

groups exhibit an MDA level similar to that of the samples from the control diet, no irradiation 

group and/or the group that received the dried plum diet without irradiation.  
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8.2 Key Constraints 

There are some constraints that we noted over the course of performing the TBARS oxidative 

damage experiments.   

 The TBARS Assay Kit acknowledges that there is some controversy regarding the 

specificity of the thiobarbituric acid reactive substances [22]. Some believe that TBARS reacts 

with other compounds, besides MDA, and therefore makes the assay itself somewhat inaccurate. 

Whether this is the case or not, we decided to run the TBARS assay regardless simply to glimpse 

at the relative lipid peroxidation between sample groups. Even a general idea of oxidative 

damage is helpful in our research, as it can potentially support our gene expression and/or 

microCT results. Specificity to MDA may not be necessary.  

 We tested all samples in duplicate. After fluorometrically measuring the TBARS reaction 

plates, we noticed that there were sometimes discrepancies between samples of the same groups. 

This could be due to variation or lack of uniformity in any of the steps involved: tissue collection 

methods between different individuals as well as variation in the preparation of the reagents 

involved such as the color reagent. There may also be variability within the actual mice in the 

groups as well. The good way to determine the validity of the MDA measurement is to run all 

samples in triplicate instead.  

8.3 Design Description 

Before beginning the actual assay, we performed a brief dilution test experiment to determine the 

optimal dilution factor, if any, to apply to each sample type. For the actual experiments, we 

tested all forty samples in duplicate. The TBARS experiments were conducted over three 

separate days. Each of these days focused on a different sample type: serum, bone supernatant, or 

bone pellet. Bone supernatant refers to the aqueous phase resulting from bone homogenization 

while the pellet is the solid section of the homogenization. All the necessary reagents were 

prepared on the day of the experiment. Please refer to the Methods section and Appendix J for 

more details. An MDA standard was prepared, with concentrations, in µM, of 0, 0.0625, 0.125, 

0.25, 0.5, 1, 2.5, and 5. A microBCA assay was also performed on each set of samples on each 

respective experiment day to obtain information on the total protein concentration and compare it 

to the proportion of MDA detected.  
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8.4 Methods and Materials  

A BioTek plate reader was used to run the fluorometric MDA measurement scans, at an 

excitation wavelength of 530nm and an emission wavelength of 550nm as stated by the 

manufacturer’s protocol [22]. Numerous reagents were prepared according to the manufacturer’s 

protocol: TBA acetic acid, sodium hydroxide assay reagent, TCA assay reagent, and the color 

reagent. The solid thiobarbituric acid reagent and TBA MDA standard were also required. 

Screw-cap tubes were used for the heating reaction to prevent the caps from otherwise popping 

open. Samples were heated in heat blocks for one hour before removing. 200µl of sample were 

added to each well in a 96-well plate, in duplicate for each specific sample. There were forty 

samples total, belonging to four different experimental groups (control diet or dried plum diet, 

radiation or non-irradiated). BSA was used as a standard in the microBCA assay that was run 

concurrently with the TBARS assay. 4 µl of the samples were added to a 96-well plate in 

duplicate followed by the addition of 80µl of working reagent (prepared according to established 

lab and manufacturer’s protocol).  

 

Statistics 

One-way and two-way analysis of variance (ANOVA) was calculated using JMP computer 

software analyzing diet and exposure to radiation as the main effects. Results were considered 

statistically significant if P<0.05 for one-factor ANOVA or for two-factor ANOVA representing 

an interaction effect. 

8.5 Results and Discussion 

The preliminary dilution experiment for the TBARS assay validated the serum concentration that 

we used as well as suggested that the dilutions for bone supernatant and bone pellet should be 

changed. More specifically, the result for MDA in serum indicated that a 1/10 dilution for 

serums fell well into the desired range (see Figure 16). 
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Figure 16. TBARS preliminary experiment for dilution determination. Dilution factor shown above the bars. 

Again, from Figure 16, it is also evident that for bone supernatant, a 1/10 dilution is 

almost the same as the undiluted sample. This may in theory suggest that there was a high level 

of protein or MDA concentration and that a greater dilution, such as 1/50, is required to 

determine where the linear range of the TBARS assay is for the bone supernatant samples. 

However, we ended up decreasing the dilutions because we hoped to see a greater MDA 

measurement between sample types. A problem with having too diluted samples is that the 

resulting measured MDA may not be detected well or can be confused with the background.  

The first TBARS assay was performed on forty serum samples. The results are shown in 

Figure 17, below.  

 

Figure 17. TBARS for Serum samples. IR refers to irradiated groups, which were exposed to 2Gy gamma 

radiation. CD is the control diet group and DP is the dried plum diet group. 

 The MDA level normalized to protein for the group that received the control diet and 

2Gy of gamma radiation is significantly higher than the control diet group that was not 
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irradiated. Both of the dried plum diet groups also have lower MDA levels, closer to the control 

level. Therefore, dried plum prevented a radiation-induced rise in serum MDA levels. These 

findings suggest that a potential mechanism by which dried plum protects bone is through a 

systemic reduction of oxidative damage, a trend that is present in the blood circulation. This is 

promising because an effect on the serum also suggests that dried plum may possess beneficial 

effects for other tissues or organs beyond just the bones.  

 In the case of the TBARS assays for bone supernatant and pellet samples, there was no 

increase in MDA levels after irradiation as had been expected and seen before. Dried plum did 

not appear to impart any bone-protective effects either. We cannot draw any conclusions from 

the data for bone supernatant and bone pellet samples. This may, again, be related to inconsistent 

tissue collection at the time when the different tissues were collected or to other possible 

variability’s in the individual reagent preparation during each of the three times this experiment 

was set up and performed. A way to confirm these results is to re-run the TBARS assay to 

determine whether the statistical insignificance and/or unexpected trends remain and to look at 

other assays that can detect more stable or different types of oxidative damage, beyond lipid 

peroxidation.  
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9. Micro-Computed Tomography 

9.1 Introduction 

Ionizing radiation damages the integrity of the micro-architecture of bone. Micro-computed 

tomography (microCT) is the gold standard for assessing bone morphology and micro-

architecture. This method utilizes high-resolution x-ray measurements taken at all angles around 

your sample, to build a full, 3D reconstruction of your sample [23]. The sample is then 

characterized by how material density within the image is distributed. This procedure is much 

more accurate than 2D analysis, is not destructive to the sample itself, and can be performed as 

high-throughput unlike many other morphology study methods. Thus, microCT was chosen as 

the method to physically characterize our bone samples. After recreating 3D images of mice 

lumbar 4 (L4) vertebrae, investigation of how dried plum protects the bones micro-architecture 

from the damaging effects of radiation can take place. MicroCT allowed us to quantify the 3D 

micro-architecture of the cancellous tissue of the L4 vertebral body (Figure 18). Rod and plate-

like structures called trabeculae make up the cancellous tissue. Quantification and 

characterization of these trabeculae is the main interest for data analysis from microCT. 

 

Figure 18. Lumbar Vertebrae highlighting important locations and directions. [25] 

The laboratory with which we partnered for this senior design project has already determined 

that dried plum successfully protects the appendicular skeleton, the long bones (ex. tibia). Under 

investigation, and an important element of our research goal, is to determine the ability of dried 

plum to protect the axial skeleton (ex. vertebrae) as well. Before making any conclusions or 

comparisons between the effects of dried plum on the axial versus appendicular skeleton, we had 
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to characterize all our samples and first, make comparisons between the control and experimental 

groups of just the vertebrae samples. 

9.2 Key Restraints 

The MicroCT SkyScan 1174 utilized for scanning our vertebra samples utilizes x-ray to perform 

the scanning. Because we were working in a room that x-ray’s were being emitted, there was a 

long training period that took place before any scanning or analysis of our samples via computer 

programs could take place. After training for many consecutive days, we were finally able to 

begin the scanning and post-processing, which in order to accomplish in time for our senior 

design presentation, was very rushed. 

 

Visual self-check 

After scanning but prior to any post-processing, we had to go through and check a few slices to 

ensure that there were no smudges or abnormal bright spots on the scans. The presence of these 

obstructions is a result of the microCT misaligning the bone slice images during the scanning 

process. These smudges or bright spots could be misinterpreted as false trabecula during 

analysis. Thus, if a significant number of smudges were identifiable while spot-checking a few 

locations within the vertebral body from an individual bone, rescanning of that bone would need 

to occur. We unfortunately needed to rescan approximately 6 vertebrae to ensure that false 

trabecula would not interfere with our results. 

 

Determining a Standard ‘Region of Interest’ For All Samples 

Post-processing includes reconstruction of all x-ray images that are taken during scanning (1000 

image slices), rotating the reconstructed vertebrae to be aligned with cranial direction at the top 

and caudal at the bottom with major access of rotation at the center of the vertebral body (Figure 

18). After reconstruction and re-alignment, contouring of the cancellous bone can begin. Only a 

specific region of interest of this cancellous bone will be contoured. A key constraint to 

determining the location of this region of interest is the location of a specific vertebra’s growth 

plate at the cranial and caudal locations. None of the growth plate should be included as part of 

the region of interest. Lab protocols used for previous experiments in our lab utilized the 

standard that, at the bone slice where the caudal growth plate transitions to visible trabeculae, 
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add a 50 slice buffer to the above number, which will then be the bottom of the region of interest 

and then add 300 slices above the 50, with this being the top of the region of interest. Trial and 

error indicated that these constraints would not work for the vertebrae that we were trying to 

contour. The vertebral body was too small, that 300 slices above the 50 slice buffer region landed 

us in the cranial growth plate. In order to ensure that no growth plate would be visible in our 

region of interest we had to try many different parameters. Initially we tried decreasing the buffer 

region, which would lend itself successful to one bone and then when we moved on to 

contouring the next, where it became apparent that the parameters were now not applicable. 

Finally, before jumping into the contouring, we went through all 40 vertebrae and determined 

what parameters for the region of interest would be applicable to all of the samples. Finally we 

were able to settle on a procedure where the bottom of our region of 260 slices above this point 

constituted the top of our region of interest. 

 

Division of Labor 

Due to the large number of samples that we needed to scan, reconstruct, contour, and analyze (40 

samples total) we had initially decided to split the samples into 2 sets: samples d1-d20 and d21-

d40 constituted the two groups. Each set included 5 samples from each of the 4 experimental 

groups, which we were comparing. We wanted to do this so that both of us team members would 

have the opportunity to take part and perform all steps necessary to go from scanned vertebrae to 

data collection and 3D image generation. Although, normally, it is best for one individual to 

perform all analysis, due to the fact that we all have slightly different methods even while 

following the exact same protocols, we decided to split the tasks evenly to both be equally 

involved in the process as well as to divide up the significant amount of labor. After the 

contouring stage, at which point data can be calculated for various parameters detailed later in 

this section, it became apparent that our methods were not 100% identical and because of this we 

were getting slight variation in results. In order to ensure consistency and reliability of the data, 

we decided to start again and this time we would analyze the other person’s samples and then 

compare results sample to sample. After completion, we now had two sets of results for each 

sample. In reality, there were some slight differences between the 2 sets, but the outputs were the 

same. In order to decide which set of data was to be selected as the final results, the standard 
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deviations of the results for each experimental group were compared and the results with the 

tightest spread (i.e. lowest standard deviation) would be utilized. 

9.3 Design Description 

The ultimate goal of this phase of our project was to determine if dried plum protects against 

ionizing radiation any differently in the axial skeleton (ex. vertebrae) in comparison to the 

appendicular skeleton (ex. tibia or femur). Please refer to sections 4.3.2 and 4.4.2 for information 

regarding the animals and experimental design of the study from which samples were analyzed 

by microCT.  

Before any quantification can be performed comparing amount of bone loss caused by 

radiation exposure either on the control diet or the dried plum diet, there are many post-

processing steps that must be completed. The timeline of procedures for bone micro-architecture 

analysis by microCT can be broken down into 6 steps: 

Step 1: Scanning (Skyscan 1174) 

Step 2: Bone Reconstruction (NRecon) 

Step 3: Rotating/Re-alignment (DataViewer) 

Step 4: Contouring (CTAn) 

Step 5: Quantification (BATMAN) 

Step 6: Final 3D Image Generation (CTVol) 

The information in the parentheses denotes the instrument or computer program utilized to 

perform each step. 

9.4 Methods and Materials 

9.4.1 Step 1: Scanning 

Vertebrae samples previously fixed and then stored in 70% Ethanol, then were transferred to 

phosphate-buffered saline (PBS) solution 24 hour prior to scanning. Scanning was performed 

utilizing a SkyScan 1174 microCT scanner (Kontich, Belgium) with a 10.5 m resolution. 1000 

image slices are taken for each of the vertebra samples. Overall, 40 vertebrae were scanned for 

this experiment. 
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9.4.2 Step 2: Bone Reconstruction 

Reconstruction is performed to compile all image slices taken by the scanning machine into one 

volume. This reconstruction is selected for a region beginning 100 slices above and below the 

vertebrae (data not shown). Spot checks of a few slices within the vertebrae image were 

performed to ensure that image was clean and without smudging or bright white spots that could 

potentially interfere with later results. These spot checks were performed with a bottom limit of 0 

and an upper limit of 0.16. If spot checks pass, the selected volume can be sent for reconstruction 

by the NRecon computer program. If spot checks do not pass, vertebrae must be rescanned. 

9.4.3 Step 3: Rotating/Re-alignment 

After reconstruction is complete, re-alignment of the whole volume can be performed to ensure 

that all samples are being analyzed with the same orientation. This is performed utilizing the 

DataViewer computer program. All vertebrae are re-aligned so that the cranial growth plate is on 

top, the caudal growth plate is at the bottom, and the axis of rotation is at the centerline of the 

vertebral body. 

9.4.4 Step 4: Contouring 

Within the reconstructed volume of the whole vertebra sample, only a specific region of interest 

within the vertebral body will be analyzed. 

 

Region of Interest 

To determine the region of interest that was analyzed for all 40 samples, in the CTAn computer 

program, first start at the caudal growth plate. Move cranial through the growth plate until you 

do not see any more of the growth plate at all. This slice number is set as “the bottom of 

selection.” Now calculate 260 slices above this bottom selection point (data not shown). This 

new slice number is set as “the top of selection.” This is now the region of interest that will be 

contoured for data analysis. For the cancellous bone, a region of interest, 1.7mm distal to the 

caudal growth plate of the L4 vertebrae, was selected and included in our analysis (Figure 19).  
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Figure 19. Lumbar 4 vertebrae with region of interest highlighted within the vertebral body. 

Contouring 

Utilizing the screen extension pad and pen as well as utilizing the CTAn computer program, 

draw a region of interest around the cancellous bone of the vertebral body at the top and bottom 

selections that were made above – keeping note to keep a constant space between the region of 

interest and the cortical wall. This region of interest will be automatically interpolated from top 

to bottom by the computer program. If this interpolated region of interest starts to deviate from 

encompassing just the cancellous bone, beginning to touch the cortical bone, a new, adjusted 

region of interest must be drawn. These adjustments must be made throughout the entire 

vertebrae, from top of selection to bottom of selection. When complete, the entire contoured 

regions are saved as a volume of interest. 

9.4.5 Step 5: Quantification 

Image processing and quantification of our 3D parameters of interest is performed via 

BATchMANager (BATMAN) computer program. This program allows you to select your region 

of interest for all samples and then as one, perform analysis on the whole batch. This analysis is 

directed by a “task list” created by the user, which directs the computer on how the samples are 

to be analyzed with what conditions, what calculations are to be performed for relevant 

parameters and where to save the data when the program is complete. 

In order to quantify the extent of bone loss when on the dried plum supplemented diet, in 

comparison to control samples, multiple parameters were analyzed including, but not limited to, 

bone volume to total volume (BV/TV), trabecular thickness (Tb.Th), trabecular seperation 

(Tb.Sp), and trabecular number (Tb.N). These parameters as well as a few others are described 

below (3D Micro-architecture parameters of interest section). 
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3D Micro-architecture parameters of interest 

Please refer to Appendix K for a table of all parameters of interest that were analyzed from the 

contoured regions of interest for all vertebrae samples. 

 

Statistics 

One-way and two-way analysis of variance (ANOVA) was calculated using JMP computer 

software analyzing diet and exposure to radiation as the main effects. Results were considered 

statistically significant if P<0.05 for one-factor ANOVA or for two-factor ANOVA representing 

an interaction effect. 

9.4.6 Step 6: Final 3D Image Generation 

After contouring our region of interest within the vertebral body of the L4 vertebrae, all the 

contoured slices could be reconstructed into a volume of interest. This volume of interest was 

transferred into a program called CTvol. CTvox combined all the images to recreate and render a 

3D representation of the vertebra, based on our slice-by-slice regions of interest. We were able to 

use this 3D rendition to compare the physical characteristics and orientation of the trabeculae 

within the L4 vertebrae of different groups. From the 3D structure we could visualize differences 

in trabecular thickness or density of the bone within in the vertebral body between experimental 

groups. 

9.5 Results & Discussion 

9.5.1 Quantification 

From the task list executed by BATMAN we were able to quantify of our 3D micro-architecture 

parameters of interest for all 40 samples. All results acquired from the microCT were analyzed 

using a 1-factor ANOVA and revealed the following results (Figure 20). Raw data from this 

quantification of 3D micro-architecture parameters is not shown. Analysis of bone volume over 

total volume (BV/TV) showed a 9% increase for mice on the dried plum diet. Analysis of 

trabecular thickness (Tb.Th) also showed a 9% increase for mice on the dried plum diet. Data did 

not reveal a statistically significant change in trabecular seperation (Tb.Sp), trabecular number 

(Tb.N), connectivity density (Conn.D), or structure model index (SMI). Regardless, data is 

presented in figure 20. 
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Figure 20. Quantitative morphometry data determined by microCT for vertebrae (appendicular skeleton). 

CD stands for control diet, DP stands for dried plum, and IR for this experiment was 1Gy Iron radiation. BV/TB = 

bone volume over total volume, Tb.Th = trabecular thickness, Tb.Sp = trabecular seperation, Tb.N = trabecular 

number, Conn.D = connectivity density, and SMI = structure model index. Data shown are mean  standard 

deviation (n=10) and analyzed by 1-factor ANOVA. *Indicates p<0.05 statistical significance. 

Contouring and analysis was also performed for tibia samples from the same 

experimental design. Quantified data for our parameters of interest can be seen in Figure 21. 

Analysis of BV/TV data of the tibia shows a statistically significant radiation induced bone loss. 

Radiation is seen to have an effect on the appendicular skeleton (i.e. tibia). This bone loss was 

not seen for the axial skeleton (i.e. vertebrae). BV/TV stays consistent for both dried plum 
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groups, sham and 1Gy Iron irradiated (Figure 21). This data shows radiation induced bone loss is 

mitigated by a dried plum supplemented diet. 

 

 
Figure 21. Quantitative morphometry data determined by microCT for tibia (axial skeleton). CD stands for 

control diet, DP stands for dried plum, and IR for this experiment was 1Gy Iron radiation. BV/TB = bone volume 

over total volume, Tb.Th = trabecular thickness, Tb.Sp = trabecular seperation, Tb.N = trabecular number, Conn.D = 

connectivity density, and SMI = structure model index. Data shown are mean  standard deviation (n=10) and 

analyzed by 1-factor ANOVA. *Indicates p<0.05 statistical significance. 

9.5.2 3D Images 

From the 3D reconstructions of the scanned trabeculae by CTvox, we were able to visualize 

differences in bone micro-architecture from each experimental condition. A set of representative 
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images can be seen in Figure 22, which illustrates one 3D reconstructed image per experimental 

condition. 

 

Figure 22. Representative images of 3D reconstruction of cancellous bone micro-architecture via microCT. 

Both groups of mice on the dried plum diet had statistically significant higher bone 

volume and trabecular thickness in comparison to CD-fed controls. Results did not indicate any 

significant decrease in vertebrae BV/TV or Tb.Th for mice on the control diet that were 

irradiated with Iron (Figure 20). Specifically in the vertebrae, IR is not causing any tissue loss. In 

contrast, data acquired from analysis of the tibia, which is part of the appendicular skeleton, 

specifically BV/TV, showed that ionizing radiation caused a significant amount of bone loss due 

to IR when on the control diet in comparison to the dried plum supplemented diet (Figure 21). 

Conclusion can be stated that in the appendicular skeleton, dried plum imparts a radio-protective 

effect on bone, while dried plum only functions to increase bone mass in the axial skeleton, 

independent of radiation exposure. Another explanation could be that the tibia and the vertebrae 

have different rates of remodeling and different reaction times to IR. Analysis of the 3D 

reconstructed images of the bones micro-architecture we could definitively see that in comparing 

samples from the control diet and dried plum supplemented diet that were non-irradiated, the 

upper section of the bone is more densely packed in the dried plum group (Figure 22). Between 

the same images, trabecular thickness is significantly greater for the dried plum group compared 

to control. In combination, the data as well as the 3D images that we collected in analysis of the 

axial skeleton, specifically the vertebrae, showed improvement in bone structure and increase in 
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bone mass for the dried plum group, but this improvement is not directly because of dried plums 

ability to protect from ionizing radiation. A diet supplemented with dried plum promotes 

acquisition of bone mass independent of radiation for the mice in this experiment. 

 Because we did not see a significant decrease in bone volume and trabecular thickness for 

the irradiated control diet group in comparison to the non-irradiated, we cannot make any 

conclusions on the protective effects of dried plum on the micro-structure of the bone of the axial 

skeleton after exposure to irradiation. A possible reason for not seeing this radiation induced 

bone loss may be because the 1Gy Iron radiation dosage was not strong enough to cause 

significant changes in physical bone morphology. In contrast, we can state that our results 

support that dried plum is able to protect the appendicular skeleton from radiation induced bone 

loss. 
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10. Conclusions 

10.1 Summary 

There are several things that we can conclude from the experiments that we performed for this 

research project over the past year.  

 Firstly, we found that radiation increases both bone resorption and oxidative stress. Our 

gene expression results pointed to an increase in genes associated with resorption (i.e. Rankl). 

Gene expression of Foxo3, a marker for oxidative stress, increased as well. Many of the genes 

that we tested yielded statistically insignificant results, probably because the tissues that we 

tested were collected at a late time point after irradiation. Please refer to chapter 7.  

 The TBARS assay was performed to gauge the level of oxidative damage in serum, bone 

supernatant, and bone pellet samples. For the serum samples, MDA levels were elevated in the 

control diet, 2 Gy gamma radiation group, relative to the control and all other groups in general. 

This suggests that a potential mode of action by which dried plum protects bone is a systemic 

reduction of oxidative damage. The TBARS results for both supernatant and pellet were 

inconclusive.  

 Our results with the microCT were particularly interesting because not much attention 

has been devoted to the interaction between dried plum, radiation, and the axial skeleton, in our 

case the L4 vertebra. The results that we obtained cannot confirm a bone-protective effect from 

dried plum because there was no radiation-induced bone mass decrease to begin with. Though 

the conditions that we used in our experiment cannot confirm this, performing this experiment 

with a higher level of radiation may provide greater insights as to whether dried plum can 

actually protect vertebrae. What we did find, however, is that dried plum successfully increases 

the bone mass of the axial skeleton, independent of radiation or any other factors. This is 

significant partly because it demonstrates that dried plum on its own, under normal conditions, 

can contribute to a greater bone mass and overall a promotion of bone health. 

10.2 Future Work 

The experiments we were able to conduct over the past year are not sufficient to fulfill our goal 

of fully understanding how dried plum protects bone from radiation. There are numerous other 

experiments that we can perform to better understand the nature of dried plum.  
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 Immunohistochemistry staining, such as hydroxyguanosine (8-OHG) staining, can be 

performed on slices of bone tissues from representative condition groups to analyze oxidative 

damage to DNA within bone cells. In an antibody-antigen interaction, antibodies can bind 

specific regions of DNA within the nucleus or to other specific antigens. The stain can then be 

analyzed for differences between irradiated tissue and control tissue and the overall cell 

morphology.  

 A follow-up to the micro-CT staining could be mechanical testing to quantify the 

mechanical properties of vertebrae, in relation to a dried plum diet relative to the control or 

irradiation relative to the sham control groups. By applying a certain load onto these vertebrae, 

we can determine the strength of these bones before they fracture.  

 Running assays to test DNA-damage may also be helpful, as it would confirm whether 

radiation-induced oxidative stress and damage affects the DNA directly. A possible assay for this 

could be the 8-oxoguanine assay, which would test for a characteristic DNA lesion that is 

typically induced by reactive oxygen species. In this way, we could examine the extent to which 

reactive oxygen species damages DNA and therefore the gene expression of genes related to 

bone formation, resorption, and oxidative stress.  

 The last phase of our research project that we would have liked to conduct includes the 

extraction and purification of the active components from dried plum, followed by in vitro 

experiments to test the effects of these components on cell cultures to fully identify the 

component responsible for bone protection. After extracting dried plum polyphenols or other 

potential active components, they can be applied to the media of cell culture cells of bone 

marrow derived cells either alone or in conjunction with irradiation to observe which 

components seem to impart a beneficial effect for the cells. A possible method to extract dried 

plum polyphenols has already been cited by Bu et al. [15].  

10.3 Concluding Remarks 

Over the course of this past year, we were able to conduct three main phases of our research: 

gene expression with qPCR, oxidative damage analysis with the TBARS assay, and physical 

characterization with microCT scans. This is not sufficient to get the full picture of how dried 

plum protects bone. However, suggested experiments to continue this research appear in the 

previous section.  
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 At this point, dried plum remains a very promising dietary option to protect bone from 

radiation. Though further research is required to understand its function better, even preliminary 

results suggest that dried plum is very capable of protecting the bones of astronauts, and other 

patients suffering from bone conditions such as osteoporosis. Dried plum even appears to 

promote bone mass in some cases, as described in chapter 9.  

We look forward to seeing how this project progresses beyond our senior design thesis, in 

the years to come. We hope to see how researchers in our lab at NASA Ames as well as other 

labs continue to advance the general understanding of the mechanisms of dried plum and 

discover other potential solutions that will one day promote the health of astronauts and facilitate 

longer-term missions to Mars and beyond.  

We are very grateful for having received this amazing opportunity to undertake this 

yearlong research project in the Bone and Signaling Laboratory of NASA Ames Research 

Center. 
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11. Appendices 

Appendix A. Budget 

Table 2. Complete itemized estimated costs for all reagents utilized for our experiments. *These costs as well 

as this research was supported by National Space Biomedical Research Institute grant #MA02501 (RKG, CL, JSA) 

under NASA cooperative agreement NCC 9–58, a DOE-NASA Interagency Award #DE-SC0001507, supported by 

the Office of Science (BER), U.S. Department of Energy (RKG), and a NASA Postdoctoral Program fellowship 

Item\ Cost 

RNAase free water $10 

Trizol $50 

Chloroform $50 

Ethanol $25 

RNEasy Mini Kit (Qiagen) $1000 

Random Hexamers $100 

dNTP’s $75 

5x Standard Buffer (cDNA) $20 

DTT $20 

RNAse Out $50 

Reverse Transcriptase $100 

TaqMan Gene Expression Primers (x18 primers) $1500 

TBARS kit $350 

PBS $25 

 

 

 

 

 

 

 

 

 



79 

 

Appendix B. Respective Experimental Conditions for ‘Dried Plum + 2Gy 

Gamma’ Experiment mice. 
Table 3. Assigned diet and radiation condition for all mice from ‘Dried plum + 2Gy gamma’ experiment. d25-

d56 indicate the dissection ID given to each of the mice. Please note that mouse d35 passed away during the 

experiment and thus no samples were collected. 
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Appendix C. Respective Experimental Conditions for ‘Dried Plum + 1Gy 

Iron’ Experiment mice. 
Table 4. Assigned diet and radiation condition for all mice from ‘Dried plum + 1Gy Iron’ experiment. d1-d40 

indicate the dissection ID given to each of the mice. 
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Appendix D: Bone Homogenization and Total RNA Extraction Protocol* 

*Materials and methods derived from “Total RNA Extraction Using Trizol” protocol as provided 

by Dr. Ann-Sofie Schreurs 

 

TITLE  Bone Homogenization and Total RNA Extraction 

 

PURPOSE To homogenize bone samples and perform extraction of RNA from these 

samples 

 

MATERIALS 

 

Lab supplies: 

Bucket of crushed ice      Tube racks 

Centrifuge that can be set to 4C   15mL conical tube 

Aluminum foil      P1000 and P200 pipettes and tips 

Scalpel       RNase ZAP 

Tweezers       Small petri dishes 

Homogenizer      2mL tubes 

 

Reagents: 

RNase-free water 

Bone samples 

Trizol 

Chloroform 

70% Ethanol 

 

METHODS 

 

Perform homogenization in the chemical hood with proper PPE due to the use of toxic 

chemicals. 

1) Remove bones from freezer and allow to thaw on ice for ~30 minutes prior to time of 

homogenization. 

2) Clean all surfaces and pipettes with RNase ZAP. 

3) Lie out aluminum foil in the fume hood and prepare necessary scalpel, tweezers, and 

petri dishes. All should be cleaned with RNase ZAP before use. 

4) Fill a 15mL conical tube with RNase-free water to clean tip of homogenizer. 

5) Set centrifuge to cool to 4C to be ready during later part of protocol. 

6) Run the homogenizer in water on medium to high setting for 10-15 seconds. Remove 

any leftover pieces of tissue you may see with tweezers and clean with RNase ZAP. 

7) Label 2mL tubes and fill them with 500uL of Trizol. 

8) Take out on piece of thawed bone and place on a petri dish. Clean off any excess tissue 

around the bone and use a scalpel to cut the bone into 3-4 small pieces. Place bone 

pieces into appropriately labeled tubes with Trizol. 

9) Homogenize at a moderate rate and increase slowly for approximately 30-60 seconds, 

until all fragments are a fine powder. 



82 

 

10) Add an additional 500uL of Trizol to each tube to bring final volume to 1mL.  

11) Discard petri dish between bones and clean homogenizer in water after each 

consecutive sample. Make sure all possible pieces of bone tissue are cleaned off from 

tip of homogenizer. 

12) Once homogenization of all bone samples is complete, spin down all tubes at 12,000g 

for 10 minutes at 4C. Remove supernatant, transferring half and half of it to two labeled 

tubes. 

13) Bring the final volume to each respective tube to 1mL with excess Trizol to dilute 

calcium 

14) Incubate for 5 minutes at room temperature. 

15) Add 200uL of chloroform to each 1mL Trizol tube. Place another rack, on top of your 

tubes, sitting in another rack, in order to shake all tubes at once, and shake vigorously 

for 15 seconds.  

16) Incubate at room temperature for 3 minutes. 

17) Centrifuge samples at 12,000g for 12 minutes at 4C. After centrifugation, you should 

see that the sample is settling into 3 layers/phases. Note: bottom red organic phase is 

protein, the intermediate phase is DNA, and the clear aqueous phase is RNA. 

18) Transfer the aqueous phase to a new 2mL tube being very cautious not to take up any of 

the intermediate, DNA phase. Remove in 200uL aliquots, if appropriate. Combine the 

aqueous phases of the two separate aliquots from step 12 into the same tube. 

19) Slowly add equal volume of 70% ethanol to the aqueous phase or the necessary volume 

to bring the final volume to 2 mL. Mix the tube gently by inversion. 

20) Continue on to the total RNA cleanup protocol. 
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Appendix E: Cleanup of Total RNA Protocol* 

*Materials and methods derived from “Cleanup of total RNA with RNeasy mini kit” protocol as 

provided by Dr. Ann-Sofie Schreurs 

 

TITLE  Cleanup of Total RNA 

 

PURPOSE To cleanup Total RNA samples after RNA extraction with RNeasy mini 

kit in preparation for conversion to cDNA 

 

MATERIALS 

Lab supplies: 

1.5mL collection tubes 

P1000, P200, P100, P1 and tips 

Spectrophotometer (NanoDrop, Wilminton, DE, USA) 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) 

 

Reagents: 

RNeasy mini kit (Qiagen, Inc., Valenica, CA, USA) 

 

METHODS 

 

1) After RNA extraction, transfer 700uL of RNA sample into an RNeasy mini column 

placed inside a 2mL collection tube. Centrifuge at 10,000rpm for 30 seconds and 

discard flow-through. Repeat until all extracted RNA sample has been run through the 

RNeasy mini column. 

2) Add 350uL of Buffer RW1 into RNeasy mini column and centrifuge at 10,000rpm for 

30 seconds. Discard flow-through. 

3) Prepare DNase I from stock (stored in 4C fridge) by dissolving it in 550uL of RNase-

free water. Do not vortex. Prepare 10uL of DNase I stock solution with 70uL Buffer 

RDD per sample. 

4) Pipette 80uL of DNase I incubation mix directly onto the RNeasy gel membrane and let 

it incubate on bench top for 15 minutes. 

5) Pipette 350uL of Buffer RW1 into the RNeasy column, and centrifuge at 10,000rpm for 

30 seconds. Discard flow-through. 

6) Transfer RNeasy column to new 2mL collection tube. Pipette 500uL of Buffer RPE in 

the RNeasy column. Centrifuge at 10,000rpm for 30 seconds. Discard flow-through. 

7) Add another 500uL of Buffer RPE to the RNeasy column. Centrifuge at 10,000rpm for 

2 minutes. Discard flow-through. 

8) To eliminate any remnants of Buffer RPE, centrifuge again at 13,00rpm for 1 minute. 

9) Transfer RNeasy column to a new 1.5mL collection tube. Pipette 30uL RNase-free 

water directly to the RNeasy gel membrane. Wait 5 minutes and then centrifuge at 

10,000rpm for 1 minute. 

10) Determine RNA quantity using a spectrophotometer with 1uL of sample. 

11) Confirm quality of RNA using a 2100 Bioanalyzer. 

12) Store all samples in -80C freezer until use. 
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Appendix F: Preparation of total RNA samples Protocol 

 

TITLE  Preparation of total RNA samples prior to cDNA conversion 

 

PURPOSE To prepare total RNA samples to equal RNA concentrations prior to 

conversion to cDNA 

 

MATERIALS 

 

Lab supplies: 

1.5mL micro-centrifuge tubes 

Spectrophotometer (NanoDrop, Wilminton, DE, USA) 

 

Reagents: 

RNA samples 

RNase-free water 

 

METHODS 

 

After determining the concentration of all RNA samples, compare concentrations and if there is 

much variation, dilute all samples to 150ng/uL. 

1) Calculate new volume of RNA necessary for dilution to 150ng/uL, with a final volume 

of 10uL. Equation used: (150*10)/(initial RNA concentration) 

2) Calculate new volume of water to mix with RNA. Equation used: 10 - (new volume of 

RNA). 

3) Prepare diluted sample mixtures. 

4) Determine new RNA quantity using a spectrophotometer. 
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Appendix G: cDNA Protocol* 

*Materials and methods derived from “cDNA Synthesis” Protocol as provided by Candice Tahimic 

 

TITLE  Conversion of RNA to cDNA 

 

PURPOSE Conversion of RNA samples to cDNA in preparation for qPCR 

 

MATERIALS 

 

Lab supplies: 

PCR tubes 

Ice block for PCR tubes 

P200, P100, and P20 plus tips 

Thermocycler 

 

Reagents: 

Diluted RNA samples     5X Standard Buffer 

RNase-free water      DTT 

Random Hexamers      RNAse Out 

dNTPs       Reverse Transcriptase 

 

METHODS 

 

1) Thaw diluted RNA samples (all ~150ng/uL) 

2) Prepare standard cDNA reaction mixtures for 15ng RNA/uL 

a. Volume of RNA per reaction is determined by (15*total reaction volume)/[RNA] 

b. Volume of Water per reaction is determined by (6-volume of RNA) 

3) Prepare master mix 1: 0.75uL of Random Hexamers and 0.75uL of dNTPS per 1 

reaction. 

4) Add 1.5uL of master mix 1 to all RNA+water preps (keep all solutions on ice block) 

5) Heat solutions in thermocycler for 5 minutes at 65C and then quickly put back on ice 

block 

6) Prepare master mix 2: 1.5uL of diWater, 3uL of 5X First Standard Buffer, 1.5uL of 

DTT, and 0.75uL of RNAse Out per 1 reaction 

7) Add 6.75uL to each tube and gently pipette-mix 

8) Put in thermocycler for 2 minutes at 37C 

9) Remove samples and put on ice block 

10) Add 0.75uL of Reverse Transcriptase to each sample. Mix gently. 

11) Put samples in thermocycler for following cycles: 

a. 25C for 10 minutes 

b. 37C for 50 minutes 

c. 70C for 15 minutes 

d. 4C dwell 

12) Store cDNA in -80C freezer until use 
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Appendix H: Qualitative Polymerase Chain Reaction (qPCR) Protocol* 

*Materials and methods derived from “qPCR” Protocol as provided by Dr. Ann-Sofie Schreurs 

 

TITLE  Gene expression by qPCR 

 

PURPOSE To determine expression level of gene of interest in cDNA samples 

 

MATERIALS 

 

Lab supplies: 

7300 RT-PCR System (Applied Biosystems, Foster City, CA, USA) 

96 well plate 

384 well plate 

P1000, P200, P20 and tips 

Multi-channel pipette (8 channels) 

Aluminum foil 

MicroAmp Optical Adhesive Film (PCR compatible) 

 

Reagents: 

cDNA samples 

RNase-free water 

Taqman gene expression primers for GOI and Housekeeping Gene 

GoTaq RT-qPCR System (Promega, Madison, WI, USA) 

 

METHODS 

 

1) Follow excel file below to calculate necessary amounts of regents for a desired number 

of genes and a specific number of samples. 

2) Thaw cDNA samples on ice as well as RNase-free water. 

3) Thaw appropriate primers for GOI and housekeeping gene. Primers are light sensitive 

so always keep covered with foil. 

4) Prepare Mix B, Part 1 in a 1.5mL micro-centrifuge tube. Follow “recipe” from figure 

23.  

5) For Part 2, aliquot the appropriate amount of Part 1 into a 96 well plate. Number of 

aliquots will be determined by the number of samples you have. Prepare the 96 well 

plate as depicted in figure 24. 

6) Then aliquot the appropriate amount of cDNA into the wells from part 5 based on 

sample number. 

7) Using a multichannel pipette (8 tips), pipette 7.5uL of samples from part 2 into the 365 

well plate. Prepare the 384 well plate as depicted in figure 24. Cover the plate with 

plastic cover slip when not being used. 

8) Prepare Mix A for each of your primers. 
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9) Aliquot 22.2uL of Mix A into 8 consecutive wells of the 96 well plate. 

10) Again, using the multi-channel pipette, aliquot 2.5uL of aliquoted Mix A from part 9 

and add to samples in the 384 well plate from part 7. Pipette mix. 

11) Cover slide with optical adhesive film. 

12) Take to 7300 RT-PCR System machine (Applied Biosystems, Foster City, CA, USA) 

and run the accompanied program for appropriate number of samples and 10uL 

reaction volume/well. 

 

 
Figure 23. Excel spreadsheet utilized to calculate qPCR "recipe" for 31 samples and 1 gene of interest. Orange 

highlighted boxes indicate the mixes that need to be made, Mix A, Mix B (Part 1), and Mix B (Part 2). Yellow 

highlighted boxes indicate the number of uL that will be aliquoted from the 96 well plate into the 365 well plate. 

Final volume in each well (365 well plate) should be 10uL. 
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Figure 24. Set up for the 96 well and 365 well plates utilized for qPCR of 31 samples and 1 gene of interest 

from the ‘Dried plum + 2Gy gamma’ experiment. (A) 96 well plate of Mix B (Part 2) in each well = cDNA gets 

combined with Mix B (Part 1). (B) 365 well plate where 7.5uL of Mix B (Part 2) is combined per well with 2.5uL of 

Mix A (specific to one gene. 
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Appendix I. Table of Genes Analyzed 

Table 5. Table of all genes we analyzed during the course of our project during the gene expression phase. 

Table includes full names for our genes of interest as well as a description of their functions. 

Gene Full Name Category Description/Function Assay ID# 

Bglap 

Bone gamma-

carboxyglutamate 

protein 

Bone formation 
Secreted by osteoblasts that regulates bone 

remodeling and energy metabolism 
Mm03413826 

BMP-2 

Bone 

morphogenetic 

protein 2 

Bone formation Induce osteoblast differentiation Mm01340178_m1 

BMP-4 

Bone 

morphogenetic 

protein 4 

Bone formation Stimulation of osteoblast activity Mm00432087_m1 

Cdkn1a/p21 
Cyclin-dependent 

kinase inhibitor 1A 
Oxidative stress 

It prevents phosphorylation of cdk’s and blocks the 

cell cycle in response to DNA damage 
Mm04205640_g1 

FOXO3 Forkhead Box O3 Oxidative stress 
Transcriptional activator, which triggers apoptosis 

under situations of oxidative stress 
Mm01185722_m1 

Gadd45a 

Growth Arrest and 

DNA-Damage-

Inducible, Alpha 

Oxidative stress 

Increased in response to stressful growth arrest 

conditions or after exposure to DNA-damaging 

agents 

Mm00432802_m1 

IGF1 
Insulin like growth 

factor 1 

Bone formation 

 
Critical mediator of bone growth Mm00439560_m1 

mTOR 

Mechanistic Target 

of Rapamycin 

(Ser/Thr Kinase) 

Oxidative Stress 

Encodes a protein kinase that mediates cell 

responses to certain stresses, namely DNA damage 

and nutrient deprivation 

Mm00444968_m1 

Nfatc1 

Nuclear Factor of 

Activated T-Cells, 

Cytoplasmic, 

Calcineurin-

Dependent 1 

Bone resorption 

(inhibition) 
 Mm00479445_m1 

Nfe2l2 

Nuclear factor 

(erythroid-derived 

2)-like 2 (Nrf2) 

Oxidative stress 
Involved in the protection against oxidative damage 

due to injury or other inflammation. 
Mm00477784_m1 

Opg Osteoprotegerin 
Bone resorption 

(inhibition of) 

As a competitive inhibitor, works to prevent bone 

resorption. 
Mm01205928_m1 

Postn Periostin 
Bone formation 

 
Essential for bone remodeling Mm01284919_m1 

Rankl 

Receptor activator 

of nuclear factor 

kappa-B ligand 

Bone resorption 

Its surface bound molecule (CD254) is believed to 

activate osteoclasts and thus bone resorption 

activity. 

Mm00441906_m1 

Runx2 

Runt-Related 

Transcription Factor 

2 

Bone formation 
This protein is regarded as essential for osteoblastic 

differentiation 
Mm00501584_m1 

SOD1 

Superoxide 

Dismutase 1, 

Soluble 

Oxidative stress 

Encoded protein responsible for destroying free 

superoxide radicals, thus protects against oxidative 

damage 

Mm01344233_g1 

SOST Sclerostin Bone resorption Produced by osteocytes and inhibits bone formation Mm04208528_m1 

TP53 Tumor Protein P53 Oxidative stress 
Induce cell cycle arrest, apoptosis, senescence, 

DNA repair in response to cellular stresses 
Mm01731290_g1 
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Appendix J. TBARS Assay Protocol* 

*Materials and methods derived from Bone and Signaling Lab, NASA ARC. 

 

TITLE  TBARS Assay   

 

PURPOSE To measure MDA levels in serum, bone supernatant, or bone pellet 

samples.  

 

MATERIALS 

 

Lab supplies: 

BioTek Plate Reader 

96 well plate (black) 

P1000, P200, P20 and tips 

Multi-channel pipette (8 channels) 

Aluminum foil 

 

Reagents: 

Thiobarbituric Acid Assay Reagent 

TBA Acetic Acid 

Sodium Hydroxide Assay Reagent 

TBA Malondialdehyde Standard 

TCA Assay Reagent 

 

METHODS 

Color Reagent Preparation 

1) TBA Acetic Acid and Sodium Hydroxide reagent were diluted with 40 ml of HPLC-

grade water. That is, 10 ml of each of these reagents was added to 40 ml of HPLC grade-

water in separate 50 ml tubes.  

2) 45 samples were assumed when preparing the volume of the color reagent. To this end, 

18.72 ml of Acetic Acid Solution were mixed with 18.72 ml of Sodium hydroxide in a 

separate 50 ml beaker.  

3) 198.72 mg of TBA reagent were weighed and added to the beaker, along with a stir bar. 

The contents of the beaker were stirred until the dissolution of the solid TBA, as much as 

possible or until the powder was uniform and as few larger chunks were visible.  

 

Fluorometric Standard Preparation 

1) 25µl of MDA Standard were mixed with 975µl of water to obtain a stock solution of 

12.5µM.  

2) 8 glass test tubes were labeled A-H.  

3) Each of eight tubes was prepared according to the following table, to create the MDA 

fluorometric standards.  
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Tube MDA (µl) Water (µl) MDA Concentration (µM) 

A 0 1000 0 

B 5 995 0.0625 

C 10 990 0.125 

D 20 980 0.25 

E 40 960 0.5 

F 80 920 1 

G 200 800 2.5 

H 400 600 5 

 

TBARS Assay 

1) 1.5 ml centrifuge tube was labeled for each sample.  

2) 100 µl of sample or standard added to appropriate tube.  

3) 100 µl of TCA Assay Reagent was added to the tube and swirled to mix.  

4) 800 µl of Color Reagent was added to each tube and vortexed.  

5) Tubes were added to boiling water and left to boil for 1 hour.  

6) After 1 hour, tubes were immediately transferred to an ice bath to stop the reaction.  

7) Samples were incubated on ice for 10 minutes.  

8) Tubes were centrifuged at 1,600 g and 4ºC for 10 minutes.  

9) Because the tubes are stable at room temperature for 30 minutes, the following had to be 

performed expediently.  

a. 200 µl of solution from each tube was transferred in duplicate to a black, 96-well 

plate.  

b. A plate reader was used to read the fluorescence at an excitation wavelength of 

530 nm and an emission wavelength of 550 nm. Excitation and emission 

bandwidths were set to no higher than 10 nm.  
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Appendix K. Table of microCT Parameters of Interest [23] 

Table 6. Table of all parameters of interest that were analyzed after performing microCT for all vertebrae 

samples. 

 

Abbreviation Full Name Description 
Standard 

Unit 

BV/TV 
Bone volume 

fraction 
The ratio of bone volume to total volume of region of interest % 

Tb.Th 
Trabecular 

Thickness 
The average thickness of trabeculae mm 

Tb.Sp 
Trabecular 

Seperation 
The average separation lengths between trabeculae mm 

Tb.N Trabecular Number The average number of trabeculae within region of interest 1/mm 

Conn.D 
Connectivity 

Density 

“A measure of the degree of connectivity of trabeculae 

normalized by total volume (TV)” 
1/mm3 

SMI 
Structure model 

index 

“An indicator of the structure of trabeculae; SMI will be 0 for 

parallel plates and 3 for cylindrical rods” 
1/mm 
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