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Marcus [2]). 
3) The theorem can be used to generate identities valid in any ring. For example, 

r r2l ?r+ +r,)2-2(rlr2+ *+r,,lr,,); 

r~~~~~ + ~ ~ r13 + *-+r,3 =(rl + *s+r )- 3(r, + *-+r,,)(rlr2 + *s+r*, lr,,) 

+ 3( r1r2r3+ * * * +r,,-2r,,_lr,,) 
The above results can be extended to the case k = 0 or k a negative integer, when ao is 

nonzero. This would involve taking the inverse of the companion matrix. (The latter is easily 
obtained, however, by any of several methods, e.g., matrix adjoints or the Cayley-Hamilton 
Theorem. Also, it is not too hard to see that this inverse closely resembles the original companion 
matrix.) 
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In various applied mathematics courses one appearance of the Laplacian operator V 2 is in the 
study of heat distributions. If u is a heat distribution in space, then V2 u = 0 if and only if u is a 
steady-state distribution, one that could be maintained indefinitely inside a box with suitable 
boundary conditions. 

In rectangular coordinates the Laplacian of u is 

2 =du +2u +2u 17 ~+_ + 3X2 3y2 3z2 

Careful use of the chain rule gives 

2 d2u I Au 1 02u 2u 
ar2 r dr r2 d +z2 

and 

2 32u 2 Au 1 32u 1 a2u cotf Au 
VU= +--~ + +- ap2 ( p +p2Sin2W a2 P2 a 2 +p2ao 

as the correct formulas for the Laplacian in cylindrical and spherical coordinates [1]. 
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FIGURE 1 

Since problems in two dimensions are often easier to solve than those in space, it is desirable to 
recover a two-dimensional Laplacian from the formulas above. In the first two instances this is 
straightforward: differentiations with respect to z may be ignored, leaving 

a2u a2u 

aX2 ay2 
and 

a2U I au -a2u 
ar2 r ar r2 ao2 

as the correct formulas for the Laplacian in rectangular and polar coordinates in the plane. 
Students readily accept the physical reason justifying this procedure: a steady-state heat distribu- 
tion on a thin metal plate will also give a steady-state distribution when extended to space in such 
a way that it is independent of z. For example, u(x, y) = xy could equally well describe the 
steady-state heat profile of a thin disk or of a cylinder. 

A problem commonly arises, however, when students attempt the same reduction of the 
Laplacian in spherical coordinates. At first it seems reasonable to ignore differentiations with 
respect to 0, set 0 = ,/2, and replace p with r. This gives 

a2u 2 au 1 a2u 
ar2 r ar r2 ao2' 

apparently contradicting the formula above. Since the difference is a matter of a factor of 2, 
students may shrug away the contradiction as a misprint. 

What is responsible for the incorrect coefficient of au/ar? Students must examine more 
carefully what is entailed in ignoring differentiations with respect to 0. To do so is to pretend that 
one's two-dimensional heat distribution is actually a distribution in space which is independent of 
4). The resulting heat distribution would be constant on the longitudes of the unit sphere and 
singular at the North Pole. Certainly the question of heat equilibrium for the two distributions is 
not the same. A steady-state distribution on a plate would yield quite an unsteady distribution 
when extended to space in this manner. 

Having dispensed with the naive approach, we must turn to the chain rule for the correct 
computation. If u(r, 0) is a function in the plane, extend it to a function in space by supposing it 
to be independent of z. The Laplacian of the extended distribution will also be independent of z 
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and, when restricted to the plane, will give the correct planar Laplacian for the original function 
u. Applying the Laplacian to u amounts to computing the spherical partial derivatives of u in 
terms of the cylindrical derivatives. For instance, since r = p sin+, 

au au au az 4,= rpcoso++ iZ4i 

but du/dz is zero. Differentiating again shows that 

a2U a2U 2 2 au 
a =d 2P Cos 

2 
psina . ar2 cs~ arPsn 

But when this is restricted to the plane where r= p and 0 = sr/2, we find that 

a2u au 

This term coriects the coefficient of au/ar which was wrong in the first approach. The other 
terms are easy to check; for instance, a2 U/ap2 really does translate to a2 u/ar2 when 0 = 7/2. 

Another explanation of the error in the naive approach is possible for students who understand 
that the Laplacian of a function is the divergence of its gradient vector field. If a planar function 
whose Laplacian is zero is extended to be independent of z, then the gradient of the resulting 
function is also independent of z and its divergence is zero. On the other hand, the same function 
extended to be independent of 0 will typically pick up nonzero divergence in its gradient. A 
one-dimensional analogue illustrates this phenomenon in a setting where the calculations are 
simple: the function f(x) = x has the unit vector i as its gradient and the divergence of this is 
zero. However, if f is extended to the plane so that 0 is constant, the resulting function v(r, 0) 
has the unit vector field 

r r 
as its gradient. The divergence of this field is l/r. By extending the function in a strange way, 
extra divergence may be introduced in its gradient vector field. 

At a more sophisticated level this phenomenon could be used to contrast the push-forward of 
the Laplacian under two different projections from space to the plane. However, typical students 
working through this dilemma may learn to appreciate the chain rule and the need for care in 
changing coordinates. 
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