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Tetraethylene Gycol - Based Electrolytes for High Temperature
Electrodeposition of Compound Semiconductors

?Chris Poole, Robert Engelken, ""Brandon Kemp, and "Jason Brannen
Department of Engineering
Arkansas State University

P. O. Box 1740
State University, AR 72467

Abstract

We report an investigation of tetraethylene glycol (TEG) solutions of chloride salts (CdCl2
,TeCl4

,and HgCl2) for
electrodeposition of films of CdTe and Hg!.xCdxTe, leading II-VIsemiconductors. The high boiling point (314°C), below-
room temperature (T) (-6°C) melting point, adequate metal chloride solubilities, and low toxicity of TEG make it a good
candidate for electrodeposition at T > 200°C. Such temperatures tend to activate growth of larger crystallites than with
aqueous electrolytes at T < 100 °C, as are advantageous inoptoelectronic applications.

Initial results do, indeed, indicate a dramatic increase in crystallinity with deposition temperature, especially for the

CdTe films which are nearly amorphous when grown at room temperature. Hg!.xCdxTe films (x < 0.5) are marginally poly-
crystalline when grown at room temperature but also improve in crystallinity at higher growth temperatures. There
appears to be a strong decrease in film adherence and uniformity as growth temperature increases for both materials
probably because the greatly increased carrier concentrations at higher temperatures increase filmconductivity which, in
turn, supports easy electroplating ofprotruding loose dendritic and/or columnar crystallites, instead of the monolayer-by-
monolayer growth of lower conductivity material as occurs at lower temperatures, especially in the higher bandgap/lower
conductivity CdTe. The same increase in filmconductivity with temperature is responsible for the decrease in the relative
photosensitivity of both the CdTe and Hg!.xCdxTe with temperature. At all temperatures, the inferior adherence, unifor-
mity, and photosensitivity as well as the superior crystallinity ofHg!.xCd xTe over that of the CdTe are also explained by its
lower bandgap and higher conductivity. On balance, however, the initial results prove the utility of high temperature TEG
electrolytes for electrodepositing CdTe and Hg!.xCdxTe films with much better crystallinity than for those grown at lower
temperatures, notably in aqueous baths.
*

Undergraduate Research Assistants

Introduction

Electrodeposition is a potentially advantageous
method for producing materials used in solar cells and
other optoelectronic devices. However, there are prob-
lems with electrodeposition that must be solved before it
can be applied to optoelectronic device manufacturing.
One is that electrodeposition tends to produce films that
are amorphous or have relatively poor crystallinity. The
research described herein is an effort to investigate one
method to address this problem as a follow up to previ-
ous research on metal chalcogenide electrodeposition.

This work has focused on the growth of binary and
ternary metal telluride semiconductor compounds at tem-
peratures up to 200 °C in organic solutions of tetraethyl-
ene glycol (TEG) (b.p. = 314°C). The compounds investi-
gated thus far are CdTe and HglxCdxTe. Itis hoped that
growth of these at high temperatures (in principle up to
the boiling point) willproduce films with much larger
grain (crystallite) sizes than in those grown at room tem-

perature. More crystalline films should exhibit better per-

formance in subsequent devices. Other attributes of high
temperature growth include higher current densities
which yield increased deposition rates and more com-
plete diffusion of and reaction between the elements in
the film(e.g., Cd, Hg, and Te) to produce a more homo-
geneous and stoichiometric compound phase. Since both
diffusion and reactivity are temperature dependent (pro-
portional to exp [-E^RT]), moderate temperature
increases could have dramatic effects.

Results thus far have indicated success in achieving
the objective of enhanced crystallinity. CdTe films grown
at elevated temperatures have exhibited much better crys-
tallinity than those grown at room temperature, and the
Hgj.xCd xTe films follow the same trend but not as dra-
matically.

Review ofLiterature

There has been much recent work on the electrodepo-
sition of various semiconductor materials, including
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CdTe (Takahasi et al., 1984; Darkowski and Cocivera,
1985; Engelken and Van Doren, 1985), CuInSe 2 (Pern,
Goral, et al., 1988; Pern and Noufi, 1988), CdS (Baranski
et al., 1981), SnS (Mishra et al., 1989), SnSe (Engelken et
al., 1986), Cu2.xS (Engelken and McCloud, 1985), WSe x
(Engelken et al., 1985), and GaAs (Yang et al., 1992).
Electrodeposition has even recently been applied to high
temperature superconductors (Weston et al., 1992).

Various industrial groups have researched commer-
cialization of solar cells that have involved one or more
electrodeposition steps in their fabrication. Rockwell
(Ogden and Tench, 1981), Monosolar (Rod et al., 1980),
and AMETEK(Fulop et al., 1982) all investigated the elec-
trodeposition of CdTe. The National Science Foundation
has funded considerable work in this area, including that
of one of the authors (Rajeshwar and Engelken, 1990).
The U.S. Department of Energy and the Solar Energy
Research Institute (SERI), now the National Renewable
Energy Laboratory (NREL), conducted and/or sponsored
investigation of electrodeposition of CdTe and CuInSe 2
(CIS) (Basol and Kapur, 1990; Kapur et al., 1987).

Iffundamental problems with film (1) crystallinity (2)
uniformity/adherence, and (3) stoichiometry/native dop-
ing can be effectively solved, electrodeposition can serve
as an extremely convenient and low cost method for pro-
ducing thin film-based optoelectronic devices.

Material and Methods

The apparatuses used in these experiments included
an IBMEC 225 Voltammetric Analyzer, a Hewlett
Packard 7046-B x-y-t recorder, a 300 mlPyrex beaker, and
a Teflon beaker cover with the appropriate holes. The
anode was made of Poco pyrolyzed graphite and its sub-
merged area was approximately 6 cm2. The reference
electrode was a Fisher Ag/AgCl reference electrode for
measurements below 110°C or a piece of Poco pyrolyzed
graphite for those above 110°C. The cathode clamp was
constructed of Poco graphite and Teflon bolts and nuts,

and the cathode substrates were Balzers 50 ohms/square
ITO glass with approximately three cm2 submerged.
Other items included a Fisher Hg-filled thermometer and
a Teflon coated stir bar.

Supplies and reagents used included Fluka tetraethyl-
ene giycol, and Johnson-Matthey CdCl2, TeCl 4,HgCl2,
and ultra-pure NaCl.

A Rigaku D-MAX x-ray diffractometer was used to

characterize crystallinity. A Perkin-Elmer Lambda 19
UV/VIS/NIR spectrophotometer was used for optical
absorbance spectroscopy.

The ITO glass substrates were prepared by washing
with Comet cleanser and tap water, followed by thorough
rinsing in distilled water and drying with a hot air blower.

The solutions contained 100 ml of tetraethylene giycol,
with 10-3 MTeCl4 and 0.05 M CdCl2 for CdTe deposi-
tion, or 10-s MHgCl2,2.10- 3 MTeCl4,and 0.05 MCdCl2
for Hg!.xCdxTe deposition. The salts generally took
overnight to dissolve completely in the viscous organic
solutions.

The films were grown at cathode voltages ranging
from -0.6 to -0.8 Vreferenced to the Ag/AgCl electrode.
The deposition voltage was determined by analyzing pho-
tovoltammograms to find the region exhibiting the
largest photocurrents which indicate semiconducting
behavior. Deposition temperatures ranged from room

temperature (21 °C) to 170°C. The deposition times
required to obtain reasonably thick films ranged from
approximately 24 hours at room temperature (current
densities less than 100 uA/cm2) to 2-3 hours at the high-
est temperatures (current densities close to lmA/cm2).
This was due to the standard increase in current density
versus temperature at a given voltage. The solutions were
slowly stirred to help improve the uniformity of the films.
During filmgrowth, the substrate was occasionally illumi-
nated with white light to monitor the photosensitivity of
the filmversus time and thickness. Films were rinsed in a
tetraethylene giycol bath at the same temperature as the
deposition bath and were allowed to cool slowly to room

temperature in that bath to prevent cracking and flaking.
The films were then rinsed in pure distilled water and
were allowed to dry in the hood air stream. The films
were stored in either ziplock bags or plastic Petri dishes.

Results and Discussion

Photovoltammograms were run for both the CdTe
and the Hg^Cdj/Te deposition baths in order to deter-
mine the voltammetric structure and, thus, the voltage
region in which semiconducting CdTe or Hg!.xCdxTe
(versus nonstoichiometric and/or mixed phase) plating
was occurring. Figure 1 shows the voltammetric struc-

ture of the CdTe bath at 60°C. The pure, metallic Cd
cathodic deposition wave is not seen on this voltammo-

gram because it occurs at a considerably more negative
(over 0.3 V) potential in tetraethylene giycol than in
water (-0.40 V (SHE)). The elemental tellurium and
"CdxTe" waves are apparent as well as anodic strippint
peaks associated with electrochemical dissolution of Cd
out of the surface of the CdTe and the subsequent disso-
lution of the remaining Te and CdTe. This voltammo-
gram exhibits conspicuous cathodic photocurrents,
indicative of semiconducting material.

Figure 2 shows the voltammetric structure of the
CdTe solution at 135 "C. The cathodic deposition and
anodic stripping waves are much larger in this case, due
to the increased current and, hence, amount of material
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plated at the higher temperatures. The photocurrents
appear tobe smaller, but this is primarily due to the high-
er current scale used versus that of Fig. 1.

ZOOM stripping of
Ullurluafrm fila

Fig. 1. Cyclic voltammogram (current-voltage curve) for
an indium-tin oxide coated glass cathode in a tetraethyl-
ene glycol solution of 0.05 MCdCl2

, 10 3 MTeCl4
,and

0.10 MNaCl at 60°C. The sweep rate was 5 mV/s and
the reference electrode was Ag/AgCl.Note the cathodic

fhotocurrent pulses at the more negative voltages, indica-
ve ofsemiconducting material.

stripping of
tellunu. froa ftla

Fig. 2. Cyclic voltammogram as with Fig. 1 except that T

1135°C and a graphite strip was used as a reference elec-
ade. Note the increase in the current levels.

Figure 3 shows the voltammetric structure for the
CdTe solution at 165°C. Once again, the currents in the
deposition and stripping waves have increased with tem-
perature. In this case, there seems to be a true reduction
inphotocurrent from that at lower temperatures, perhaps
due to drastically increased carrier densities and conduc-
tivity at this temperature.

stripplng of
Ullurliafroa f1la

Fig. 3. Cyclic voltammogram as with Fig. 2 except that T
= 165 °C. Note the increase in the current with tempera-
ture and an apparent decrease in the relative photocur-
rent.

The voltammetric structure for the Hg^Cdj/Te bath at
room temperature is shown inFig. 4. The currents and
the photocurrent pulses in this case are small. Also, the
separate deposition and stripping waves are not as dis-
tinct as in the CdTe solution probably due to the mutual
underpotential deposition of both Hg and Te into HgTe
in one broad wave/ reaction. The small but distinct pho-
tocurrent is indicative of semiconducting Hg!.xCdxTe
rather than "metallic" HgTe (no bandgap). Fig. 5 shows
the voltammetric structure of the Hgj.xCdxTe solution at

100°C. In this case, the currents are much larger, but no
photocurrents can be seen, probably because at this tem-

perature, the low bandgap material has itself been driven
nearly "metallic" (huge carrier concentrations).

Figure 6 shows the x-ray diffractometer (XRD) (Cu-ka)
plot of intensity versus goniometer angle (20) for a CdTe
film grown at room temperature. The peaks seen in this
plot correspond directly with the indium tin oxide (ITO)
substrate coating. The vertical lines on the plot indicate
where the peaks for CdTe should lie (i.e., the "standard"
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powder diffraction file date). The absence of peaks other
than those from ITO indicates that the material on the
substrate was amorphous. Figure 7 shows the XRD plot
from a CdTe film grown at 90 °C. This plot shows very
large CdTe peaks, indicating much better crystallinity for
this film. Figure 8 shows the XRD plot for a CdTe film
grown at 170°C. This plot also shows large peaks,
although not as large as before. The reason for the small-
er peaks in this latter case isprobably not decreased crys-
tallinity, but a much smaller film thickness which reduced
the strength of the diffracted X-ray signal.

Fig. 4. Cyclic voltammogram (5 mV/s) for a ITO-coated
glass cathode in a TEG bath 10 s MinHgCl2

,2-10 s Min
TeC14, and 0.05 Min CdCl2.Note the single, broad
cathodic wave starting near O V (Ag/AgCl), probably
indicative of mutual underpotential deposition of Hg and
Te into HgTe. The subsequent appearance of cathodic
photocurrent is indicative of incorporation ofCd into the
film and deposition of semiconducting Hg].xCdxTe at the
more negative voltages.

Figure 9 shows the XRD plot for an Hg!.xCdxTe film
grown at room temperature. The vertical lines on the plot
show the locations of the peaks for a commercial sample
of Hgj.xCdxTe (x« 0.2) donated byJohnson-Matthey. The
relatively large intensity of the peaks on this plot indicates
very good crystallinity for a filmgrown at room tempera-
tures. Figure 10 shows the XRD plot for an Hg^CdxTe
sample grown at 100°C. This plot shows slightly larger
peaks, indicating better crystallinity for the higher deposi-
tion temperature (although relatively not as large an
increase as for CdTe). The high conductivity of Hgj.
xCdxTe leads to much easier growth of dendritic crystal-

lites at low temperature than with much lower conductivi-
ty CdTe which tends to grow "layer-by-layer" in an amor-
phous to small grained manner due to the relatively high
resistance of the growing film due to its much higher
bandgap.

Fig. 5. Cyclic voltammogram as in Fig. 4 except that T =

100°C. Note the disappearance of photocurrent pulses,
probably became the low bandgap/high conductivity
material has been driven nearly "metallic" by the high
temperatures.

2*Theta

Fig. 6., X-ray diffraction data for a CdTe film electrode-
posited onto ITO-coated glass from a bath as described in
Fig. 1and at room temperature. The visible peaks match
the indium-tin oxide and there are no large peaks defi-
nitely above the noise that match the standard CdTe
Powder diffraction file peaks indicated by the vertical
lines and stars.
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Fig. 7. XRD data as in Fig. 6 but for a filmgrown at

90 °C. Note the appearance of significantly larger peaks
matching the CdTe file data and indicating relatively
large grain CdTe.

Fig. 9. XRD data for a Hgj.xCdxTe filmelectrodeposited
on ITO at room temperature. Note the good alignment
with the lines representing peak centroid for a single crys-
tal Hgj.xCdxTe (x=0.2) sample. However, the slight mis-
match probably represents a somewhat smaller value of x
than 0.2 (i.e., the filmpeaks are shifted slightly toward
those of HgTe). It is significant that the film exhibits
good polycrystallinity even when grown at room tempera-
ture; this is probably a result of the much greater conduc-
tivityof the low bandgap HglocCdxTe over that of CdTe.

fg.
8. XRD data as in Figs. 6 and 7 but for a CdTe film

own at 170°C. Again, note the large CdTe peaks,
owever, they are less intense than in Fig. 7 primarily
:cause of the thinness of this last sample.

Fig. 10. XRD data as in Fig. 9 except that the deposition
temperature was 100°C. Note the slight increase in crys-
tallinity in this case (i.e., peak intensities) over that of the
room temperature-grown and comparably thick filmin
Fig. 9.
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A plot of optical absorbance vs. wavelength for a
CdTe filmis shown inFig. 11. This plot shows an absorp-
tion edge at approximately 800 - 850 nm, consistent with
CdTe's 1.5 eV direct bandgap. Problems with filmunifor-
mity and adherence (i.e., pinholes) have thus far prohibit-
ed good absorption data from being obtained for the
Hgx.xCdxTe films.

Wavelength (nm.)

Fig. 11. Optical absorbance vs. wavelength spectrum for
a CdTe Film electrodeposited from the TEG solution.
Note the absorption edge in the 800-850 nm range, con-
sistent with CdTe's 1.5 eV bandgap.

In general, the Hg!.xCdxTe films, although definitely
polycrystalline, are not as morphologically uniform or
adherent as the CdTe films. Again, the relatively large
crystallinity may be due to dendritic type growth that
leads to less structurally sound and uniform deposits.

Problems encountered in this work included produc-
ing films with good uniformity and adherence. CdTe
films grown at high temperatures tended to be more
nonuniform that those grown at low temperatures. Also,
films grown at high temperatures were much more prone
to cracking and flakingupon cooling and rinsing.

An unusual effect was observed in the CdTe deposi-
tion bath at temperatures above 135°C. First, the bath
took on a cloudy appearance. Then, when filmgrowth
was attempted at or above this temperature, copious, den-
dritic, spongy material was observed growing on the
sharp edges of the parallelepiped-shaped cathode. This
material was assumed to be cadmium metal but XRD
analysis identified elemental tellurium as the only crys-
talline phase. The actual composition of the material is
stillunder study.

[There are some distinct bath color changes at temper-
itures approaching 200°C. First, the baths rather quickly
urn a yellow-brown (but still transparent) color whereas

the TEG is clear to just the slightest yellow color at room
temperature. Since the yellow color remains after the
bath cools, it is likely that it is due to simple oxidation
("charring") in the presence of atmospheric oxygen. We
plan on conducting future depositions under an inert
atmosphere (N2,argon, etc.) to circumvent this problem.

We also observe an additional gray color appearing in
the solution at T > 200°C, accompanied by effervescent
gas bubbles in the solution and misty vapor above the
solution. This bubbling is not wholesale boiling of the
TEG but appear to be due to homogeneous creation of a
gaseous product throughout the solution which condens-
es into a vapor above the solution. This phenomenon also
correlates with decreased deposition currents. A likely
(but still unproven) mechanism is the reduction of the
Te(IV) ions into a gray elemental tellurium suspension by
the TEG, itself oxidized into a lower b.p. organic after
this occurs, consistent with removal of tellurium ions.

The minute («10 3 M) concentrations of Hg(II) and
Te(IV) required to avoid gross Hg and/or Te richness in
the deposits (due to their relatively positive reversible
potentials and, thus, the need for their currents tobe dif-
fusion-limited) are depleted after several depositions and
lead to a continuous decrease in their concentrations that
makes exact control of stoichiometry more challenging.

Conclusions

In this project we have shown the CdTe and
Hg!.xCd xTe films electrodeposited at higher tempera-
tures from tetraethylene glycol solutions exhibit better
crystallinity than films grown at room temperatures.
However, problems exist with high temperature deposi-
tion; these include noumiformity and flaking of the films
and chemical changes in the electrolyte. On balance, the
preliminary results are encouraging and indicative of the
utility of TEG-based electrolytes for electrodeposition of
large-grained polycrystalline metal chalcogenide films for
optoelectronic applications.

In the future, we plan to investigate other solvents for
the deposition baths, including other high boiling point
organic solvents and molten salts. The molten salts will
allow experimentation at even higher temperatures. Also,
we will soon begin electrodeposition of other semicon-
ductor compounds, including CuInSe 2 and from the
same high boiling point electrolytes. Inert atmospheres
willalso be investigated to avoid oxidation of organic
phases at high temperature and the deposited films will
be characterized inmore detail.
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