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Abstract. When applied to remove climate model biases in
precipitation, quantile mapping can in some settings mod-
ify the simulated difference in mean precipitation between
two eras. This has important implications when the precip-
itation is used to drive an impacts model that is sensitive
to changes in precipitation. The tendency of quantile map-
ping to alter model-predicted changes is demonstrated us-
ing synthetic precipitation distributions and elucidated with
a simple theoretical analysis, which shows that the alteration
of model-predicted changes can be controlled by the ratio
of model to observed variance. To further evaluate the ef-
fects of quantile mapping in a more realistic setting, we use
daily precipitation output from 11 atmospheric general cir-
culation models (AGCMs), forced by observed sea surface
temperatures, over the conterminous United States to com-
pare precipitation differences before and after quantile map-
ping bias correction. The effectiveness of the bias correction
is not assessed, only its effect on precipitation differences.
The change in seasonal mean (winter, DJF, and summer, JJA)
precipitation between two historical periods is compared to
examine whether the bias correction tends to amplify or di-
minish an AGCM’s simulated precipitation change. In some
cases the trend modification can be as large as the original
simulated change, though the areas where this occurs varies
among AGCMs so the ensemble median shows smaller trend
modification. Results show that quantile mapping improves
the correspondence with observed changes in some locations
and degrades it in others. While not representative of a future
where natural precipitation variability is much smaller than
that due to external forcing, these results suggest that at least

for the next several decades the influence of quantile map-
ping on seasonal precipitation trends does not systematically
degrade projected differences.

1 Introduction

In translating simulated precipitation projections produced
by general circulation models (GCMs) for local and re-
gional climate impact studies, a process of downscaling is
needed (e.g., Christensen et al., 2007; Fowler et al., 2007;
Murphy, 1999). While “perfect-prognosis” downscaling es-
timates fine-scale projections by assuming the predictors are
realistically simulated (Eden et al., 2012), any “model out-
put statistics” (MOS, Glahn and Lowry, 1972) approach by
design includes some form of bias correction to remove the
time-invariant GCM biases, allowing the signal, or change,
simulated by the GCM to be isolated to some degree from the
systematic errors. This is critical in applications such as hy-
drology, where runoff is a nonlinear function of precipitation,
and so is highly sensitive to model biases.

A common method for bias correction is quantile mapping
(QM), which has been shown to be an effective method for
removing some GCM biases at relatively little computational
expense (Li et al., 2010; Maraun et al., 2010; Panofsky and
Brier, 1968; Piani et al., 2010; Themeßl et al., 2011; Wood et
al., 2004). This method has been employed in creating sev-
eral widely used data sets of downscaled GCM output for
the United States and global land areas (Girvetz et al., 2009;
Maurer et al., 2014). The use of these data sets in hundreds of
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916 E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes

studies, and the extensive application of QM by many others,
has led to recent efforts to study some of the assumptions and
effects of QM bias correction (Maraun, 2012, 2013; Maurer
et al., 2013).

One important effect of QM is that it can change the GCM
trend, so that the raw GCM simulated change is modified
during the bias correction process, an effect that can be large
relative to other sources of uncertainty such as variability
among GCMs (Brekke et al., 2013; Hagemann et al., 2011;
Maraun, 2013; Pierce et al., 2013; Themeßl et al., 2011). This
has raised concerns regarding the effect of modifying the pre-
cipitation change simulated by GCMs, especially for water-
constrained regions where climate adaptation plans hinge on
projected changes in water supply (Barsugli, 2010).

In this paper we examine the effect of QM on simulated
precipitation changes between two historic periods, and fo-
cus on the question of whether the simulated changes are
systematically altered by QM.

While historic GCM simulations include the climatic re-
sponse to forcings such as changes in atmospheric green-
house gas concentrations, solar variability, etc., they are un-
synchronized with historic natural variability (Eden et al.,
2012). This natural, or internal, variability of precipitation
can be dominant even at timescales as long as 50 yr (Deser
et al., 2012; Maraun et al., 2010), and may play a substan-
tial role in GCM variability in future projections through the
mid-21st century (Hawkins and Sutton, 2011). Thus, the dif-
ferences in a regional precipitation change between two peri-
ods in a GCM’s historic simulation compared to the observed
change result from both GCM biases in sensitivity to exter-
nal forcing and the fact that natural variability is not syn-
chronized with the observed record. Only the former repre-
sents a bias in the GCM. To lessen this effect, this study uses
model output contributed as part of the Atmospheric Model
Intercomparison Project (AMIP) experiment. In these AMIP
model runs the simulated natural variability is more closely
tied to observations, since observed sea surface temperatures
and sea ice are imposed on the atmospheric model, with the
same greenhouse gas concentrations as the historical simula-
tions, with simulations performed by an atmospheric general
circulation model (AGCM). This provides a test where the
effects of unsynchronized low frequency natural variability
between the models are diminished relative to unconstrained
historic runs. The improved representation of trends in AMIP
simulated precipitation, as compared to unconstrained histor-
ical runs, has been demonstrated (Hoerling et al., 2010).

In this study we do not separate the different sources of
variability, but apply a QM bias correction as it is typi-
cally done, where the QM recognizes the difference between
a simulated and observed variable (calling the difference
“bias”), but is blind to the source of the difference. As the
sources of this aggregate “bias” change in the future, for ex-
ample, when the precipitation trends forced by increased at-
mospheric greenhouse gas concentrations dominate regional
precipitation variability, it is conceivable that the effect of

QM on the simulated trends may change. It is also possible
that the relative importance of different mechanisms driv-
ing regional precipitation (e.g., large-scale circulation, oro-
graphic enhancement, convective storms) will change in the
future (Cloke et al., 2013; Maraun et al., 2010), altering the
climate model biases and ultimately the effect of QM on
trends. Thus, the findings from this experiment should be
limited to the historic period and the next few decades, when
natural precipitation variability constitutes a similar propor-
tion of the variability as over the three most recent decades.

As noted by Eden et al. (2012), techniques such as QM
cannot correct for certain types of biases, such as GCM errors
in large-scale circulation producing storm tracks very differ-
ent from observations. Thus, Eden et al. (2012) suggest that
QM only be applied to the portion of the bias due to climate
model parameterization or orography; to apply QM to the ag-
gregate bias as done here (and in most applications of QM)
can result in less robust bias removal. It should, however, be
emphasized that this study does not examine the effective-
ness of QM at reducing differences between observed and
simulated precipitation, but only its effect on mean precipita-
tion changes over multi-decadal timescales. This experiment
examines whether there are coherent modifications induced
by QM to the simulated precipitation changes, and if so,
whether they might have a tendency to improve or degrade
the projected changes.

2 Methods and data

As an observational baseline, we used the daily precipitation
dataset of Livneh et al. (2013), which has a spatial extent of
the conterminous United States, a spatial resolution of 1/16◦

(approximately 6 km), and includes the period 1915–2011.
The period from 1979 (the beginning of the AMIP model
output) to 2005 was aggregated to a 1◦ spatial resolution for
this bias correction exercise, which is a typical spatial reso-
lution used when bias correcting GCMs (e.g., Li et al., 2010;
Wood et al., 2004). The 1◦ spatial scale was selected here
to correspond to a scale finer than the highest resolution cli-
mate model used in this study. We included only those 1◦

cells where at least 25 % of the area was land area included
in the Livneh et al. (2013) data set.

We obtained simulated daily precipitation from the histor-
ical AMIP runs for 11 AGCMs, listed in Table A1, from the
CMIP5 multimodel ensemble archive (Taylor et al., 2012).
For all of the AGCMs we used the run identified as r1i1p1,
with the exception of GISS-E2-R for which we used r6i1p1
since that had the available variables and periods for this
study. From the CMIP5 AMIP runs we extracted the 1979–
2005 period and bilinearly interpolated the data onto the
same 1◦ grid as the observations.

QM is then applied (independently) to each 1◦ grid cell
in the domain. QM is extensively discussed elsewhere (e.g.,
Gudmundsson et al., 2012; references cited above) and only

Hydrol. Earth Syst. Sci., 18, 915–925, 2014 www.hydrol-earth-syst-sci.net/18/915/2014/



E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes 917

Fig. 1.Cumulative distribution functions for a synthetic demonstra-
tion set of observed, GCM simulated historic, and GCM projected
future precipitation data.

a brief summary is presented here. QM bias correction is
an empirical statistical technique that matches the quan-
tile of an AGCM simulated value to the observed value at
the same quantile. The quantiles are determined by sorting
AGCM output and observations for the same historical base
(or calibration) period, and constructing cumulative distribu-
tion functions (CDFs) for each. We used a version of QM bias
correction essentially following Maurer et al. (2010), with
one variation. Maurer et al. considered each month indepen-
dently, so that for January a 15 yr period would have a CDF
defined by 31 days× 15 yr= 465 points. One modification
for this application is that, to avoid abrupt inconsistencies
between months, we used a moving 31 day window centered
on each day, producing a separate set of CDFs for each day of
year (Dobler et al., 2012; Thrasher et al., 2012). This method
employs a nonparametric quantile mapping; that is, there is
no fitting of a theoretical probability distribution to the data
in creating the CDFs. While both parametric and nonpara-
metric approaches are widely used in QM, nonparametric
methods have shown higher skill in reducing systematic er-
rors in modeled precipitation (Gudmundsson et al., 2012).

The period 1979–1993 is used to train the QM, which is
then applied to 1994–2005. The difference in precipitation
between 1994–2005 and 1979–1993 is assessed both before
and after bias correction. We compared the raw interpolated
AGCM (raw) and the bias corrected (BC) shifts relative to
observations (obs) in precipitation between the two periods
for winter (DJF) and summer (JJA). We used a difference in
daily precipitation, in millimeters, as a metric, for example:

1Px = P x(1994−2005) − P x(1979−1993),mmd−1, (1)

Fig. 2. Probability density functions for the same synthetic data in
Fig. 1, but including the post-bias correction GCM future projec-
tion.

Fig. 3.Ensemble median of the ratio of the standard deviation (SD)
for the GCMs to the SD of the observations for daily precipitation
during DJF and JJA for 1979–1993.

where the subscriptx is either obs, raw or BC for obser-
vations, raw AGCM, or bias corrected AGCM precipitation,
and the overbar indicates a mean for the period. To quantify
the effect of the BC on the precipitation change between the
two periods, we used a trend modification index, TM, defined
as

TM = |1Pbc− 1Pobs| − |1Praw− 1Pobs|,mmd−1, (2)

where vertical bars are the absolute value. This index has
the property of having values greater than 0 where the bias
correction degrades the correspondence between the climate
model and observed precipitation changes. Equation (2) em-
phasizes that we examine changes in terms of differences
rather than ratios (or fractions).

3 Results and discussion

Figure 1 presents an illustration of one way in which quantile
mapping can change the trend or shift simulated by a GCM.
The plot uses a synthetic data set of daily precipitation gener-
ated using a gamma distribution, similar to Piani et al. (2010).
The data for synthetic observations have a mean of 30, as
do the data for synthetic GCM for the overlapping historic
period, so the GCM shows no bias in mean daily precipita-
tion for the overlapping historic period, but is given a−30 %

www.hydrol-earth-syst-sci.net/18/915/2014/ Hydrol. Earth Syst. Sci., 18, 915–925, 2014



918 E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes

Fig. 4.For GCMs 1–6, the change in mean DJF precipitation between 1979–1993 and 1994–2005 for the raw GCM output (left column) and
bias corrected GCM output (center); the difference between the two is in the right column.

bias (underestimate) in standard deviation. The future GCM
projection assumes a 40 % increase in mean relative to the
historic GCM. The arrows indicate what would happen dur-
ing quantile mapping of the GCM’s raw future projection for
two values corresponding to a low (20th percentile) and high
(80th percentile) value. For the 80th percentile value, the fu-
ture GCM value of 55.7 corresponds to a 95th percentile for
the raw historic GCM data. The 95th percentile of the obser-

vations is 63.7, which becomes the new bias-corrected future
GCM value. Similarly, the 20th percentile raw future GCM
value of 25.9 is mapped to a bias corrected value of 23.8.
The brackets above and below the plot show that the quan-
tile mapping increases the simulated change at both values,
with the original changes being the difference between the
raw future and historic GCM, and the post-BC change be-
ing the difference between the bias corrected values and the

Hydrol. Earth Syst. Sci., 18, 915–925, 2014 www.hydrol-earth-syst-sci.net/18/915/2014/
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Fig. 5.Same as Fig. 4 but for GCMs 7-11.

observations. The original change at the 80th percentile is
15.6, and the post-BC change is 21.2; at the 20th percentile
the original change is 7.4 and the post-BC change is 8.6.

Figure 2 continues with the synthetic data from Fig. 1, but
presents probability distribution functions to illustrate more
clearly the effect of the imposed bias in variance on the pro-
jected change through the bias correction process. Figure 2a
shows that the 40 % increase in the raw GCM data is am-
plified to a 56 % increase by the QM process. If the syn-
thetic distribution were symmetrical, a comparable decrease
in GCM simulated mean would be amplified in the opposite
direction, and if projected changes were negative as often
as positive, then this amplifying effect would be offset and
the quantile mapping would have little net effect on trends
or shifts. However, because the distributions in Fig. 2a are

bounded and positively skewed, even when equivalent in-
creases and decreases are projected, the net effect of an un-
derestimated variance is for quantile mapping to amplify the
trend. This is illustrated in Fig. 2b, where the same observed
and raw GCM historic distributions are used, but a 40 % de-
crease in mean value is imposed on the raw future GCM
projection. In this case, the shift is only slightly affected by
quantile mapping, changing from a 40 % decrease to a 39 %
decrease. Thus, an underestimate of variance for a bounded,
positively skewed distribution, common for daily precipi-
tation (Wilks, 1989), will have a tendency during quantile
mapping bias correction to amplify projected trends or shifts
(Maraun, 2013). Conversely, overestimation of variance will
tend to dampen projected trends.

www.hydrol-earth-syst-sci.net/18/915/2014/ Hydrol. Earth Syst. Sci., 18, 915–925, 2014



920 E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes

Fig. 6. Ensemble median difference between the BC and raw dif-
ferences in precipitation between 1994–2005 and 1979–1993 for
DJF (top row) and JJA (bottom row). Right column is the interquar-
tile range (IQR), defined as the 75th percentile minus the 25th per-
centile.

The connection between bias correction, the variance, and
the trend can be understood more clearly by analyzing a sim-
ple change in the median. LetME

0.5 be the model median in
the early period, with the subscript 0.5 indicating the quan-
tile (50th percentile or median) and the superscript E for the
early period. The model median in the late period is then
ML

0.5, and we are interested in the effect of bias correction
on the model-predicted change in median,ML

0.5 −ME
0.5. Will

bias correction amplify or reduce this change? Assuming the
change is nonzero, we can writeML

0.5 = ME
p , wherep 6= 0.5

is the percentile value of the new model median in the old
model distribution. The raw model-projected change in me-
dian is then simplyME

p − ME
0.5. QM will map a model value

with percentilep in the early period to the observed value
at the same percentile: QM(ME

p ) = OE
p , whereO indicates

an observed value. The bias corrected change in median is
therefore QM(ME

p )−QM(ME
0.5) = OE

p −OE
0.5. Since we have

already stipulatedp 6= 0.5, we can compare the magnitude of
the bias corrected to original change in median using a bias-
correction ratio (BCR):

BCR=
OE

p − OE
0.5

ME
p − ME

0.5

. (3)

BCR< 1 (bias correction reduces the model change) when
the model difference between thepth percentile and median
value is larger than the observed difference between thepth
percentile and the median value – i.e., when the model has
too much variance. Similarly, where BCR> 1, bias correc-
tion will increase the model change (when the model has less
variance than observed). Furthermore, Eq. (3) indicates that

Fig. 7.Difference between observed seasonal mean precipitation of
1994–2005 and 1979–1993.

QM does not alter the sign of the model-predicted change
(at least in this simple case) and that the alteration of the
change is insensitive to any positive or negative bias between
the model and observations, being affected only by the rela-
tive variance of the two. From this simple synthetic demon-
stration it can be inferred that, if there were a preponderance
of GCMs with biases in variance in the same direction, the
net effect of QM on the simulated difference between eras
could be systematically in one direction, even with random
biases in the mean.

In reality trends in non-normally distributed variables can-
not be represented just by changes in the median, and GCMs
exhibit much more complex biases than simply an overesti-
mate or underestimate of variance, with differing biases at
different times, in different seasons, and at different quan-
tiles, for example (Boberg and Christensen, 2012; Maurer
et al., 2013; Themeßl et al., 2011), all of which can affect
the modification of GCM simulated changes by QM. Thus,
simply characterizing a GCM as exhibiting a certain bias
in standard deviation will not exactly predict the effect of
bias correction on trends. In any case, for illustration, Fig. 3
shows the ensemble median of biases in standard deviation,
expressed as a ratio of simulated to observed standard devi-
ation, for the 11 AGCMs included in this study for two sea-
sons: DJF and JJA. This shows areas where there appears to
be consistent underprediction of standard deviation by a ma-
jority of AGCMs, such as in the southeastern portion of the
domain. This means there may be a potential for the trends
in the raw output from many of the AGCMs to be modified
by the bias correction process.

Analyzing actual precipitation simulations, Figs. 4 and 5
show that bias correction does not generally change the pat-
tern of regions that are simulated as becoming wetter or drier,
as suggested by Eq. (3), since the left and center columns
are broadly similar. However, the difference between the bias
corrected and raw AGCM precipitation changes for some re-
gions is of a magnitude that is comparable to the projected
change itself. While the differences (right columns in Figs. 4
and 5) show that there are large areas where the BC process

Hydrol. Earth Syst. Sci., 18, 915–925, 2014 www.hydrol-earth-syst-sci.net/18/915/2014/
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Fig. 8.For DJF, the TM index (described in the text) values for each
GCM.

produces a wettening or drying effect for each AGCM, there
is considerable variation among the AGCMs.

While not shown here, for JJA precipitation the changes
due to the BC process for each AGCM appear slightly less
prominent than for DJF relative to the raw AGCM precipi-
tation changes between the two periods. Figure 6 shows the
ensemble median change and the interquartile range (IQR)
between the BC and raw precipitation differences for the two
periods for both DJF and JJA. The left column represents the
ensemble median effect of BC on the seasonal mean precip-
itation difference between 1994–2005 and 1979–1993. The

IQR in Fig. 6 is analogous to the standard deviation, repre-
senting the spread of the AGCMs about the median. In gen-
eral, where the ensemble median has the greatest magnitude,
the IQR is also large, indicating high variability among the
models in the effect of BC on the precipitation change. The
changes in precipitation differences induced by the BC pro-
cess in Fig. 6 can be a cause for concern. While in large
portions of the domain they are small in comparison to the
observed difference in mean precipitation between the two
periods (Fig. 7), at many individual points the effect can be
substantial. For example, for the DJF median panel in Fig. 6,
there is a swath of dark blue grid cells along the southern
west coast, with a median effect of the BC on the precipita-
tion trend of 0.4 mm d−1 or higher. This would be an im-
portant modification based on the observed differences in
Fig. 7, with a median change between the periods of 0.5–
1.0 mm d−1. Second, the DJF IQR for these cells is greater
than 0.5 mm d−1, indicating that 25 % of the AGCMs would
show trend modifications by BC in excess of approximately
0.65 mm d−1 (the median plus half of the IQR), which is on
the order of the observed trend in Fig. 7. This latter point
makes clear the importance in using an ensemble of climate
models rather than one or a few, since the regions of en-
hancement/reduction of trends are not coherent across dif-
ferent models and the effect diminishes when combined into
an ensemble.

Perhaps more importantly, in Fig. 6, some areas where the
BC process appears (in the median) to produce much wet-
ter conditions than the raw AGCM are also areas where the
observed difference between the 1994–2005 and 1979–1993
periods is considerably higher than the AGCMs simulate.
One example is the Pacific northwest, where Figs. 4 and 5
show more than half the models simulating drying DJF con-
ditions between 1994–2005 and 1979–1993, in distinct con-
trast to the wettening trend in the observations (Fig. 7). It
should be emphasized that the BC only adjusts the quantiles
of the AGCM to match those of observations within a 15 yr
training period – there is no attempt to match trends, either
within the 15 yr training period or over longer periods. Thus,
any trends are inherited directly from the AGCM, though the
QM can, as discussed above, modify these.

This raises the question of whether the change induced
by BC in the precipitation change (or trend) between the
two periods degrades or improves the correspondence be-
tween simulated and observed trends in any systematic way.
In terms of the link between the trend modification and vari-
ance, this is equivalent to asking if models with variances
that are too large tend to have trends that are too large, and
vice versa. The TM index described above is used to illus-
trate this for each AGCM for DJF in Fig. 8. Values in blue
(negative values) show where the effect of the BC results in
an improved representation of the observed difference in pre-
cipitation between the two periods, and red (positive values)
indicate a degraded precipitation trend due to BC. It is evi-
dent that over the entire domain, for each AGCM there are

www.hydrol-earth-syst-sci.net/18/915/2014/ Hydrol. Earth Syst. Sci., 18, 915–925, 2014



922 E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes

Fig. 9. For DJF and JJA, the ensemble median TM index value (left panels), the locations of grid cells (dark rectangles) where the 25th
percentile TM index value exceeds 0 (center panels), and the grid cells where the 75th percentile value is less than 0.

areas of improved and degraded precipitation trend represen-
tation due to BC. Regions with improved or degraded skill
vary from model to model, with no apparent geographical
consistency. In sum, the errors in an individual model’s vari-
ance appear unrelated to the errors in the model’s trend.

Figure 9 summarizes the results for the ensemble in Fig. 8
and the similar ensemble for JJA. The median TM values
(left panels) tend to lie close to zero, and neither degraded
(TM > 0) nor improved (TM< 0) values dominate the pic-
ture for either DJF or JJA. The center panels highlight re-
gions where 75 % of the AGCMs show a degraded change in
precipitation (relative to the observed change) due to the BC
process. These cases constitute 4.3 % of the grid cells for DJF
and 13.0 % of the grid cells for JJA. The right panels show
the grid cells where 75 % of the AGCMs show improved cor-
respondence with the observed change after BC. These cover
26.2 and 4.5 % of the domain for DJF and JJA, respectively.

This suggests that with an ensemble of 11 AGCMs as
used in this effort the BC produces no consistent improve-
ment or degradation in the simulated AGCM precipitation
change. While the effect of BC on the trend can be signifi-
cant, it tends as often as not to bring AGCM simulated trends
closer to observed trends for the periods used in this study.
However, there are isolated locations where the trend appears
to be degraded for most model simulations, which could be
of particular interest for impacts studies. One such case is
the southwestern portion of the domain, where Fig. 9 (cen-
ter panels) shows the grid cells for which JJA precipitation
trends are degraded for 75 % of the AGCM simulations by
the BC process. For these locations, it may be beneficial to
retain the raw GCM simulated trend during impacts analysis
studies. Conversely, in Fig. 9 (right panels) there are many
grid cells in the northeast where DJF precipitation trends are
improved by BC for most of the AGCM simulations.

One of the driving motivations for much downscaling is
the investigation of regional and local hydrological impacts
of climate change (Fowler et al., 2007). Since the runoff re-
sponse to changing precipitation is highly nonlinear (Wigley
and Jones, 1985), changes in precipitation are amplified in
their convolution to runoff changes. This emphasizes the im-
portance in ensuring that the projected precipitation trends
not be degraded during the BC process, since the implica-
tions would be for even greater biases in projected runoff
changes.

4 Summary and conclusions

Quantile mapping bias correction has been shown to mod-
ify the projected changes, or trends, produced by climate
models. This is of critical concern regarding precipitation
projections, where changes to the raw climate model output
can have significant impacts on the implications for water
supply and management in the face of climate change. The
resulting discrepancy between the raw climate model out-
put and bias corrected output leaves some ambiguity as to
whether the bias correction should be modified to preserve
the original climate model simulated changes. It is empha-
sized that this study is only concerned with the effect of
quantile mapping on precipitation trends. It includes no as-
sessment of the effectiveness of quantile mapping at reducing
biases, which would be enhanced by considering the differ-
ent sources of bias.

The historical changes in daily mean precipitation simu-
lated by 11 atmospheric general circulation models, driven
by observed sea surface temperatures and sea ice to preserve
observed variability in boundary conditions, were exam-
ined across the conterminous United States. The differences

Hydrol. Earth Syst. Sci., 18, 915–925, 2014 www.hydrol-earth-syst-sci.net/18/915/2014/
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were compared between precipitation for two periods,
1979–1993 and 1994–2005 for all AGCMs, both before
and after a quantile mapping bias correction, and grid-
ded observed precipitation. We consider winter and summer
precipitation separately.

We found that the bias correction did produce differ-
ent precipitation changes from the raw AGCM output, with
a wettening effect in some locations and a drying effect
in others. While there was some spatial consistency in re-
gions showing a tendency for bias correction to make the
projections wetter or drier, the skill, measured as a corre-
spondence to observed changes, was more variable, with
different AGCMs responding to bias correction differently.
Taken as an ensemble, the bias correction had no coherent,
overwhelming negative or positive effect on the correspon-
dence of the simulated to observed precipitation changes
between periods. Reliance on a single AGCM or a small
sample of AGCMs however could, for some regions, re-
sult in a degraded simulated trend in precipitation due to
bias correction.

Based on these results, it does not appear that there is a
clear advantage to either preserving the raw AGCM simu-
lated trend in precipitation during bias correction or allowing
the trend to be modified by the process. In most locations, as
long as a reasonable ensemble size is used, even though the
trend in seasonal precipitation may be modified in the pro-
cess, it may be as likely as not to be beneficial to do so. Sim-
ilar to the suggestions by others (Cloke et al., 2013), it may
be prudent for practitioners to examine the projected trends
in raw AGCM output as well as in bias corrected output, to
be completely transparent as to the effects of bias correction
on trends.

These findings are limited to the extent of this study,
namely seasonal mean precipitation for the observed periods
used here. This focus was motivated by the observation of
changes in trends in mean precipitation produced by quantile
mapping. Since changes in the magnitude of extreme pre-
cipitation events are important for assessing many impacts
to society, future efforts will examine the effect of quantile
mapping bias correction on trends in extreme events. Quan-
tile mapping can have different effects at the tails of distri-
butions (Li et al., 2010), and changes in the projected trends
in extreme events due to quantile mapping have not been ex-
plored. Furthermore, the bias correction was performed at a
1◦ spatial scale, so that the observations are comparable to
the scale of the climate models. At finer scales, the biases
between interpolated AGCM output and observations would
be expected to be much more heterogeneous, and the impact
of quantile mapping bias correction at finer scales could be
quite different from that found here, though employing quan-
tile mapping to downscale to fine scales has been found to be
problematic (Maraun, 2013).

Table A1. Climate models used in this study.

Modeling center Model name

1 Commonwealth Scientific and
Industrial Research Organiza-
tion (CSIRO) and Bureau of
Meteorology (BOM),
Australia

ACCESS1.0

2 National Center for
Atmospheric Research

CCSM4

3 Centre National
de Recherches
Météorologiques/Centre
Européen de Recherche et
Formation Avancée en Calcul
Scientifique

CNRM-CM5

4 Commonwealth Scientific and
Industrial Research Organi-
zation in collaboration with
Queensland Climate Change
Centre of Excellence

CSIRO-Mk3.6.0

5 NOAA Geophysical Fluid
Dynamics Laboratory

GFDL-CM3

6 NASA Goddard Institute for
Space Studies

GISS-E2-R

7 Institute for Numerical
Mathematics

INM-CM4

8 Institut Pierre-Simon Laplace IPSL-CM5A-MR

9 Max-Planck-Institut für Mete-
orologie (Max Planck Institute
for Meteorology)

MPI-ESM-LR

10 Meteorological Research
Institute

MRI-CGCM3

11 Norwegian Climate Centre NorESM1-M
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