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Perhaps, like me, you heard the following
argument as a child on the playground:
“The universe could not possibly have an
edge, because if it did you could go there
and put your hand through, and that new
place would have to be part of the uni-
verse too.”

If only I had known hyperbolic geom-
etry, I might have refuted this seemingly
unassailable argument, in the following
manner: “What if you, and all the matter
that makes up your measuring instru-
ments, shrink as you approach the edge,
and shrink in such a way that you could
put your ruler end to end infinitely many

times and still never reach the edge? Af-
ter all, what evidence do you have that
you do not change size as you move about
the world?”

A simple mathematical model of a two-
dimensional universe, called the Poincaré
Upper Halfplane, illustrates the possibil-
ity of a universe with an unattainable
edge. In this article, I describe this model
—a famous example of a noneuclidean
geometry—and explain how conversa-
tions with an analytic number theorist led
me to create wallpaper patterns for its in-
habitants. These are interesting not only
for their high “Gee whiz!” factor, but also
as a window for observing the features of
this unusual geometry.

The World of the
Shrinking Ruler
To describe the unusual universe we will
study in this article, we must stand out-
side it. Imagine yourself looking down on
the ordinary Cartesian plane; the model
world consists of those points that lie
above the x-axis, as if points on or below
the x-axis have been declared off-limits
to inhabitants of our model world, hence-
forth dubbed the Poincarites. In fact, for
the Poincarites, that axis is infinitely far
from any point. From our omniscient
point of view, the inhabitants’ rulers
shrink in a particular way as they ap-
proach the x-axis.
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Universe
I will later give a precise mathemati-

cal rule to describe how this shrinking oc-
curs, but first let us consider how the in-
habitants of this world travel if they at-
tempt to move along a straight path. Be-
cause physical particles travel in the
straightest way possible, in the absence
of other forces, understanding how to
move without curving is essential to life
as a Poincarite.

Any vertical line in the plane, or at least
the portion of it that belongs to our new
universe, is straight for two reasons. First,
the strange change in the size of matter
occurs only when moving up and down,
not side to side; therefore, if a Poincarite
walks up this line with hands out on ei-
ther side, each hand travels exactly the
same distance—a reasonable criterion for
straightness. Second, observe that trans-
forming this universe by flipping the plane
about that line does nothing to change the
size of any measurements, and doing so
leaves that line invariant: if the straightest
path diverged to the left then, by symme-
try, it would also have to diverge to the
right; presumably, there is only one way
to go straight in any given direction, so
that vertical line must be straight.

Heading in a horizontal direction, what
path would be the straightest? If a Poincarite
maintains a fixed y-coordinate and walks
to the left, the hand with the lower y-coor-
dinate travels farther than the other hand,Figure 1

There is nothing below the line!
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since that lower path is measured with
shrunken rulers. Such a person is actually
curving to the left! It turns out (we still have
not given any rigorous definitions here) that
the straightest path for the Poincarite who
begins in this direction is a portion of a Eu-
clidean circle whose center is on the x-axis,
which is the edge of the universe.

The proof is beyond the scope of our
discussion, but it turns out that these
straightest paths also give the shortest way
to connect any two points. Also, between
any two points of the Poincarites’ world,
there is a unique hyperbolic line connect-
ing them.

The space we have described is called
the Poincaré Upper Halfplane or the hy-
perbolic plane. These straightest paths,
whether vertical lines or portions of Eu-

clidean circles that meet the boundary at
right angles, are called hyperbolic lines.
This conceptual universe played an im-
portant role in the historical development
of noneuclidean geometry. All the axioms
of Euclidean geometry are satisfied, ex-
cept the crucial parallel postulate (can you
see how the lines in Figure 2 contradict
Euclidean assumptions?). Therefore, this
model shows that postulate to be truly in-
dependent of the rest of Euclid’s system.
There are higher dimensional hyperbolic
spaces, but we will stick with the two-
dimensional version.

To construct our wallpaper it’s crucial
to understand the isometries of the
Poincaré Upper Halfplane, that is, the
transformations that leave all measure-
ments unchanged. We assume an intui-
tive familiarity with the Euclidean
isometries of translation, reflection, and
rotation, and proceed to study the hyper-
bolic analogues of these.

Reflections
The reflection noted above, flipping the
plane about a vertical line, gives a simple
example of a hyperbolic isometry. In

Figure 2

Cartesian coordinates, assuming that the
vertical line in the figure is the y-axis, it
would be expressed by the equation
F(x,y) = (–x, y). Since this transforma-
tion does nothing to change any measure-
ments of figures, this is an isometry of
the hyperbolic plane.

What about reflections across other hy-
perbolic lines? In order to fit with physi-
cists’ ideas about empty space, we de-
mand a property of homogeneity; space
should look essentially the same every-
where, and therefore all hyperbolic lines
should behave in the same way. In par-
ticular, the two sides of any hyperbolic
line should be interchangeable.

Reflection about nonvertical hyper-
bolic lines is accomplished by a classical
process called inversion in a circle, which
you may have studied in other contexts.
This is a beautiful way to interchange the
inside and outside of a circle, leaving
points on the circle fixed. If P is any point
other than the center of the circle, which
we’ll call C, then the image of P is the
point P′ on the ray from C through P so
that the product of the distances CP and
CP′ is the square of the radius of the
circle. Figure 4 illustrates inversion in a

Figure 3. Euclidean wallpaper with many symmetries
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particularly simple semicircle (hyperbolic straight line). The
formula for the illustrated inversion is

I x y
x

x y

y

x y
( , ) , .=

+ +

⎛

⎝
⎜

⎞

⎠
⎟2 2 2 2

Notice that in the figure, orientation has been reversed; for this
reason, reflections are called indirect isometries. If we’re will-
ing to use complex coordinates for the Upper Halfplane, then
the formula for I(z) becomes appealingly simple

I z z( ) / .=1

If you want to look ahead to Figure 5, you will see a pattern
invariant under reflections across certain vertical lines.  It takes
some imagination to see, but this one is also invariant under the
inversion described above. It might help to know that the pea-
cock fans that seem to be largest—for the Poincarites they are
all exactly the same horizontal distance across—touch the x-
axis at integer points.

Translations
There are two analogues of translations in the hyperbolic plane.
The first is a rather obvious shift to the right or left, given in
coordinates by

P(x, y) = (x + a, y)  or  P(z) = z + a,

where a is any real number. Since we don’t move anything up
or down, P preserves all distances.

The next translation analogue is somewhat suprising, and
brings me to say exactly what we mean by distances measured
by a shrinking ruler. If we dilate the plane relative to any point
on the x-axis, hyperbolic distances, the ones measured by shrink-
ing rulers, are preserved.  Suppose γ (t) = (x(t), y(t)), for a ≤ t
≤ b is any parametric curve with y(t) > 0. Its hyperbolic length,
that is, its length as measured by the Poincarites, is defined to
be

L dt
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This is quite similar to the usual formula for arc length, except
that the factor of y in the denominator causes an apparently

short piece of arc to count as large in the integral when it is
close to the edge. This captures the essence of the shrinking
ruler.

Now consider the transformation

H(x, y) = (rx, ry)  or  H(z) = rz.

Apply this transformation to the curve γ(t) and use the integral
definition to compute the length of the new curve. It is easy to
see that a factor of r cancels from numerator and denominator,
leaving the length unchanged; thus, H is an isometry.

Why is H analogous to a translation? Note that the entire y-
axis moves along itself under H. Of course, in a Euclidean trans-
lation, an entire family of parallel lines slides along itself, but
that is not how things work in the hyperbolic plane. We must be
content to slide along a single line at a time. While we are on
this subject, it is interesting to note that the translations to the
right and left, denoted by P above, are analogous to Euclidean
translation in that they shift across a family of lines, in this case
the family of vertical lines. Surprisingly, there is no line moved
along itself by that type of translation.

Rotations and the Rest
To find an example of a rotation, simply compose the two re-
flections above. Check for yourself that following F by I gives

R x y
x
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y
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z
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1
 or 

which is a hyperbolic rotation of 180 degrees about the point
(0, 1).

Again looking ahead to Figure 5, that image is invariant un-
der this half-turn. The fixed point is not labelled, but you can
find it in the pale pink area atop one of the large peacock fans.
All the noneuclidean wallpapers shown also turn out to be in-
variant under the transformation

R z
z

z3
1

( ) ,=
−

which is a rotation through 120° about the point z i= +1
2

3
2 .

Figures 9 and 10 are good places to observe these rotations. In
Figure 9, there are centers of two-fold rotation at the points
where two lines cross, and centers of three-fold rotation at points
where three lines cross.

The collection of isometries of the hyperbolic plane presented
so far turns out to be representative of all possibilities. To in-
vestigate the totality of these isometries, let us focus on half of
them, the set of direct isometries. If you have a feel for the
operation of conjugation in the complex plane, you might guess
that the formula for any direct isometry will involve only ap-
pearances of the variable z, with no z s  required.  This is in fact
the case.

Using the fact that the composition of two isometries is again
an isometry, and looking at the types we have seen so far, it will

Figure 4



now be no surprise that the most general direct isometry of the
hyperbolic plane looks like

γ( ) ,z
az b
cz d

=
+
+

where a, b, c, and d are real numbers. These are called frac-
tional linear transformations.

It takes some algebraic manipulation, but it is not too hard to
show that this function takes points with y > 0 to other points in
the Poincaré Upper Halfplane only when ad – bc > 0. Further-
more, note that if  ad – bc = 0, the numerator and demoninator
would have a common factor and γ would degenerate to a con-
stant function, not a candidate for a transformation at all. Sup-
pose we multiply all these coefficients by the same factor; it
could be cancelled from numerator and denominator, resulting
in the same transformation. Therefore, to avoid redundancies,
we assume  ad – bc = 1.

A helpful shorthand uses a 2 × 2 matrix to keep track of
these fractional linear transformations:

γ( ) .z
az b
cz d

a b

c d
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=
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It should be considered a minor miracle that composition of func-
tions corresponds exactly to multiplication of matrices. Try it!

We have now identified the set of direct isometries of the
hyperbolic plane with a set of 2 × 2 matrices. If you know a

little about groups, you can easily see that this set of matrices
forms a group, which is usually called SL(2, R). It is actually
subtly different from the group of direct isometries of the hy-
perbolic plane, in that

a b

c d
z
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so that two different matrices give the same transformation. We
leave that distinction to the experts.

Creating Symmetry
As a basic example, consider a process for creating an even
function of one variable, that is, a function f (x) invariant with
respect to reflection of the real line about the origin:

f (–x) = f (x).
Given any base function g(x), we can symmetrize g(x) to

create a new function f (x) by a process of averaging:

f x
g x g x

( )
( ) ( )

.=
+ −

2
Clearly, the new function is even. Of course, it is possible that
the new function is identically zero, but it is indeed even.

For another easy example, suppose we wanted to create a
function of two variables f(x, y) that is invariant under rotation
of 120 degrees about the origin. Again, a process of averaging

Figure 5
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may be used, but this time there are three things to be averaged.
Suppose g(x, y) is any function of two variables, enjoying what-
ever properties of continuity or differentiability we wish to im-
pose, and suppose ρ represents this rotation. Define a new sym-
metrized function by

f x y
g x y g x y g x y

( , )
( , ) ( ( , )) ( ( , ))

.=
+ +ρ ρ2

3

Check for yourself that f( ρ(x, y)) = f(x, y), so that f is indeed
invariant under the desired rotation. The reason for dividing by
three is to make the new function have values in about the same

range as the old. Ponder the level curves in the “before and
after” example in Figure 6, where g x y x x e x y( , ) ( ) .( )= + − +2 23

2 2

This gives you some idea of a process called averaging a
function over a group action. In the rotational example, the group
consisted of three elements, e, ρ, ρ2, where e is the identity
transformation.

In making wallpaper for the Poincarites, my method was to
look for functions that are invariant under a particular set of the
isometries described above. Because it is a set much beloved of
analytic number theorists, I chose the set of fractional linear
transformations where all the coefficients are integers. This set,
which also meets the requirements to be a group, is called

SL
a b

c d
a b c d ad bc2 1, , , ,( )=

⎛

⎝
⎜

⎞

⎠
⎟ ∈ − =

⎧
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⎫
⎬
⎪

⎭⎪

 

 
 where  and ..

Surprisingly, my next step amounted (almost) to taking a
base function on the plane and averaging it over this infinite
group!

But before I describe that averaging, let us imagine what we
expect to see. In the swatch of Euclidean wallpaper shown in Fig-
ure 3, we can apply a large collection of Euclidean symmetries,
reflections, rotations, and translations to the picture and find the
pattern left unchanged; of course, we need to imagine that it
continues infinitely in all directions, that what we are seeing is

Figure 6
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Figure 7
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a piece of an infinite pattern. For hyperbolic wallpaper of the
type to be constructed, we should be able to apply any of the
transformations in SL(2, Z) and find the pattern unchanged.

In particular, consider two families of transformations. The
simplest translations we discussed, P(z) = z + b, are indeed in
SL(2, Z) when b is an integer. (Use a = d = 1 and c = 0.) Thus,
our picture should repeat itself with every unit translation to
the right or left; that is reasonably easy to imagine.  Call this
collection of translations Γ.

This family of transformations has a sort of mirror image, in
the set

′
⎛

⎝
⎜

⎞

⎠
⎟ ∈

⎧
⎨
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⎫
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1 0

 1
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To study  a typical element, γ( )z nz= +
1

1
, we compute two limits:
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γ

γ
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1
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If the picture is supposed to look the same before and after we
apply this transformation, then the behavior as z gets very large
should look the same (to the Poincarites, of course) as when z
approaches 0 and when z approaches  –1/n. Of course, z cannot
actually be 0, or ∞, or –1/n, as none of these is a point in our new
universe, but the picture should look the same as you approach

any of these points. With some modification, the same argument
shows that the pattern must look the same as we approach any
rational value on the x-axis. Before the first computed image
appeared on my screen, I found it hard to imagine such a thing.

Constructing Wallpaper
The group SL(2, Z) is actually too large to perform the averag-
ing we described. To tell the real story, I need to use the lan-
guage of cosets from group theory. If you want to skip this sec-
tion, imagining the process as one of averaging is a good heu-
ristic.

Recall that our goal is to take some base function g(z) and,
by some sort of averaging, produce a new function f(z) which is
invariant under every transformation of  SL(2, Z). Any function
with all those symmetries is called a modular function. Modu-
lar functions and analogous objects called modular forms are
well known to number theorists, so Jeffrey Hoffstein of Brown
University was a natural person to ask for help. I told him that I
had taken a stab at the construction using naive group averag-
ing, and he showed me how to do it more cleverly. The result
was a method I used to make the pictures in this article.

The naive idea would be to start with g(z) and form

g z
SL

( )
( , )

γ
γ∈

∑
2

hoping that the sum would converge.
Unfortunately, it virtually never does.
Instead, we start with a special choice
of g(z), one that is already invariant
under the subgroup, Γ, of integer
translations to the left and right.  Such
a g is easy to invent.

The key idea we need from group
theory is that the big group SL(2, Z)
can be organized into cosets using the
subgroup Γ, where any two elements
of a coset differ by an element of Γ. It
is a little like organizing the integers
into three sets, {3n}, {3n+1}, and
{3n+2}, the cosets of the subgroup of
integers divisible by 3. To adapt this
idea to SL(2, Z), we need to remem-
ber that the group operation is matrix
multiplication, so γ1 and γ2 differ by
an element of Γ if γ1γ2

–1 ∈ Γ.
The following equation shows

that any two elements of SL(2, Z)
that share the same bottom row be-
long to the same coset of Γ:
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Figure 8



Conversely, multiplying any matrix on the right by an element
of Γ does nothing to the bottom row. Thus, each coset of Γ
corresponds to a pair of integers c and d. These must be rela-
tively prime (denoted (c, d) = 1), as you can see from the equa-
tion ad – bc = 1.

We now should be able to perform some averaging, but there
is one missing ingredient: given a pair of integers c and d, we
need to find a top row for our matrix. The Euclidean algorithm
comes to the rescue here. Siman Wong of the University of
Massachusetts, Amherst, who was also at Brown University at
the time, wrote a swatch of code to generate a list of relatively
prime c, d pairs and one corresponding pair of values for a and b.

Putting all this together, I was ready to write a program to
perform the average:

g z
c d

( )
,

γ
( )=
∑

1

where γ is one of the matrices whose bottom row consists of c
and d. Note that we are not dividing by the number of elements
in the sum. In the first place, we are summing over an infinite
number of elements, and in the second place, the sum converges
nicely without doing so, provided we make the right choice for g.

Examples
We are now ready to choose some building blocks and carry
out the averaging process to produce images. In light of the
previous section, the function we choose as the building block

Figure 9

for averaging must remain the same when you translate to the
left and right by integer distances. One type of function that fits
this bill is a function that does not depend on x at all. (Recall
that we are using complex notation, where the point (x, y) cor-
responds to the complex number z = x + iy.) As an elementary
building block, take

g(z) = y s,

which is certainly invariant under the translations in Γ. An esti-
mate using an integral test for convergence shows that the sum
above will converge as long as s is any complex number with
Re(s) > 1.

A favorite first example uses

g(z) = y1.5 + 5i = y1.5(cos(5 ln y) + i sin(5 ln y)).

This is pictured in Figure 5, with a close-up view of the entic-
ingly complicated part of the image in Figure 7. Note that all
the shapes that resemble peacock fans are exactly the same hy-
perbolic distance across, because any one can be taken into any
other by one of our isometries, which the Poincarites see as
leaving all distances unchanged. Furthermore, there is one of
these fans tangent to the x-axis at every rational number. What
a lot of room there is, down near the edge of the universe!

It may be startling to see that the function g, and hence the
averaged function f, takes on complex values. How can these
be pictured? Space constraints demands that I make a long story
short. In the study that led to the article “Vibrating Wallpaper,”



Figure 10

I developed a way to visualize complex-valued functions in the
plane using the artist’s color wheel. (See www.maa.org/
pubs/amm_complements/complex.html.) Every com-
plex number receives a different color, with white at the center
and black out toward infinity; hues are distributed in a circle
(Figure 8). When you have a complex-valued function on a do-
main in the plane, you can color each point of that domain us-
ing the color corresponding to the output value for that point.
For more information, follow links from my web page. Here,
suffice it to say that the black portions of the image are places
where the value of the function is very large in magnitude; white
spots correspond to places where the function is near zero.

More exciting images are produced using g(z) = yssin(nπx),
as in Figure 9, or g(z) = yscos(nπx). To achieve the required
translational invariance, n must be an integer. In this picture,
which uses the sine function as a building block, notice the white
areas; since sin(nπ) = 0, this function is zero on a grid of hyper-
bolic lines. Since sin(–x) = –sin(x), it also has an antisymmetry
about the y-axis.

It opens a rather enjoyable can of worms to realize that one
can superimpose these fundamental building blocks, to produce
infinite variations on these pictures. Figure 10 uses a base func-
tion that superimposes functions like yssin(nπx) and yscos(nπx);
any linear combination will do. I experimented until I was
pleased with the result.

Where To Go From Here
Speedy computers, color monitors, the world wide web, all these
give us tools for creating and sharing images that use color to
illustrate mathematical ideas in a way not possible even ten
years ago, when the computational power necessary to produce
the images in this article was simply unavailable. With what
you have seen in this article, I hope you will be inspired to
create some images of your own. If you want to compute modu-
lar functions, and explore the endless variety of possibilities, I
have outlined all the steps; there are also animations waiting to
be made, showing these wallpapers in vibration. Alternatively,
it would be great to see a video game where objects bounce
along trajectories that follow hyperbolic lines; one thing to be
overcome in that scenario is that a random walk in the hyper-
bolic plane almost certainly results in your getting lost in that
expansive place that the external viewer sees as being down
near the edge of the universe.

Tristan Needham’s book Visual Complex Analysis, Clarendon
Press, is an excellent place to learn about fractional linear
transformations. To experience the Poincaré Upper Halfplane
for yourself, you can use NonEuclid, Java simulation software
developed by Joel Castellanos at Rice University. (See
cs.unm.edu/~joel/NonEuclid.) With so many possi-
bilities for visualization, the time to study this noneuclidean ge-
ometry and explore the edge of the universe is now. 
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