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ABSTRACT  
 

The present article introduces fundamental notions of conformal and differential geometry, 

especially where such notions are useful in mathematical physics applications. Its primary 

achievement is a nontraditional proof of the classic result of Liouville that the only conformal 

transformations in Euclidean space of dimension greater than two are Möbius transformations. 

The proof is nontraditional in the sense that it uses the standard Dirac operator on Euclidean 

space and is based on a representation of Möbius transformations using 2x2 matrices over a 

Clifford algebra. Clifford algebras and the Dirac operator are important in other applications of 

pure mathematics and mathematical physics, such as the Atiyah-Singer Index Theorem and the 

Dirac equation in relativistic quantum mechanics. Therefore, after a brief introduction, the 

intuitive idea of a Clifford algebra is developed. The Clifford group, or Lipschitz group, is 

introduced and related to representations of orthogonal transformations composed with 

dilations; this exhausts Section 2. Differentiation and differentiable manifolds are discussed in 

Section 3. In Section 4 some points of differential geometry are reiterated, the Ahlfors-Vahlen 

representation of Möbius transformations using 2x2 matrices over a Clifford algebra is 

introduced, conformal mappings are explained, and the main result is proved. 
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1. Introduction 

The present article introduces fundamental notions of conformal and differential 

geometry, especially where such notions are useful in mathematical physics applications. The 

author considers this article as part of a broader aim of bridging the gap of understanding 

between mathematicians and physicists. The present article does not strongly make a connection 

between the mathematics presented and its applications to mathematical physics. It is instead a 

preliminary work, in which the mathematical tools for making such a connection are introduced 

with a greater emphasis on conformal than differential geometry. 

  The selection and treatment of topics in this article reflects the author’s interest in 

Clifford analysis, which is the study of Clifford algebras and Dirac operators. Indeed, Section 2 

begins with basic notions of Clifford algebras. Section 4 uses these notions to define a special 

sort of 2x2 matrices over an appropriate Clifford algebra, called Ahlfors-Vahlen matrices, that 

are themselves used in a proof of Liouville's classic result that the only conformal mappings on 

Euclidean space of dimension greater than two are Möbius transformations. In Section 3, 

differential geometry is developed with the eventual goal of discussing curved (Riemannian) 

manifolds with spin structure; on such a manifold, one can construct a Dirac operator relevant to 

supersymmetric quantum mechanics. The present author hopes to consider this in future work. 

2. Clifford Algebras and Related Topics 

1. The Clifford Algebra over R
n 

The Clifford algebra over the Euclidean space R
n
, denoted Cl (Rn

) or Cln, is first 

constructed. Although an abstract construction is possible by factoring the tensor algebra of R
n
 

by an appropriate two-sided ideal, the present construction chooses a particular basis with a 

particular quadratic form. Some important definitions and mappings in Cln are then introduced. 

48
2

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 16 [2014], Art. 6

http://scholarworks.uark.edu/inquiry/vol16/iss1/6



MATHEMATICS:  Raymond T. Walter 
 

INQUIRY: Volume 16  
 

Porteous and Garling both provide good discussions of these notions. Garling thoroughly and 

formally constructs Clifford algebras over general real vector spaces. 

To this end, consider R
n
 with a particular choice of basis {e1, …, en} and the familiar dot 

product. Then for arbitrary vectors x  ( x
1
,K , x

n
) and y  ( y

1
,K , y

n
)  in R

n
, 

x  y  x
i

i 1

n

 y
i
.  

Suppose further this basis is orthonormal, so e
i
 e

j
 

i j
 for every i and j in {1, … , n}. Recall 

the Kronecker delta 
i j  is 1 if i equals j and is 0 otherwise. The Clifford algebra Cln is defined as 

the span  

 1, e
1
,K , e

n
,K , e

j1
K e

j k
,K , e

1
K e

n
 ,  1  j

1
  K  j

k
 n , 

modulo the relation e
i
e
j
 e

j
e
i
  2

ij
for every i and j in {1, … , n}. This condition suffices to 

define a multiplication on Cln. Note that distinct indices anticommute if n ≥ 2 and e
i

2
  1  for 

1  i  n . By a simple combinatorial argument using the binomial theorem, dim Cln = 2
n
. 

Alternatively, Cln is defined as the free algebra on the chosen orthonormal basis for R
n
 

subject to the relation e
i
e
j
 e

j
e
i
  2

ij
. The free algebra alone would be infinite-dimensional, 

but going modulo the relevant relation reduces the dimension to 2
n
: any finite concatenation of 

the basis elements over the chosen basis for R
n
 is either the empty word or can be rearranged as 

a product e
j1

K e
j k

,  1  j
1
  K  j

k
 n , and there are only 2

n
 such words (note the empty word 

corresponds to the identity 1). 

If { e
j1

,K , e
j k

}  has k elements, then the product e
j1

K e
j k

 is said to be a k-vector, and any 

linear combination of such k-vectors is also said to be a k-vector. The subspace consisting of all 

k-vectors is denoted 
 
Cl

n

k
, and 

 
Cl

n
 Cl

n

1
 K  Cl

n

n
. For 

 
a  Cl

n
, the projection of a  onto 

 
Cl

n

k
 is 
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denoted [ a ]
k
. Often 0-vectors, 1-vectors, and 2-vectors are respectively referred to as scalars, 

vectors, and bivectors. Since R
n
 

 
Cl

n

1
 Cl

n
, it is convenient to speak of a vector in 

 
Cl

n

1
 Cl

n
 

as being a vector in R
n
. Henceforth, unless otherwise specified, each reference to a vector in R

n
 

should be considered a reference to a vector in 
 
Cl

n

1
 Cl

n
 identified with a vector in R

n
. In 

general, for every vector x  R
n
, x

2
  x  x  and orthogonal vectors anti-commute.  

Throughout the present article are used three involutions on Cln. These are mappings that, 

upon acting twice on an element of Cln, return that element. Involutions on Cln are specified by 

their actions on vectors. For each x  R
n
 and a  and b  in Cln, these involutions and their actions 

are the following. 

1. The main (principal) automorphism 

x   x ,  (a b )  a b  (e
j1

. . .e
j k
)  ( e

j1
).. .( e

j k
)   e

j1
. . .e

j k
 

2. The main (principal) anti-automorphism 

 x   x , (ab )  b a  (e
j
1

...e
jk

)  ( e
jk

)...( e
j
1

)   e
j
1

...e
jk

 

3. The reversion anti-automorphism 

 x
*
 x ,  (ab )

*
 b

*
a

*
 (e

j1
...e

jk
)

*
 e

jk
...e

ji
  e

j1
...e

jk
 

 Each involution can be expressed in terms of the other two. For example, 

a  ( a )
*
 (a

*
) . Since | x |

2
 x  x  xx  x x , every nonzero x has a well-defined multiplicative 

inverse x
1
 x / | x |

2
. 
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2. The Lipschitz Group 

The Lipschitz group over R
n
 is now introduced; it is denoted  (n )  and sometimes called 

the Clifford group. It is the subset of Cln generated by all invertible vectors (equivalently, all non 

zero vectors) in R
n
. Hence, the Lipschitz group:  

 (n )  = {a  Cln : x1, xd  R
n
 /{0}, d  N : a = x1…xd}. 

Orthogonal transformations can be represented using particular elements of the Lipschitz 

group. Indeed, let y  S
n 1

= {x  R
n
 : x =1}. Consider the decomposition x  x

P
 x


, where 

x


 is a vector orthogonal to y  (so x


and y anticommute) and x
P
 is a vector parallel to y  (so x

P
 

and y commute). This implies y x y  y (x
P
 x


)y   x

P
 x


, and yxy  is a reflection of x  in the 

y -direction — say R
y
 O (n ) , where O (n )  is the orthogonal group on R

n
. Since y  S

n 1
 was 

arbitrary, this shows there exists a reflection R
y
 O (n )  for every such y . 

It is convenient to define the so-called Pin group:  

P in (n ) = {a  Cln: x1, K, xd  S
n-1

, d  N: a = x1…xd}. 

The Pin group P in (n )
 
is a subgroup of  (n ) . By repeated application of the above argument for 

a single reflection, for a  P in (n ) , a x a
*
represents a (finite) sequence of reflections. By the 

Cartan-Dieudonne Theorem, every orthogonal transformation in O (n )  can be represented as 

such a sequence. Thus there is a surjective group homomorphism between P in (n )  and O (n ) . 

Note that ( a )x ( a
*
)  a x a

*
, so {  1}  is part of (in fact, it is) the kernel of this homomorphism. 

This shows P in (n )  is a double-cover of O (n ) . Moreover, this shows orthogonal transformations 

can be represented by particular elements of the Lipschitz group. 
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The above arguments generalize for representing orthogonal transformations composed 

with dilations. Let    (n ) , so  = (/             Rn
. 

+
. Thus  x  *  represents an 

element of O(n) R
n
 
+
. Again using the Cartan-Dieudonne Theorem, one readily shows  (n )  is a 

double cover of O(n) R
n
 
+
. Hence one can represent an orthogonal transformation with a 

dilation using elements of the Lipschitz group. An equivalent representation is 

 ( )(x )  s ig ( ) x  , where the "sign" function is defined as s ig ( )   


/ (  )  {  1}  and 

takes the value +1 or -1 in accordance with s ig ( )  
*
. This equivalent representation is used 

by Cnops and appears below in the proof of Liouville’s Theorem. 

3. Differentiation on Topological Manifolds 

1. Differentiation 

This treatment of differentiation in several variables follows after Rudin’s, by considering 

several cases of functions of the form ƒ: Ω  R
m

 with ƒ: Ω R
n
 an open set. It works toward 

the definitions stated in Aubin’s treatment of differentiation. Througout the entirety of this 

section, the Euclidean space R
n
 (respectively, R

m
) is treated in the standard way and not 

identified with 
 
Cl

n

1
 Cl

n
(respectively, 

 
Cl

m

1
 Cl

m
). 

n =1 and m =1  

Let f be a real-valued function with domain (a, b) R; that is, ƒ: (a, b)  R.  For 

x
0
 (a , b ) , the derivative of f at x

0
is the real number defined by  

f ( x
0

)  lim
y 0

f ( x
0
 y )  f ( x

0
)

y
, x

0
 y  (a , b ) , 

provided this limit exists. This implies  

f ( x
0
 y )  f ( x

0
)  f ( x

0
) y | y | ( x

0
, y )   
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for some remainder function : R x R  R
m
 satisfying lim

y 0

 ( x
0
, y )  0 . This expresses the 

difference f ( x
0
 y )  f ( x

0
)  as a linear operator mapping y  to f ( x

0
) y  plus a small remainder. 

Using a natural bijective correspondence that exists between R and L(R), one may regard the 

derivative of f  at x
0

 as a linear operator (not a real number) that maps y  to f ( x
0

) y .  [The set 

of all linear transformations from R
n
 to itself is denoted L(R). More generally, for real vector 

spaces V and W, L(V,W) is the set of all linear transformations from V and W; if V = W, then 

L(V,W) = L(V). For any fixed real number, we may regard multiplication by that real number as a 

linear operator on R; conversely, any linear operator from R to itself is multiplication by some 

real number.] 

n =1 and m ≥1 

Let f be a vector-valued function with domain (a, b) R
n
; that is, : (a, b)  R

m
. For 

x
0
 (a , b ) , the derivative of f at x

0
is the real vector defined by  

f ( x
0

)  lim
y 0

f ( x
0
 y )  f ( x

0
)

y
, x

0
 y  (a , b ) , 

provided this limit exists. This implies  

f ( x
0
 y )  f ( x

0
)  f ( x

0
) y | y | ( x

0
, y )   

for some remainder functions : RxR  R
m
 satisfying lim

y 0

 ( x
0
, y )  0 . Note that y  and (f

1
 

(x0)y)  R
m
, so associated with each real number y  R is a real vector (f

1
(xo)y)  R

m
.  This 

identifies f ( x
0

) as a linear operator from R to R
m
, that is, as a member of L(R, R

m
). The only 

difference between the present case and the n = m = 1 case is the real number values of functions 

are replaced by real vector values. 

Thus, for  (a, b)  R and differentiable mapping ƒ: (a, b) R
m
 with m ≥1,  the 

f

x
0
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derivative of f  at x
0

 is the linear transformation A  L (R, R
m
) satisfying  

f ( x
0

)  lim
y 0

| f ( x
0
 y )  f ( x

0
)  A y |

| y |
. 

n ≥1 and m ≥1  

In this case, a transition is made from Rudin’s treatment to Aubin’s. 

Definition 3.1.1. Let Ω  R
n 
be an open set and let ƒ: Ω  R

m
. Then f is differentiable at  

R
n 
if there exists a linear mapping A  L (R

n
, R

m
) such that for all y  R

n

 satisfying x
0
 y   ,  

f ( x
0
 y )  f ( x

0
)  Ay | y | ( x

0
, y ) ,  

where  R
n 
 x R

n
 R

m 
is a remainder function satisfying lim

y 0

 ( x
0
, y )  0 . The linear mapping A  

is called the differential of f at x
0

and, if f is differentiable for all x  , then f is 

differentiable on  . As A  is a function of x  , we may write . If Ω Â xƒ (x)  

L (R
n
, R

m
) is a continuous map, then f is continuously differentiable on  ( f  C

1
( )) .

1
 

The above definition raises a concern about uniqueness of the differential of f at x
0

. This 

differential is unique: if A
1
and A

2
are both differentials of f at x

0
, then one can readily show 

that B  A
1
 A

2
is identically zero. 

Consider now a function (not necessarily differentiable) ƒ: Ω R
m 

, where Ω  R
n
 is an 

open set. Let {e
1
,  K , e

n
}  and {u

1
,  K , u

m
} be standard bases of R

n
 and R

m
. The components of 

f  are real-valued functions f
1
,  K , f

m
 such that f ( x )  f

i

i 1

m

 ( x )u
i
, for all x  . For x  , 

1  i  m , 1  j  n , the partial derivative D
j
f
i
 is defined to be the limit  

                                                                   
1
 Here continuity is understood in the usual sense for metric spaces (pre-images of open sets are open) and L(R

n
, 

R
m
) is endowed with the norm defined by  A  = sup{Ax : x  R

n
, x1}.   

x
0

A  f ( x )
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(D
j
f
i
)( x )  lim

t 0

f
i
( x  te

j
)  f

i
( x )

t
,  

provided this limit exists. This is also the derivative of f
i
 with respect to x

j
, so D

j
f
i
 is often 

denoted 
 f

i

 x
j

. If f  is differentiable, then the various D
j
f
i
 exist and  

f ( x )e
j
 (D

j
f
i
)

i1

m

 ( x )u
i
, 1  j  n .  

This last expression suggests the matrix representation of f ( x )  with respect to the 

standard basis (which exists since f ( x )  is a linear operator), given by the m  n  matrix  

[ f ( x )] 

D
1
f

1
L D

n
f

1

M O M

D
1
f
m

L D
n
f
m





















.  

In the case that m  n , then when f is differentiable at a point x  , the Jacobian of f at 

x  is defined as the determinant of the linear operator f ( x ) , which may be considered as the 

determinant of the matrix [ f ( x )]  in any particular basis of R
n
: 

 ( y
1
,  K , y

n
)

 ( x
1
,  K , x

n
)
 J

f
( x )  d e t f ( x )  d e t [ f ( x )] . 

It is a fact that f isC 1 on   if and only if all the various partial derivatives D
j
f
i
exist and 

are continuous everywhere on  . A function f is said to be C 2  on   ( f  C
2

( ))  if and only 

if Ω Â x  f(x)  L (R
n
, R

m
) is a C 1  map of  ; more concretely, f is C 2 on   if and only if 

all the various second-order derivatives D
i
D

j
f  exist everywhere on   and are continuous there. 

Functions that are k-times continuously differentiable, or C k  maps (k  N), are defined by 

induction (the above function f is said to be C 3  on  ( f  C
3
( ))  if and only if Ω Â x  f(x) 
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 L (R
n
, R

m
) is C 2 on  , and so on). Maps that are C k  for all k  N are called C


 maps. 

2. Manifolds and Tangent Spaces 

The general notion of a topologial manifold is first introduced. The notion of local charts 

allows such manifolds to be treated in the familiar setting of R
n
, by mapping open 

neighborhoods of such manifolds to open neighborhoods of R
n
. Earlier differentiability results 

on R
n
 apply to these latter neighborhoods. This treatment follows after Aubin’s. 

Definition 3.2.1. A manifold M  of dimension n  is a Hausdorff topological space
2
 such that 

each point P of M has a neighborhood   homeomorphic
3
 to R

n
 (equivalently, to an open 

neighborhood of R
n
). 

Definition 3.2.2. A local chart on a manifold M is a pair ( , ) , where   is an open set of M  

and   a homeomorphism of   onto an open set of R
n
. An atlas is a collection of (

i
,

i
)
iI

of 

local charts such that 
i

iI

U  M , where I  is some nonempty indexing set. The coordinates of 

P   related to the local chart ( , )  are the coordinates of the point  (P )  in R
n
. 

Definition 3.2.3. Let (


,


)  and (


,


)  be local charts on M  such that 

 


  . The 

map 


o


1
:


(


 


)  


(


 


)  is a change of charts. An atlas of class C

k  (resp.

C
 ) on M is an atlas for which every change of charts is C k  (resp. C  ). This notion allows one 

to consider equivalence classes on C k  atlases (resp. C  ), where two atlases (U
i
,

i
)
iI

 and 

                                                                   
2
 A topological space, in general, is a set X  together with a collection of subsets T  of X  such that (1)   T , 

(2) X T , (3) T  is closed under finite intersection, and (4) T  is closed under arbitrary unions. The sets in T  are 

called open sets and T  is a topology on X . A topological space X  is Hausdorff (also called T
2

, to use the 

terminology of separation axioms) if, for any distinct points x  and y  in X , there exist disjoint open sets U  and 

V  such that x U  and y V . 
3
 Two topological spaces X  and Y  are homeomorphic if there exists a homeomorphism f : X  Y  that is a 

continuous bijection with a continuous inverse function. 
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(W


,


)
 

 of class C k  are equivalent if their union is an atlas of class C k  (that is, 
i
o



 1
is 

C
k  on 


(U

i
 W


)  whenU

i
 W


  ). A manifold together with an equivalence class of C k  

atlases is a differentiable manifold of class C
k . 

The remainder of this discussion is restricted to a well-behaved class of manifolds, what 

are called paracompact manifolds.  

Definition 3.2.4. A topological space X  is said to paracompact if every open cover of X  has 

an open refinement that is locally finite. More explicitly, for every collection of open sets 

{
i
}
iI

 (where I  is a nonempty index set) such that X  
i

iI

U , there exists a collection of open 

sets {
i
}
iI

 such that 
i
 

i
 for all i  I  and X  

i

iI

U  (there exists an open refinement) and 

for every point x  X  there exists a neighborhood W of x  such that { i  I :W  
i
  }  is 

finite (locally finite). 

A related notion is a topological space that is countable at infinity, in which there exists 

a collection of compact sets {K
l
}
l 1


 such that K

l
 in t K

l 1
 for all l  N and E  K

l

l  1



U . 

Theorem 3.2.5. A paracompact manifold is the union of a family of connected manifolds that are 

countable at infinity. 

Proof  This is precisely Theorem 1.1 in Aubin’s book, where a proof is given.  

The notion of a partition of unity is introduced. Let {
i
}
iI

be an open cover of a 

topological manifold M , where I is some indexing set. A family of real-valued functions{
i
}
iI

 

is a partition of unity of M if (1) any point x  has a neighborhood U such that 

{ i  I :U  su p p  
i
  }  is finite and (2) 0  

i
 1 (for all i  I ), 

i

iI

  1 . This partition of 
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unity is subordinate to the covering {
i
}
iI

 if su p p  
i
 

i
 for all i  I ). If each 

i
 is C k , 

then {
i
}
iI

 is said to be a C k  partition of unity. 

Theorem 3.2.6. On a paracompact differentiable manifold of class C k  (resp. C  ), there exists a 

C
k  (resp. C  ) partition of unity subordinated to some covering. 

Proof  This same theorem is stated and proved as Theorem 1.12 in Aubin’s book.  

Definition 3.2.7. Let 
i
 ( i  1, 2 )  be differentiable maps of a neighborhood of 0  R into an n -

dimensional manifold M such that 
i
(0 )  P  M . Let ( , )  be a local chart at P . Define a 

relation R by 
1

~ 
2
 if   o

1
 and  o

2
 have the same differential at zero. The relation R is an 

equivalence relation, and a tangent vector X at P to M is an equivalence class for R. 

A differentiable real-valued function f on a neighborhood of P (as in the above 

definition) is flat at P if d ( f o  1
)  is zero at  (P ) , where d ( f o  1

)  is the differential of f o  1

defined on  ( ) . The definition is independent of any particular chart: if   is as above and 

( , )  is another local chart at P , then on    ,  

d ( f o  1
)  d ( f o  1

) od ( o  1
) . 

This allows one to introduce an alternative definition of a tangent vector, which can be shown to 

be equivalent to the earlier definition in terms of equivalence classes. 

Definition 3.2.8. A tangent vector at P M  is a map X: ƒ X(f)  R defined on the set of the 

differentiable functions in a neighborhood of P , where X  satisfies the following two 

conditions: 

(a) If   and   are real numbers, then X ( f   g )   X ( f )   X (g ) . 

(b) X ( f )  0  if f is flat at P . 

In the above definition, conditions (a) and (b) imply that X ( fg )  f (P )X (g )  g (P )X ( f ) . 
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This follows because  

X fg   X f  f P   f P 





g  g P   g P 



  

            X f  f P   g  g P    f P X g   g P X f   X 2 f P g P   , the 

constant function 2 f (P )g (P )  is flat for all P , and ( f  f (P ))(g  g (P ))  is flat at P . [For 

differentiable functions h  and k , d ((hk ) o 1
) |
 ( P )

 d [(h o 1
)]d [(k o 1

)] |
 ( P )

 0  if h  and k  are 

zero at P .] 

Definition 3.2.9. The tangent space T
P

(M )  at P M  is the set of tangent vectors at the point P  

on the n -dimensional manifold M. 

To see that the two definitions are equivalent, one may first show that T
P

(M )  has an n -

dimensional vector space structure with the n -partial derivatives evaluated at P as a basis. This 

allows one to construct a bijective mapping from the equivalence classes of  R (recall that these 

classes are families of curves) to tangent vectors in T
P

(M ) . (Aubin 45-46) A general vector 

space structure is evident by defining, for an arbitrary differentiable function f on M, addition 

and scalar multiplication by  

( X  Y )( f )  X ( f )  Y ( f )  and ( X )( f )   X ( f ) .  

As for dimension, let { x
i
}  be the coordinate system for a local chart ( , )  of P. Consider then 

the vector ( /  x
i
)
P

 in T
P

(M ) defined by 



 x
i










P

( f ) 
 ( f 

 1
)

 x
i










 ( P )

, 

which satisfies (a) and (b) in the second definition for a tangent vector. The vectors ( /  x
i
)
P

 

(1  i  n )  are independent by the orthogonality condition ( /  x
i
)
P

( x
j
)  

ij
. Moreover, these 
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vectors span T
P

(M ) , since ( f  ( /  x
i
)
P

i1

n

 x
i
)  (where f  differentiable) is flat, which implies 

X ( f )  ( /  x
i
)
P

i1

n

 X ( x
i
))  0 ; so X ( f )  ( /  x

i
)
P

i1

n

 X ( x
i
) . It follows that { /  x

P

i
}  is a basis, 

and the various X
i
 X ( x

i
)  are the components of X  T

P
(M )  in this basis. Now let  ( t )  be a 

map in the equivalence class   ( (0 )  P  M ) and f a real-valued function in a neighborhood 

of P. Consider the map X : f  [ ( f o ) /  t ]
t  0

(a tangent vector in the second definition). One 

may then define a map  : %  X , since every 
1
 and 

2
 in   have the same differential at P  

and so [ ( f o
1
) /  t ]

t  0
 [ ( f o

2
) /  t ]

t  0
. It can be shown that   is bijective. The equivalence 

of the two definitions of a tangent vector follows. 

The notions of smooth topological manifolds and tangent spaces at points on such 

manifolds are well demonstrated in classical mechanics. See the relevant discussion in the book 

by Takhtajan. 

Definition 3.2.10. The tangent bundle T (M )  is T
P

PM

U (M ) . If T
P

*
(M )  is the dual space of 

T
P

(M ) , then the cotangent bundle T
*
(M )  is T

P

*

PM

U (M ) .   

4. A Clifford Algebraic Approach to Möbius Transformations and Liouville's Theorem 

This section introduces a Clifford algebraic approach to Möbius transformations and 

Liouville's Theorem.  A Möbius transformation on Euclidean space is a finite composition of 

translations, orthogonal transformations, dilations, and inversions on that space. Such 

transformations are conformal; that is, they preserve measure and orientation of angles. In 1850, 

the French mathematician Joseph Liouville proved that, in Euclidean space of dimension greater 

than two, all conformal maps are Möbius transformations. In the 1930s, the Dutch mathematician 
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Johannes Haantjes generalized Liouville's result to nondefinite pseudo-Euclidean space (see the 

cited Haantjes paper). In the late 19th-century, the English geometer William Kingdon Clifford 

introduced what are now called Clifford algebras. In 1902, the German mathematician K.T. 

Vahlen introduced a representation of Möbius transformations using 2x2 matrices with entries in 

a Clifford algebra. This representation was largely forgotten until the late Finnish mathematician 

Lars Valerian Ahlfors revived it in the 1980s. The proof of Liouville's Theorem presented below 

uses this so-called Ahlfors-Vahlen representation, and adapts a proof by Jan Cnops. Indeed, the 

last two parts of this section provide a refined version of the treatment by Cnops, though 

restricted to the positive definite case. 

1. Manifolds Revisited 

The present part of Section 4 recalls the calculus on manifolds necessary to prove our 

main results. It also characterizes the tangent space at an arbitrary point in the Lipschitz group 

when considered as a manifold embedded in Cln. General notions are discussed as in Warner's 

treatment rather than Aubin's. Results concerning the Lipschitz group are introduced by Cnops. 

Starting in Section 4.2, the remainder of this article identifies R
n
 with 

 
Cl

n

1
. 

Definition 4.1.1. A (smooth, parametrized) curve  on R
n
 is an infinitely continuously 

differentiable (C  ) mapping : D  R
n 
, where the domain D  is an open interval of R

n
. If 

0  D , then   is said to start at  ( 0 )  or to have a starting point at  ( 0 ) . If  (D )  M , where 

M is a manifold embedded in R
n
, then is a curve on M. In the present context, the tangent 

space T
a
M at a M  consists of all vectors x  such that x  

t
 (0 )  for some curve   on M  

with starting point a . 



61
15

Walter: Early Investigations in Conformal and Differential Geometry

Published by ScholarWorks@UARK, 2014



MATHEMATICS:  Raymond T. Walter 
 

INQUIRY: Volume 16  
 

Definition 4.1.2. Let f : M  N  be a function between two manifoldsM and N embedded in 

R
n
. The differential of f  in a point a M is the function d f

a
:  T

a
M   T

f ( a )
N  such that, if the 

curve  starts at a , then d f
a
(

t
 (0 ))  

t
( f o )(0 ) ; note d f

a
 is a linear map. 

It is indicated without proof that  (n )  is a manifold embedded in Cln. From this follows 

 (n )  is a Lie group. The tangent space of  (n )  at 1 is the span of 
 
Cl

n

0
 and 

 
Cl

n

2
 (scalars and 

bivectors). That is, 
 
T

1
 (n )  Cl

n

0
 Cl

n

2
. Cnops provides a derivation of these facts (32-38). An 

immediate consequence is the following theorem. 

Theorem 4.1.3.  For arbitrary    (n ) , the tangent space of  (n )  at   is given by 

 
T

 (n )  (Cl

n

0
 Cl

n

2
)   (Cl

n

0
 Cl

n

2
) . 

Proof  An arbitrary curve   starting at   can be expressed in terms of a curve 


 

starting at 1, defined by  (t )
1
 


(t ) . The element    (n )  is fixed, so 

t
 ( t )  

t
(


( t )) . 

By the preceding fact, 
 

t
 ( 0 )  (Cl

n

0
 Cl

n

2
) . Since  (n )  is a manifold, T


 (n ) has the same 

dimension as T
1
 (n ) . By considering an arbitrary basis of T

1
 (n ) , it follows that 

 
T

 (n )  (Cl

n

0
 Cl

n

2
) . Using 

 1
 ( t )  rather than  ( t )

 1
 shows that 

 
T

 (n )   (Cl

n

0
 Cl

n

2
) , 

and the result follows.  

2. Möbius Transformations 

It turns out that, similar to the more familiar case in elementary complex analysis, 

Möbius transformations of R
n
 can be represented by matrices in the space of Cln -valued 2  2  

matrices ( 2  2  matrices whose entries are elements of Cln),  M (2 , Cl
n

) . The best geometrical 

motivation for the definitions in this part is given in cited paper by Ahlfors. Lounesto gives an 

excellent treatment of Ahlfors-Vahlen matrices in nondefinite (pseudo-Euclidean) space.  
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Definition 4.2.1. A matrix 

 

A 
a b

c d










 M (2 , Cl

n
)  is an Ahlfors-Vahlen matrix if it fullfills 

the following three conditions: 

(a) a , b , c , and d  are products of vectors in R
n
 (equivalently, a , b , c , d   (n )  { 0 } ) 

(b)  bd*, ac*, a*b,c*d  R
n

  

(c) A has nonzero real pseudodeterminant ad* - bc*  R
n
 {0}. 

This may be compared to Definition 2.1 in the Ahlfors paper. 

Theorem 4.2.2.  Any Möbius transformation of R
n
 is given by a map g : x  (a x  b )(cx  d )

 1
, 

where A 
a b

c d











 is an Ahlfors-Vahlen matrix. 

Proof  Ahlfors states and proves an equivalent proposition as Theorem A in his paper.  

The set of all Ahlfors-Vahlen matrices is a group under matrix multiplication. This 

indicates the representation of some classical subgroups of the group of Möbius transformations. 

Note that the main automorphism on Cln is used in representing orthogonal transformations. 

1. Translations: ; T
u
T
v
 T

u  v
 

2. Dilations: ; D

D


 D

 
 

3. Orthogonal Transformations: R  { R

  

 0

0 











:  P in (n )} ; R

R

 R

 
 

An inversion is given by any nonzero scalar multiple of 
0 1

1 0











. 

 

D  { D v  
 0 

0  
 1 

 

 
 

 

 
 :   R / { 0 } } 

 

T  { T v  
1 v 

0 1 

 

 
 

 

 
 : v  R 

n } 
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3. Conformal Map 

Here a conformal map is defined in Euclidean space. An expression for the differential in 

an arbitrary point of R
n
 is obtained, using the fact an orthogonal transformation composed with a 

dilation can be represented by elements of the Lipschitz group. 

Definition 4.3.1. Let M and N be manifolds embedded in R
n
. Then an injective differentiable 

map   from a domain   of M to a domain   of N is said to be a conformal map if the 

differential d
a
 in an arbitrary point a   is, up to a nonzero factor, an isometry between the 

respective tangent spaces. 

Any finite-dimensional real vector space is, in a natural way, a differentiable manifold, 

and the tangent space at any point of that space can be naturally identified with that space itself 

(Warner 86). Since a and f (a ) are in R
n
, this implies that both T

a
  and T

f ( a )
  are isomorphic to 

the real quadratic space R
n
, and d

a
: T

a
  T

f ( a )
  is an orthogonal mapping up to some 

nonzero factor. In the above definition of a conformal map, the relation between the respective 

tangent spaces becomes, for every x and y  in T
a
 , 

x  y   (a )(d
a
(x )  d

a
(y ))   (a )(

t
( o )(0 )  

t
( o )(0 ))  ( 4 .3 .1)  

where  and  are arbitrary curves starting at f (a )  for which x  
t
 (0 )  and y  

t
 (0 )  and 

 (a )  is some nonzero factor. The local contraction factor  (a )  generally depends on a . 

This characterization of conformal maps in terms of distances can be rendered in terms of 

angles. In Euclidean space, one may define the angle   between two vectors x  and y  by 

x  y  | x || y | co s , where | x | x  x  and | y | y  y . Comparing with ( 4 .3 .1)  above, the 

magnitude (not necessarily the sign) of   is preserved.  
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Now recall from Section 1.2 that an orthogonal transformation composed with a dilation 

on R
n
 can be expressed using the Lipschitz group  (n ) . Then, choosing a point x  , for some 

function  :   (n )  (a Lipschitz-valued function defined on  ), ( 4 .3 .1)  becomes 

d
x
X  s ig ( (x )) (x ) X  (x )   ( 4 .3 .2 )  

for the function s ig ( )   


/ (  )  { 1,  1}  and each X in T
x
 . 

Note that X  is being acted on by a member of O(n)R
+
. Then it is not clear that   is 

continuous. (More explicitly, there are always at least two choices for the value of   at each 

x  . The Lipschitz group is not connected, but consists of two separated components. 

Conceivably, a Lipschitz-valued function could satisfy ( 4 .3 .2 ) , but for a point infinitesimally 

close to another point in R
n
 would be mapped to the other component of the Lipschitz group, and 

this Lipschitz-valued function would not be continuous. So only Lipschitz-valued functions 

taking values in exactly one component of  (n )  are considered.) Nonetheless one may choose 

  that is at least locally continuous. Moreover, considering a sufficiently small domain Ω R
n
, 

one may always choose   continuous on  . 

4. Liouville’s Theorem 

This final part of Section 4 develops the main results of the present article. Two lemmas 

are used throughout the proofs of these results. 

Lemma 4.4.1.  (Braid Lemma) If a vector-valued function k in three variables is symmetric in its 

first two variables and anti-symmetric in its last two variables, then that function is identically 

zero. 

Proof  It suffices to show that k ( x , y , z )   k ( x , y , z ) , which follows from six 

transpositions of the variables: 
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k x ,  y ,  z      k x ,  z ,  y    k z ,  x ,  y     k z ,  y ,  x   

                         k y ,  z ,  x      k y ,  x ,  z      k x ,  y ,  z  .  

Lemma 4.4.2.  Let x  and y  be vectors in R
n
 identfied with 

 
Cl

n

1 . Then 1  xy  is a product of 

vectors. 

Proof  If x  or y  is invertible (nonzero), then 1  x y  x (x
 1
 y )  or 1  x y  ( y

 1
 x )y . If 

x  or y  is zero, then 1  xy  1 , which is the product of any invertible vector with its inverse.  

The following discussion determines for a continuously differentiable Lipschitz-valued 

function  :   (n )  sufficient conditions for the existence of a conformal map   whose 

differential satisfies ( 4 .3 .2 ) . The notation 
 1

(x )  is used for 1 /  (x ) . Also used is the Dirac 

operator on R
n
 applied to a scalar function, say f, which coincides with the familiar gradient 

operator: D
X
f (x )   X  D f (x ) . In an orthonormal basis { e

1
, . .. , e

n
}  of R

n
, D  e

k

k 1

n

 ( /  x
k

) . 

 Theorem 4.4.3.  Let   and   be domains in R
n
. Suppose  :   (n )  is a continuously 

differentiable Lipschitz-valued function. Then there exists a conformal map  :    such that, 

for all x  R
n
, 

d
x
X  s ig ( (x )) (x ) X  (x ) , s ig ( )   


/ (  )  { 1,  1} ,  X  T

x
   ( 4 .4 .1)  

only if there exists a vector-valued function v: Ω  R
n
 such that 

(D
X

 1

(x )) (x )  X v (x ) , v 
1

2
D ( ) / ( )   ( 4 .4 .2 ) . 

Proof  It is convenient to adopt a standard orthogonal basis { e
1
, . .. , e

n
} . By linearity, if 

the result holds for each e
i

(1  i  n ) , then it holds for all X Tx Ω = R
n
. Choose such i . By the 

earlier result concerning the tangent space at an arbitrary point in  (n ) , 
i

 1
 B

i

 1

 for some 
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B
i
 Cl

n

0
 Cl

n

2 . Using    1
 1 , 

i
(

 1
)  0 . By the product rule, B

i
 (

i

 1

)   
 1

(
i
 ) . 

By explicit calculation from the definition of the differential of a differentiable function 

  for X  e
i
 and supposing ( 4 .4 .1)  holds, it follows 

i
  s ig ( ) e

i
 . As   is continuously 

differentiable, 
j

i
  exists and is continuous. As i and j are arbitrary, this implies the 

integrability condition   given by 
i

j
  

j

i
  for arbitrary indices i and j. If   has a 

differential of the form appearing in ( 4 .4 .1) , then the integrability condition becomes, 


j
( sig ( ) e

i
 )  

i
( sig ( ) e

j
 )   ( 4 .4 .3) . 

The function sig ( )  {1, 1}  is also continuously differentiable since  and  are, so any partial 

derivatives of sig ( )  for given x   must be zero. Then sig ( )  drops out. Together with the 

product rule, this implies 

(
j
 )e

i
   e

i
(

j
 )  (

i
 )e

j
   e

j
(

i
 )   ( 4 .4 .4 ) . 

Multiplying by  
 1

on the left and 
 1

on the right, 

 
1

(
j
 )e

i
 e

i
(

j
 )

1
  

1
(

i
 )e

j
 e

j
(

i
 )

1
  ( 4 .4 .5 ) . 

Using 
1
  / ( )   / ( )  

1
 and 

i
  

i
 , this gives B

i
  

1
(

i
 )   (

i
 )

1 . 

Substituting this into ( 4 .4 .5 ) , 

B
j
e
i
 e

i
B
j
 B

i
e
j
 e

j
B
i
  ( 4 .4 .6 ) . 

As 
 
B
i
 Cl

n

0
 Cl

n

2
, one may decompose B

i
into its scalar and bivector parts 

B
i
 [ B

k
]

0
 T

jk

i

j ,k , j  k

 e
j
e
k
 T

jk

i

j ,k

 e
j
e
k
 and B

i
 [ B

k
]

0
 T

jk

i

j ,k , j  k

 e
j
e
k
 T

jk

i

j ,k

 e
k
e
j
  ( 4 .4 .7 ) , 

where T
jk

i
 T

kj

i , j  k , and T
kk

i


1

2
( e

k

2
)[ B

i
]

0
. This used e

k

4
 (e

k

2
)

2
 1  (equivalently, e

k

2
 e

k

 2
) 
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and the anti-commutativity of all distinct e
j
and e

k
in a standard orthogonal basis. Using ( 4 .4 .7 ) , 

( 4 .4 .6 )  may be written as 

4 ( e
i

2
) T

ik

j

k

 e
k
 4 ( e

j

2
) T

jk

i

k

 e
k
  ( 4 .4 .8 ) . 

For distinct i , j , and k (if n  2 , then one may proceed to the case of at least two equal 

indices), T
jk

i  has been defined as anti-symmetric in its lower two indices. Using e
i

2
 e

j

2
 1  and 

considering ( 4 .4 .8 )  component-wise, one sees T
ik

j
 is symmetric in the upper and lower left 

indices. By the Braid Lemma, such T
ik

j
 is identically zero. Then the only remaining terms in B

i
 

and ( 4 .4 .8 )  (considered component-wise) include at least two equal indices: B
i
 2 e

i
T
ki

i

k

 e
k

and e
k

2
T
k i

i
 e

i

2
T
ii

k
. Hence  

B
i
  2 e

i
( T

k i

i

k

 e
k

)   2 e
i
( (e

i

2
T
ii

k
e
k

2
)

k

 e
k
  2 e

i
( (e

i

2
(

k


1

2
( e

i

2
)[ B

k
]

0
)e

k

2
)e

k
      

                  e
i
( (e

i

4
[ B

k
]

0
e
k

3
)

k

  e
i
( [ B

k

k

 ]
0
e
k

1
)  

To complete the proof, it suffices to show that [ B
k

]
0
 

1

2

k
( ) / ( ) , from which it 

will follow that B
i
 (

k

1

(x )) (x )   e
i

(
k
(

k

  ) / ( ))e
k

1
 e

i
D ( ) / ( )  e

i
v , where v  

has the same meaning as in the statement of the theorem. This is straightforward: 


k

(  )  (
k
 )   (

k
 )    B

k
   B

k
   2  ( B

k
 B

k
)   2  [ B

k
]

0
 . 

The above used B
k
  

 1
(

k
 )  implies   B

k
 (

k
 )  implies   B

k
 

k
 , and the 

earlier expressions B
i
 [ B

k
]

0
 T

jk

i

j ,k , j  k

 e
j
e
k
  and B

i
 [ B

k
]

0
 T

jk

i

j ,k , j  k

 e
j
e
k
.  
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For Euclidean space of dimension greater than two, there is a rather restrictive condition 

that   1  is linear in x  R
n
 if ( 4 .4 .1)  in the statement of the previous theorem holds. 

Corollary 4.4.4.  Suppose that the hypotheses of the preceding theorem hold. Suppose further 

n  2  and   is three times continuously differentiable. Then 
 1

has the form x    , where   

and are constants in the Lipschitz group. 

Proof  Since   is at least three times continuously differentiable, using ( 4 .4 .1)  gives  is 

at least two times continuously differentiable. Noting that 
k

 1
  

 1
(

k
 )

 1
, it is also true 


 1

 is at least two times continuously differentiable. By Theorem 4.4.3, 


k

 1

(x )  e
k
(v (x )

 1
(x )) . This determines 

 1
up to an additive constant (say  ). 

Taking second derivatives, which are symmetric in arbitrary indices ( 
j

k

1
 

k

j

1

for all j and k ), e
j

k
(v (x )

1
)  e

k

j
(v (x )

1
) . 

Distinct indices anti-commute in the chosen basis, so e
i
e
j

k
(v (x )

1
)  e

i
e
k

j
(v (x )

1
)  

is anti-symmetric in its first two indices ( j  i  k ) and symmetric in the last two indices . By the 

Braid Lemma, e
i
e
j

k
(v (x )

1
)  is identically zero. Multiplying e

i
e
j

k
(v (x )

1
)  on the left by 

e
j

1
e
i

1  gives 
k
(v (x )

 1
)  0 . Then v (x )

 1
(x )  is a constant; call it  .   

Now to state and prove Liouville’s Theorem. 

Theorem 4.4.5 (Liouville's Theorem) Under the conditions of the preceding theorem and 

corollary,   is a Möbius transformation. 

Proof  Our goal is to find a Möbius transformation that is equivalent to   and 

represented by an Ahlfors-Vahlen matrix A 
a b

c d









 . Note that a Möbius transformation 

69
23

Walter: Early Investigations in Conformal and Differential Geometry

Published by ScholarWorks@UARK, 2014



MATHEMATICS:  Raymond T. Walter 
 

INQUIRY: Volume 16  
 

g : x  (a x  b )(cx  d )
 1  in the point x  0  is particularly simple: g ( 0 )  b d

 1 . Suppose then, to 

simplify matters, that 0   (if 0  , then a translation must be included first). Suppose further 

that  (0 )  1  (if  (0 )  1 , then consider  o (
 1

( 0 ))  defined on  ( (0 ))( ) , which is 

equivalent to   on  . This reduces to  (0 )  1 , except that one must include an orthogonal 

transformation first.) 

Choose b  g (0 )  and d  1 . The pseudo-determinant ad
*
 bc

*
is only determined up to a 

multiplicative nonzero scalar (constant), so one may choose ad
*
 bc

*
 1  and therefore 

a  1  bc
*
. By Lemma 4.4.2 , a  is the product of vectors if c  is a vector. The coefficient c is 

determined by the differential of  , to which the differential of g  must be equal. This 

differential condition is 

d g
x
X  (a d

*
 b c

*
)(cx  d )

*1
X (cx  d )

 1
 (cx  1)

*1
X (cx  1)

 1
 

             s ig ( (x )) (x ) X  (x )  d
x
X   (x ) X ( (x ))

*
, 

where in the last line was used ( (x ))
*
 s ig ( (x )) (x ) , which holds at x  0  (by the choice of

 (0 ) , ( ( 0 ))
*
 1 ; the image of  (0 )  under the main and reversion anti-automorphisms is also 

1) and throughout   (by the continuity of   and its anti-automorphisms, together with the 

constancy of sig ( )  established in an earlier argument). By Corollary 4.4.4, 
 1

(x )  x     for 

Lipschitz-valued constants   and  . If one lets c    v (x )
 1

(x ) 
1

2
(D ( ) / ( ))

 1
 and 

d    1 , the equality above follows readily using (a
*
)
 1
 (a

 1
)

*
 for a  Cln. Using  (0 )  1 , it 

follows that c  is a vector. 
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Thus has been found a matrix A  whose entries satisfy conditions (a) and (c) for the 

above definition of an Ahlfors-Vahlen matrix. It remains to show that condition (b) is satisfied. 

Since b  and c  are vectors and d  1 , bd
*
 b  and c

*
d  c

*
 are also vectors. Also since b  and 

c  are vectors, b
*
b  and c

*
c

*
 are real. Then a c

*
 (1  b c

*
)c

*
 c

*
 b (c

*
c

*
)  and 

a
*
b  (1  cb

*
)b  b  c

*
(b

*
b )  are vectors. Hence condition (b) of the above for an Ahlfors-

Vahlen matrix is satisfied. So   is a Möbius transformation.  

It is useful to recapitulate the main result with all hypotheses stated. 

Theorem 4.4.5  (Liouville's Theorem Restated) Let   and   be domains in R
n
 with n  2 . 

Then every conformal map  :    that is at least three times continuously differentiable is a 

Möbius transformation. Moreover, this Möbius transformation can be represented by an Ahlfors-

Vahlen matrix.  

 

  

71
25

Walter: Early Investigations in Conformal and Differential Geometry

Published by ScholarWorks@UARK, 2014



MATHEMATICS:  Raymond T. Walter 
 

INQUIRY: Volume 16  
 

    Works Cited 

Ahlfors, Lars V. "Möbius Transformations and Clifford Numbers." Differential Geometry and 

Complex Analysis. Berlin, Heidelberg: Springer-Verlag, 1985. Print. 

Aubin, Thierry. A Course in Differential Geometry. Providence, RI: American Mathematical 

Society, 2001. Graduate Studies in Mathematics Vol. 27. Print. 

Cnops, Jan. An Introduction to Dirac Operators on Manifolds. Boston: Birkhäuser, 2002. Print. 

Progress in Mathematical Physics Vol. 24. Garling, D. J. H. Clifford Algebras: An 

Introduction. Cambridge: Cambridge UP, 2011. Print. London Mathematical Society 

Student Texts Vol. 78.  

Haantjes, J. “Conformal representations of an n-dimensional euclidean space with a non-definite 

fundamental form on itself.” Proc. Kon. Nederl. Akad. Amsterdam 40 (1937): 700-705. 

Liouville, Joseph. "Extension Au Cas Des Trois Dimensions De La Question Du Tracé 

Géographique." Applications de l'analyse à la Géométrie. Ed. Gaspard Monge. Paris: 

Bachelie, 1850. 609-17. 

Lounesto, Pertti. Clifford Algebras and Spinors. 2nd ed. Cambridge: Cambridge UP, 2001. Print. 

London Mathematical Society Lecture Note Ser. 78.  

Porteous, Ian R. Clifford Algebras and the Classical Groups. Cambridge: Cambridge UP, 1995. 

Print. Cambridge Studies in Advanced Mathematics Vol. 50. 

Rudin, Walter. Principles of Mathematical Analysis. 3rd ed. New York: McGraw, 1976. Print. 

Takhtajan, Leon A. Quantum Mechanics for Mathematicians. Providence, RI: American 

Mathematical Society, 2008. Print. Graduate Studies in Mathematics Vol. 95. 

Warner, Frank W. Foundations of Differentiable Manifolds and Lie Groups. New York: 

Springer, 1983. Print. Graduate Texts in Mathematics Vol. 94. 

72
26

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 16 [2014], Art. 6

http://scholarworks.uark.edu/inquiry/vol16/iss1/6


	Inquiry: The University of Arkansas Undergraduate Research Journal
	Spring 2014

	Early Investigations in Conformal and Differential Geometry
	Raymond T. Walter
	Recommended Citation


	Inquiry: The University of Arkansas Undergraduate Research Journal Volume 16

