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THE MULTI-OUTPUT TRANSLOG PRODUCTION COST FUNCTION:

THE CASE OF LAW ENFORCEMENT AGENCIES

M. N. Darrough and J. M. Heineke*

In this paper we study the relationship between costs, input
prices and activity levels in a sample of approximately thirty
medium sized city police departments for the years 1968, 69,
71 and 73. Our interest lies in determining the functional
structure of law enforcement production technology.

Since efficient allocation of resources to activities requires
knowledge of relative incremental costs for the activities in-
volved, we are particularly interested in determining marginal
cost functions for, and rates of transformation between the
various outputs, Since past studies have adopted functional
specifications which have implicitly maintained strong hypo-
theses about the underlying technology, we adopt a quite
general functional specification which permits testing the
appropriateness of these hypotheses. In a more general context
we model and estimate the structure of production for a
multiple output-multiple input firm in a manner which places
few restrictions on first and second order parameters of the
underlying structure.

INTRODUCTION

One question which arises immediately in any discussion of
cost or production functions associated with law enforcement
agencies concerns the appropriate measure of “output.”
Clearly police departments produce multiple outputs (services)
for a community, ranging from directing traffic, quieting
family squabbles, and providing emergency first aid, to pre-

*Professor Heineke’s participation in this study was supported
by U.S. Department of Justice Grant #75-N1-99-0123 to the
Hoover Institution at Stanford University. We have benefited
from discussions with M. K. Block, L. J. Lau and F. C. Nold.

venting crimes and solving existing crimes. In this study we
view police output as being of essentially two types: (1)
general service activities as epitomized by the traffic contro]
and emergency first aid care functions of police departments;
and (2) activities directed to solving existing crimes. Strictly
speaking, “solving existing crimes” is an intermediate output
with deterrence or prevention of criminal activity being the
final product. But due to the difficulty of measuring crime
prevention we use the number of “solutions” by type of crime
as output measures. |

In the past few years a number of authors have, to one
degree or another, addressed the problem of determining the
structure of production in law enforcement agencies. Since
under certain rather mild regularity conditions there exists a
duality between cost and production functions, either the cost
function or the production function may be used to character-
ize the technological structure of a firm. The studies of Chap-
man, Hirsch and Sonenblum (1975), Ehrlich (1973, 1975), and
Wilson and Boland (1977) all proceed by estimating produc-
tion functions while Popp and Sebold (1972) and Walzer (1972)
estimate cost functions. It is of some interest to briefly review
the findings of these authors.

Chapman, Hirsch and Sonenblum estimate a rather tradi-
tional production function, at least from a theoretical point
of view. All police outputs are collapsed into one aggregate,
which is then regressed on input use levels utilizing data from
the city of Los Angeles for the years 1956-70. They find
strongly increasing returns to scale—often a two to four percent
output response to a one percent change in input usage.

ISee Chapman, Hirsch and Sonenblum (1975) for an attempt to measure
crime prevention as an output of police agencies.
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Ehrlich also uses an aggregate solution rate as the output
measure, but instead of employing traditional input measures
he regresses the aggregate solution rate on per capita expendi-
tures on police, the aggregate offense rate and a series of exo-
genous (‘“envirommental’) variables. The expenditure variable
js, of course, an index of overall input use levels while the
aggregate offense rate is included to measure the effects of
werowding” or capacity constraints on output. This is a sub-
stantial departure from a neoclassical approach in which the
shape of the production function itself will reflect diminishing
returns as capacity is pressed. But it is a specification that has
been widely adopted by those who have followed Ehrlich.
(For example, see Vandaele (1975) or Votey and Phillips
(1972). Using per capita expenditures to measure the scale of
output, Ehrlich finds that a one percent increase in expendi-
tures per capita leads to much less than a one percent increase
in the solution rate.

Votey and Phillips estimate production functions which
link solution rates for the property crimes of auto theft,
burglary, larceny and robbery to input usage. As with Ehrlich
and Vandaele, the authors include the level of offenses as an
argument in the production function along with more tradi-
tional input measures.

The Wilson and Boland study is similar to the work of
Votey and Phillips in that they study the production of solu-
tions to several property crimes. But instead of input levels as
determinants of solutions, they utilize the ever present *“capa-
city”” variable and variables meant to account for productivity
differences between departments. Here as with Vandaele and
Votey and Philips, the authors cannot address the question of
scale economies due to the fact that only a subset of all out-
puts are included in these studies:

Finally, both Popp and Sebold, and Walzer estimate cost
functions and attempt to measure scale economies. The former
use population size in the police jurisdiction as their measure of
“scale™ along with a large number of demographic and environ-
mental variables to estimate the per capita costs of police
service. Given the appropriaieness of these variables for ex-
plaining costs, the authors find diseconomies of scale through-
out the entire range of population sizes. Of course the popu-
lation variable provides a considerably different concept of scale
than economists are accustomed to considering, and in fact,
Walzer has argued that population size is a poor measure of
scale for several reasons—the most important being a tendency
on the part of police administrators to determine manpower
needs as a proportion of population size. In such a case there
is obviously a strong bias toward constant returns to scale.
In his study Walzer recognizes that offenses cleared, accidents
investigated, etc., all make up the output of a police depart-
ment. But instead of estimating a multiple output cost func-
tion, he creates an “index of police service” by collapsing all
outputs into one.2 Once again the estimated cost function
contains a capacity measure (the offense rate), in addition to
measure of input prices, input usage and several variables meant
to pick up externally determined differences in productivity.

-

2The weights used are average times spent on each type of activity.
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Using the service index to measure output Walzer finds evi-
dence of economies of scale, although they seem to be rather
slight. Interestingly enough he also finds that input costs are
not significantly related to overall production costs.

OUTLINE OF THE PAPER

A number of strong hypotheses concerning the production
structure of law enforcement agencies have been implicitly
maintained in the studies we have sketched. First, the argu-
ments entering cost and production functions have for the
most part differed considerably from what one would expect
from classical production theory. In addition, in the one case
where input costs do enter the cost function (Walzer), linear
homogeneity in input costs has not been imposed on the
estimated cost function. One possible explanation for these
deviations from classical production and cost specifications is
that classical theory, and cost minimizing behavior in particu-
lar, is not capable of explaining observed choices in public
agencies. While this is a plausible hypothesis, it should be
tested rather than maintained.3

Second, each of the estimated production functions
upon which we have reported is either linear or linear logarith-
mic. Such functions may be viewed as first order approximations
to an arbitrary production function. It is well known that first
order approximations severely restrict admissable patterns of
substitution among inputs and admissable rates of transforma-
tion among outputs as well as having other undesirable empiri-
cal implications.4 An additional problem with linear logarith-
mic production or cost functions arises if one is interested in
determining the extent of scale economies, since these func-
tions do not permit scale economies to vary with output. On
a related point, we noted above that each of the production
studies surveyed included a “‘capacity” measure as an argu-
ment. A possible explanation for this inclusion might be
based upon the restrictiveness of the chosen functional forms
and a consequent attempt on the part of the authors to pro-
vide output responses which do vary with the scale of opera-
tion, in functions which do not naturally possess this property.
For these reasons and others we adopt a second order approxi-
mation to the underlying cost and production structure thereby
leaving the various elasticity measures of common interest free
to be determined by the data.5

Third, since the Chapman, Hirsch and Sonenblum, Walzer
and Ehrlich studies all utilize single output aggregates they
implicitly maintain the existence of an index over all police
outputs which allows outputs to be consistently aggregated
into a single measure. In what follows we estimate a multiple
output cost function and test whether the various subsets of
outputs may be consistently aggregated into single categories.

3This hypothesis is ex plicit in Wilson and Boland, p. 8, who state, “In our
view, police departments do not behave in accordance with the econom-
ic model of the firm.”

4For example, linear logarithmic production functions imply input ex-
penditure shares which are independent of the level of expenditure, while
linear production functions imply perfect input substitutability and con-
sequently rule out internal solutions to the cost minimization problem.
5Inthe Popp and Sebold, and Walzer studies the production cost function
is specified to be quadratic in the scale argument although all other second
order parameters are restricted to be zero.
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Fourth, the Wilson and Boland, Votey and Phillips and
Vandaele studies each implicitly maintain the hypothesis of
nonjoint outputs by estimating separate production functions
for different types of solutions. Again, instead of maintaining
this hypothesis we estimate a multiple output function and
then test the nonjointness hypothesis.

To summarize, in this study we characterize the structure
of production in a combined cross section and time series
analysis of U.S. police departments in a sufficiently general
manner to permit testing of each of the major maintained
hypotheses in past studies. This amounts, primarily, to testing
for existence of consistent aggregate indices of police output,
for nonjointness of output, and for consistency of our estimated
equations with the optimizing behavior of classical theory.
In addition, we calculate (1) marginal cost functions for solu-
tions to the property crimes of burglary, robbery, larceny
and motor vehicle theft, and for solutions to crimes against the
person; (2) marginal rates of transformation between these
activities; and (3) an estimate of scale economies based upon
the response of total cost to a simultaneous variation in all
police outputs. In the next two sections we provide definitions,
theorems and the conceptual structure which underpin the
parameter estimation and testing which follow.

THEORETICAL BACKGROUND

The following definitions and theorems provide precise
meaning to many of the concepts discussed above and the
basis for testing the maintained hypotheses of earlier studies.

Let F (v, v)=0represent the production possibility frontier,
where y is an n vector of outputs and v is an m vector of in-
puts, and C (y, w) the associated production cost function,
where w is an m vector of input prices.

C (y, w) = min wly
veL (y)

Theorem 1:

where L (y) = {vIF (y, v) = 0} is the input requirement set and
T denotes transposition. The function C (y, w) is unique and is
a positive linear homogeneous, differentiable and nonincreasing
function of input prices, w. (See Uzawa (1964) or Shephard
(1970).)

We denote the sets of n outputs and m inputs as N=1{1, 2, 3,

njandM=1{1,2,...,m} and partition these sets into p and
o mutually exclusive and exhaustive subsets, respectively, N =
{Nl, Wi Np} and M = {Ml, My, ..y M, {The elements of

N; are denoted Y, the elements of Mj’ Vj'

Definition 1: If marginal rates of transformation between any
two outputs from the subset Ny are independent of all other out-

puts, not in Ny then the production function is separable (weak-
ly) with respect to the partition {Ny, No, V& # k}. A similar de-
finition holds for input partitions. Formally, the productionfunc-

tion F (y, v) = 0 is output separable with respect to the partition

{Ny, Ng, V& #k }iff

(1) 3 (aF/ay;/aF/0y;) [ 9y, =0, i,je Ny, p ¢ Ny

and is input separable with respect to the partition | M, Ms' Vg
#r }iff

(@) 8 (9F/av;fdF/av) [ vy =0, i,j € My, t €M,

Theorem 2: Separability with respect to the output partition

{N{, Ny, oo N, } and the input partition {M{,M,, ..,

M} is
necessary and sufficient for the production function to be writ.
tenasF (y,v)=F*(h; (Y{),..., hp (Yp), g1 (Vi) cosy By (Vor))
where h; and gj are called category functions and are functions of

the elements of N; and Mj only.(See Goldmanand Uzawa (1964))

Definition 2: A technology with production function F (y, v)is
nonjoint if there exists functions f; (v), f2 (73 1 f,(v) with
the property that f; (v) is independent ofyj, i#Fj.

So to show that a technology is nonjoint, the functions f; ()
must exist and be free of any economies or diseconomies of joint-
ness. As Hall (1973) has pointed out, this does not require
physically separate processes producing the various outputs, nor
does the fact that two or more outputs are produced in the same

plant rule out nonjointness.

Theorem 3: A technology is nonjoint iff the joint cost function
can be written as C (y, w) = Cy (y, W) +C5 (y9, W) +... +C
(¥ W). (See Hall (1973).)

n

Definition 3: Aggregation is said to be consisrent if thesolutions
to a problem at hand are identical regardlessof whether one uses

aggregate indices or the micro level variables.

Definition 4:1f a function is separable and each of the category
functions is homothetic, the function is said to be homothetical-
ly separable.

Theorem 4: Homothetic separability is sufficient for consistent
aggregation. If a function is separable, homothetic separability is
necessary for consistent aggregation. (See Blackorby, Primont &
Russell (1977).)

MOTIVATION OF AGENCIES

We next present two alternative models of the decision process
oflaw enforcement agencies. One model focuses on input decis-
ions, the other on output decisions. It should be kept in mind
that the model chosen to represent agency behavior will likely
have a major influence on the values of estimated parameters.
Hence one should consider the alternative specifications with one
eye on statistical tractability and data limitations, and the other
on the “realism” of the implied decision process.
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Cost Minimization—The formal structure provided by the cost
minimizaﬁou behavioral hypothesis can be imposed on the
estimation process in several ways. To begin, we generalize the
traditional cost minimization paradigm to include the multiple
output firm. In particular, we assume that law enforcement
agencies are given a vector of outputs which is minimally
acceptable to the community and are instructed to provide at
least that level of service at minimum cost.6 Formally the
agency’s problem is to

(3) min wly (st) F (yO, v)=0

where y0 is the minimally acceptable output vector. Optimiza-
tion problem (3) provides the system

(4) WI aF/aVl . l,]=l,2,..,m,l#]
FyO,v)=0

of m+1 equations which may be used in estimating F. If equa-
tions (4) are assumed to be associated with a well behaved mini-
mum, we know that a solution for v as a function of w and yO
exists. In addition, as long as input prices are exogenously
determined as far as an individual agency is concerned, the
solution yields the n endogenous factor demand as functions
of strictly exogenous variables. Because factor demands are
simultaneously determined, disturbances, given by the stoch-
astic specification into which the model must eventually be
imbedded, will be correlated across equations. As a conse-
quence, it will usually be necessary to treat the solution to
(4) as a system for purposes of parameter estimation, if
efficiency is a criterion.

Two other points concerning the system implied by
equations (4) are of interest: First, if (4) can be solved for the
v; as functions of w and y0, these functions may well be non-
linear in the parameters. This need not be a major obstacle,
but for large systems nonlinear estimation is expensive and
one is never sure of estimability (convergence). Secondly, and
more important, is the fact that although we know a solution
to (4) exists in principle, this is cold comfort to the econometri-
cian charged with estimating F(-). Since for even modestly
general functional specifications for F(:), it will generally be
impossible to express the v; as explicit functions of w and y0.

An alternative to the approach we have just described for
estimating the production structure is to focus on the cost
function rather than the production function. Due to the
duality between cost and production functions, once one
function is given the other is uniquely determined.” So it mat-
ters not a whit which function is estimated, and the choice of
estimating the cost function or the production function should
be made on purely statistical grounds.

—_—

G_In ademocratic society, voters through their elected representatives pro-
Vide this information,

7See Diewert (1974).
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One way of proceeding to estimate the production cost
function would be to use OLS to directly estimate C (y, w).
Since both w and y are exogenous in the present framework,
OLS is an appropriate procedure. In contrast to the system we
have just discussed this is a welcome respite. But a caveat
must be added: If C (y, w) is estimated via OLS then one ends
up not exploiting the information available in the maintained
hypothesis of cost minimization, which might have been used to
add precision to parameter estimates.8 Furthermore, unless
there is significant variation in y and w across the sample,
multicollinearity could be a problem. (One might expect
this problem to crop up especially with input prices.) An
additional advantage of imposing the structure implied by
cost minimization is that the resulting restrictions across para-
meters will help circumvent multicollinearity problems which
may be present.

The economical way to add the structure implied by cost

minimization is to call upon Shephards” Lemma (1953) which
gives cost minimizing factor demands as a function of the
partial derivatives of the cost function with respect to input
prices:
(5) v;=aClow; i =
In general, estimation of (5) will not be sufficient to deter-
mine all of the parameters of the production cost function.?
This can be remedied merely by including C(-) as an equation
in the system to be estimated. In which case

(6) v;=oClow;, i=1,2,...

C=C(y,w).

[tisimportant to keep in mind that a maintained hypothesis
of this section has been that law enforcement agencies are
assigned minimal output requirements and that input prices
are exogenous as far as any single agency is concerned. As
with the dual system (4) above, right hand variables in system
(6) will be uncorrelated with stochastic disturbances in the
economefric version of (6). Hence estimation of equations (6)
will most assuredly identify the parameters of the cost function.
But since the v; are simultaneously determined, disturbances
will be correlated across equations as before, necessitating
estimating (6) as a simultaneous system if efficient estimatesare
desired.

An additional advatnage of estimating (6) instead of (4)
stems from the fact that equations (6) will be linear in the
parameters for any polynomial approximation to an arbitrary
cost function.

Value Maximization—In this section we.provide an alternative
framework within which the structure of law enforcement
production technology could be estimated. The model is essen-

80f course this information was present in system (4) above,

9For example if C (v, w) is a polynomial in y and w, parameters associated
with terms in elements of y alone will be missing from equation (5).
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ially a value maximization model and of course still implies
that input decisions are reached in a cost minimizing manner.
The value maximization model has the advantage of not
requiring that police decision makers take the community’s
final output vector as a datum. Indeed the focus of the model
shifts from determination of optimal input usage given an
output vector, to determination of the optimal mix of outputs.

Using P; to represent the value to the community of a
solution to a crime of type i, P = (Pl, Py, i Pn), the
police agency’s decision problem is

(7)  max PTy —C(y,w)-
y

Decision problem (7) provides the familiar system

(8) Pl*aC/ayl=0, i=l,2,...,n

which may be used to estimate C (y, w). As was the case with
equations (5) above, if C (y, w) is approximated with a poly-
nomial in y and w, equations (8) alone will not be sufficient to
determine the cost function. This can be remedied by including
C (y, w) itself in the system to be estimated. In which case

) Pi—aC/Byi=0, ol e S |

C-C(,w) =0

is the system of interest. Assuming that the values P and input
costs are exogenously determined, equations (9) determine
the n endogenous solution levels as functions of P and w.10

One problem in implementing this system is an econometric
context is obvious: The values to a community of the various
types of solution are at best difficult to obtain. In the case of
property crimes one might consider using average values stolen
for each of the several types of property crimes to approximate
the loss to society. Although this measure is far from perfect,
it does provide a means for studying the mix of property
crime solutions and is used in this capacity below.!l But for
the case of “crimes against the person,” e.g., homicide, rape
and assault, such a convenient proxy is not available.

To circumvent this problem we assume that there exists
functions C* and f such that the cost function can be written
as
(10) c=cC* (f(yI, o

"3 Yp, W), yp+ls weey yns W)

wherey,..., Yp represent solutions to crimes against property
and Yp+ls -

person and the service activities performed by police. That is,
we assume that solutions to crimes against property are func-

. Yy Tepresent solutions to crimes against the

101n general, the elements of P are at least partially determined by the
output mix chosen by police decision makers, e.g., increased solutions for
crime i will, ceteris paribus, lower expected returns to crime and hence
|

1
11 Average values stolen are an approximation to the direct financial loss
suffered by society, on average, from an offense of type i. To the extent
that solving crimes has a deterrent effect, this measure will underestimate
the value of a solution to offense i by the value of illegal transfers deterred
per solution,
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tionally separable from all other police activities. As we ingj.
cated above, (Theorem 2) this is equivalent to requiring tha¢
marginal rates of transformation between solutions to all pajrg
of property crimes be invariant to the level of nonproperty
crime solutions and to the level of other services provided, eg,
traffic control, emergency first aid, etc. In this case, optimiza.
tion (7) may be treated as two problems: The optimal mix of
property crime solutions, non property crime solutions ang
services is determined in a first step after which a second optimj.
zation is performed to determine the optimal mix of property
crime solutions. See Strotz (1957). System (9) then becomes

(11) P,—3C*ay;=0,  i=1,2,...,p

C-C* T (v ¥ - 5Yp W) Ypss -+ Y w)=0
and is estimated below for the case of four property crimes,
burglary, robbery, motor vehicle theft and larceny,an aggregate
of crimes against the person and an aggregate service indicator.

We have chosen to estimate the production cost function
utilizing equations (11) rather than (6) for several reasons:
First, costs in law enforcement agencies tend to be predomi-
nately labor costs (approximately ninety percent). And as one
would expect, salaries of police employees by rank are highly
correlated. Therefore, it will not be possible to include more
than one, or at most two input demand equations if structure
(6) is imposed. In addition, we approximate C* with a second
order expansion in the logarithms of y and w and factor demand
equations will impose no restrictions across the coefficients of
Iny; and Iny; Iny;. If these terms are highly collinear, which is
likely to be the case, then system (11) places restrictions across
coefficients of terms in y and reduces the collinearity between
the elements of y. The second reason for choosing (11) as the
basis for estimation is that it explicitly addresses the output
mix problem rather than assuming that the decision is exo-
geneous to police administrators as in (6).

THE TRANSLOG MODEL

From an econometric point of view equation system (11) is
only of limited interest until a specific functional form has
been assigned to the cost function C* (y, w). The primary con-
cern in choosing a function form for C* is that the chosen
class of functions be capable of approximating the unknown
cost function to the desired degree of accuracy. In widespread
use in the literature in the past few years are the class of so
called “flexible’ functional forms which includes the generalized
Leontief function, the generalized Cobb-Douglas function, the
transcendental logarithmic function and many hybrids.12
These functions are all second order approximations to arbitrary
differentiable, primal or dual objective functions and in particu-
lar place no restrictions on elasticities of substitution between
inputs or elasticities of transformation between outputs and
allow returns to scale to vary with the level of output. We have
chosen to approximate C*(y, w) with a translog function due

primarily to the fact that most past studies of law enforce-

12gee Diewert (1971, 1973, 1974) and Christiansen, Jorgensen and Lau
(1971, 1973, 1975).



l ' The Multi-Output Translog Production Cost Function: The Case of Law Enforcement Agencies — Darrough and Heinelke

ment agency production technology have adopted linear
Jogarithmic production structures.13
The translog cost function may be written as

n m 1 n
(]2) 1nC (y, W) = 30 i El: ai lﬂyl * 2]: bl 11}Wi * 1/".21: 21 al' lnyl IﬂyJ
mm mn

+ 1 ? ? ﬁij lnwi lnwj +El %Yij lnyi lnwj .

Since logarithmic functions are continuously differentiable,
the parameters % and ﬁij will be symmetric, i.e., 0 = O and
By = Biis Vi, j. Our maintained hypothesis of functional separa-
bi'h'ty, see equation (10),between property crime solutions and
all other activities of the police agency implies the following
restrictions on equation (12):

= o - 14
(13) aij-O, =1,2, .. . o BI=ph, pFd; . .. 00
The hypothesis of linear homogenity of the cost function in
factor prices, nonjointness of outputs and existence of consis-
tent indices of output discussed above are not maintained, but
rather tested.

Testing for linear homogenity of C (y, w) in inputs prices
may be interpreted as a test for cost minimizing behavior and
implies the following restrictions on the translog cost function:
m

B =
i

m
2y;=0

m m
(14) ;= 1, 2= 26 =

1 J
Tt will also be of interest to test for constant returns to scale
in output. Constant returns to scale implies
n n n n
(15) iEai =1, ?aij =iEozij =i§h'ij =0
If outputs are nonjoint, all cross second order terms in y are
zero, i.e.,

(16) aij::oj iaj:laza"'snii#:j'

THE ECONOMETRIC MODEL
In this section we specialize the n output, m input produc-

tion model to the model which is estimated and provide the
stochastic specification needed for estimation. We had available

13These studies have utilized linear logarithmic production functions
which in turn imply linear logarithmic production cost functions. This
property of linear logarithmic primal and dual functions is termed self
duality. The linear logarithmic function is the only self dual translog fune-
tion,

1456 Berndt and Christiansen (1974) for more detail on these conditions.
We have imposed what is called linear separability of property crime sol-
utions from other activities which implies 1nC (y, w) = lnC1 (yl, Vo e
YpW)+1nC, (yp_”, Yopig--
log functions (See Blackorby, Primont and Russell (1974). Functional
Separability may also be achieved via a set of nonlinear restrictions (see

Berndt and Christiansen (1974).) Blackorby, Primont and Russell (1974)
have shown that nonlinear separability implies InC (y,w)=F (Dl (yl,

yz.’“' Vo w), D, (yp, Yoegre
arithmic functions.

Linear logarithmic “aggregator functions are quite restrictive and for

this reason we consider only the case of linear separability throughout
this paper.,

5 Yo w) where 1nC, and ‘lnC2 are trans-

o Vo w))where D, and D, are linear log~
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tor this study information on annual police budgets for the
years 1968, 1969, 1971 and 1973 for a sample of approximately
thirty five medium size cities; the average wages of officers by
rank, the number of crimes of type i cleared by arrest

(“clearances”) and the average value stolen for eachof the

property crimes in the FBI index.15 The police budgetand
wage information was gathered by the Kansas City Police
Department and circulated for use by participating cities under
the title of the Annual General Administrative Survey. The
data on clearances and average values stolen is from unpublished
sources at the FBI. Because of limitations on the number of
variables which could ultimately be allowed in the model, we
decided to use clearances by arrest for the seven FBI index
crimes as our measures of “‘solutions.” In particular, we have
called burglary clearances (solutions), y1, robbery clearances,

¥4, motor vehicle theft clearances Y3 and larceny clearances,

Y4 We have used the aggregate number of homicide, rape and
assault clearances to represent solutions to crimes against the
person and have labeled this output, ys. Finally, a very large

component of the output of all law enforcement agencies are
the rather mundane but important service functions: Directing
traffic, investigating accidents, breaking up fights, providing
emergency first aid, etc. We group all such service functions
together as y¢. The question is what to use to measure these

activities, We have adopted the hypothesis that the quantity
of services of the type we have been discussing is proportional
to the size of the city in which the agency is located. This
gives a cost function with six outputs and a still unspecified
number of input prices.

We had available wage information on eight grades of police
officers from patrolman to chief. As one might expect these
wage rises are highly collinear. To test for the existence of a
Hicksian price index we computed correlation coefficients
between the wages of the various ranks and found very high
coefficients. For example, the correlation between wages of
patrolmen and a weighted average of the wages of all other
ranks is .955. Unfortunately, there does not appear to be a way
of testing whether a sample correlation is significantly different
from one since the distribution of this statistic is degenerate at
that point. But with correlations this high it appears safe to
assume the conditions for Hicks’ aggregation are fulfilled
and hence we use a weighted average of all police wages as
an aggregate measure of unit labor costs, denoted w.16

The translog cost function of (2) above may now be written
as

6 66
(17) 1nC* (y,w)=ap + Za:lny; + blnw + ¥4 ZZa..InyIny.
0 | 1 i
1 El 1

6
+14 [3]nw2 + %‘,r ilnwlnyl-

15The largest city in our sample is Houston, Texas, (1,230,000), the small-
est is Birmingham, Alabama (300,000). Mean population over the sample
i$ 561,000.

16Budget and wage series have been deflated using an index based upon
BLS Intermediate Family Budget data. (See B.L.S. Bulletins No. 1570-7
and the Monthly Labor Review.)
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TABLE 1

Parameter Restrictions for Linear Functional Separability 19

Aggregate Parameter Restrictions Aggregate Parameter Restrictions
GpyRle =e, =ag e, =1 T SO0y o, T, T T TN T
OLye, =e, =@y =8, =7 T S0 (e, T, Te T T T
Opypdie,=e, =@, T8 T T, 0|0l e, Ty T T T T
(pydie,) =%y = %3 T % T % T TO(Oavad e, Ty T, T, T T
Oy (@)= @y =y % T T SO0y T, T T T
Oy, =@y =@, T % T Ty =P

19These restrictions are conditional on the functional separability of property crime solutions and all other police activities.

TABLE II

Parameter Estimates for Five Cost Models

Unrestricted Homogeneity Homo. and Homo. and Constant Returns
Parameter  Model in Input Prices Nonjoint Outputs Linear Log. Costs to Scale
a, —108.68 —98.899 —75.949 —4.469 —.7190
(27.23) (7.512) (2.190) (1.092) (1.332)
ay —.0049 —.0542 —.1326 .0292 0053
(.0478) (.0168) (0127) (.0016) (.0114)
ay .0244 .0203 0129 .0065 0314
(.0118) (.0110) (.0108) (.0003) (.0109)
ag 3262 .2989 2378 .0459 3956
(.0679) (.0615) (.0603) (.0026) (.0646)
ay 0252 .0031 —.0467 .0198 .0378
(.0293) (.0205) (.0203) (.0009) (.0190)
ag 1.657 -2.118 —.4037 2448 4127
(1.682) (1.084) (4853) (.0376) (.4088)
ag 16.016 16.38 12.259 9113 J170
(.5917) (.6349) (.1848) (.0902) (4147)
b 123 1 1 1 1
(7.393)
ayq 0127 1199 .0296 0206
(.0020) (.0591) (.0561) (.0014)
P .0033 0034 .0032 0032
(.0005) (.0005) (.0003) (.0005)
Q33 .0287 0284 0294 .0189
(.0022) (.0022) (.0019) (.0019)
044 0125 0125 0119 0115
(.0009) (.0009) (.0009) (.0007)
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Unrestricted Homogeneity Homo. and Homo. and Constant Returns
parameter  Model in Input Prices Nonjoint Qutputs Linear Log. Costs * to Scale
ass .0448 0177 0504 .0209

] (.0528) (.0524) (.0441) (.0621)
0!66 —1.451 —-1.2711 —.0005 .0209

(*) *) (*) (.0621)
a9 —.0022 —.0023 —-.0277

(.0006) (.0006) (.0006)
a3 —.0049 —.0051 —.0115

(.0016) (.0017) (.0015)
Ay —.0053 —.0055 -—.0063

(.0010) (.0010) (.0008)
ay3 —.0002 —.0002 —.0013

(.0005) (.0005) (.0005)

0008
a .0013 .0013
- (.0004) (.0004) (.0004)
—.0061
a —.0022 —.0022
L (.0010) (.0010) (:0008)
—.0209
o .0996 1097
38 (.0882) (.0884) (.0621)
B —.1471

(.5356)

71 —.0082 —.0963 0017

(.0071) (.0590) (.0015)
7y —.0048 —.0041 —.0039 —.0034

(.0017) (.0016) (.0016) (.0016)
73 —.0617 —.0571 —.0574 —.0496

(.0100) (.0090) (.0088) (.0097)
74 —.0087 —.0050 —.0041 —.0041

(.0043) (.0028) (.0029) (.0068)
s —4615 1029 .0286 —.0068

(.1809) (.0586) (.0562) (.0231)
%6 4798 .0598 0445 0622

) (.0236) (.0236) (.0255)

*(Collinearity problems prevented estimation of this standard error.
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TABLE IV (Continued)

POTENTIAL OUTPUT AGGREGATES

Parameter (1, 2, 3) (1,2, 4) (1,3, 4) (2,3,4) (1,2,3,4)
a3 0005 —.0005 —.0003
(.0005) (.0005) (.0005)
(.0004) (.0003) (.0004)
(.0010) (.0009) (.0010)
asg .0802 0932 1222 1245 1032
(.0870) (.0881) (.0984) (.0881) (.0889)
B
i}
Y —.0003
C (.0015)
Y 3 —.0504
(.0012)
% 0019
(.0026)
¥s —.4038 —4184 —4522 0336 — 4546
(.1939) (.1969) (.1984) (.0570) (.1989)
B .1873 2501 2186 —.0327 2192
(.0992) (.1011) (.0105) (.0190) (.1017)

*Collinearity problems prevented estimates of this standard error.

TABLE V

Marginal Costs of Outputs, Rates of Transformation between

Outputs and Returns to Scale (at sample means)*

€ 1.069
(.0817)
3 3429
(.0571)
MC, 1186.87
(543.35)
MC, 227.24
(11.04)
MC;, 1177.18
(45.51)
MCy 138.01
(5.81)

MCs

MRT,,
MRT, 5
MRT,
MRT 5

MRT,

2448.00

A91

292

116

2.06

5.18

MRT,,
MRT,¢
MRT3,
MRT5s

MRT,5

607

10.77

117

2.08

17.74

*Standard errors are in parentheses.
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where Q15 = Qg = 0p5 = @6 = @35 = a3 = ty5 =0y = 0
due to the imposed functional separability of property crime
solutions and all other police activities.

Linear homogenity of C* in w imposes the further restric-

tions

6
(18) b=l, BZO) ?71:0

while constant returns to scale imply

6 6 6 6
(]9) Z]Ia1-= 15 ?all=?alj=0,¥l’Jand21171=0

If property crime solutions are nonjoint then

(20) aij=0, i,j=1,2,3,4, i#]
The latter imposes only six additional restrictions, since dif-

ferentiability of 1nC* implies symmetry of the %;-

Finally, given the hypothesis of functional separability
between property crime solutions and all other police activities
there are a total of eleven possible groupings of property crime
solutions which might be considered for indexing. Our question
here is not whether an index exists in any of these cases because
an index can always be found, but whether a consistent index
exists.] 7 The eleven candidates for aggregation and indexing
are displayed in Table I along with the implied linear separability
restrictions. 1 8 Tt is important to keep in mind that the existence
of an aggregate (a functionally separate group) does not in
general imply existence of a consistent index for the aggregate.
(See Theorem 4).

For the case at hand, system (11) may be written as

L example of such a question is whether it is possible to aggregate
burglary, robbery and larceny solutions into a composite category such as
“non automobile theft” solutions. Given the numbers of burglary, rob-
bery and larceny solutions and their imputed values, how does one derive
quantity and value indices for “non automobile theft” solutions? Sup-
pose burglary solutions, robbery solutions and larceny solutions are sep-
arable from other police outputs and input prices, then the cost function
may be written as C(y, w) = C(cl(yl, Yo y4), Yy ¥ Vg w). In addi-
tion, if < is homothetic then Y ¥, and Ya mayfbe aggregated into a
category. The quantity index for sample point y* :(yl, yz, y4) is de-
termined by the function ¢y (-) and the values of (y* YZ' y“‘) Since the
index should be linear homogenous iny, the problem is to find an ag-
gregator function for ¢ (c1 (v)) which is linear homogeneous in y. The

' quantity (solution) index is then ¢ (c1 (v*)) at y* The correspanding

value (price) index is P* = (Pfy* s I-‘; + P*y*) | P (c ¥*)). Evaluato-
mg two “non automnbxle theft” wlutlon vectors (yl, y;, y"), and (yl,
Yl. y ) given P* and P but without knowledge of the funcnon < ),
is the analog to the more traditional index problem.

18 A5 was pointed out in footnote 14 above, there are also sets of nonlinear
restrictions which lead to functional separability.The implications of

these conditions are so restrictive that more nonlinear separability is not
considered in the tests reported below.
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6
(21) Piyi/C* =a;+ E])aijlnyj tyilaw, i=1,2,3,4

6 66
InC*=ag + Ea i1ny; + blnw + ‘/zEZczulny lnyJ +(8/2) Inw?

6
+ Zy;lnwlny;
1

where a i = =0,i= i VA, j.(The

furst four equations here given the value to society of ¥
solutions to property crime i as a proportion of total police
expenditures.) The next step in implementing the econometric
version of the model is to provide a stochastic framework for
equations (21). We do this by appending classical additive dis-
disturbances arise either as a result of random error in the
maximizing behavior of police administrators, or as a result of
the fact that the translog function provides only an approxi-
mation of the “true” underlying production structure. We
assume that noncontemporaneous disturbances are uncor-
related both within and across equations. We make no other
assumptions about the distribution of disturbances other than
they be uncorrelated with right hand variables in each equa-
tion.20

1,2,3,4,j=5,6 andcxij =q

EMPIRICAL RESULTS

We have fitted the five equations of system (21) under the
stochastic specification outlined above. There were 125 obser-
vations available for estimating each equation in the system so
that the total number of degrees of freedom for statistical tests
is 625. Since no assumption has been made concerning the
distribution of disturbances, our estimation procedure may
be thought of as multiequation, nonlinear least squares. In the
computations we used the Gauss-Newton method to loeate
minima. The results of estimation are presented in Table II.

The estimates reported in column two contain no restric-
tions other than the symmetry implied by the continuous dif-
ferentiability of 1nC* and entails estimating twenty-eight para-
meters. Given the primarily cross section nature of the data, the
model fits quite well with R2 figures of .74 for the cost func-
tion and .36, .13, .46, and .29 for the value of solution equa-
tions Piyi/C*, i=1,2,3,4,respectively. Durbin-Watson statis-
ticsare 1.81,1.94,2.41,2.53, and 2.18, respectively. It appears
that disturbances associated with each equation are serially
independent.21

In column three, we report estimates of the model with
homogeneity in input prices imposed. As we have noted pre-
viously, cost minimizing input decisions imply a production
cost function with this property and for this reason we may
consider a test of the fit of the homogeneous model as a test
of the consistency of the data with cost minimizing behavior.

20The latter is in fact a rather strong assumption. It may be eliminated
by using a set of instrumental variables to generate “predicted” values of
¥p say ?i, and then replacing yi with ?i when estimating system (21).
This approach will be reported on in a later version of this paper.
21james Durbin has argued that the conventional single equation Durbin-
Watson statistic be used to check for serial correlation in simultaneous
equation systems.
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Homogeneity in prices reduces the number of parameters
to be estimated from twenty-eight to twenty-five (see equa-
tion (18) ). Traditional R? statistics are .72 for the cost equa-
tion and .35, .12, .46 and .28 respectively for the value share
equations. Durbin-Watson statistics for the five equations are
1.75, 1.94, 2.41, 2.51 and 2.21, respectively. With the possible
exception of the cost equation, it again appears that disbur-
bances are serially independent.

In columns four, five and six are reported parameter estimates
for the case of nonjoint outputs, linear logarithmic costs and
constant returns to scale, each conditional on linear homogen-
eity in input prices. In column four are the estimates with
input price homogeneity and nonjointness of output imposed.
These restrictions reduce the number of parameters to eigh-
teen. The linear logarithmic cost function (column five) was
estimated primarily to contrast- the functional form of the
cost function presented in this paper with that implied by the
linear logarithmic production functions which have been esti-
mated in the majority of earlier papers.22 The total number of
parameters to be estimated is now reduced to seven. The final
column contains our estimate of the model with constant re-
turns to scale imposed.

Our tests of the various hypotheses which have been dis-
cussed are based upon the test statistic

(22) 9 =max LR/max LR

where max LR is the maximum value of the likelihood function
for the model with restrictions R and max L™ is the maximum
value of the likelihood function without restriction. Minus
twice the logarithm of §2 is asymptotically distributed as chi-
squared with number of degrees of freedom equal to the num-
ber of restrictions imposed. Throughout we choose critical
regions based upon the .01 level of significance.

Logarithms of the likelihood function are given in Table I1I
for each of the model specifications to be evaluated. We first
test the hypothesis that police agencies make choices in a cost
minimizing manner, which implies C* is linearly homogeneous
in w. Comparing the homogeneous model with the unrestricted
model we find that minus twice the logarithm of the likelihood
ratio is 4.52. Since there are but three restrictions imposed, we
easily accept the hypothesis of a cost structure which is
linearly homogeneous in input prices. That is, the data in
our sample of police departments are consistent with cost
minimizing behavior,

Conditional on linear homogeneity in input prices we next
test the validity of the hypothesis of nonjoint outputs—a hypo-
thesis which has been maintained in past studies whenever single
output aggregates have not been utilized. Minus twice the
logarithm of the likelihood ratio is 53.08 and the nonjoint-
ness hypothesis is resoundingly rejected. We conclude that one
may not go about estimating separate production functions or
separate cost functions for each of the outputs of police
agencies. The interaction between outputs must be accounted
for if one is to adequately characterize the structure of cost
and production in this “industry.”

22Recall that a linear logarithmic production function is self dual and
hence implies a cost function of the same functional form,
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TABLE 111
Estimated Values of Ln of Likelihood Function
T

Model Functional Separability|Imposed
Unrestricted 1654.57(((1,2) 1628.94 ||(1, 2, 3) 1616.43
Homogeneous in

Input Prices |1652.31]|(1, 3) 1613.50 ||(1, 2, 4) 1645.79
Homog. in Input|

Prices and

Nonjoint 1625.77||(1, 4) 1640.13 ||(1, 3, 4) 1628.40
Linear Logarith-

mic Costs  |1483.57((2, 4) 1627.16 (|(1,2,3,4) | 1636.79
Homog. in Input|

Prices and

Output 1613.23|(2, 3) 1619.70 ||(2, 3, 4) 1612.56
h(y,y9¥4) 08

homothetic [1628.52((3,4) 1611.56

It is instructive to contrast the linear logarithmic cost and
production structure implied by these data, with our more
general model. Columns three and five of Table II contain
parameter estimates for the cost models which maintain homo-
geneity in prices, and a linear logarithmic production structure .
in addition to linear homogeneity in prices.23 The fact that
twice the logarithm of the likelihood ratio for this test is
337.48 is a fairly accurate indication of the magnitude of the
loss in explanatory power resulting from adopting the Cobb-
Douglas functional form for C*,

Parameter estimates for the models associated with each of
the eleven possible output aggregates are presented in Table IV
with corresponding logarithms of likelihood functions tabulated
in the right-hand columns of Table III. Since we have accepted
the hypothesis of linear homogeneity in input prices, we test
these restrictions conditional on the validity of this hypothesis.
To begin we choose the prospective aggregate (yq, Y2, y4)
with the largest likelihood function. Minus twice the logarithm
of the likelihood ratio is 13.04 in this case. Since there are a
total of six additional restrictions the chi-square (.01) critical
value is 16.18 and functional separability of burglary, robbery
and larceny solutions from the remaining outputs and from
input prices is accepted. Perusal of Table III indicates that all
other potential aggregates are rejected and hence, say, h(y,
Y9, y4) is the only category function.

According to Theorem 4, if either the cost function is
homothetic or if C* is not homothetic, but the category
function for (y, Y9, ¥4) is homothetic, then a consistent
aggregate index of burglary, robbery and larceny exists. Barring
each of these cases another possibility for consistent aggregation
remains; the values for y,, y, and y4 (P}, P,, Py) (or for that
matter, the values of any subgroup of (yq, Y9, ¥3» y4) are
perfectly correlated. (See Hicks® Aggregation Theorem above).
To begin these tests we have calculated returns to scale at the
mean of(yl 1¥2:¥3: Y4 Y5 y6,w) and the standard error of this

statistic and find we cannot reject the hypothesis of constant
returns to scale. (See Table V below.) The fact that C* is

230f course, linear logarithmic cost and production functions main-
tain the nonjointness hypothesis.
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TABLE IV
Parameter Estimates: Linear Homogeneity in Input Prices and Functional Separability Imposed

POTENTIAL OUTPUT AGGREGATES

" *Collinearity problems prevented estimates of this standard error.
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parameter (2, 3) (1, 3) (1, 4) (1, 2) (2, 4) (3, 4)
a -95.5161 —95.75 —106.47 —101.42 —98.5637 —89.6617
0 (33.8291) (33.53) (7.280) (7212) (33.4918) (7.4351)
a —.0731 —.1348 —.0683 —.1199 —.1325 —.1228
1 (0173) (0129) (0171) (0137) (0131) (0138)
a, —.0090 —.0148 0113 —.0066 —.0150 —.0078
(.0027) (0101) (0103) (0033) (.0037) (.0097)
a3 —.1259 —.1306 .2494 .2059 .1887 —.1265
(.0158) (1075) (0581) (0568) (.0566) (0168)
ay —.0526 —.0892 —.0368 —.0506 —.0753 —.0659
(.1867) (.0195) (.0099) (.0192) (.0083) (0078)
Cag —2.1855 —1.845 1237 1.320 —1.8340 —1.8721
(1.2147) (1.187) (1.761) (1.741) (1.2022) (1.0716)
ag 16.4742 16.47 15976 15.31 16.5406 15.4808
(5.3143) (5.277) (8535) (8442) (5.2618) (:6226)
b 1:0 1.0 1.0 1.0 1.0 1.0
g 0621 .0278 .0187 .0209 .0327 0491
(.0587) (0077) (.0017) (.0018) (.0584) (0574)
&9 .0029 .0030 .0028 .0033 0028 .0036
(.0004) (.0004) (.0005) (.0004) (.0004) (.0005)
a3 .0268 .0321 .0265 .0283 0309 0289
(.0023) (.0023) (.0021) (.0020) (0021) (0023)
Qg 0124 0119 0122 0123 1174 0126
(.0009) (.0094) (.0009) (.0009) (.0009) (.0010)
ass 0177 0321 .0393 .0454 .0282 0265
(.0527) (.0521) (.0523) (0516) (.0052) (0518)
%66 —1.247 —1.238 —1.348 —1.280 —1.2747 —1.1582
(4224) (4201) *) *) (4182) *)
a1y —.0010 —0010
(.0005) (.0006)
(.0016) (.0015)
(.0010) (.0009)
(.0005) (.0005)
Gy .0006 .0005
(.0004) (0004)
o34 0019 —0020
(.0008) (.0009)
Use 1320 1147 120 0941 1183 .1084
(.0995) (.0982) (.0880) (0871) (.0984) (.0876)
p
1
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TABLE IV (Continued)
POTENTIAL OUTPUT AGGREGATES
Parameter (2, 3) (1, 3) (1, 4) (1, 2) (2,4) (3, 4)
L) —.0003 —.0030 —.00001
(.0015) (.0015) (.0015)
73 —.0560 —.0493 —.0475
(.0085) (.0083) (.0082)
Tl .0019 .0018 —.0020
(.0025) (.0029) (.0027)
75 .0678 0362 —.4201 —.4043 0320 0581
(.0585) (.0265) (.1966) (.1942) (.0579) (.0573)
76 —.0266 —.0358 2635 2429 0233 —.0305
(.0192) (.0226) (.1009) (.0997) (.0213) (.0194)
POTENTIAL OUTPUT AGGREGATES
Parameter (1, 2, 3) (1,2, 4) (1,3, 4) (2,3,4) (1,2, 3,4)
a, —102.00 —114.68 -.113.77 —100.124 —121.61
(7.208) (7.306) (32.57) (7.4896) (7.372)
ay —.1276 —.0656 —.0673 —.1311 —.0612
(.0122) (.0169) (.0163) (.0141) (.0165)
ay —.0097 —.0082 —.0064 —.0169 —.0070
(.0032) (.0039) (.0094) (.0037) (.0040)
ag —.1233 2121 —.0811 -.1317 —.0736
(.0166) (.0562) (.0204) (.0175) (.0213)
ay —.0827 —.0368 —.0359 —.0744 —.0331
(.0186) (.0100) (.0095) (.0083) (.0100)
as 1.444 1.452 1.295 —-1.9157 1.546
(1.739) (1.765) (1.848) (1.0807) (1.782)
ag 15.74 17.199 17.40 17:1529 18.438
(.8408) (.8551) (5.149) (.6260) (.8603)
b 1 1 1 1 1
211 .0262 0210 0229 0225 .0246
(.0021) (.0017) (.0020) (.0571) (.0020)
ayy .0034 .0032 .0024 .0030 .0034
(.0004) (.0004) (.0004) (.0004) (.0005)
034 0311 0261 .0299 .0304 .0294
(.0023) (.0021) (.0024) (.0023) (.0024)
Oyg .0114 0121 0126 0130 .0127
(.0009) (.0008) (.0009) (.0010) (.0009)
Qsq .0532 .0431 0446 0267 .0477
(.0516) (.0523) (.0527) (.0523) (.0528)
Cee —-1.278 —1.426 —1.436 —1.2950 —-1.504
(*) (*) (.4095) (*) (*)
s —.0011 —.0021 —.0021
(.0006) (.0006) (.0006)
a4 —.0048 —.0066 —.0064
(.0015) (.0017) (.0017)
apy —.0062 —.0039 —.0048
(.0010) (.0010) (.0010)

*Collinearity problems prevented estimates of this standard error,
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linearly homogeneous in outputs at the sample means certainly
does not imply constant returns to scale throughout the
relevant output region (and consequently a homothetic cost
function), but does suggest that it is of inferest to test this
hypothesis. The logarithm of the likelihood function associated
with this model (linear homogeneity in input prices and
outputs) is reported in Table III. According to equation (19)
above, linear homogeneity in outputs imposes seven additional
restrictions on the model.24 The value of the test statistics
is 78.16 and hence these data lend no support whatever to
the constant returns hypothesis.

We next reestimated the model for the case when h (y{, y4,

y4) is constained to be homothetic, maintaining the hypotheses
of linear homogeneity in prices and functional separability of
(y], Y2 ¥ 4). This imposes three additional restrictions on the

idel, gy =—0i5 04059 = —ayp ~Oggand @y =~y
—any. The value of the log likelihood function is reported
in the last, left hand row of Table III and yields a test statistic
of 35.54 which leads to rejection of the homotheticity hypo-
thesis.25 We conclude that although an aggregator function, h
(-), exists for (yl, ¥2» y4), a consistent index, via homothetic

separability, cannot be found.26

Finally, we have calculated the correlation matrix for P to
check for the possibility of a Hicksian aggregate. The correla-
tions are 112 = .065, [13 = .065, 1'I4= -901, 123 = 197, 124 =
014 andr4,= 0.026. Of course,such calculations permit testing

only pairwise groupings of outputs in the first step. It is
interesting to note that the only highly correlated values (P
and P,) are associated with the outputs (yq, y4) which in
turn have the smallest test statistic among all pairs in our
tests of functional separability. (See Table III.) Although
I14=.901 is far from a perfect correlation and the functional
separability of (yq, y,4) was rejected above, both the size of
the correlation coefficient and the size of the test statistic
suggest that burglary solutions and larceny solutions may in
some situations be consistently aggregated.

MARGINAL COSTS, RATES OF TRANSFORMATION
AND RETURNS TO SCALE
The marginal cost function for activity iis given by ac*/ayi

= (alnC*/alnyi) (C*yy),i=1,2,3, 4,5, and may be calculat-
ed using the formula

6
(23) aC*[dy; = (a; + ?aijlnyj +y lnw) (elnc*/yi), =125

As indicated, (23) will be valid for each of the crime solving
outputs, ¥4, ¥, - - » ¥5 and not for Y- Recall that the sixth

24Symmetry of the aij reduces the restrictions in (19) from thirteen to
seven, Recail that E'yi: 0 is already imposed,

254 necessary and sufficient condition for homotheticity of the trans-
log function h(yl, Yo y4) (see footnote 14) is that h (-) be homogeneous,
which implies the conditions given.

26ye have tested three increasingly special cases of the cost modelinthis
sequence of tests, (homogeneity in input prices, functional se parability of
(Yl, Yo y4) from other outputs and w, given homogeneity in input prices

and homotheticity of h (yl, Yo y4) given homogeneity in input prices
and functional separability of (yl, Yo y4) ). The overall level of signifi-
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output was an aggregate of the *“non-crime solving™ services pro-
vided by police. Since we have postulated only that the produc-
tion of this output is proportional to population size, it will
be possible to determine ac*/ay6 only up to this factor of
proportionality.

The rate of transformation of output i for output j gives
the number of solutions to crimes of type i which must be for-
gone for an additional solution to a crime of type j, given fixed
levels of all other outputs. Formally, the rate of transformation
between outputs iand j may be written as —ayi,’ay- =@C*/ay;)
/(BC*/ayi), i,j=1,2,..,5,i#]j, and may be calculated using
the formula

ayi

ay-:

24) - | L

6
.+ To 4 :
_—(aj ?ajklnyk 7jlnw)y] 4=

6
(a; + ‘?aiklnyk + yilnw)yj

As with marginal cost functions, it will not be possible to obtain
transformation rates between output six and other outputs.

Traditional measures of scale economies (or diseconomies)
are predicated on the single output firm and must be modified
for use here. We measure scale economies as the percentage
response of costs to a small equal percentage change in all out-
puts. That is,

6
(25) e=dC*/Cc*= Z(01nC*/0o1ny;) (dq/q) ,
1

where dq/q is the percentage change in outputs.27 Of course
one may calculate e for subsets of outputs holding the remain-
ing outputs fixed. Here we report on two scale measures, € and
€. The former measures the percentage responses of costs to an
equal percentage change in all solutions and in the service out-
put, y6.2 The latter concept will measure the percentage res-
ponse of costs to a change only in crime solving activities and is
calculated according to the formula

5
(26) € =Z (alnC*/d1ny;) (dq/q) ,

Marginal cost functions (MC;), rates of transformation
(MRTij) and returns to scale functions (e and ¢€) evaluated at

sample means are presented in Table V. To aid in evaluating
these’ figures we have calculated standard errors (in paren-
(thesis) for the two scale measures and each of the marginal
costs. Since MC; is the only marginally significant, one should

not put too much faith in the computed marginal cost of
burglary solutions and the rates of transformation which
depend upon it. All other statistics are highly significant. Also,
because these functions are highly nonlinear one must take
care in intepreting the values in the table.

cance for such co-called “nested” tests is approximately the sum of signi-
ficance levels for individual tests in the sequence.

27g.G.,if dq/q = 1,and €<1 at y*, then the production function exhibits
increasing returns to scale at the output mix y¥, etc.

28The proportionality between population size and y _ causes no problem
6 p

here since the percentage change in y6 is equal to the percentage change in
population size,
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At the sample means equal percentage changes in all out-
puts lead to approximately equal percentage changes in cost;
while costs are much less responsive when only crime solving
outputs are varied, holding services, y ¢, constant. According to
our estimates, incremental costs for clearing larcenies are the
lowest ($138.01), followed by robbery ($227.24), motor ve-
hicle thefts (81177.18) and crimes against the person ($2448.-
00). As we have noted, each of these estimates is highly
significant.

Rates of transformation between outputs at sample means
range from .117 between motor vehicle theft solutions and
larceny solutions to almost eighteen between larceny solutions
and solutions to crimes against the person. Hence, the estimated
cost function predicts that on average it will be necessary to
forego between eight and nine larceny solutions to solve
one additional motor vehicle theft (at the mean) and approxi-
mately eighteen larceny solutions to solve the “average” crime
against the person. Similar interpretations hold for the other
transformation rates.

Figures 1—3 indicate the general curvature of the estimated
marginal functions and returns to scale functions.29 In figures
2 and 3 we have for contrast included plots of the scale
measures (ep and €g) associated with a linear logarithmic pro-
duction structure. Of course in this case these functions are
constant and are .346 and 1.258, respectively. The marginal
cost function for output i has been graphed by evaluating (23)
at ()71, Y95« « s Yp - Vg w), where the overbar indicates

sample means, and allowing y; to vary over the sample.
SUMMARY AND CONCLUSION

In this paper we have adopted the economic model of an
optimizing firm as a framework for characterizing the produc-
tion structure of a sample of medium sized U.S. law enforce-
ment agencies. Unlike previous studies we have begun with a
second order approximation to an arbitrary multi-output-
multi-input production possibilities function. This rather gen-
eral functional specification has permitted us to test a number
of hypotheses which have been implicitly maintained in earlier
work. Of particular interest is the finding that at least in our
sample, the decisions of police administrators are consistent
with cost minimization and that outputs are very definitely
joint—thereby effectively precluding estimation of separate
production and/or cost functions for the different outputs of
police agencies. In addition we strongly rejected the hypothesis
of constant returns to scale and indeed found that scale econo-
mies varied considerably with activity levels. Finally, our sam-
ple contained no evidence supporting the existence of a con-
sistent index by which certain subsets of property crime solu-
tions could be aggregated.

29€ was calculated by evaluating equation (25) at (min y (1 + 5)', w) for
0<6< 1andi>0. Also i was chosen so that min y (1+68) <maxy.
The analogous procedure was used to graph €: Here w represents the sam-
ple mean of w.
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