University of Arkansas, Fayetteville ScholarWorks@UARK

Theses and Dissertations

5-2011

Facility Requirements for Teaching a Standards-Based High School Technology Education Curriculum

Andrew Martin Klenke University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the <u>Secondary Education and Teaching Commons</u>

Recommended Citation

Klenke, Andrew Martin, "Facility Requirements for Teaching a Standards-Based High School Technology Education Curriculum" (2011). *Theses and Dissertations*. 73. http://scholarworks.uark.edu/etd/73

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

FACILITY REQUIREMENTS FOR TEACHING A STANDARDS-BASED HIGH SCHOOL TECHNOLOGY EDUCATION CURRICULUM

FACILITY REQUIREMENTS FOR TEACHING A STANDARDS-BASED HIGH SCHOOL TECHNOLOGY EDUCATION CURRICULUM

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Education in Workforce Development Education

By

Andrew M. Klenke Pittsburg State University Bachelor of Science in Education, 1993 Pittsburg State University Master of Science, 1998 Pittsburg State University Specialist in Education, 2006

> May 2011 University of Arkansas

ABSTRACT

This research established the essential equipment, tools, hardware and software needed to teach a contemporary standards-based Technology Education program at the high school level with one teacher. A three round Delphi study established what a contemporary Technology Education lab should ideally include utilizing the expert opinion of teachers in the field, teacher educators and administrators with direct roles in program development. The research also suggests types of activities which could be utilized in such a facility. Equipping a facility with these essential items could assist teachers in preparing students to become technologically literate, by addressing all of the *Standards for Technological Literacy* to include engineering and design concepts.

Most Americans believe all citizens should be technologically literate and should have adequate facilities to accomplish that goal (Rose, Gallup, Dugger and Starkweather, 2004). Shields and Harris (2007) indicated Technology Education facilities and components have been less defined over the past 26 years creating confusion when identifying Technology Education facilities and programs. The panel of experts chosen for this Delphi study established three categories: essential items, moderately important items and non-essential items. The panel identified equipment, tools, hardware and software needed to equip a contemporary Technology Education facility giving the teacher laboratory capabilities to teach a standards based curriculum.

Such a facility might provide a setting in which high school students could graduate with a basic understanding of technology; how to assess, use and manage technology in a facility with similar tools, equipment, hardware, and software; or in other words, achieve technological literacy (ITEA, 2000). Such a list gives school administrators a tool to better understand facility needs, curricular areas, examples of activities, as well as the equipment, tools and materials necessary to implement a standards-based program within their respective districts.

INDEX WORDS: Facility Design, Technology Education Facility, Laboratory Design, Technology Education, School Architecture Design and Development, Technology Education Facility Needs, Technology Education Lab, Technology and Engineering Education Lab This dissertation is approved for Recommendation to the Graduate Council

Dissertation Director:

Dr. Michael Daugherty

Dissertation Committee:

Dr. Michael Miller

Dr. Gregory Belcher

Dr. Kit Kacirek

DISSERTATION DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when needed for research and/or scholarship.

Agreed

Andrew M. Klenke

Refused

Andrew M. Klenke

ACKNOWLEDGEMENTS

I developed a new appreciation for the term "life-long learner" and can only begin to thank those who assisted me through many years in the classroom, to where I am today. God bless each of you!

If not for the never ending support of my wife Mary, I would not have achieved all that I have, nor enjoyed it as much. I cannot imagine my life without her. She deserves as much credit for this accomplishment as I do. I have been blessed in so many ways. I have four beautiful children, and realize that my goals have only been met because they have given so much. The sporting events, plays and other activities associated with their childhood have sometimes given way to assignments, papers and projects. I recognize and treasure their sacrifice, love, and support over the years.

Keeping my sanity was the job of my best friend Todd, who has always supported me and my family in so many ways. The adventures and excursions we've had will always be remembered and treasured. Without his support, the road I have travelled would have been much more difficult. I am forever indebted to him and his family.

Professionally, I could not have achieved this goal without my Pittstate mentors, colleagues, and friends. Dr. Iley, Mike Neden, Dr. Dallman, and Dr. Belcher have always supported my efforts by carrying the burdens that I could not handle on my own, especially during this dissertation process. My new friends and mentors at the University of Arkansas need to be thanked as well. Dr. Daugherty, Dr. Miller and Dr. Kacirek inspired me to do more than I thought possible. Without their wisdom and guidance, I would not have accomplished what I have, and I am forever grateful for all they have done for me. They helped me to end an educational career, and begin another.

vi

TABLE	OF	CONTENTS
--------------	----	-----------------

Chapter 1 – Introduction
Context of the Problem1
Statement of the Purpose
Statement of Research Questions
Definitions
Assumptions10
Limitations and Delimitations11
Significance of the Study11
Conceptual Framework
Methods14
Round 114
Round 215
Round 315
Chapter Summary16
Chapter 2 - Review of the Literature
Introduction17
General Technology Education18
Determining and Equipping Facilities
School Size and Structure
Chapter Summary
Chapter 3- Methodology
Introduction

Delphi Panel Selection	28
Design and Instrumentation	29
Statement of Research Questions	31
Collection of Data	31
Data Analysis	32
Chapter Summary	34
Chapter 4 Results	36
Purpose of the Study	36
Delphi Study Participants	36
Demographic Data	37
Significance of the Study	38
Design of the Study	39
Data Collection Results	40
Round 1	40
Round 2	43
Round 3	45
Data Analysis	45
Chapter Summary	54
Chapter 5 – Findings and Recommendations	57
Summary	57
Findings and Recommendations	58
Essential Lab Requirement Findings	59
Essential Lab Requirement Recommendations	60

Moderately Important Lab Requirement Findings	
Moderately Important Lab Requirement Recommendations	
Non-Essential Lab Requirement Findings63	
Non-Essential Lab Requirement Recommendations64	
Items of Significant Disagreement Findings64	
Items of Significant Disagreement Recommendations	
Suggested Activity Findings67	
Suggested Activity Recommendations	
Research Conclusions	
Recommendations for Further Research69	
Chapter Summary71	
References	
Appendix A (IRB APPROVALS)	
University of Arkansas Original	
Pittsburg State University	
University of Arkansas Continuation	
Appendix B (PANEL SELECTION)	
Appendix C (ROUND ONE LETTER)	
Appendix D (ROUND ONE AGGREGATE DATA)	
Appendix E (ROUND TWO LETTER)	3
Appendix F (ROUND TWO INSTRUMENT)11:	5
Appendix G (ROUND TWO AGGREGATE DATA)	6
Appendix H (ROUND THREE LETTER)	1

Appendix I (ROUND THREE INSTRUMENT)	.143
Appendix J (ROUND THREE AGGREGATE DATA)	.144
Appendix K (ROUND THREE ANOVA)	. 149

LIST OF FIGURES AND TABLES

Figures

Figure 3.1	Dependent and Independent Variables
Figure 3.2	Round 2 Questionnaire Item Example
Figure 3.3	Round 3 Questionnaire Item Example
Figure 4.1	Demographic Data Map
Figure 4.2	Round 1 Survey Example
Figure 4.3	Mean Distribution Identification Table48
Tables	
Table 4.1	Round 1 Return Example41
Table 4.2	Round 1 Sample Equipment Listing
Table 4.3	Round 1 Activity Sample
Table 4.4	Round 2 Mean and Standard Deviation Sample (Items 1-3 & 56-58)46
Table 4.5	Round 3 Mean and Standard Deviation Sample (Items 1-3 & 56-58)47
Table 4.6	Essential Items With Standards49
Table 4.7	Moderately Important Items With Standards52
Table 4.8	Non-Essential Items with Standards53
Table 5.1	Categorized Essential Items60
Table 5.2	Categorized Moderately Important Items
Table 5.3	Categorized Non-Essential Items64
Table 5.4	Items of Significant Disagreement Outlier Identification65
Table 5.5	Items of Significant Disagreement Adjusted Recommendations
Table 5.6	Items of Significant Disagreement Dismissed Items

CHAPTER 1

Introduction

Context of the Problem

The first step necessary to achieve technological literacy at the high school level is to have a uniform set of outcomes or standards. Devleped and published by the International Technology and Engineering Educator's Association (ITEEA) the *Standards for Technological Literacy* serve that purpose (ITEA, 2000). Second, the standards must be taught using a prescribed standards-based curriculum, such as ITEEA's "Engineering by Design" establishing the coursework for achieving technological literacy (ITEEA, 2008). Finally, a clearly defined list of machines, equipment, hardware, software and materials prescribe what tools, machines, hardware and software are necessary to teach a standards-based curriculum. When combined, these compoents will allow schools and school districts to determine whether or not they want to invest time and money in a program serving as a path to technological literacy for all students. These components would assist the local technology teacher in establishing what is needed to meet national standards for technological literacy, rather than trying to establish a comprehensive technology program, curriculum and facility on his or her own.

Although Technology Education is rooted in an Industrial Arts heritage, the two disciplines have moved in the opposite direction since the emergence of Technology Education in the mid-1980s (Ritz & Reed, 2006). Until the 1980s, Industrial Arts was easily recognized in a school setting. Industrial Arts is often referred to as shop class or simply shop, and has defined spaces (i.e. wood shop, metal shop) and equipment (i.e. table saw, milling machine). Technology Education has grown to be more

comprehensive than Industrial Arts, and since its inception in 1985, began including more content areas such as communication, transportation, and engineering. While some traditional Industrial Arts shops transitioned into more inclusive Technology Education laboratories, the equipment varied from school to school depending upon the curriculum implemented. Some schools kept traditional Industrial Arts programs while implementing a Technology Education program, which slowed the change from traditional Industrial Arts to Technology Education (Ritz & Reed, 2006).

Since the integration of Technology Education in the field, several factors influenced the direction to the current practice in the field. First, the Standards for Technological Literacy was published by the International Technology Education Association in 2000 defining the competencies all students should know and be able to do in order to become technologically literate. These standards provide a rationale for teaching Technology Education as a discipline (ITEA, 2000). Second, Project Lead the Way introduced "Pathway to Engineering" in 1997, a pre-engineering program complete with a defined curriculum, professional development, laboratory spaces, and defined equipment requirements (PLTW, 2009). Finally, the International Technology Education Association (ITEA) — the largest professional teacher association in the field — voted in February 2010 to change the name of the organization from the ITEA to the ITEEA. This move signaled to everyone that the field of Technology Education would also serve as a pre-engineering curricular subject complete with its Engineering by Design (EbD) curriculum (ITEEA C, 2010). Given the changes in the field, curricular models such as Industrial Arts, Project Lead The Way, and Technology and Engineering Education have varying opinions on what the curriculum should contain and how the program should be

taught. Although all of the models encourage hands-on activities, Industrial Arts and preengineering programs approach the curriculum and learning activities differently. Industrial Arts centers around woodworking and metalworking projects, while the preengineering programs focuses on the design process. The only curriculum currently based on a national set of standards is the EbD curriculum, yet this ITEEA model is the only curricular area mentioned without defined laboratory spaces. The field of Technology Education needs to define what machines, equipment, hardware, software and materials are necessary to teach a standards-based curriculum. ITEEA did establish a task force in 2008 to establish a facility planning guide and was developed primarily through the work of the task force chairman, Michael Neden (ITEEA A, 2010). However, the facility guide recommended machines and spaces for a TE facility without any statistical data to reinforce its recommendations (ITEEA A, 2010).

The field did not evolve overnight; Technology Education has changed many times throughout the course of history. Although there were many developments with the pedagogy of Technology Education, developments are categorized into six distinct eras (Barlow, 1967):

- 1829-1890: The first development was associated with Victor Della Voss and the Russian system in the mid to late 1800s. In this system, exercises were used to teach skills in small elements, which later tied to a larger system. This is similar to teaching welding by using scrap metal pieces and repetitive practice.
- 1849-1907: The second distinct period was based on the Swedish Sloyd System introduced by Uno Cygnaeus and Otto Soloman in the countries of Finland and Sweden. This systems was developed in the late 1800s, shortly after the Russian

system was introduced, where simple, useful wooden items were made by students to gain their interest. The system is often criticized because it lacked quality design and aesthetics (Parker, 1912).

- 1880-1910: The third era marked the Arts and Crafts period, ending in the early 1900s. The emphasis of the field changed to more design and artistic expression both qualities were aesthetic while shifting away from the ability to use a tool or machine.
- 1890-1940: The industrial period in the first half of the 1900s was best known for Manual Arts. At this time, occupational training was introduced into the general education curricula. Manual arts system practices have similarities to that of the Russian System, where repetitive skills were utilized.
- 1908-1985: The Industrial Arts era established manual activities for general purposes versus activities for specific occupational training and was found in most schools up until the mid 1980s. Industrial arts was essentially developed from the manual training era, and was prominent in most schools until the 1980s.
- 1985-Present: Technology Education was introduced as a method for teaching technological literacy (ITEA, 2000). The emergence of Technology Education as a curricular subject provided the framework for the development of the *Standards for Technological Literacy*, published in 2000. In 2010, the ITEA changed its name to include engineering and became the ITEEA.

The field has made several transitions over the past century, yet this study will focus on the last two eras which include programs currently used in the high school setting. The Industrial Arts era of the mid 1900s, was defined by Barlow (1967) as the

study of industrial tools, materials, processes, products, and occupations pursued for general education purposes in shops, laboratories and drafting rooms. Industrial Arts curricula provided courses such as Woods, Metals, Drafting, and Automotive which were further delineated by a numbering system such as Woods I, Woods II and Woods III reflecting the philosophy of the discipline and the needs of society at that point in history (Reeve, 2002).

Technology Education was defined in 1985 by the American Industrial Arts Association as "a comprehensive, action-based educational program concerned with technical means (technology), their evolution, utilization, and significance; with industry, its organization, personnel systems, techniques, resources, and products; and their sociocultural impacts" (Maley, 1973). The International Technology Education Association redefined the field as a school subject specifically designed to help students develop technological literacy, meaning the ability to use, manage, understand, and evaluate technology (ITEA, 1996).

Although Industrial Arts and Technology Education are based in general education, serve all students, they serve two distinct purposes. While Technology Education focuses on technologically literacy as defined in the previous paragraph, Industrial Arts was and is still concerned with three concepts: first, that students solve problems with tools, materials and processes which are associated with industry; second, the program provides hands-on exploratory experiences; and third, students gain the ability to produce and use technical drawings (Barlow, 1967).

The ITEA's *Technology for All Americans Project* established the field as an important curricular subject across all grade levels for all students (ITEA, 1996). The

result of this important project was the creation of a national set of standards to guide schools in developing equal opportunities for all students to achieve basic technological literacy (Rose & Dugger, 2002). Even though the standards provided a framework to teach technological literacy, reality indicated that not all schools and Technology Education teachers were as ready to embrace the change developed by the ITEA (Newberry, 2001).

The ever evolving profession was moving from a traditional Industrial Arts program to a much more comprehensive and inclusive program. These developments created a new issue hindering the ability for people to understand the new curricular area of Technology Education. Terminology became an obstacle to change as the term "technology" created a significant misunderstanding (Dugger, 2009).

The personal computer introduced to the general public in the early 1980s had a significant impact on the perception of technology education. Now when Technology Education is mentioned, most people equate the term to computer education or educational technology (National Academy of Engineering National Research Council, 2009; Rose, Gallup, Dugger and Starkweather, 2004). Some authors suggest this misunderstanding occurred because many schools changed the Industrial Arts program in name only. In other words, they coined the name Technology Education but continued to teach traditional Industrial Arts programs (Newberry, 2001). Sanders noted that even after 15 years in the Technology Education profession, he observed course titles in schools associating Technology Education with a majority of traditional titles such as Woods, Metals, Automotive and Drafting (Sanders 2001). This observation indicated that even though schools pursued teaching Technology Education in context, it appeared that

many educators did not know what changing Technology Education entailed. Schools in different locations implemented significantly different curricula and laboratories and all under the umbrella term "Technology Education". Unlike Industrial Arts, which was easily identified by most people because of the facilities and equipment, Technology Education was not as accurately identified and needed a clear and defining laboratory environment. Specifically, Technology Education needed a specified curriculum capable of being used to teach a standards-based curriculum (Shields & Harris, 2007).

The confusion surrounding the term Technology Education is exposed at the classroom level. John White, a Technology Education instructor at St. Mary's/Colgan High School in Pittsburg, Kansas, reflected on a previous conversation with one of his administrators in the spring of 2009. The administrator stated "let's refer to your technology, meaning Technology Education as the 'little t' and my technology, referring to educational technology as the 'big T' because it is what all kids need to know to go to college and get good jobs" (White, 2009). This sentiment is common in most areas of the country according to the Gallup polls given in 2001 and 2004, respectively. When asked what first comes to mind when the term technology is used, 67% stated computers in 2001 and 68% indicated the same in 2004 (Rose et al., 2004).

Until Technology Education establishes a universally recognized identityincluding a defined environment and a specific list of equipment, tools, hardware and software - confusion and misunderstanding of the intended mission of Technology Education will exist (Shields et al., 2007). As a result of poor identity, several related problems exist: public school administrators will be confused when determining what programs to implement, the classroom teacher may not have the appropriate facilities or

equipment to teach the standards, students may not be prepared for the world they are entering, and parents may not have a good understanding of what possibilities are available for their children. Although many high quality innovative programs were developed during the 1980s and early 1990s, changes in administrative personnel and revised graduation requirements resulted in a patchwork of programs in public high schools (Suhr and Dettelis, 2009).

Statement of the Purpose

The purpose of this study is to determine the machines, equipment, hardware, and software programs needed for a high school with one teacher to teach the *Standards of Technological Literacy* to all students.

Statement of Research Questions

- What machines, equipment, hardware, software, and materials are essential components of a Standards Based Technology Education high school model program according to a panel of experts?
- 2. Can the Delphi panel establish a set of categorical components based on the following descriptors: essential items, moderately important items and non-essential items?
- 3. Do significant differences exist between the agreement levels on the elements based on expert qualifications?

Definitions

The following terms were operationally defined clarify the study.

<u>Career/Technical Education/Vocational Education</u>: These areas are responsible job specific training for career preparation in a selected career field (ITEA, 2000).

<u>Content Organizers</u>: Categories of information within the framework of Technology Education which define specific areas such as communication, production, design, and construction (Suhr et al., 2009).

<u>Educational Technology</u>: Educational technology promotes the use and understanding of various computer systems and software applications to enhance the teaching and learning process (ITEA, 2000).

Engineering and Design: Engineering and Design focuses on the study and practice of applying practical math and science concepts to the design and engineering process (ITEA, 2000).

<u>Industrial Arts</u>: Is a study of changes made by man in the forms of materials to increase their values, and of the problems of life related to these changes (Bonser & Mossman, 1923); or part of general education dealing with industry and with the problems of life resulting from the industrial and technological nature of society (Foster, 1994).

<u>Model Program</u>: Defines a Technology Education program committed to providing technological study, which are safe, facilitate creativity and enable students to meet local, state and national technological literacy standards (ITEA, 2008).

<u>Modular Technology Education</u>: A defined lab space where students spend the majority of their classroom time completing self-directed instructional activities. This space is equipped with the materials, tools and equipment that are required to complete the learning activities (Petrina, 1993).

<u>Standards for Technological Literacy</u>: These are also known as "STL", these standards are designed as a guide for educating students by prescribing the intended outcomes

needed for the study of technology at all grade levels; but do not provide a set curriculum (ITEA, 2000).

<u>Technology Education</u>: A school subject specifically designed to help students develop technological literacy; in other words, the student's ability to use, manage, understand, and evaluate technology (ITEA, 1996).

<u>Technological Literacy</u>: An educational goal that promotes the concept that all students should have a minimum level of understanding of technology and how it affects their lives; stating they should be able to use, manage, assess and understand technology (ITEA, 2000).

Assumptions

Participants in this study were chosen based on the following criteria:

- Each has a demonstrated understanding of the *Standards for Technological Literacy* (STL) directly relating to this study.
- 2. Each are members of a related profession: a Technology Education or related Science, Technology, Engineering, and Mathematics [STEM] classroom teacher at the high school level; those who prepare high school Technology Education teachers at the college or university level; individuals who promote technological literacy in an administrative role; and selected individuals who have significant real-world experience in Technology Education laboratory design or have experience in *Standards for Technological Literacy* Development.

It is assumed the participants of this study were unaware of other participants so they could provide honest, unbiased responses. It is also assumed the participants were

computer literate and had the ability to communicate through a variety of technological means to include telephone, facsimile, and email.

The results of this study will provide a model with the following assumptions:

- 1. The program in the school will have a single Technology Education teacher who is charged with teaching a standards-based Technology Education program.
- 2. The basic model can be replicated in other schools of varying sizes, allowing larger schools with more instructors to teach additional classes which accommodate larger student populations as well as offer specific technology programs which supplement the technological literacy model.

Limitations and Delimitations

Limitations to the study include not defining the cost of implementing the proposed model for Technology Education. The listing of tools, equipment, hardware and software will prescribe the general nomenclature for each tool, piece of equipment or hardware as well as software; however, the list will not prescribe the vendor nor the cost of the equipment, as this will be at the discretion of the local school. The study will focus on Technology Education as the focal point of accomplishing technological literacy and not infer that engineering is the focus. Instead, engineering will be used as a descriptor used to define an area of technology.

Significance of the Study

With the development of a standardized facility and curriculum, students across the United States will be provided an equal opportunity to achieve technological literacy. If the proposed study were implemented, every high school student would have the opportunity to study technology and engineering in an adequate laboratory. School

administrators will understand and be able to implement what comprises a standardsbased Technology Education program. The administrators will understand the facility, the curricular areas, examples of activities, as well as the equipment, tools and materials necessary to implement the program within their respective districts (Lewis, 1999).

Conceptual Framework

Most Americans believe the daunting task of technological literacy should be a priority for our public school system (Rose et al., 2002). Each technology educator is responsible for ensuring his or her students are being prepared to enter the world in which they will live, as defined by the *Standards for Technological Literacy*. Educators must also provide machines, equipment, hardware, software and materials necessary for teaching technological literacy (ITEA, 1996). Increasing accountability in schools demands improved performance on standardized tests in curricular areas like mathematics, reading and science. Although necessary for the overall development of students according to ITEEA, many programs like Technology Education might not appear as important because of current testing practices (National Academy of Engineering and National Research Council, 2009). In many cases, test scores from paper and pencil tests are used as the sole determining factor of student success, but these same tests leave out critical ideals such as problem solving and creative thinking - critical in today's technological world (McKim, 1987).

Standardizing a curricular field allows students to have the same opportunities and hopefully achieve optimum success within the curricular area; however, if states do not want participate in the idea of standardization from the national level, standardization will be more difficult and will result in not every student being given the same

opportunities (Ravitch, 1995). In the case of the *Standards for Technological Literacy*, the framework was standardized and prescribed outcomes for all students to become literate (ITEA, 2000). Currently, determining how many schools actually conform to the *Standards for Technological Literacy* is difficult, Newberry (2001) suggests 30.8% of states consider technology education an elective and another 19.2% indicated it was not the state's framework at all. Ritz and Reed (2005) suggests school districts will encounter difficulties teaching to the *Standards For Technological Literacy* if the following is not understood:

- teachers nearing the end of their career could be reluctant to change to address the new standards.
- newly trained teachers not adequately prepared to teach comprehensive technology education may not understand or be able to to adequately teach the Technology Education program.
- some teachers may feel a comprehensive technology education would not reflect the needs of a community that has previously supported the traditional programs and viewed them as a necessary part of school curriculum - even though traditional programs may not serve all students or move the entire student population towards technological literacy.

The only way to achieve technological literacy at the high school level is to outline a clear and concise set of outcomes or standards, as established in the *Standards for Technological Literacy*. The standards must then be enforced by a prescribed standards-based curriculum establishing what will be taught, such as ITEEA's "Engineering by Design". The final component needs to be a consistent and defined list of machines, equipment, hardware, and software which prescribe necessary components needed to teach the standards. (ITEEA A, 2010) When these components are combined, school districts can better evaluate whether or not they want to invest time and money in a program that could serve as a path to technological literacy for all students. These components would assist the local technology teacher in establishing what is needed to meet national standards for technological literacy, rather than trying establish a list of necessary components on his or her own.

Methods

A modified Delphi study was utilized to identify the ideal list of tools, equipment, hardware, and software of a model standards-based program that can provide the necessary medium for accomplishing Technological Literacy. The Delphi members were comprised of high school classroom teachers, university Technology Education teacher preparation professors, as well as state supervisors and school administrators with experience in laboratory/program development and/or play or have played a role in the development of the *Standards for Technological Literacy*.

Round 1 Modified Delphi

The Delphi study consisted of three rounds of questions, developed for establishing consensus of what lab equipment, tools, hardware, and software are needed to deliver technological literacy in the classroom. An ancillary list of activities was also developed to reinforce teaching the standards in a model program. The round one open ended questions established the major types of lab equipment, tools, hardware, and software needed. Round one data was tied directly to standards; specifically, the Delphi

panel established, by standard, what specific equipment, tools, software and hardware were needed in a Technology Education facility.

Round 2 Modified Delphi

Round two categorized the aforementioned items determined by round one questions and asked the participants to rank each item on a five point anchored Likert scale with the following rankings: (1) unimportant, (2) of little importance, (3) moderately important, (4) important, and (5) very important. The purpose of round two was to establish basic descriptive statistics, to include the mean and standard deviation for each response.

Round 3 Modified Delphi

Round three allowed the participants to analyze the limited descriptive results from round two and make changes as necessary in order to come to consensus. The participants were given the group mean, group standard deviation, and the ranking they gave for each question in order to see how their answer compared to others. This round allowed the opportunity for the participants to change their response to gravitate towards the group mean. After round three was returned, the data was evaluated using an Analysis of Variance (ANOVA) test to determine if notable differences existed between the responses from the three categories of experts.

As a result of the study, a consensus of necessary components was established allowing school districts, high school teachers, teacher preparation faculty and parents to better understand what equipment and materials are necessary for high school students to achieve technological literacy.

Chapter Summary

Technology Education has a rich tradition and historical roots dating back more than a century and each era had an influence on the development of the field as it is known today. Technology Education was intended to provide all students with the basic concepts of technological literacy, yet that idealism has yet to come to fruition. The International Technology and Engineering Educator's Association developed the *Standards for Technological Literacy* as well as the recommended curriculum *Engineering by Design*, documents defining the philosophical foundation for technological literacy as well as what outcomes are to be taught. A necessary, yet lacking component was what a model technology lab should contain in order to teach the curriculum and ultimately the standards. Without a prescribed list of machines, equipment, hardware, software, and materials, achieving technological literacy is much more difficult.

This research provided the final component needed to achieve technological literacy at a small high school with only one teacher. The purpose is to establish a list of components to include machines, equipment, hardware, and software which are needed to teach technological literacy at the high school level. A consensus was established utilizing a panel of experts who participated in a three round modified Delphi study. The panel, through the course of the Delphi process determined what components were necessary to teach a high school Technology Education program with one teacher.

CHAPTER 2

Review of the Literature

Introduction

In 2002, the International Technology Education Association conducted a Gallup poll that asked the following question: how important is it for all people to develop some ability to understand and use technology? The results showed 76% of Americans believe that the development of technological literacy is very important for all people and 24% viewed it as somewhat important (Rose and Dugger, 2002). This poll was implemented at the same time the Standards for Technological Literacy was released and correlated well with the overall intent of the standards. In a follow-up Gallup poll in 2004, the percentage dropped two percent to 74% and 23%, respectively, although the percentages decreased, the results still indicated a strong support for the idea of technological literacy (Rose, Gallup, Dugger and Starkweather, 2004). The polls addressed other issues to including the term "technology" and "design', however, this study will focus on the importance of technological literacy in the public school system. Despite the public's view that technological literacy is very important for everyone, only 12 states (26%) require the study of technology education in the public schools as of 2007 (Dugger, 2007).

This chapter examines the importance of technological literacy, as well as the studies conducted concerning equipping facilities. Since vast differences exist between school size and structure, establishing an understanding of those differences is important. Once the difference are clearly understood, a systematic comparison can be utilized to define the best equipment needed for a technology education program used to teach a

variety of technological areas such as communications, engineering design, manufacturing, construction, etc. In addition, the same equipment would teach concepts such as problem solving, team work and creative thinking.

General Technology Education

In 2002, the *Standards for Technological Literacy* were published by the International Technology Education Association after over 900 people throughout the United States reviewed its contents. The reviewers included teachers at all levels in a variety of curricular areas, teacher educators, state supervisors, and engineering professionals as shown in acknowledgement section of the *Standards for Technological Literacy* (ITEA, 2000). The standards defined what students should know and be able to do in order to be technologically literate and also provided standards prescribing the outcomes for the study of technology in grades K-12 should be (ITEA, 2000).

Both of the ITEA Gallup polls suggested public support for technological literacy in our school's curriculum. In 2001, ITEA published a report in *The Technology Teacher* by Newberry. In this report, she listed the results of a survey of all states which indicated 57.7% of the states reporting included Technology Education in the framework of the state. (Newberry, 2001) Newberry also found only 27% of states required Technology Education at some level, while 12% retain local control over the subject area. In other words, a locally controlled Technology Education program does not have to conform to any set of standards, but teach what they want to teach. The results from the Gallup polls and Newberry's report revealed the differences between the public perception of technology education's importance and what technology education is actually being taught within most state educational structures. For example, the 2004 Gallup poll

showed 76% of the public believed people at all levels have some ability to understand and use technology and 98% believe it should be part of the school curriculum. This indicates a contradiction showing that 98% of the public believe it should be part of the curriculum, yet only 27% of states include Technology Education as part of the mandated curriculum. Furthermore, although 27% of the states require Technology Education, it may be required at only one grade level (Rose et al., 2004).

In many states, "Technology Education" has many different names such as Industrial Technology, Industrial Arts, Industrial Education and Industrial Technology Education (Akmal, Barker, & Oaks, 2002). These variations in terminology are also apparent in the college and university programs teaching Technology Education as a degree, suggesting a lack of consistency even at the teacher preparation level. For instance, the state associations listed on the ITEEA website indicate differences from state to state in their affiliation name. Examples of varying Technology Education titles includes Career and Technology Education Association, Technology and Industrial Education Association, Association for Skilled and Technical Sciences, Industrial Technology Education Association and Technology Education (ITEA, 2009).

Program titles are reflective of the state associations with similar titles such as Career and Technical Education and Industrial Education. Within these program, course titles will vary in scope and sequence also indicating a lack of consistancy. For example, in a review of all programs in the state of Kansas, Missouri, and Oklahoma, examples of course titles include: Woodworking, Small Engine Repair, Computer Aided Design, Communication Systems, Manufacturing, Construction, Principles of Engineering, and Technological Design (Spielbusch & Klenke, 2010). Although, the diversity of programs

reinforces the desire for local control within each district, it also indicates the inability for each school to teach a comprehensive standards-based Technology Education curriculum.

Determining and Equipping Facilities

The Standards for Technological Literacy has identified content areas of technology including design, communication, construction, manufacturing, power and energy, transportation, agriculture, related biotechnology, and medical technology (ITEA, 2000). These areas are comprised of 20 standards, each having benchmarks identified for four separate grade levels: kindergarten through second grade, third through fifth grade, sixth through eighth grade, and ninth through twelfth grade. Ritz and Reed (2005) indicated content organizers have generally evolved over time from various curriculum projects. For example, the Industrial Arts Curriculum Project which included the World of Manufacturing and World of Construction used manufacturing and construction as the content organizers. The model most current Technology Education models have drawn content organizers from is the Jackson's Mill Industrial Arts Curriculum Theory (Spencer and Rogers, 2006). This theory was intended to provide a rationale and direction for teaching Technology Education (Lauda, 2002). Jackson's Mill included four content organizers of communication, construction, manufacturing and transportation which are cited in the standards previously discussed. The content organizers from Jackson's Mill illusrate the comprehensiveness of a Technology Education program; they also indicate a traditional Industrial Arts environment does not have the necessary components to teach a standards-based Technology Education program.

The well-established Industrial Arts curriculum within a school was easily recognized due to its longevity within the educational system. Students taking an

Industrial Arts course, such as woodworking, generally complete the same projects older siblings or even parents completed in previous years (Volk, 1996). Although this type of stagnation was a problem, Volk emphasized the importance of skills learned should not be diminished.

The longevity can also be attributed to the multiple textbooks printed on Industrial Arts facility planning, such as "A Guide for Equipping Industrial Arts Facilities" published by the American Industrial Arts Association in 1967 which defined the areas, curriculum and equipment necessary for planning and managing such facilities which also help define and solidify the program within the school setting (AIAA, 1967). Technology Education facility management and organization has fewer published documents to reference. One reference, the Missouri's Department of Elementary and Secondary Education Technology Education Guide (2002), established "Planning Technology Education Facilities" in Chapter 13. However, according to the state supervisor, the guide is not currently used on a widespread basis. Virginia's Department of Education (2011) released the "Technology Education Equipment Resource Guide" clarifying equipment needed for middle school technology programs. Since the inception of Technology Education in 1985, few textbooks illustrate how to establish, manage and equip modern Technology Education programs. In 2010, the ITEEA produced a facilities guide that suggests equipment and facility needs. The document was significant because it was the first document the association endorsed as an initial planning document in its 26 year existence. Unfortunately, though produced and endorsed by ITEEA, the *ITEEA* Facilities Guide lacked statistical data to reinforce its findings (ITEEA A, 2010).

In the most current era, vendors assumed the role of curriculum and lab development moving that responsibility away from the classroom teacher. During the latter part of the 1980s and into the 1990s, vendors such as Pitsco, Synergistics, Depco, and Paxton/Patterson and others, strongly influenced how a Technology Education lab would be equipped and taught, and as a result, schools and teachers began to rely on these vendors for instructional and facility guidance (Ritz et al., 2005). Vendors marketed student centered "modular" labs with self-directed curriculums and all necessary equipment, tools, software and hardware for each technology. Modular Technology Education developed as a delivery method in the profession and competed for space with traditional unit and general lab facilities (Sanders, 2001). Although modular technology labs developed by vendors explicitly state equipment requirements in their structure, they have been scrutinized by some educators as not being as effective educationally as traditional programs because these programs may lack content and rigor (Rogers, 1998).

Some schools in the United States do provide quality Technology Education facilities and programs to students. Some of these programs are recognized through the Teacher of the Year and Program of the Year awards announced annually at the ITEEA conference (ITEEA B, 2010). Because the self-contained curriculum/equipment of modular technology programs differs so greatly from contemporary Technology Education laboratories or traditional Industrial Arts facilities, determining the necessary components of an ideal Technology Education facility has become a more confusing process for educators. For example, school districts with local control and their myriad of programs complicate the ideal realization of standardization. The disparity between Technology Education standards is also acerbated because some schools continue

teaching traditional programs such as woodworking, metalworking and drafting, while other programs teach state of the art technologies and consider any technology over five years old obsolete (Wright, 1992).

For many reasons, various types of programs result in different competencies among students. One program called Project Lead the Way (PLTW) has grown substantially in popularity. In 1997, twelve New York state high schools implemented PLTW; by 2010, PLTW was funded in over 3500 schools nationwide (PLTW, 2009). This program gained approval from many schools for several reasons. First, PLTW has a clearly defined curriculum; secondly, it specifically lists the tools and equipment required to teach the curriculum. Finally, teachers must be educated on how to teach the curriculum through a training program developed by PLTW (PLTW, 2006). As a preengineering program, PLTW complements the goals of Technology Education, by itself however, PLTW does not accomplish the mission of technological literacy for all students as the PLTW curriculum is specifically targeted for those students who would successfully enter an engineering field. Ritz et al. (2006) indicated the successful implementation of PLTW courses relies heavily on educated Technology Education teachers, who are trained in a comprehensive nature rather than a specific field such as engineering. By providing teachers with a comprehensive set of standards, properly equipped facilities, and a standards-based curriculum, schools will be more able to promote and teach technological literacy.

School Size and Structure

School districts across the United States vary demographically and for the purpose of convenience, the researcher is basing this research on a small school with one

teacher. School size is relevant because small schools need adequate facilities to teach standards-based Technology Education. The results of this study could be expanded to include larger school districts with multiple teachers. Larger schools having more instructors have the ability to teach a variety of courses in addition to a standards-based course.

According to U.S. Department of Education in the 2004-2005 report "Status of Education in Rural America, approximately 23,800 secondary schools existed in the United States, and served approximately 15.8 million students (Provasnik, KewalRamani, Coleman, Gilberson, Herring and Zie, 2007). The report also noted rural schools comprised nearly one third of all public schools, yet the enrollment consisted of only onefifth of the student population. Traditionally, the Department of Education classified school districts as either as cities, suburbs, towns and rural areas. The Department of Education developed a new system splitting cities and suburbs into small, midsize and large; towns and rural areas were categorized by how close they were to urban areas and categorized into fringe distant or remote. The new classification system provided a better view into the actual populations of schools in the new classifications (Provasnik et al., 2007).

Nine percent of high schools had populations of less than 200 students accounting for 1,432,000 students in rural schools (Provasnik et al., 2007). This data is significant since smaller schools most likely have fewer teachers in elective areas such as Technology Education because classes have fewer students. Since smaller school districts are challenged with limited teacher and facility resources, this research will focus on the needs of the small school with one teacher. Additionally, for the sake of this

study, the square footage of the project was limited to 3,000 square feet. Restricting the area requires the participants in the study to work from a similar space requirement.

Chapter Summary

Through two national Gallup polls, the general public established technological literacy is essential for all people. Specifically, society needs to be able to use, manage, understand and evaluate technology in our lives today. School districts throughout the country are currently faced with the challenge of providing technological literacy to their students without an understanding of the required facilities, equipment and curriculum required to do so. School administrators rely on teachers to develop curriculum and requisition equipment, purchase vendor driven curriculum and materials that may or may not provide a standards-based technology education program. Because no standards exist for Technology Education facilities, schools currently teach a conglomeration of programs with varying levels of quality and effectiveness, some do not even teach technological literacy.

Because school districts differ demographically, this study focuses on a technology education program with only one Technology Education teacher. Larger schools with more teachers will be able to accommodate a more diverse technology education program with a variety of courses, while schools with one teacher may need to restrict available courses offered. Therefore, the purpose of this research is to establish the minimal equipment, tool, hardware and software needs for a small Technology Education program.

CHAPTER 3

Methodology

Introduction

This chapter will define the research design and procedures used to conduct the Delphi study. This chapter will describe the Delphi research procedure used in this study, the research participants and how the data will be analyzed.

When asking teachers, teacher educators or administrators what a model high school technology education program should contain, the answers will vary considerably and consensus will be difficult. Wilhelm (2001) noted the Delphi Method will assist in developing consensus, and he indicated if an adequate theory based on tested scientific knowledge is not available, then a study to obtain relevant intuitive insights from experts based on sound judgment should be attempted. The Delphi Method is not new and dates back to the post Cold War era in the 1950s and 1960s when Dalkey and Hemler of the Rand Corporation introduced this method (Dalkey and Hemler, 1963). Although the method's original purpose was military in nature, researchers in other fields quickly found the process relevant for education, private corporations and academia for a variety of purposes (Wilhelm, 2001).

Linstone and Turoff (2002), identified specific uses for the Delphi Method which involved the following: a) gathering current and historical data not accurately known as well as the significance of such events, b) budget allocation evaluations, c) exploring urban and regional planning options, d) assembling a model structure similar to this study, e) delineating pro and con policy option implementation, f) developing causal relationships in complex economic or social phenomena, g) distinguishing and clarifying

real and perceived human motivations and h) exposing priorities of personal values and social goals. They also defined a comprehensive list of situations where the Delphi technique can be utilized, including the following: a) times when the problem does not utilize precise analytical techniques but works well for collective judgments, b) the people necessary for the study have no history of communication or come from different backgrounds, c) face-to-face interaction is impractical for the number of experts needed, d) time and/or cost may be prohibitive for face-to-face meetings, e) group communication will be more productive for face-to-face meetings, f) disagreements between members of the group when face-to-face resolution is not practical, and g) the validity of the study is not jeopardized by strong personalities within the group which were referred to as the "bandwagon effect" in Linstone and Turoff's the book (Linstone and Turoff, 2002).

For this study, individuals with knowledge or expertise in the area of Technology Education laboratory development were used to establish a single list of what equipment, tools, software and hardware needed in a model Technology Education program. The Delphi Method is widely used and accepted as a group communication process to serve as a means to establish consensus of opinion through a series of questionnaires on a realworld issue (Hsu and Sandford, 2007). For instance, a Delphi study conducted by Wicklein and Rojewski (1999) established a "Unified Curriculum Framework" for the field. Wicklein and Rojewski's study utilized experts from engineering, science and education to establish a consensus of what mental processes necessary for critical thinking and problem solving skills. Asking every high school technology teacher, engineer and scientist to participate in such a study is impractical, so instead, sampling the aforementioned group was utilized to develop the list. Statistically, a Delphi study is

conducted combining individual answers into a single list the participants and asks each participant to rank each of the listed items. Ideally, at the end of this process, consensus among the participants has been reached. For this research, a three-round modified Delphi study was used to form a consensus of the machines, tools, hardware and software required in a model high school Technology Education facility.

Delphi Study Panel Selection

To determine the panel for the Delphi study, experts were selected from the list of published contributors for the *Standards for Technological Literacy* (ITEA, 2000). These contributors possessed both content expertise and knowledge of Technology Education. Twelve names were selected from three separate categories; each person selected has significantly impacted on Technology Education laboratory development at some point during his or her career or have unique qualifications beneficial to the development of this study. Specifically, *The Technology Teacher* journal provided names of teachers or teacher educators submitting articles relating to lab development. These categories include five high school teachers, five teacher educators and two supervisors/school administrators. This research relied on cluster sampling to ensure participants were chosen from a variety of fields rather than a single grouping like teacher educators. This heterogeneous group provided different perspectives lending the study more depth than if only one group was utilized.

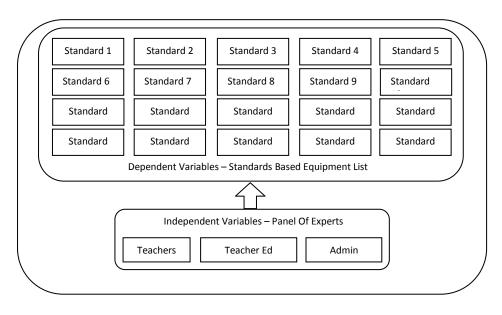
In order to validate the list, consultation was needed from a variety of sources to include the following; ITEEA professional staff, previous ITEEA presidents, board members, regional directors, and recommendations from this dissertation review committee. The *International Technology and Engineering Educator's Association* was

a significant source for the study since it represents the professional organization for technology, innovation, design, and engineering educators. (ITEA, 1996)

Linstone and Turoff (2002), stated the size of the expert group can vary, yet a group as small as 10-15 individuals, can produce good results. Brockoff's (1975) study of Delphi performance suggested that for forecasting questions, smaller groups were more accurate than larger groups. Twenty-three people comprised the initial list for this study as shown in Appendix B; of these people, five were selected for the teacher group, five for the teacher educator group, while two were chosen for the administrator/ supervisor group. A few other individuals were also suitable for the study, but were not chosen due to time limitations. Eleven additional members were chosen in the event a participant dropped out during the study.

Among the different groups, the following attributes are common, several participants were solely responsible for the development of a Technology Education program or programs or had a direct influence on the implementation of the program; finally, every individual listed had direct influences on curricular activities associated with technology education at the high school level. A detailed description of each participant is located in Appendix B.

Design and Instrumentation


A three round approach determined these components. Round one determined a categorical data set for later rounds. The survey allowed the participants to establish two data sets by standard (as defined by the Standards for Technological Literacy): the first listed equipment, tools, hardware and software; and the second data set outlined potential activities to augment the standards if a teacher would choose to do so.

Round two asked the participants to rank and further define the categories of equipment, tools, hardware and software from round one using a Likert scale. Based on descriptive statistics, each of the responses from round two were analyzed and the group mean and standard deviation was established for each question. The data for activities were categorized by standard for informational purposes.

The third round questionnaire was given to the panel with the mean score and standard deviation for each item. The panel reviewed the questions with the provided descriptive statistics, and then asked if they would like to change any responses. After the surveys were returned and additional analysis was computed to answer research question three.

The relationship of the dependent and independent variables is depicted in Figure 3.1. Using Analysis of Variance determined the difference between the three groups of experts and the ratings they provided.

Figure 3.1

Statement of Research Questions

- What machines, equipment, hardware, software and materials are agreed upon by experts to be essential components of a Standards Based Technology Education high school model program?
- 2. Can the Delphi panel establish a set of categorical components based on the following descriptors: essential items, moderately important items and non-essential items?
- 3. Are there significant differences between the agreement levels on the elements based on expert qualifications?

Collection of Data

Communication was established with each participant utilizing telephone and email correspondence. Each participant was initially contacted by telephone to personalize the invitation to participate. If telephone contact was unsuccessful, email correspondence was initiated to secure more participants. Once the panel members committed to participate, all subsequent correspondence was via email. This eliminated the need for the traditional mail system. If for any reason immediate communication was required, the telephone was used.

The round one questionnaire asked the participants to list the pieces of equipment and curricular materials needed to successfully teach technology education to meet the *Standards for Technological Literacy*. Responses from round one were entered into a Microsoft Excel spreadsheet and duplicate responses were deleted. The researcher carefully considered items required for each standard; however, duplication was unnecessary. For example, a table saw might have been listed under three separate standards in round one's data, but only listed once in the round two survey. A list of activities also provided by the participants, were entered into a spreadsheet by standard. Again, duplicate answers were deleted. This data was not analyzed, yet provides ancillary information for the teacher and could be utilized to teach the standards within the standardized technology education laboratory.

Round two listed the responses from the panel in round one allowing each participant to judge each item independently based on relevance. Each item was rated on a five-point Likert type scale with the following ratings: "unimportant". "of little importance", "moderately important", "important" and "very important". The responses were entered into a Microsoft Excel spreadsheet in order to calculate the mean and standard deviation for the panel's responses for each question.

Round three allowed the participants to analyze their given responses from round two with respect to the mean and standard deviation of the panel for each particular question. The statistical data was shared with participants to establish consensus among panel members. Each participant reviewed the question, compared their previous answer to the group, and made adjustments to their ranking if necessary to more closely align with the mean score.

Data Analysis

The responses of round one were collected, analyzed and combined into a questionnaire; on this questionnaire, the responses were distributed on a Likert scale. Each participant ranked the items on the questionnaire from *very important* or *unimportant*. One questionnaire item is depicted in Figure 3.2 and shows the item to be evaluated, the standards the item addressed, and the Likert answers they could choose.

Other descriptors used on the scale included *of little importance, moderately important* and *important*. This data was evaluated using descriptive statistical analysis. The mean and standard deviation were calculated for each question on the round two questionnaire. Figure 3.2

Scanner	Unimportant	Of Little Importance	Moderately Important	Important	Very Important
(9,10,11,12,14,15,16,18,19,20)					

The round three questionnaires were emailed to the participants and was very similar to the round two questionnaire. The round three questionnaires included the mean, standard deviation, and the participant's previous response. Additionally, each Likert ranking item was assigned a number value to assist in statistical analysis. A sample of one questionnaire item is depicted in Figure 3.3 showing the additional items placed on the questionnaire.

Figure 3.3

Scanner (9.10.11.12.14.15.16.18.19.20) GROUP MEAN 4.0YOUR RESPONSE 4STANDARD DEVIATION .85			
$_{\odot}$ C (1) Unimportant $_{\odot}$ C (2) Of Little Importance $_{\odot}$ C (3) Moderately Important	୍ତ (4) Important	\mathcal{O}	(5) Very Important

The participants completed the round three questionnaire, reflecting on their given answer in comparison to the mean and standard deviation of the group. Basic descriptive statistical analysis in Microsoft Excel established mean for each item based on participant responses.

After the participants returned the round three questionnaires, the results were analyzed using Microsoft Excel and SPSS software. The group consensus was calculated using the mean as the primary evaluation tool. The standard deviation provides the degree of consensus, for example, if the standard deviation was low, a stronger consensus was indicated. An Analysis of Variance (ANOVA) was used to determine any differences between the three expert groups.

Summary

The purpose of the researcher's analysis was to find consensus among the study's participants regarding what equipment, tools, hardware and software are needed in a standards-based Technology Education program with one instructor. The participant's used their expertise to identify the necessary equipment, tools, hardware, and software for teaching a standards-based technology education program; each expert also suggested curricular activities which would augment the facility. Participants ranked each item on a Likert scale and the results were analyzed using basic descriptive statistics to show differences in the mean for each item. In round three the group mean and standard deviation was shown on the survey next to each item to allow each participant to compare his or her given to the group mean; then based on standard deviation, the participant was asked to re-evaluate the item using the original Likert scale. If their answer was similar to the mean, a change was unnecessary. However, if a participant's answer was significantly different from the mean, the participant could review the standard deviation and consider changing their response to better conform to the group mean.

When comparing the final responses, the importance of each item was compared to the consensus of the group and the standard deviation. This comparison allowed items to be evaluated according to teaching necessity for a standards-based Technology Education program. For this study, any responses between 3.50 and 5.0 are considered vital to the program; responses of 2.5 to 3.49 are considered secondary; and responses of

0 to 2.49 are considered unnecessary for the success of a standards-based Technology Education program.

Further evaluation compared the means of the various groups using an Analysis of Variance (ANOVA). Analyzing the various group scores would indicate if significant differences exist in each group's perception of an item's importance.

CHAPTER 4

Results

Purpose of the Study

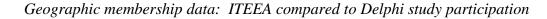
A three-round Delphi research technique was utilized to establish a consensus among three groups of professionals with expertise in facility design implementation; these experts determined the machines, tools, hardware and software are needed to teach a standards-based Technology Education program. The study was designed to answer three research questions related to equipping a model Technology Education facility. The study also determined if a statistical difference existed in the responses between the three selected expert groups. The three groups of professionals included:

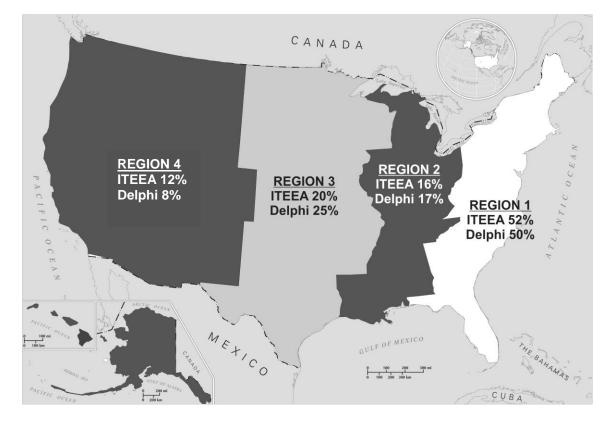
1) University professors (practitioners) responsible for preparing undergraduate and/or graduate students preparing to enter the teaching profession in the content area of Technology Education or a closely related field.

2) Administrators with experience in high school technology facility design and implementation.

3) High school technology teachers who have worked in exemplary programs, implemented and understand facility design, or expertise which would add to the quality of this study.

Delphi Study Participants


Experts were selected from the list of published contributors in the *Standards for Technological Literacy*; the contributors held both content expertise and knowledge of Technology Education (ITEA, 2000). Twelve names were selected from three separate categories. Each selected individual had a significant impact on Technology Education laboratory development during his or her career, or have unique qualifications which are beneficial to the development of this study. Five high school teachers, five teacher educators and two supervisor/school administrators were chosen for the study. Cluster sampling was chosen for this research to ensure participants were chosen from a variety of fields. Choosing participants from a variety of positions provided different perspectives giving more depth to the study. Of the twelve selected, every participant continued the process and completed all three surveys resulting in a 100% completion rate.


Demographic Data

The group of 12 experts provided input from 10 different states; including Florida, Illinois, Georgia, Indiana, Kansas, Missouri, New Jersey, Pennsylvania, Utah and Wisconsin. As many states participated in the study, a parallel representation of the International Technology and Engineering Educator's Association demographics was established (see Figure 4.1). The membership data have been shown in Table 4.1, and were listed in an August 2010 membership report from the International Technology and Engineering Educator's Association (ITEEA D, 2010). A detailed listing of the experts and their demographic data is found in Appendix B.

One of the 12 participants was female (8%); this percentage was slightly below the ITEEA membership report indicating 17% of the membership was female (ITEEA D, 2010). All members of the panel have taught or contributed to the educational field for at least 15 years.

Figure 4.1

Significance of the Study

This study will recommend equipment, tools, hardware and software for a standards-based Technology Education facility which may provide student the opportunity to achieve technological literacy. If program recommended by this study was implemented in every district in the United States, every high school student could potentially have the opportunity graduate high school with a basic understanding of how to assess, use and manage technology (ITEA, 2000). In other words, students would be given the opportunity to become good consumers of the vast technological knowledge, both now and in the future (National Academy of Engineering National Research Council, 2002). Additionally, students transferring from one school to another,

regardless of size or location, might have a similar Technology Education laboratory experience because the schools would have similar capabilities. School administrators will ideally gain a better understanding of the facility and activities teachers need to become technologically literate. Administrators would have the knowledge to implement the program within their respective districts (Lewis, 1999).

Design of the Study

Round one of the study was completed via email; the word document attachment is shown in Appendix C. The survey was open ended in nature and required each participant to list equipment, tools, hardware, software and activities needed to teach each of the 20 standards. The survey was designed to elicit unbiased input from the participants, and provided an honest opinions from each participant concerning requirements for the ideal facility. The data were returned via email and combined into a comprehensive Microsoft Excel spreadsheet listing each different item and the standard(s) the item addressed. The equipment, tools, hardware and software chart is found in Appendix C. The survey also asked the participants to list, by standard, activities for supplementing the standards-based program. Activities were not rated, rather, the expert recommendations are a resource for teachers as they implement a to standards-based facility. The full listing of activities is located in Appendix C.

Rounds two and three were conducted through the on-line survey website instrument SurveyMonkey.comtm. During round two, the participants were given an internet URL to a survey and each completed the survey as instructed in an email. The purpose of round two was to establish a mean and standard deviation for each piece of equipment, tool, hardware or software listed from round one; the means and standard

deviations were used in the round three survey. In the round three survey, the participants were shown the mean for each question allowing each individual to compare his or her answer to the group. The group standard deviation was provided to show each participants how spread of each response; and if the respondent choose, could change his or her response and move toward the mean. Each participant's data was submitted and tracked separately, yet combined for descriptive statistical analysis.

Data Collection Results

Results of Round One

The round one survey was emailed November 18, 2009 and the last survey was returned March 8, 2010. The purpose of the survey was to allow the participants the opportunity to list, by standard, equipment, tools, software and hardware needed to teach a standards-based Technology Education program in a school with one instructor. In Table 4.1, a selected example of one standard return shows the level of details provided by one participant. Due to the various levels of expertise, participants provided critical insight in areas of their knowledge or experience. For example, one participant recently developed a program in bio-technology and provided information specifically relating to Standard 15. Participants with experience in other areas provided similar input, adding to the database of information; in other cases, answers were not provided by a participant because he or she did not have adequate knowledge to contribute to the study on a particular standard.

Table 4.1

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES
Robotic Workcell	8" Bench Grinder	Computers w/Flat Panels,	Microsoft Office	On Demand Video -
(Pneumatics)	Air Compressor	DVD, 2 Gigs of RAM,	2007	Participants write,
Robotic Arm with	with Air Line and	Etc.	SolidWorks	shoot, and edit a video
Conveyer	Accessories		CamWorks	about social, economic,
Wind Tunnel	Shop Vacuum	HP Laser Jet Color	Adobe Photoshop,	and political effects of
Structural Stress	Swivel Base Vise	Network Printer	Dreamweaver and	technology.
Analyzer	Dust Collector		Flash	
Laser Engraver	(small)	Classroom Student Project	Solid Professor	A 1
Vinyl Cutter Laser Lab Equipment	Table Top Lathe Sears Portable	Server		And
Gears ID Kits	Hand Drill	Classroom Sound System		Electronic Research and
Work Bench	Sears Portable	Classicolii Soulid System		Experimentation -
Student Project Lockers	Circular Saw	Sony Camcorder		Participants research,
Student Notebook	Sears Portable			plan, design, and
Bookcase	Orbiter Sander	Sony Digital Camera with		construct an electronic
Textbook Case	Sears Portable Jig	Accessories		device. Projects are
Drafting Boards	Saw			evaluated on quality of
Student Chairs	Dremel Rotary	HDTV LCD 40in		research, ingenuity and
Dimensions 3D Printer	Tool			complexity of the
with Cleaning Station	Fluke Multi-meter	Student Response System		device, and
File Cabinets	Soldering Iron with			effectiveness of the exhibit display.
Universal Laser Engraver 30 Watt Min.	Accessories Digital Scale			exhibit display.
Tenco CNC Router	Sears Combo Tool			
20x16 Min Work Area	Ratchet set			
Basic Electricity and	(standard and			
Electronics	metric)			
Industrial Control	Sears Open end /			
Learning System	box end combo			
Materials and	wrench set(standard			
Processing Learning	and metric)			
Systems	Sears Screwdriver			
Mechanisms Learning	set			
Systems Pneumatics Learning	Sears Socket Set ¹ / ₄ , and 3/8 (standard			
Systems	and metric)			
Research and Design	Sears Table Top			
Learning Systems	Drill Press			
Robotics and	Sears Table Top			
Automation Learning	Combo Belt/Disk			
Station	Sander			
Industrial Control	Sears Table Top			
Learning Systems	Band Saw			
Student Workstations	Sears Table Top			
Response IR Student Pads	Scroll Saw Table Fan			
Pads Power and	Vacuum Wet-Dry 5			
Transportation	Gal. Tank			
Learning Systems	Assorted Hand			
Safety Glass Goggle	Tools			
Cabinet 50 Pairs	High Temp Low			
Storage Cabinet	Temp Glue Gun			
Flammable Liquid				
Bridge Building Video,				
Guide and Stock				
Catapult Learning System				
System C02 Race Track,				
Learning System and				
Stock				
Aerospace Engineering				
Learning System				
Civil Engineering				

STANDARD 4: Students will develop an understanding of the cultural, social, economic, and political effects of technology.

Learning System Environmental Learning System Graphics Learning System Mechanical Learning System Sustainable Energy Learning System Fuel Cell Learning System Simple Machine Learning System INCLINED PLANE Learning System Solar Vehicle Learning System Outdoor Spray Paint System Hand Drafting Instruments Starrett Micrometer and Caliper Lego Mind storm system Speed Radar Gun

After all participants returned the round one survey, a Microsoft Excel spreadsheet was designed to organize the various types of equipment, tools, hardware and software by standard and eliminate any duplication (see Appendix D). Nomenclature for each machine was not requested because schools would choose the specific make, model and vendor for an identified item. The participants were asked to give generic answers rather than specific answers, for example, a participant would list a table saw versus a specific brand and model like *Powermatic 66* Table Saw. Duplicate answers were combined and listed with identified standards as shown in Table 4.2.

Table 4.2

Sample equipment listing from Round 1

EQUIPMENT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3D Scanner Aerospace Engineering Learning									9	10	11	12		14	15	16		18	19	20
System				4		6														
Air Compressor with lines and accessories Alternative Energy Training Set (Solar, Wind, Hydroelectric, Fuel	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Cell, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Arbor Press	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Audio Trainer					5												17			

A similar spreadsheet shown in Appendix C was utilized for listing activities for teaching each standard. Duplicate answers were deleted in the final list; this list shows each activity and the standard(s) addressed. A variance existed on the amount of activity details provided by the participants; some provided very specific examples while others provided only a vague description of the activity. To save space in the document, a selected portion of the activity spreadsheet has been shown in Table 4.3. The information collected in the activities section was qualitative in nature and intended as reference material during facility development. This list provides 154 different activities, by standard, designed to support facility capabilities.

Since several curriculum models have already been established, like Engineering by Design (EbD), these activities provide supplemental information in supporting those curricula within a standards-based Technology Education facility.

Table 4.3

Sample activity listing from Round 1

ACTIVITIES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Preparing and Presenting Projects																				
(printed and oral)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Design - Market and Profit Project	1																		19	
Students will be assigned a specific																				
contemporary product to research																				
"backwards." Students are to develop a																				
timeline of development for the product																				
function, such as a cordless drill,																				
tracing its history back to the bow and																				
stick drill. Each student team will																				
develop an illustrated presentation and																				
report to be presented to the class.	1																			

Results of Round 2

Since the Round One data was not changed, but consolidated, the Round Two survey was shown to Drs. Michael Daugherty and Greg Belcher to establish validity. Delphi process experts recommend at least two people monitor the development of the round two instrument: one individual possessing expert knowledgeable in the field while the other needs familiarity but not expertise of the field studied (Linstone and Turoff, 2002). In this study, Dr. Daugherty posesses vast knowledge regarding Technology and Engineering Education, while Dr. Belcher's expertise is specific to Career and Technical Education. The entire second round survey is shown in Appendix F to save space within this section.

The Round Two survey was developed using a 5-point Likert scale with *1-Unimportant, 2-Of Little Importance, 3-Moderately Important, 4-Important and 5-Very Important.* The respondents were given the response options for each piece of equipment, tool, hardware or software; these options are depicted in the first two items shown on the survey in Figure 4.2. For informational purposes, the items were listed by the standards they correlate to with respect to round one. The standards are shown in parenthesis to save the participants time in looking up standards information. The participants were asked to use the online survey tool SurveyMonkeytm to select and submit their responses. The responses were collected from the participant and recorded into a Microsoft Excel spreadsheet.

Figure 4.2

1. Equipment

Below is a listing of the equipment which was collected from the Round 1 survey. Please select the appropriate response which indicates your perception of how important the piece of equipment is in a standards-based HS Technology Education lab. Please note that the numbers within the parenthesis indicate which standards were identified with that particular piece of equipment.

1. Scanner (9,10,11,12,14,15,16,18,19,20)

2. Aerospace Engineering Learning System (4,6)

O Unimportant

Of Little

Moderately Important C Important

Very Important

Results of Round 3

Round two data collected was entered into Microsoft Excel and basic descriptive statistics were run on each of the 178 items of the round two survey. This data sheet can be found in Appendix G. This data showed each respondent's answers for each item on the survey based on mean and standard deviation from round two; the descriptive statistics showed the new mean and standard deviation gathered in round three. To verify whether the data validated the study, additional statistics were calculated utilizing SSPS software to expose any statistical differences between the three categories of respondents. An Analysis of Variance was performed on all 178 items to see if there was a statistical difference in the responses of the three expert groups. This additional information validated the responses by indicating a consensus of the group, by category, on each response.

Data Analysis

The Round Two analysis determined the mean and distribution of each answer using descriptive statistics in a Microsoft Excel spreadsheet. These descriptive statistics were used as the foundational core for determining the tools, equipment, hardware and software necessary for a standards-based curriculum. Round one listed 178 items from the following categories:

Equipment	Tools	Software	<u>Hardware</u>
104	19	18	37

The mean and standard deviation were the only statistics analyzed in round two and were added to the round three survey for comparative purposes. All 178 items were analyzed; however, due to limited space in this document, only a sample of questions are included in this section. Questions 1-3 and 56-58 statistics for round two are shown in Table 4.4. Table 4.4

ID NUMBER	004	007	012	003	008	900	001	005	011	002	010	600	STATI	STICS
GROUP	Ρ	A	Т	Ρ	Т	Ρ	Ρ	Ρ	Т	A	Т	Т	MEAN	STANDARD DEVIATION
1 - Scanner 2 –	4	3	5	5	3	5	4	4	5	3	4	3	4.00	0.85
Aerospace LS	2	2	5	4	4	4	4	3	3	3	3	2	3.25	0.97
3 – Air Compressor	4	3	5	5	5	5	4	5	5	2	4	4	4.25	0.97
56 – Metal Lathe	4	2	5	3	4	2	4	5	2	2	2	4	3.25	1.22
57 – Metal Mill	3	2	5	3	4	2	4	4	3	2	2	4	3.17	1.03
58 – Metal Shear/Roll	3	4	5	1	4	2	4	5	3	2	2	4	3.25	1.29

Round three responses provided the information needed for two key analyses. The first used descriptive statistics to determine the specific equipment, tools, hardware and software needed to teach a standards-based curriculum. The second used an Analysis of Variance to determine any statistical differences between the groups of respondents.

Descriptive analysis of the first three questions and questions 56-58 of round three are shown in Table 4.5. This example when compared to the data in Table 4.4 from Round Two shows the difference in the mean and also shows the standard deviation gathered from each survey. The results indicate the Delphi process worked according to definition because the group moved toward the mean. The final result was a consensus on the equipment, tools, hardware and software needed for a standards-based Technology Education facility.

Table 4.5

ID NUMBER	007	002	001	003	004	006	005	012	011	008	010	600	STAT	
GROUP QUESTION	A	A	Ρ	Ρ	Ρ	Ρ	Ρ	т	т	т	т	т	MEAN	STANDARD DEVIATION
QUESTION														E SI
1 - Scanner	4	4	4	4	4	5	4	5	4	4	4	3	4.08	0.51
2 – Aerospace LS	3	3	4	3	3	4	3	4	3	3	3	2	3.17	0.58
3 – Air Compressor	4	4	4	5	4	5	5	5	5	4	4	4	4.42	0.51
56 – Metal Lathe	3	3	4	3	3	2	3	5	2	4	2	4	3.17	0.94
57 – Metal Mill	3	3	4	4	3	2	3	5	3	4	2	4	3.33	0.89
58 – Metal Shear/Roll	3	3	4	2	3	2	4	5	3	3	2	4	3.17	0.94

The descriptive statistics from round three were evaluated and an acceptable standard deviation established for discriminating the agreement level of the participants. A standard deviation (σ) of >.75 established a basis for determining the agreement level based on the review of data in Appendix J. For instance, in Table 4-7, questions 1-3 indicate the survey responses from each participant are fairly consistent with an occasional outlier. A highlighted example of an outlier is shown in question 2 of Table 4.5.

When the standard deviation exceeds σ .75, the data set is more diverse; this diversity shows the response is inconsistent and the participants did not find agreement on that particular question. Using σ >.75, categorizing the data was accomplished using the scale shown in Figure 4.3. The data in Table 4.5 shows the final group mean for each item is not a whole number; however, the mean will fall within one of the scales in Figure 4.3. Because the survey instrument was based on a scale from one to five, the researcher

utilized a range of one or one-half on each side of the given number. This explains why a measurement of 1 to 1.49 would score a one, while a score of 1.50 to 2.49 would score a two. The score of five would have a range of one-half because the scale stops at five. Figure 4.3

1	Of Little Importance 1.50-2.49	3	Important 3.50-4.49	5
Unimportant 1.00-1.49	2	Moderately Important 2.50-3.49	4	Very Important 4.50-5.00

In Figure 4.3 the data were categorized into pre-determined groups. Questions having a mean of four or five were considered essential to equipping a standards-based Technology Education facility. Questions assigned a mean of three were considered secondary or moderately important, but not essential. More practically speaking, if funding allowed, these could be added to the facility and positively add to the program, but are not crucial to the program or necessary to teach the curriculum. Questions assigned a one or two were considered items purchased if funding would allow, not necessary to teach the standards. These non-essential items would have specific purposes for specific projects or objectives, but the outcomes can also be achieved in other ways, with other equipment, tools, hardware or software. Items having a σ <.75 were evaluated on an individual basis to determine the reason for the higher standard deviation. If the outliers contributed to the higher standard deviation, the contribution will be noted and an appropriate recommendation was made.

Based on the data from Round Three using a σ >.75, the following items in Table 4.6 were considered essential for a standards-based technology education facility. The mean for this category had to measure 3.5 or greater.

Table 4.6

											1	1	1								Γ
	STANDARD	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
ITEM- SURVEY #	MEAN																				
3D Arch Building Design - 143	4.33						х														х
3D CAD - 144	4.75		х		х		х		х	х	х	х	х	х	х	х	х	х		х	
5HP Dust Coll Vacuums -26	4.75	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Air Compressor -3	4.42	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Alt Energy Training Set - 4	4.00	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Animation Software - 146	3.58																	х			
Applied Science Tools - 105	3.92		х	х	х		х	х	х	х	х	х	х		х	х	х				
Audio Edit/ Prod. Sftwr - 147	3.83					х												х			
Band Saw - 8	4.42	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Belt/Disc Sander - 9	4.33	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Bench Grinder 8" - 10	4.00	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Biotech Gen Lab Equip - 107	3.92															х					
Bridge Design Software - 149	4.00																		х		х
Bridge/ Tower Tester - 15	4.08	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
CAM Software - 151	4.08																			х	
Chem Analysis Software - 152	3.83															х					
CIM/FMS Trainer - 18	3.83								х	х	х	х	х	х			х		х	х	
Civil Engineering LS - 19	3.50				х		х					х								х	
Classroom Furniture - 20	4.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Classrm Project Server -124	4.25	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Classroom/Lab Sound Sys - 125	3.92	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
CNC Metal Lathe & Tooling - 21	4.00	x	х	х	x	x	x	х	х	х	х	х	х	x	x	х	х	x	х	х	х
CNC Metal Mill & Tooling - 22	4.08	x	х	х	x	x	х	х	х	х	х	х	х	x	x	х	х	x	х	х	х
Color Laser Printer - 126	4.33	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Construction Tools - 108	3.50	х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Desktop Pub Software - 157	4.42	х	х	х	Х	Х	х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х
Digital Video Recorder - 129	4.25	х	х	х	Х	Х	х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х
Drill Press - 25	4.50	х	х	х	Х	Х	Х	х	х	х	х	х	х	х	х	Х	х	х	х	х	х
Elec Circuit Software - 159	4.08																х				
Elect Equip w oscilloscope - 28	4.50					Х	х					х	х				х		х		х

Elect Present Board - 130	4.17	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Electronics Tools - 109	4.00	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Environment LS - 29	3.83				х		х					х									
Fabrication Msmt Tools 110	4.75	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Fastener Supply - 111	4.58	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Filing System/ Cabinets - 30	4.25				х																
Flammable Cabinet	4.67				х		х														
Floor Plan Software - 161	3.58		х	х	х			х	х	х	х	х	х	х	х	х			х		
Game Dev Software - 153	3.83		х	х	х			х	х	х	х	х	х	х	х	х			х		
Gears ID Kits or Equiv -34	4.00				х		х			х			х		х	х			х		
General Chem Tools - 112	3.92	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
GPS Units - 132	3.92																		х		
Graphics LS - 35	3.92				х		х						x								
Greenhouse for Biotech/Fuel -36	3.58															х					
HDTV 42" min - 131	4.00	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	х	х
Industrial Controls	3.75				х		х					х	x				х		х		х
LS - 38 Injection Molder - 39	4.08	х	х	х	X	х	x	х	х	х	х	x	x	х	х	х	x	х	x	х	x
Instructor Laptop	4.83	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	х	х
Comp - 133 Internet Connection	5.00	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	х	х
-162 Land Based Auto	3.50																		х		
Cntrl - 154 Laptop Comp	4.08	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	х	х
Set/Cart - 134 Laser	4.75	x	x	x	X	x	x	x	x	X	X	x	x	X	x	x	x	X	x	X	x
Printer - 135 Laser Lab	3.67				x		x														
Equip - 45 Lego Mindstorms -	3.92				x		x						x				x		x	х	
47 Material Stock	4.67	х	х	х	х	х	х	x	х	х	х	х	x	х	х	х	x	х	x	х	х
(various) - 49 Measuring Devices	4.75	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	х	х
- 114 Mechanical	3.92				х		х					х	x				х		x	х	
Learning Sys - 51 Mechatronics	4.08				х		х		х	х	х	х	x	х		х	х		х	х	
Learning Sys - 52 Microscope with	3.58															x					
video - 60 Min 30wLaser	4.17	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х
Engraver - 44 Misc Fab Power	4.17	X	X	X	X	x	x	x	X	X	X	x	x	X	X	X	x	X	X	X	x
Tools - 117 Misc Tools Fabrication- 116	4.58	X	X	X	X	X	X	X	Х	Х	X	X	x	X	X	X	X	X	X	Х	x
Mon Sftwr Land	3.50																		х		
Base Trns -155 MS Office Sftwr (agwir) 162	4.75	х	х	х	х	x	х	х	х	х	х	x	x	х	х	х	x	х	x	х	х
(equiv) - 163 Multisander	3.83	X	X	x	X	x	x	x	x	X	X	x	x	X	X	X	x	X	x	X	x
Oscillating - 62 Office Equipment -	4.67	x	x	x	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
119 Photoshop or equiv	4.07				x		x	x	x	x	x		x	x	x	x	x	x	x		
- 164 Photovoltaic Cell	4.42 3.67																x				
LS - 64 Plastic	3.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х
Tools - 120 Plastics	3.67	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Oven - 66 PLC		^	^	^	^				~	~	^			^	^	^		^	x	~	~
Software - 156	4.08																		^		L

Pneumatic Tools - 121	3.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Pneumatic/ Hydraulic LS - 68	3.92				х		х					х	х				х		х		
Power Miter Saw - 70	4.58	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x
Power/ Energy/ Trans LS - 71	3.75				х		х					х	х				х		х		
Project Storage System - 89	4.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Projector - 136	4.67	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
R&D LS -74	3.50				х		х						х				х		х		
Rapid Prototype 8x8x10 Min - 73	4.33				х		х		х	х	х	х	х		х	х	х		х	х	х
Robot Control Software - 166	3.75		х	х	х			х	х	х	х	х	х	х	х	х			х		
Robotics Workcell -75	3.92				х		х			х	х	х	х	х			х		х	х	
Safety Equipment - 122	4.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Scanner - 1	4.08									х	х	х	х		х	х	х		х	х	х
Scanner -137	4.33	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Scroll Saw - 82	4.08	х	х	х						х	х	х	х		х	х	х	х	х	х	х
Sound Level Meter - 123	3.92															х					
Strip Heater - 90	3.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Structural Tester - 91	4.00				х		х				х									х	х
Table Saw - 93	4.25	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Vacuum/Therm Former - 95	3.83	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Vernier Software - 173	3.67																х				
Video Camcordr - 139	4.17	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Video Editing Software - 174	4.33	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Vise System - 98	4.50				х					х	х	х	х		х	х	х		х	х	х
Web Design Software - 178	3.83				х	Х	х	х	х	х	х		х	х	х	х		х	х		
White Board Software - 160	3.75	х	х	х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Wide Format Printer - 140	4.00	х	х	х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Wind Tunnel - 102	4.08				х		х			Х	Х	х	х								
Work Benches - 104	4.67				х		х			х	х	х	х	х	х	х	х	х	х	х	х

Note: Table 4.6 is organized alphabetically

The following items in Table 4.7 were considered moderately important items for a standards-based Technology Education facility. These items had a mean between 2.5 and 3.49.

Table 4.7

NEAN N																						
20 CAD - 142 0.67 X		STANDAR D	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
20 CAD - 142 0.67 X		MEAN																				
Larming Sys-23 O.58 Image of the system of	2D CAD - 142		х	х	х					х	х	х	х	х	х	х	х	х	х		х	
Ar Oually 145 0.45 X		0.58				х		х														
Arbor Press -5 0.51 x </td <td>Air Quality Analysis Software -</td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Air Quality Analysis Software -																х					
Aado Trainer - 6 0.60 .			х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Anto Pender ID 0.39 N	Audio Trainer - 6										_								х			
Barcocken O.S.8 I <																					х	
Barcodo Scone (equiv) -100 0.62 I <thi< td=""><td>Barcode Gen</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>х</td><td></td></thi<>	Barcode Gen																				х	
BMS Software -150 0.51 I	Barcode Scan																				х	
Blower - 11 0.45 I	BIM																					х
Box and Pun Brake -13 0.67 x																				х		
Buffing: Charged: Learning Sys-17 0.60 x			х	х	х	х	х	x	х	Х	х	х	х	х	х	х	х	х	х	х	х	х
Catapul Learning Sys 17 0.51 x </td <td>Buffing</td> <td></td> <td>х</td>	Buffing		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Computer Burnogy Equip -24 0.39 N	Catapult					х		х														
Link	Computer Metrology																				x	
EKG Analysis Software - 158 0.51 v																		х				
Finess Equipment -69 0.72 x <td></td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td></td>																	х					
Hand Draft Tools - 113 0.75 N X<	Fitness Equipment				х	х	х	х	х						х	х						
Int & Ext Cobust Engine -41 0.43	Hand Draft Tools -					х		х	х	х	х		х	х			х	х	х		х	х
Jointer - 42 0.51 I <thi< th=""> I I</thi<>	Int & Ext Cobust																	х				
Lab Pro Waste Mgmt Sys -43 0.39											х	х	х	х		х	х	х		х	х	
Laser Survey Equip 0.29 N X <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td></td>											-						х					
Medical Equipment -115 0.62 x<	Laser Survey Equip																					х
MIG Welder - 61 0.29 X	Medical Equipment			х	х	х		х	x	х	х	х	х	х		х	х					
software - 165 0.58 0			х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Plasma Cut/ Route Sys - 65 0.43 Image: system of the syst		0.58																			х	
Radial Arm Saw -72 0.51 x <td>Plasma Cut/ Route</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>х</td> <td>х</td> <td>х</td> <td>х</td> <td></td> <td>х</td> <td>х</td> <td>х</td> <td></td> <td>х</td> <td>х</td> <td>х</td>	Plasma Cut/ Route										х	х	х	х		х	х	х		х	х	х
Rokenbok Integ Trans Syst - 40 0.39 X	Radial Arm																			х	х	
Rotation Molder w/molds - 77 0.29 I X </td <td>Rokenbok Integ</td> <td></td> <td>х</td>	Rokenbok Integ		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Scale Trans Vehicles - 80 0.75 X	Rotation Molder					х		х		х	х	х	х	х		х	х	х		х	х	х
Screen Print equipment - 81 0.67 X <th< td=""><td>Scale Trans</td><td></td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>x</td><td>Х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td><td>х</td></th<>	Scale Trans		х	х	х	х	х	х	x	Х	х	х	х	х	х	х	х	х	х	х	х	х
Sim City Software - 167 0.62 X X X X Sim Farm Software - 168 0.51 X Image: Constraint of the second s	Screen Print																		х			
Sim Farm Software - 168 0.51 X Image: Constraint of the second secon	Sim City Software					х																х
	Sim Farm Software						х															
Small Gas Engines 0.43 X X X X X X X X X X X X X X X X X X X	Small Gas Engines		х	х	х	х		х	х	x	х	х	х	х	х	х	х	х	х	х	х	х
Smart Draw Software - 170 0.39 X	Smart Draw			х	х	х			х	x	х	х	х	х	х	х	х			х		

Soil pH Software - 171	0.60															х					
Solar Vehicle Learning Sys - 85	0.62				х								х						х		
Speed Radar Gun - 86	0.43				х		х			x	х	х	х		х		х	х	х	х	
Stat Process Software - 172	0.58															х					
Student Resp Syst - 138	0.45	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Tachometer No Contact - 118	0.51																		х		
Vertical Hole Punch - 96	0.62	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Watercraft Test Track 20' - 99	0.49								х	х	х	х	х	х					х		
Waterjet Cutting System - 100	0.52									х	х	х	х		х	х	х		х	х	х
Waterjet Software - 176	0.51																			х	
Web 2.0 Tools Free - 177	0.67		х	х	х			х	х	х	х	х	х	х	х	х			х		
Weld/cutOxy/ Acetylene - 63	0.74	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Wireless Mics - 141	0.39	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Wood Lathe -103	0.75	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х

Note: Table is organized alphabetically

The following items found in Table 4.8 were considered non-essential items for a standards-based Technology Education facility. These items would only be purchased if funding allowed and are unnecessary for teaching the standards. These items had a measured mean between 1.0 and 2.49.

Table 4.8

	STANDARD	1	2	3	7	2	9	L	8	6	10	11	12	13	71	15	16	17	18	19	20
	MEAN																				
Book Binding System - 22	2.33				х		х														
Braille Stylus, Slate, Etc - 14	2.00	х	х	х	Х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Lithography Equipment - 48	2.08																	х			
Metal Forging Furnace - 59	2.33																			х	

Experts did not reach consensus on the remaining items; these items had a standard deviation greater than σ >.75, including questions 23, 32, 22, 37, 50, 53, 54, 55, 56, 57, 58, 67, 76, 78, 79, 83, 87, 88, 92, 94, 97, 101, 127, 128, 169 and 179. The

responses from the participants on these questions were varied, indicating selections with a spread exceeding two numbers on the Likert scale and consensus was not reached. During the evaluation of data, the experts established by category, a list of equipment, tools, hardware and software needed to teach a standards-based Technology Education program.

Research question number three asked if there were any significant differences between the agreement levels for each item based on expert qualifications. The researcher conducted an Analysis of Variance (ANOVA) and found no significant difference between administrators, teachers and teacher educator groups. A significance (alpha) value of α .05 was used to conduct the analysis. The results of the analysis are found in Appendix K. The consensus is a direct result of the correct application of the Delphi study; the process is specifically designed to develop consensus between expert groups, in this study is based on the group mean. Because no significant differences between the expert groups, an additional Post-hoc analysis was deemed unnecessary.

Chapter Summary

The purpose of this study was to determine the equipment, tools, hardware and software is needed to teach a standards-based Technology Education program in a 3,000 square foot facility with one teacher. The participants in this study consisted of five high school classroom teachers, five teacher educators/practitioners and three school administrators. All participants were chosen based on several criteria; they possess valuable high school teaching experience, have experience with the *Standards for Technological Literacy*, or have information specifically contributing to this study.

Establishing the equipment, tools, hardware and software needed in a Technology Education facility was accomplished using a three round modified Delphi study. Round one established a standards-based listing of equipment, tools, hardware and software through an open-ended questionnaire. The participants listed, by standard, what they believed necessary for outfitting a Technology Education laboratory. The participants submitted 154 different activities, by standard, to be used in the facility to teach technological literacy. These activities provide supplemental information only and were not subjected to any statistical analysis. The participants listed 178 items necessary for equipping a facility. Of these items, 104 directly related to equipment needs, 19 identified tooling needs, 18 were related to hardware and 37 listed software needs.

During round two the participants rated each of the 178 items based on a 5 point anchored Likert scale using an on-line survey instrument. The participants could chose whether the item was *1*) *unimportant*, *2*) *of little importance*, *3*) *moderately important*, *4*) *important or 5*) *very important*. The responses were entered in a Microsoft Excel spreadsheet and the group mean and standard deviation for each item was calculated.

Round three allowed the participants to reevaluate their given response based on the group mean and standard deviation, displayed by each item, using the same on-line survey instrument. The purpose of round three was to move the group toward consensus using the group mean. The participant was allowed to alter their response toward the mean or leave it unchanged if he or she felt the original answer was accurate. The responses were then subjected to two separate analyses. Descriptive statistics were calculated to establish a new group mean and standard deviation for each item.

In reviewing the data, a standard deviation of σ >.75 was used to determining if the item should be accepted or not. If the standard deviation was greater than σ <.75, then too much disagreement existed around the item. Subsequently, 99 items were measured as *important/very important*, or essential elements to the program; 49 items were considered *moderately important* or of secondary importance; and only 4 items were listed as *unimportant* or *of little importance*. Additionally, 26 items had a standard deviation greater than .75 and were not included in the suggested listing.

To ensure the data was valid, an Analysis of Variance (ANOVA) was conducted to determine any statistical differences between the expert groups of teachers, practitioners and administrators. Using a significance value of α .05, the analysis showed no statistical difference between the three groups. This observation confirmed the intent of the Delphi study to establish a predetermined level of agreement and/or assimilation of data.

CHAPTER 5

Conclusions and Recommendations

Summary

The purpose of this research was to establish the essential lab components needed to teach a standards-based Technology Education program at the high school level with one teacher. Additionally, the research suggested types of activities which could be utilized in such a facility. Through a modified Delphi study, the research established the equipment, tools, hardware and software a contemporary Technology Education lab should ideally contain as per the expert opinion of teachers in the field, teacher educators and administrators with direct roles in program development.

Historically, Technology Education can be traced to the early 1800s, with the development of the Russian System. Other systems — like the Swedish Sloyd system, the Arts and Crafts Movement, and the Industrial Arts eras, — significantly influenced today's Technology Education model (Barlow, 1967). Despite a traceable history, Technology Education lacks an identity for several reasons. First, most people still identify with "shop" class in a high school, but when asked about the Technology Education lab or Technology Education, much confusion exists (Shields and Harris, 2007). This confusion is better understood through two Gallup polls conducted by the International Technology and Engineering Educator's Association; both polls in 2002 and 2004 indicated that the majority of people believe Americans should be technologically literate, but cannot clearly define the term. (Rose and Dugger, 2002; Rose, Gallup, Dugger and Starkweather, 2004) The poll showed most associate the term technologically

literate with computers instead of the ability to use, manage, assess and understand all forms of technology as indicated by the ITEEA (ITEA, 2000).

In 2000, the ITEA released the *Standards for Technological Literacy* or STLs. These standards provided the framework for technological literacy. In 1997, the International Technology Education Association implemented the complete Engineering by Design (EbD) curriculum model and provided the foundation of instruction for public education (ITEA, 2008). A missing component was providing a facility model capable of teaching the EbD curriculum and ultimately the standards and therefore technological literacy. Although the association released the Facilities Planning Guide in 2010 and provided a basic model for Technology Education, it lacked statistical data to reinforce the proposal. This document will provide an integral piece of the puzzle for Technology Education: the statistical support for equipping a standards-based technology education facility.

Findings and Recommendations

The purpose of this study was to determine the equipment, tools, hardware and software are needed to teach a standards-based Technology Education program at the high school level having one teacher. The study was guided by the following research questions:

 What machines, equipment, hardware, software and materials are agreed upon by experts to be essential components of a Standards Based Technology Education high school model program?

- 2. Can the Delphi panel establish a set of categorical components based on the following descriptors: essential items, moderately important items and nonessential items?
- 3. Are there significant differences between the agreement levels on the elements based on expert qualifications?

The following conclusions and recommendations directly stem from the results of this research. For clarity, all conclusions are based on findings from the data provided by the Delphi panel and recommendations are derived from those conclusions as well. The conclusions for each research question will be addressed within this chapter.

The conclusions for the first research question are based on the standard deviation derived in the descriptive statistics in round three. When evaluating the data, a natural break occurred at the standard deviation of σ .75. Any scores below σ <.75 indicated relative agreement on the item; a finding σ >.75 indicated the panel did not agree on the item. Disagreement was typically apparent in a spread of 3 or more on the Likert scale with each Likert category having at least two responses. The researcher confidently asserts the natural break of σ .75 is a reasonable delineation of agreement versus disagreement.

Essential Lab Requirement Findings

Based on the findings in round three data, the final conclusions were established based on the items considered "essential" for the model Technology Education facility. The Delphi panel participants suggested 178 possible types of equipment, tools, hardware and software to use in a standards-based Technology Education program. The findings indicated 99 of the 178 items were considered essential items in a standards-based

facility. To determine whether an item was essential or not, the Likert scale readings were utilized. If an item scored at or above a 3.5 on the Likert scale the item was considered an essential item for the Technology Education facility.

Essential Lab Requirement Recommendations

Based on the conclusions listed above, the following recommendations define the equipment, tools, hardware and software are essential for a standards-based Technology Education program. Table 4.9 indicated all standards could be taught using the items found in Table 5.1.

Table 5.1

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE
Air Compressor	Applied Science Tools	Classroom/	3D Arch Building
		Lab Sound System	Design
Alternative Energy	Biotech Gen Lab Equip	Classroom Project	3D CAD
Training Set		Server	
Band Saw	Construction Tools	Color Laser Printer	Animation Software
Belt/Disc Sander	Electronics Tools	Digital Video Recorder	Audio Edit/ Prod.
		-	Software
Bench Grinder 8"	Fabrication	Electronic Presentation	Bridge Design
	Measurement Tools	Board	Software
Bridge/Tower Tester	Fastener Supply	42" (min) HDTV	CAM Software
CIM/FMS Trainer	General Chemistry	GPS Units	Chemistry Analysis
	Tools		Software
Civil Engineering	Measuring Devices	Instructor Laptop Comp	Game Development
Learning System	-		Software
Classroom Furniture	Miscellaneous	Laptop Comp Set/Cart	Land Based
	Fabrication Tools		Automobile Control
CNC Metal Lathe &	Miscellaneous	Laser Printer	Monitoring Software
Tooling	Fabrication Power Tools		Land Base
			Transportation
CNC Metal Mill &	Office Equipment	Projector	PLC Software
Tooling		-	
Drill Press	Plastic Tools	Scanner	Desktop Publication
			Software
5HP Dust Collection	Pneumatic Tools	Video Camcorders	Electricity/Electronic
with Shop Vacuums			Circuit Software
Electronic Equipment	Safety Equipment	Wide Format Printer	White Board Software
with oscilloscope			
Environment Learning	Sound Level Meter		Floor Plan Software
System			
Filing System/Cabinets			Internet Connection

Technology Education Lab Essential Elements

Flammable Cabinet

Gears ID Kits (or Equiv) Graphics Learning System Greenhouse for Biotech/BioFuel **Industrial Controls** Learning System Injection Molder Laser Engraver Minimum 30 watt Laser Lab Equipment Lego Mindstorms Material Stock (various) Mechanical Learning System Mechatronics Learning System Microscope with video capabilities Multisander Oscillating Photovoltaic Cell Learning System Plastics Oven Pneumatic/ Hydraulic Learning System Power Miter Saw Power/ Energy & Transportation Learning System Project Storage System **Rapid Prototype** (8x8x10 Min) Research and **Development Learning** System **Robotics Workcell** Scanner Scroll Saw Strip Heater Structural Tester Table Saw Vacuum/ Thermo Former Vise System Wind Tunnel Work Benches

MS Office Software (or equiv) Photoshop (or equiv) Robot Control Software Vernier Software

Video Editing Software Web Design Software

Moderately Important Lab Requirement Findings

Based on the findings in round three data, the final conclusions were established according to the items considered secondary items for a Technology Education facility. Of the 178 different types of equipment, tools, hardware and software identified by the Delphi panel, 49 were agreed upon as secondary to equipping a standards-based facility. These items were deemed moderately important and scored between 2.5 and 3.49 on the Likert scale; this score indicates the items were non-essential for a standards-based Technology Education facility, but could compliment program if funding allowed.

Moderately Important Lab Requirement Recommendations

Based on the conclusions listed previously, the following recommendations define the equipment, tools, hardware and software considered moderately important items in a standards-based Technology Education program if funding allows. These items scored moderately important and could enhance to the facility and curriculum if funding allowed, yet not critical to teaching the standards-based curriculum. These items have been listed in Table 5.2.

Table 5.2

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE
Aerospace Learning	Barcode Scanner (or	Student Response	2D CAD
System	equiv)	System	
Arbor Press	Hand Draft Tools	Wireless Microphones	Air Quality Analysis
		_	Software
Audio Trainer	Medical Equipment		Barcode Gen Software
Auto Product	Non Contact		BIM Software
Identification System	Tachometer		
Blower			EKG Analysis Software
Box and Pan Brake			Plant layout software
Buffing Wheel			Sim City Software
Catapult Learning			Sim Farm Software
System			
Computer Metrology			Smart Draw Software

Technology Education Lab Moderately Important Elements

Equipment Dynamometer **Rokenbok Integrated** Transportation System Internal & External **Combustion Engine** Jointer Lab Pro Waste Management System Laser Survey Equipment MIG Welder Weld/cut Oxy/Acetylene Plasma Cut and Routing System Fitness Equipment Radial Arm Saw **Rotational Molder** w/molds Scale Transportation Vehicles Screen Printing equipment Small Gas Engines Solar Vehicle Learning System Speed Radar Gun Vertical Hole Punch Watercraft Testing Track 20' Minimum Waterjet Cutting System Wood Lathe

Soil pH Software Stat Process Software

Waterjet Software

Web 2.0 Tools Free

Non-Essential Lab Requirement Findings

Based on the findings in round three data, the final conclusions established items considered unimportant or non-essential items for a Technology Education facility. Of the 178 different types of equipment, tools, hardware and software identified by the Delphi panel, only four were found to be unimportant for a standards-based facility. These items were deemed to be of *little importance* or *not important* and scored between 0 and 2.49 on the Likert scale; this low score indicates the items not essential for a standards-based Technology Education facility.

Non-Essential Lab Requirement Recommendations

Based on the findings listed above, the following recommendations are given for defining what equipment, tools, hardware, and software are unimportant items or non-essential items for a standards-based Technology Education program. The items listed in Figure 5.3 scored *of little importance* or *unimportant* on the Likert scale and would not contribute the quality of the program or curriculum.

Table 5.3

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE
Book Binding System			
Braille Stylus, Slate, and			
Practice Cell			
Lithography Equipment			
Metal Forging Furnace			

Non-Essential Technology Education Lab Elements

Items of Significant Disagreement Conclusions

Several items in round three showed a standard deviation greater than σ .75 indicating the panel did not agree on the items (see Table 5.4). The researcher confidently asserts a standard deviation greater than σ .75 provides reasonable assurance of disagreement and indicates several panel members felt strongly enough about the item to resist adjusting their answer to correlate with the mean. Several items contained outliers one or two people separated from the majority of the sample and skewed the data. The items are noted in bold in Table 5.4. Because some items scored significantly higher than others, the outliers noted in bold within the table were removed when recalculating the mean and standard deviation. The adjusted statistics are shown in Table 5.4.

Figure 5.4

ID NUMBER	007	002	001	003	004	900	005	012	011	008	010	600	_	STATIS		
GROUP	А	А	Р	Р	Р	Р	Р	Т	Т	Т	Т	Т	Original Mean	Original SD	Adjusted Mean	Adineted
QUESTION													Origi	Ő	Adjus	Ā
23 – CO2													Ũ		4	
Racecar Track with Supplies	5	3	3	3	4	4	3	5	3	4	3	3	3.58	0.79	3.58	
32 – Fluid Power																
Training System	4	3	4	4	3	4	3	5	4	4	4	2	3.67	0.78	3.7	
33 – Fuel Cell	-		-	-				U		-		-				
Learning System 37 –	4	3	4	4	3	4	3	5	2	4	4	3	3.58	0.79	3.60	
Hydropoincs/ Aquaponics																
Equipment with Supplies	3	3	4	3	5	3	3	5	3	4	3	3	3.50	0.80	3.50	
50 – Materials and Processes	5	0	•	U	U	0	0	U	0	•	0	U	0.00	0.00	0.00	
Learning	4	4	4	5	4	3	4	5	4	4	3	2	3.83	0.83	4.00	
System 53 – Metal																
Brake 54 – Metal	3	3	4	3	3	3	4	5	2	3	2	4	3.25	0.87	3.09	
Cut-off Saw 55 – Metal	3	3	3	2	3	3	3	5	2	3	3	4	3.08	0.79	2.80	
Horizontal Band Saw	3	3	3	2	3	3	3	5	2	3	2	4	3.00	0.85	2.70	
56 – Metal Lathe 57 – Metal	3	3	4	3	3	2	3	5	2	4	2	4	3.17	0.94	3.00	
Milling machine	3	3	4	4	3	2	3	5	3	4	2	4	3.33	0.89	3.18	
58 – Metal Shear/Roll	3	3	4	2	3	2	4	5	3	3	2	4	3.17	0.94	3.00	
67 – PLC Sensor																
Application Trainer	4	3	4	4	3	4	4	5	3	4	3	2	3.58	0.79	3.60	
76 – Roll	т	5	т	т	5	т	т	5	5	т	5	2	5.50	0.79	5.00	
Forming Machine	1	3	3	3	3	2	3	5	2	3	2	3	2.75	0.97	2.70	
78 – Router Table/Shaper	2	3	4	4	4	4	4	5	3	4	3	3	3.58	0.79	3.60	
79 – Ready To Fly Planes	3	3	3	3	3	2	2	5	3	3	2	2	2.83	0.83	2.64	
83 – Simple Machine Learning																
System 87 – Spot/	2	3	4	4	4	4	4	5	3	4	4	2	3.58	0.90	3.45	
Resistance Welder	3	3	4	4	3	3	4	5	3	3	2	3	3.33	0.78	3.30	
88 – Spray Booth																
Portable 92 -	4	3	4	4	4	2	4	5	4	4	3	3	3.67	0.78	3.70	
Sustainable Energy																
Learning System	4	4	4	4	4	4	3	5	3	4	3	2	3.67	0.78	3.70	
94 – Thickness	2	2	2	2	A	2	2	-	2	2	2	2	2.00	0.05	2.02	
Planer 97 – Vinyl	3	3	3	2	4	3	3	5	2	3	2	3	3.00	0.85	2.82	
Cutter 101 – Wind	3	3	4	3	3	3	4	5	4	3	4	2	3.42	0.79	3.40	
Generation Experiment	3	3	3	4	4	4	3	5	3	4	3	2	3.42	0.79	3.40	

System																
127 – Desktop Computers with Flatscreen Monitors 128 – Digital Cameras with Tripods and Portable	4	5	4	5	5	5	5	5	5	5	5	2	4.58	0.90	4.82	0.40
Lighting System 169 –	4	4	4	4	4	4	4	5	5	4	5	2	4.08	0.79	4.27	0.47
Sketchup from Google 175 – Waterjet	4	2	3	4	4	4	3	5	4	4	3	4	3.67	0.78	3.70	0.48
Software	2	4	4	4	4	4	4	4	4	4	2	3	3.58	0.79	3.58	0.79

Items of Significant Disagreement Recommendations

In reviewing the data shown in Table 5.3, the researcher recommends the

following recommendations be implemented in future research on this topic.

1) An additional round be conducted on these items to try to establish a more

concise mean.

2) The following items categorized based on the adjusted means and the reader

understands the recommendations are adjusted. (See Table 5.5)

Table 5.5

Technology Education Adjusted Item Reserved Recommendations

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE
Fluid Power Training		Desktop Computers with	Sketchup From Google
System		Flat Screens	
Fuel Cell Learning System		Digital Cameras, Tripods & Port Lighting System	
Materials and Processes			
Learning System			
Metal Brake			
Metal Cut-off Saw			
Metal Horizontal Band			
Saw			
PLC Sensor Application			
Center			
Ready To Fly Planes			
Roll Forming Machine			
Router Table/Shaper			
Spot/Resistance Welder			
Spray Booth Portable			
Sustainable Energy			
Learning System			
Thickness Planer			

Table 5.6 shows presenting considerable variance even when the standard

deviation was adjusted — and should not be considered for implementation.

Table 5.6

Technology Education Lab Dismissed Elements

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE
Aquaponics/Hydroponics			Waterjet Software
Equipment with Supplies			-
Metal Lathe			
Metal Milling Machine			
Metal Shear/Roll			
Simple Machine Learning			
System			

Suggested Activity Findings

The list of suggested activities found in Appendix D provides the high school Technology Education teacher a vast resource of ideas. The activities submitted by the Delphi panel were qualitative in nature and offered a variety of content with a wide range of details. Because the classroom teacher creates lessons from experience, activities vary based on the amount of time, allocations, standards/outcomes and the number of students in each particular course. One hundred and fifty-four different activities available for exploration into the classroom establishes a myriad of activities that could be implemented in the classroom.

All of the suggested activities could be completed in the model Technology Education facility with the essential items listed. The purpose of the facility is to empower the instructor to teach a hands-on, standards based program, such as *Engineering by Design*, and this ideal facility could clearly facilitate these goals. The recommended equipment, tools, hardware and software could easily be adapted to the facility planning guide promoted by ITEEA.

Suggested Activity Recommendations

Because the classroom teacher is responsible for teaching to the standards, it is recommended each teacher evaluate the curriculum, based on *The Standards for Technological Literacy*, and implement activities that would best augment the curriculum. The teacher can reference Appendix D and develop a series of activities for each standards-based curriculum component based on professional preferences.

Research Conclusions

In reviewing the findings, the researcher provides the following conclusions. First, it is apparent ITEEA has a curriculum called Engineering by Design potentially providing technological literacy to all students based on the *Standards for Technological Literacy*. The curriculum relies on teachers to define what the Technology Education laboratory should contain in order to engage students in meaningful hands-on learning experiences. Teachers may not have the time or knowledge to develop an adequate list of equipment, tools, hardware and software to complete such a task.

The Facilities Guide published by ITEEA provides suggestions for teachers and administrators, but does not explicitly state that if the EbD curriculum is utilized, the facility must contain the certain items. Utilizing this study as a statistical measure for implementing the facilities guide is a logical and necessary step for creating a standardized facility model which is currently non-existent. The Delphi participants utilized in this study are representative of the ITEEA association population and establish the necessary components of a standards-based facility. Reflecting on the success of other

pre-engineering programs that do require a specific list of equipment, tools, hardware and software; it is recommended that ITEEA develop a similar required list needed to teach the EbD curriculum based on this study. This would be a substantial and important step towards standardizing facilities and potentially giving students a similar laboratory experience in Technology and Engineering education.

The researcher also concludes that ITEEA does not currently have a high school facility which exemplifies what a model program should contain based on this study. Having a flagship program would provide ITEEA a facility capable of funding research in the areas of integrated learning, STEM, career exploration and other areas related to the field. Linking hands-on learning to academic areas and could begin to elevate the importance of the field to that of math and science. It is recommended that pursuing the research in the context of STEM would validate the concept that Technology and Engineering Education are the T&E of STEM.

Recommendations for Further Research

After completing this research, the researcher suggests the following recommendations for further research:

1. This study was designed to establish a baseline of information regarding necessary equipment, tools, hardware, and software in a standards-based Technology Education lab based on expert opinions derived from a Delphi study. The researcher recommends a follow-up study utilize the entire membership of ITEEA. A larger sample size would reinforce the statistical relevance of this study.

2. Due to local options at the district level, this study may have a greater influence if it were conducted at the regional or state level. Each state faces unique challenges and

requirements which need to be addressed. Showing correlation to standards at the regional or state level would reinforce the necessity for standardization of curriculum and facilities.

3. The ITEEA is scheduled to revisit the *Standards for Technological Literacy* within the foreseeable future. When the standards are revised, this study should be revisited to ensure the facilities are current with the curriculum and revised standards.

4. With the integration of STEM curriculum models, appropriate facilities for teaching an integrated curriculum would be necessary. This study recommends a similar study be conducted with a panel of science, technology, mathematics and engineering teachers to develop a facility successfully integrating all four facets of the STEM model. Equipping an integrated facility would require including items from the science discipline as found in the National Science Teacher Association's book on establishing a science lab, mathematic requirements derived from books explaining how to equip a mathematics lab, engineering and technology requirements as found in this study. (Motz, Biehle and West, 2007)

The disciplines of Science, Technology, Engineering and Math rarely work within their own field if disciplines focus on application; it makes logical sense to develop laboratories that support the integration of various disciplines. Using a parallel study, the development of an integrated lab is possible. The proposed study only addresses the facility and not the pre-service/in-service required for STEM instructors to successfully teach in the suggested environment. Cooperative teaching models would also need to be studied for the successful integration of a STEM laboratory.

5. A study should be conducted on a laboratory with a successfully implemented a standards-based Technology Education lab. A comprehensive evaluation of the program could illustrate a change in student perceptions of technology and related fields, as well as develop baseline data to measure technological literacy with appropriate lab experiences.

6. A study could be conducted establishing the Technology Education laboratory as the launching pad for making career choices based on a longitudinal study of students' decisions on future employment. Utilizing the comprehensive Technology Education lab as a vehicle for Career and Technical programs, students could be allowed to choose a career path based on sound experiential learning. A study of this nature could potentially allow students to make informed career choices.

Summary

The results of this research study answered three research questions. The first question asked what machines, equipment, hardware, software, and materials are essential components of a Standards Based Technology Education high school model program according to a panel of experts? The Delphi panel participants agreed on 99 items considered to be essential items in a standards-based facility. These items are shown in Table 5.1.

Research question two asked the Delphi panel to establish a set of categorical components based on three descriptors: essential items, moderately important items and non-essential items. The panel accomplished this in Tables 5.1, 5.2 and 5.3. As a result of the data analysis several items were identified having significant disagreement. The data identified these items having outliers, which skewed the data, showing the standard

deviation to be greater than .75. When the outliers were removed from the data set, consensus was established and the items standard deviation fell below .75. The items of significant disagreement cannot be considered as part of the three categories, but should be result in further research for those items identified having a standard deviation to great. The essential and secondary items identified in this study fit easily into the single teacher example laboratories shown in the ITEEA Facilities Guide (ITEEA A, 2010).

Research question three established if a significant difference exists between the agreement levels on the elements based on expert qualifications. The ANOVA data shown in Appendix K establishes there is no significant difference in agreement on any item within this study between the three expert groups, based on an alpha value of .05. The purpose of a Delphi study is to establish consensus between panel members, in this case the study fulfilled that purpose.

Recommendations for further research include: expanding the study to include the full membership of ITEEA; conduct a regional/state study to meet local option concerns; revisit the study when new standards for technological literacy are created; conduct a similar study to include STEM teachers; conduct a study on a standards-based Technology Education lab currently being utilized; and conduct a study identifying a model Technology Education lab as the vehicle for career development and integration of Career and Technical Education programs.

REFERENCES

- AIAA. (1967). A guide for equipping industrial arts facilities. Washington, D.C.: American Industrial Arts Association.
- Akmal, T., Barker, R., & Oaks, M. M. (2002). The status of technology education: a national report of the state of the profession. *Journal of Industrial Teacher Education*, 39(4), 6-29. Retrieved from http://scholar.lib.vt.edu/ejournals/JITE/v39n4/akmal.html

- Barlow, M. L. (1967). *History of industrial education in the United States*. Peoria, IL:Chas. A. Bennett Company.
- Bonser, F. G., & Mossman, L. C. (1923). *Industrial arts for elementary schools*. New York, NY: McMillan.
- Brockhoff, K. (1975). The performance of forecasting groups in computer dialogue and face-to-face discussion. In H. A. Linstone and M. Turoff (Authors), *The Delphi method; techniques and applications* (pp. 285-311). Reading, PA: Addison-Wesley.
- Dalkey, N. C., & Helmer, O. (1963). An experimental application of the Delphi method to the use of expert. *Management Science*. *9*(3), 458-476.
- Dugger, Jr., W. E. (2007). The status of Technology Education in the United States; A triennial report of the findings from the states. *The Technology Teacher*, 67, 14-21.
- Dugger, Jr., W. E. (2009, July). *The perspective of Technology Education*. Lecture presented at Japanese International Symposium on Educational Cooperation for Industrial Technology Education in Aichi University of Education, Aichi.

- Foster, P. N. (1994). Technology education: AKA industrial arts. *Technology Education:* AKA Industrial Arts, 5(2), 15-30. Retrieved January 22, 2009, from http://scholar.lib.vt.edu/ejournals/JTE/v5n2/foster.jte-v5n2.html
- Hsu, C., & Sanford, B. A. (2007). The Delphi Technique: Making sense of consensus. *Practical Assessment, Research & Evaluation*, 12(10). Retrieved January 20, 2009, from http://pareonline.net/pdf/v12n13.pdf
- ITEA. (1996). *Technological literacy for all: A rationale and structure for the study of technology*. Reston, VA: International Technology Education Association.
- ITEA. (2000). *Standards for technological literacy*. Reston, VA: International Technology Education Association.
- ITEA. (2008). International Technology Education Association Engineering by Design. Retrieved June 24, 2008, from http://www.iteaconnect.org/EbD/ebd.htm
- ITEA. (2009). Affiliate Web Site Links. *International Technology Education Association Affiliate web site links*. Retrieved August 15, 2009, from http://www.iteaconnect.org/Resources/stateassociations.htm
- ITEEA A. (2010). *Facilities planning guide*. Reston, VA: International Technology and Engineering Educator's Association.
- ITEEA B. (2010). Grants/Scholarships/Awards. International Technology Education Association Grants/Scholarships/Awards. Retrieved November 2, 2010, from http://www.iteea.org/Awards/awards.htm
- ITEEA C. (2010, March 15). *ITEA officially becomes ITEEA* [Press release]. Retrieved March 15, 2010, from http://iteatide.blogspot.com/

- ITEEA D. (2010). *Membership report to the ITEEA board of directors* (Board report). Reston, VA: International Technology and Engineering Educator's Association.
- Lauda, D. P. (2002). Conceptualization of Jackson's Mill. *Journal of Technology Studies*, 94-96. Retrieved February 21, 2009, from http://library.pittstate.edu:2065/login.aspx?direct=true&db=tfh&AN=11505768& site=ehost-live
- Lewis, T. (fall 2004). Research in technology education: Some areas of need. *Journal of Technology Education*, *16*(1), 41-56.
- Linstone, H. A., & Turoff, M. (2002). *The Delphi method: techniques and applications*. Retrieved October 15, 2009, from

http://is.njit.edu/pubs/delphibook/delphibook.pdf Online reproduction from 1975

Maley, D. (1973). *The Maryland Plan: The study of industry and technology in the junior high school.* New York, NY: Bruce.

McKim, B. (1989). The road less travelled. Phi Delta Kappan, 89(4), 298-299.

- Missouri Department of Education. (2002). *Missouri technology education guide*. Jefferson City, MO: Missouri Department of Education.
- Motz, L. L., Biehle, J. T., & West, S. S. (2007). NSTA guide to planning school science facilities (2nd ed.). Arlington, VA: NSTA Press.
- National Academy of Engineering and National Research Center. (2009). *Engineering in K-12 education* (L. Katehi, G. Pearson, & M. Feder, Eds.). Washington, D.C.: The National Academies Press.

- National Academy of Engineering National Research Center. (2002). *Technically speaking* (G. Pearson & A. T. Young, Eds.). Washington, D.C.: National Academy Press.
- Newberry, P. B. (2001). Technology education in the U.S.: A status report. *The Technology Teacher*, *61*, 8-11.
- Parker, S. C. (1912). *Textbook in the history of modern elementary education*. Boston,MA: Ginn & Company.
- Petrina, S. (1993). Under the corporate thumb: Troubles with our MATE (Modular approach to technology education). *Journal of Technology Education*, *5*(1), 71-79.
- PLTW. (2006). High school equipment and supplies. *Project Lead The Way*. Retrieved June 10, 2008, from http://www.pltw.org/hses.shtml
- PLTW. (2009). *Project Lead The Way*. Retrieved February 8, 2009, from http://www.pltw.org/
- Provasnik, S., KewalRamani, A., Coleman, M., Gilbertson, L., Herring, W., & Xie, Q. (2007). *Status of education in rural America* (Rep. No. NCES 2007-040).
 Washington, D.C.: National Center for Education Statistics.
- Ravitch, D. (1995). National standards in American education: A citizen's guide.Washington, D.C.: The Brookings Institution.
- Reeve, E. M. (2002, October). Translating standards for technological literacy in curriculum. *The Technology Teacher*, 62, 33-36.
- Ritz, J., & Reed, P. (2006). Technology education and the influences of research: A United States perspective, 1985-2005. In M. J. De Vries and I. Mottier (Eds.),

International handbook of Technology Education (pp. 113-123). Rotterdam, The Netherlands: Sense.

- Rogers, G. E. (1998, December 11). Technology education modules: Blessing or curse? Reading presented at American Vocational Association Convention in Convention Center, New Orleans. Retrieved June 10, 2008, from http://www.iteaconnect.org/Conference/PATT/PATT15/Ritz.pdf
- Rose, L. C., & Dugger, Jr., W. E. (2002, March). ITEA/Gallup poll reveals what Americans think about technology. *The Technology Teacher*, *61*, 1-8.
- Rose, L. C., Gallup, A. M., Dugger, Jr., W. E., & Starkweather, K. N. (2004, September).
 The second installment of the ITEA/Gallup poll and what it reveals as to how
 Americans think about technology: A report of the second survey conducted by
 the Gallup organization for the International Technology Education Association. *The Technology Teacher*, 64, 12-24.
- Sanders, M. (2001). New paradigm or old wine? The status of technology education practice in the United States. *Journal of Technology Education*, *12*(2), 33-55.
- Shields, C. J., & Harris, K. (2007). Technology education: Three reasons stereotypes persists. *Journal of Industrial Teacher Education*, 44(2), 60-72.
- Spencer, B. E., & Rogers, G. E., (2006). The nomenclature dilemma facing technology education. Journal of Industrial Teacher education, 44(1), 91-99
- Spielbusch, D., & Klenke, A. M. (2010, January). Kansas, Missouri and Oklahoma Technology Program Contact List [Comprehensive listing of technology education programs and teacher contact information]. Pittsburg State University, Pittsburg, KS.

- Suhr, E., & Dettelis, P. (2009, May 11). NYS technology education framework initiative - 1/06. New York State Education Department. Retrieved December 21, 2010, from http://www.p12.nysed.gov/cte/technology/initiative/home.html
- Virginia Department of Education. (2011). Equipment for CTE programs. *Virginia Department of Education*. Retrieved March 3, 2011, from http://www.doe.virginia.gov/instruction/career_technical/equipment/index.shtml
- Volk, K. S. (1996). Industrial art revisited: An examination of the subject's continued strength, relevance and value. *Journal of Technology Education*, 8(1), 27-39.
- White, J. (2009, August 14). Discussions with the administration [Personal interview].
- Wicklein, R. C., & Rojewski, J. W. (1999). Toward a "unified curriculum framework" for technology education. *Journal of Industrial Teacher Education*, 36(4). Retrieved from http://scholar.lib.vt.edu/ejournals/JITE/v36n4/wicklein.html
- Wilhelm, W. J. (2001). Alchemy of the oracle: The delphi technique. *Delta Pi Epsilon*, *43*(1), 6-26.
- Wright, T. (1992). Building a defensible curriculum base. *Journal of Technology Education*, *3*(2), 62-67.

APPENDIX A

IRB Approval

120 Ozark Hall • Fayetteville, Arkansas 72701 • (479) 575-2208 • (479) 575-3846 (FAX) Email: irb@uark.edu

> Research Support and Sponsored Programs Institutional Review Board

> > October 5, 2009

MEMORANDUM

TO:	Andrew Klenke Michael Daugherty
FROM:	Ro Windwalker IRB Coordinator
RE:	New Protocol Approval
IRB Protocol #:	09-09-113
Protocol Title:	Facility Requirements for Teaching a Standards Based High School Technology Education Curriculum
Review Type:	SEXEMPT CEXPEDITED FULL IRB
Approved Project Period:	Start Date: 10/02/2009 Expiration Date: 10/01/2010

Your protocol has been approved by the IRB. Protocols are approved for a maximum period of one year. If you wish to continue the project past the approved project period (see above), you must submit a request, using the form *Continuing Review for IRB Approved Projects*, prior to the expiration date. This form is available from the IRB Coordinator or on the Compliance website (http://www.uark.edu/admin/rsspinfo/compliance/index.html). As a courtesy, you will be sent a reminder two months in advance of that date. However, failure to receive a reminder does not negate your obligation to make the request in sufficient time for review and approval. Federal regulations prohibit retroactive approval of continuation. Failure to receive approval to continue the project prior to the expiration date will result in Termination of the protocol approval. The IRB Coordinator can give you guidance on submission times.

If you wish to make *any* modifications in the approved protocol, you must seek approval *prior to* implementing those changes. All modifications should be requested in writing (email is acceptable) and must provide sufficient detail to assess the impact of the change.

If you have questions or need any assistance from the IRB, please contact me at 120 Ozark Hall, 5-2208, or irb@uark.edu.

The University of Arkansas is an equal opportunity/affirmative action institution.

Pittsburg State University Application for Approval of Investigations Involving the Use of Human Subjects

This application must be completed by the Investigator and sent to the Office of Continuing and Graduate Studies by the first Tuesday of the month during the fall and spring academic semesters to be considered for full review on the second Tuesday of the month.

Expedited and exempt reviews can be turned in any time. For questions about the review process contact Brian Peery in Russ Hall,#112, Ext. 4175.

1. Investigator(s) Name(s): Andrew M. Klenke

Department: Technology & Workforce Learning

2. Local Address: 102 Twin Acres, Pittsburg, KS 66762

3. Phone: 620-231-9366

E-mall Address: amklenke@pittstate.edu

4. Project Title: Dissertation (University of Arkansus):

5. Expected Staning Date: Fall Term 2009

Expected Completion Date: Spring Term 2010

6. Is this project (check all that apply); Use review criteria in Form CK-1 to determine which category of review applies.

Application for Full Review	Protocol Change	Thesis/Special Investigation
Application for Expedited Review	Continued Review	Being submitted for external support
💒 Application for Exempt Review	Faculty Research	Being conducted in a foreign country
	A Class Project	Publisbable research

7. If notification of human subject approval is required give date required : 9 September 2009

Name of agency: Dr. Michael Daugherty, 214 Prabody Hall, University Of Arkansos, Fayetteville, AR 72701

B. If you are a student, complete the following:

Faculty Sponsor: Dr. Gregory Belcher Department: Technology & Workforce Learning Phone: 620-235-4637 **** If submitted externally, a complete copy of the proposal must be submitted to the IRB.****

CERTIFICATION AND APPROVAL

Certification by Investigator: I certify that (a) the information presented in this application is accurate, (b) only the procedures approved by the IRB will be used in hits project, (c) modifications to this project will be submitted for approval prior to use, and that all guidelines ontlined in the PSU Policy and Assurance Handbook for the Protection of Human Research Subjects will be followed as well as at applicable federal, star and local laws regarding the protection of human subjects in research as outlined in Form VA-1.

Faculty Sponsor: If the fevering to is a student, his/her Faculty Sponsor must approve this application. I certify that this project is under my direct supervision and that I accept the responsibility for ensuring that all provisions of approval are methods the provision $\mathcal{O}_{\mathcal{A}} = \mathcal{O}_{\mathcal{A}} \mathcal{O}_{\mathcal{A}}$

- The	Faculty Sponsor	_
Signature of	Faculty Sponsor	

9-2-09

 Department Review Committee Chair: Lacknowledge that this research is in keeping with the standards set by our department, university, state and federal agencies and Lassure that the student principal investigator has met all departmental requirements for review and approval of this research.

 $9 \cdot 2 - 0.9$

 Signature of Departments. Review compluce Chairperson

hartmethe Review complete Chairperson <u>9 · 10 · 09 13P</u> Date Slengt

120 Ozark Hall • Fayetteville, Arkansas 72701 • (479) 575-2208 • (479) 575-3846 (FAX) Ernail: irb@uark.edu

> Research Support and Sponsored Programs Institutional Review Board

> > September 24, 2010

MEMORANDUM

TO:	Andrew Klenke Michael Daugherty
FROM:	Ro Windwalker IRB Coordinator
RE:	PROJECT CONTINUATION
IRB Protocol #:	09-09-113
Protocol Title:	Facility Requirements for Teaching a Standards Based High School Technology Education Curriculum
Review Type:	EXEMPT EXPEDITED FULL IRB
Previous Approval Period: New Expiration Date:	Start Date: 10/02/2009 Expiration Date: 10/01/2010 10/01/2011

Your request to extend the referenced protocol has been approved by the IRB. If at the end of this period you wish to continue the project, you must submit a request using the IRB approved form "Request for Continuation." Failure to obtain approval for a continuation on or prior to this new expiration date will result in termination of the protocol and you will be required to submit a new protocol to the IRB before continuing the project. Data collected past the protocol expiration date may need to be eliminated from the dataset should you wish to publish. Only data collected under a currently approved protocol can be certified by the IRB for any purpose.

If you have questions or need any assistance from the IRB, please contact me at 120 Ozark Hall, 5-2208, or <u>irb@uark.edu</u>.

The University of Arkansas is an equal opportunity/affirmative action institution.

APPENDIX B

Delphi Panel Participants

Administrators/Supervisors

Mr. Duane Hume Florida Department of Education State Supervisor IT/Technology Education	Mr. Hume serves as Florida's technology education director/supervisor. He coordinates all technology education efforts in the state and is very progressive in the areas of business, IT and STEM education in Florida.
Mr. Doug Wagner Director, Adult, Career & Technical Education Manatee County Public Schools, FL	2003-2004 ITEA CS Director. School Administrator for Manatee County public schools. Accrued over \$30 million in grants since 2001 implementing a 309,000 square foot facility. Developed model CTE program for the state of Florida.

Teacher Educators

Dr. Kara Harris Technology and Engineering Education Department of Technology Management Indiana State University Teacher Educator with an emphasis in Project Lead The Way expertise. Multiple degrees from different universities in technology education. Specific interests involve technology and engineering education.

Teacher Educator Past editor for the Journal of Technology Education Mr. Michael Neden Assistant Professor, Technology Education Pittsburg State University

Dr. Mark Nowak California University of Pennsylvania

Mr. Ben Yates Technology Education Consultant

Teachers

Robert Eady Conserve School DTE (Distinguished Technology Educator) Mr. Neden's most notable accomplishments include developing the modular exploratory program at Pittsburg Middle School in the mid 1980s; and developing a district wide technology education program (K-12) in the Delta County School System in Colorado. Most recently, he has implemented technology His innovative lab designs and curriculum projects have been recognized worldwide.

DTE (Distinguished Technology Educator) with an emphasis in Bio-Related technology and manufacturing technology. TEAP high school Technology Education curriculum guide advisor.

DTE (Distinguished Technology Educator) Mr. Yates has experience as both a high school instructor and a teacher educator. His most recent experience includes developing UCM as a Project Lead The Way center, training most of Missouri's PLTW educators.

Mr. Eady is a high school teacher at the Conserve School in Land O' Lakes, Wisconsin. He is currently is coaching an award-winning Robotics Team, coordinating a joint water quality project between Conserve students and university students, and making plans to build an electric vehicle with students in the Electrathon America Electronic Vehicle Competition. Mr. Brad Dearing Technology Education/Department Chair

Mr. Steve Price* Riverdale High School

Patrick McDonald Technology Lab Facilitator Bingham High School

Larry Dunekack Technology Education Teacher Pittsburg High School DTE (Distinguished Technology Educator) High School Teacher Reviewer for *Standards for Technological Literacy* Mr. Dearing has Bachelors and Masters degrees in Technology Education from Illinois State University. He serves as president of the Technology Education Association of Illinois and serves on the advisory board for the Technology department at Illinois State University.

DTE, Riverdale High School (GA) Teacher and Department Chair was involved with the Technology for All Americans project and was part of the assessment standards team at ITEA. 2002-2003 ITEA Region I Director. 2001 Assessment Standards Team.

2005 ITEA Teacher Excellence Award Recipient; 2008-2009 ITEA Region IV Director, Technology Teacher at Bingham High School in Utah

1987-1989,2009-2010 President Kansas Technology Education Association. 40 years teaching technology education. Past curriculum supervisor and curriculum development specialist. National presenter in multiple states/conferences with regard to technology education and science education. Completed a contemporary high school lab renovation in 2009. 1985/1995 KS Teacher of the Year, 2005 ITEA Program Excellence Award. 1996/2002 PSU Outstanding **Cooperating Teacher**

Alternatives and Non-Contacts

Mr. Michael Fitzgerald Indiana Department of Education, IN

Mr. Dennis Soboleski* Instructional Facilitator Technology Education Brevard Public Schools

Mr. Britton Hart Assistant Principal Emporia High School, KS

Mr. Doug Miller State Supervisor Technology Education Missouri Department of Elementary and Secondary Education

Bullerman Thomas Technology Education- Chair Chesapeake High School

Ray Parsons Technology Teacher, Department Chair

Ms. Susan Presley* North Cobb High School, GA

Mr. Michael Gray* Carrol County High School, MD

Mr. Doug Livingston Bingham High School, UT

Mr. Stephen Myers

State Supervisor Declined

School Administrator Could not locate

School Administrator Alternate Did not contact

Alternate Did not contact

International Technology Education Assocation's Program of Excellence Award 2009. Attempted voice and email contact 11/24, Did not respond

ITEA Program of Excellence Award 2008 Program includes biotechnology, computer IT and networking, digital media design and animation, Environmental and conservation science, video and tv production, commercial photography, engineering, etc. Attempted voice and email contact 11/24, Did not respond

High School Teacher Could not locate

High School Teacher Could not locate

High School Teacher Alternate Not contacted

High School Teacher who created a

Brillion High School

new design and build high school technology program in Brillion, Wisconsin. Worked with local industry to develop the program. Attempted to contact 11/18, 11/20 and 11/30, no response

Dr. Phillip Reed Old Dominion University, VA Teacher Educator Alternate Did not contact

Appendix C

Round One Letter to Participants

Andrew M. Klenke 1701 S. Broadway, W105b KTC Pittsburg State University Pittsburg, KS 66762 Current Date

Mr. Survey Completer Technology Education Teacher 12345 Technology Lane Somewhere High School Somewhere, USA 12345

Dear Survey Completer:

Thank you for agreeing to participate in this study. I appreciate your involvement, professionalism, and the time you will spend completing this project. I will remind you that participation in this study is voluntary and no compensation is given for your participation. It should also be noted that only group responses will be reported and *all personal information will remain confidential*. Each participant will be issued a code number located at the top of the survey instrument. All information for each participant will be referenced to that code throughout the modified Delphi process.

The purpose of the study is to determine what a contemporary technology education facility should have with regard to equipment, tools, software, hardware and curricular projects which are needed to teach a standards-based technology education program. In essence, you should be able to do design, build, test and present anything in this model facility. To accomplish this, a modified Delphi technique will be used to arrive at a consensus among a group of selected experts in the field, of which you are a part. To date, there has been no identified agreement on what a contemporary technology education facility should have for equipment, tools, software or hardware; your group will help define those attributes.

This correspondence represents Round One of a three round Delphi procedure. The purpose of this round is to list what tools, equipment, software, hardware and curricular project needs would be necessary to teach a "standards based technology education curriculum" within each of the content standards. The standards can be accessed and reviewed electronically through the International Technology Education Association website, located at http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf.

For clarity, the facility will have 3000 square feet and one technology education faculty to teach the standards based curriculum. In essence, you are defining what a model technology education program in a small high school having only one teacher would need

to teach to the standards. There is no monetary amount tied to this, however space requirements might dictate your decisions on what would be included to teach each standard. In your list, you might duplicate equipment; for instance, you may need a drill press for a power and energy project for one of the standards, and in another standard you might need a drill press for a different project. These would be combined and listed as a drill press in round two.

I sincerely appreciate your time and effort. Please record your responses on the document attached to this email. Once you have completed this first round, please return the document via email to amklenke@pittstate.edu. Please respond no later than November 10th, 2009.

Sincerely,

Andrew MKlenk

Andrew Klenke Graduate Student, University of Arkansas

Michael K. Daugherty, Ed.D. Dissertation Chairperson University of Arkansas

FACILITY REQUIREMENTS FOR TEACHING A STANDARDS BASED HIGH SCHOOL TECHNOLOGY EDUCATION CURRICULUM: A DELPHI APPROACH

Round One Questionnaire

DIRECTIONS: The purpose of the study is to determine what equipment and curricular materials should be present in a contemporary standards-based technology education program. If a particular piece of equipment, tool, or software is needed in more than one standard, please list it in all necessary standards. Please list any curricular projects that would be relevant to validate the use of the equipment, tools, etc. You may list as many or as few items as necessary, however, keep in mind that the facility is restricted to 3000 square feet and has only one teacher.

Please identify in the following standards what tools, equipment, software, hardware and curricular projects are necessary to teach each standard. Please list an item only one time per standard. There are no restrictions to the number of items you can add, if more rows are necessary, press tab in the last box and a new row will appear.

STANDARD 1: Students will develop an understanding of the characteristics and scope of technology.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 2: Students will develop an understanding of the core concepts of technology.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 3: Students will develop an understanding of the relationship among technologies and the connections between technology and other fields of study.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 4: Students will develop an understanding of the cultural, social, economic, and political effects of technology.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 5: Students will develop an understanding of the effects of technology on the environment.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 6: Students will develop an understanding of the role of society in the development and use of technology.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 7: Students will develop an understanding of the influence of technology on history.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 8: Students will develop and understanding of the attributes of design.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 9: Students will develop an understanding of engineering design.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 10: Students will develop and understanding of the role of troubleshooting, research and development, innovation, and experimentation in problem solving.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 11: Students will develop the abilities to apply the design process.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 12: Students will develop the abilities to use and maintain technological products and systems.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 13: Students will develop the abilities to assess the impact of products and systems.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 14: Students will develop an understanding of and be able to select and use medical technologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 15: Students will develop an understanding of and be able to select and use agricultural and related biotechnologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 16: Students will develop an understanding of and be able to select and use energy and power technologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 17: Students will develop an understanding of and be able to select and use information and communication technologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 18: Students will develop an understanding of and be able to select and use transportation technologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

STANDARD 19: Students will develop an understanding of and be able to select and use manufacturing technologies.

STANDARD 20: Students will develop an understanding of and be able to select and use construction technologies.

EQUIPMENT	TOOLS	HARDWARE	SOFTWARE	ACTIVITES

END OF SURVEY – THANK YOU

APPENDIX D

Round 1 Survey Aggregate Data

EQUIPMENT /STANDARD	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3D Scanner									9	10	11	12		14	15	16		18	19	20
Aerospace Engineering Learning System				4		6														
Air Compressor with lines and																				
accessories	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Alternative Energy Training Set																				
(Solar, Wind, Hydroelectric, Fuel		~	2		-		-			10		10	10	1.4	15	16	17	10	10	20
Cell, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Arbor Press	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Audio Trainer Automatic product identification																				
system																			19	
Bandsaw	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Belt/Disc Sander	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Bench Grinder (8")	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Book Binding Equipment												12	13				17			
Box and Pan Brake	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Braille Stylus, Slate and Practice																				
Cell															15					
Bridge/Tower Testing Equipment	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Buffer	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Catapult Learning System				4		6														
CIM/FMS Trainer								8	9	10	11	12	13			16		18	19	
Civil Engineering Learning System				4		6					11								19	
Classroom Furniture (chairs, desks,																				
book shelves, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CNC Lathe with Tooling	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CNC Mill with Tooling	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
CNC Router 36"x36" Minimum																				
(Techno, AXYX, or equiv) With																				
7HP Blower				4		6			9	10	11	12		14	15	16		18	19	20
CO2 Race Track (Complete system with stock)				4		_			9	10	11									
Computer-based metrology				4		6			9	10	11									
equipment (calipers, etc.)																			19	
Drill Press	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Dust Collection System (5HP																				
Minimum) to include portable shop vacs	1	2	3	4	5	6	7	0	9	10	11	12	13	14	15	16	17	18	10	20
Dynomometer	1	2	3	4	5	0	/	8	9	10	11	12	15	14	15	16 16	17	18	19	20
Earthquake simulator																10				20
Electricity/Electronics Electrical																				
Equipment/Supplies (includes																				
oscilloscope, multimeters, function																				
generators, probes, etc for					_															
AC/DC/Digital/Analog)					5	6					11	12				16		18		20
Environmental Learning System File cabinets				4		6					11									
Flamable Liquid Storage Cabinet				4		6		0	0	10	11	10			15	16		10	10	
Fluid Power Training Systems Fuel Cell Leaning System to include				4		6		8	9	10	11	12			15	16		18	19	
Cars				4							11	12						18		
Gears ID Kits or equiv				4		6			9			12		14	15			18		
Graphics learning System		<u> </u>		4		6						12								
Greenhouse (Bio-Fuel production)	<u> </u>														15					
Hydroponics, Aquaponics Equipment (Aquarium with	1																			
pump/filters for Cultivation of	1																			
plants and animals)	1														15					
Industrial Control Learning System				4		6					11	12				16		18		20
Injection Molder																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Idensity Rokerbok & Londers, Came, Londers, Came, Londers, Trans. Column Life Number Came, Came, Londers, Schultz Management) I <th></th> <th>r</th> <th></th> <th></th> <th>r –</th> <th>r –</th> <th>1</th> <th></th> <th>r</th> <th>r</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>		r			r –	r –	1		r	r									1		
Set to include Mononil, Foulkins, Nondways, Truins, etc) 1 2 3 4 5 6 7 8 4 0 1 12 13 14 15 16 17 18 19 Internal and external combustion 1 2 3 4 5 6 7 8 9 10 11 12 14 16 16 17 18 19 Internal and external combustion 1 2 3 4 5 6 7 8 9 10 11 12 14 16 10 17 18 19 Lab Pro(Vaste Management) 1 2 3 4 5 6 7 8 9 10 11 12 14 16 17 18 19 Lab Pro(Vaste Management) 1 2 3 4 5 6 7 8 9 10 11 12 14 16 17 18 19 Lab Pro(Vaste Management) 1 2 3 4 5	Integrated Transportation Set																				
Monoral, Elevator, Came, Loaders, Came, Lawer, Series, Calibratic, etc. I <thi< th=""> I I <</thi<>	·																				
Internal acternal combustion I	· · · · · · · · · · · · · · · · · · ·																				
Internal and external combustion Image of the second	Roadways, Trains, etc)																				
engines i </td <td></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td> <td>17</td> <td>18</td> <td>19</td> <td>20</td>		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Johner Image of the set of																	16				
Lab Pro(Waste Management) I <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>10</td> <td>11</td> <td>12</td> <td></td> <td>14</td> <td>15</td> <td></td> <td></td> <td>19</td> <td>10</td> <td>20</td>	0									0	10	11	12		14	15			19	10	20
Lase: Table Engineering 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Lase: Table Equipment - 4 6 - - - 12 - 16 17 18 19 Lase: Surveying and Sile Layout - 4 6 - - 12 - 16 - 18 19 Lingorphy Equipment - 4 6 - - 12 - 16 - 18 19 Material Sock (Wood, Meal, - - 6 8 0 10 11 12 16 - 18 19 Mechanical Larming System - 4 6 7 8 0 10 11 12 13 14 15 16 17 18 19 Mechanical Larming System 12 3		-								9	10	11	12		14		10		18	19	20
with curing, table and forty I																15					
Laser Lab Equipment I 4 6 I																					
Laser Surveying and Site Layout I <	attachement)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Instruments Image of the second					4		6														
Lego Mindstorms I 4 6 0 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>																					
													10				16		10	10	20
Material Stock (Wood, Metal, Plastics, cic) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Materials and Processes Learning System 4 6 6 11 12 14 15 16 17 18 19 Mechanical Learning Systems 4 6 8 0 11 12 13 14 15 16 18 19 Meal Cur-Off Sav 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Metal March 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Metal March Morita Social 3 4 5 6		-			4		0						12				10	17	18	19	
Plastics, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Matcrika and Processes Learning - - - - - - - - - - 16 - 19 Mechantonics Engineering Design - - - 6 - 8 9 10 11 12 13 14 15 16 - 18 19 Metal Motics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Metal Motine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Metal Moting Periging Furmace <																		17			
Materials and Processes Learning System Image of the system Image		1	2	3	4	5	6	7	8	0	10	11	12	13	14	15	16	17	18	10	20
System I I I II III IIII IIII IIII IIII IIII IIII IIII IIIII IIIIIIIII<		1	2	5	4	5	0	,	0		10	11	12	15	14	15	10	17	10	17	20
Mechanical Learning Systems Image 4 6 Image 11 12 16 18 19 Apps System (mobile robotics) Image Ima	0				4		6					11	12				16			19	20
Mechanomics Engineming Design Apps System (mobile robotics) I <thi< th=""> I I I</thi<>	· · · · · · · · · · · · · · · · · · ·	1									<u> </u>								18		20
Appe System (mobile robitics)4-6-8910111213141516171819Metal Cur-Off Saw12345678910111213141516171819Metal Horzondan Band-Saw12345678910111213141516171819Metal Ming Machine12345678910111213141516171819Metal Machine12345678910111213141516171819Metal ShareRoll12345678910111213141516171819Metal ShareRoll12345678910111213141516171819Metal ShareRoll12345678910111213141516171819Microscope (Cultivation of phates)1234567891011 <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td>10</td> <td>1)</td> <td></td>		1			-		5						12				10		10	1)	
			L	L	4	L	6	L	8	9	10	11	12	13		15	16		18	19	
		-					6			9	10	11	12	13	14	15	16	17	18	19	20
		1								-	10		12	13	14						20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1							-	<u> </u>										-	20
Metal Shear/Roll 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Metal Shear/Roll 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MiG Welder 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Multisanders (oscillating system 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Photovotic cell experiment system 1 2 3 4 5 6 7 8 9 10 11 12 13 14		1								-							16				20
Metal Working Forging Furnace 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Microscope (Cultivation of plants and animals, Hydroponics) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Midikanders (oscillating spindle/belt) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Photovotaic cell experiment system 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Plassice Oven 1 2 3 4 5 6 7 8 9 10 11	8									-											20
Microscope Coltivation of plants and animals, Hydroponics) I	Metal Shear/Roll	1	2	3	4	-	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
and animals, Hydroponics) I<		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
		1	2	2		~		-	0	0	10	11	10	10	14		16	17	10	10	20
spindlebelt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Oxy/Acetyline Welding/Cutting Equipment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Photovotaic cell experiment system 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Plasma Cutting and routing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 PutLC/Sensor Application Trainer 4 6 7 8 9 10 11 12 13 14 15 16 17		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Oxy/Acetyline Welding/Cutting Equipment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Photovotaic cell experiment system 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Phasics Oven 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Plastics Oven 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power Exergy and Transportation 4 6 7 8 9 10 11 12 13 14 15 16 17 18		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	5	· ·	5	Ŭ		Ŭ		10					10	10	17	10	.,	20
Photovotaic cell experiment system Image: system <thimage: system<="" th=""> Image: system</thimage:>		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Machine Image: Constraint of the second	Photovotaic cell experiment system																16				
Plastics Oven 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 PLC/Sensor Application Trainer 4 6 9 10 11 12 13 - - 19 Pneumatics/Hydraulics Learning Systems 4 6 - 11 12 13 - - 16 18 Portable Treadmill, Eliptical (with digital readout) Weight Set, Flexibilty Tester, etc. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power, Energy and Transportation Learning Systems 4 6 7 8 9 10 11 12 14 15 16 18 18 Radial Arm Saw 4 6 8 9 10 11 12 14 15 16 18 19 <	Plasma Cutting and routing																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Machine									<u> </u>	10	11	12		14	15	16		18	19	20
Pneumatics/Hydraulics Learning Systems 4 6 11 12 16 18 Portable Treadmill, Eliptical (with digital readout) Weight Set, Flexibility Tester, etc. 3 4 5 6 7 11 12 16 18 Power Miter Saw 1 2 3 4 5 6 7 13 14 15 16 17 18 19 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 19 Radial Arm Saw 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning 4 6 9 10	Plastics Oven	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Systems Image: Constraint of the system <th< td=""><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td></td><td></td><td></td><td></td><td></td><td>19</td><td></td></th<>					4					9	10	11	12	13						19	
Portable Treadmill, Eliptical (with digital readout) Weight Set, Flexibilty Tester, etc. 3 4 5 6 7 9 13 14 9 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power, Energy and Transportation Learning Systems 4 6 8 9 10 11 12 14 15 16 18 Radid Prototyping Machine 8x8x10 Minimum (3D printer such as 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 9 10 11 12 14 15 16 17																					
digital readout) Weigh Set, Flexibility Tester, etc. 3 4 5 6 7 1 13 14 14 14 16 17 18 19 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power, Energy and Transportation Learning Systems 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Radial Arm Saw 4 6 7 8 9 10 11 12 14 15 16 18 19 Radial Arm Saw 4 6 8 9 10 11 12 14 15 16 18 19 Rapid Prototyping Machine 8x8x10 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning 5 6 7 9 10					4		6					11	12				16		18		
Flexibility Tester, etc. 3 4 5 6 7 13 14 14 14 15 16 17 18 19 Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power, Energy and Transportation Learning Systems 4 6 11 12 16 18 19 Radial Arm Saw 4 6 6 11 12 16 18 19 Rapid Prototyping Machine 8x810 Minimum (3D printer such as 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 8 9 10 11 12 14 15 16 18 19 Robotics workcell and equipment w Conveyor and Robotic Arm 4 6 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds	7 1																				1
Power Miter Saw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Power, Energy and Transportation Learning Systems 4 6 7 8 9 10 11 12 14 15 16 17 18 19 Radial Arm Saw 4 6 8 9 10 11 12 14 15 16 18 19 Radial Arm Saw 4 6 8 9 10 11 12 14 15 16 18 19 Rapid Prototyping Machine 8x8x10 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning 4 6 9 10 11 12 14 15 16 18 19 Robotics workcell and equipment w 4 6 9 10 11 12 14 15 16 17 18 <t< td=""><td></td><td></td><td></td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td>13</td><td>14</td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>				3	4	5	6	7						13	14						1
Learning Systems Image: constraint of the system system Image: constraint of the system		1	2						8	9	10	11	12			15	16	17	18	19	20
Radial Arm Saw Image: Constraint of the system Image: Constraint of the system <thimage: const<="" td=""><td>Power, Energy and Transportation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage:>	Power, Energy and Transportation																				
Rapid Prototyping Machine 8x8x10 Minimum (3D printer such as Dimension, Z-Corp) 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 6 9 10 11 12 14 15 16 18 19 Robotics workcell and equipment w Conveyor and Roboitic Arm 4 6 9 10 11 12 14 15 16 18 19 Roll Forming Machine 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 1 2 3 4 5 6 7 8 9 10 11 12<	Learning Systems				4		6					11	12				16		18		
Minimum (3D printer such as Dimension, Z-Corp) 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 6 9 10 11 12 14 15 16 18 19 Robotics workcell and equipment w Conveyor and Robotitic Arm 4 6 9 10 11 12 14 15 16 17 18 19 Roll Forming Machine 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 4 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 1 2 3 4 5 6 7 8 9 10 11 12 14		<u> </u>			<u> </u>											19	20				
Dimension, Z-Corp) 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 8 9 10 11 12 14 15 16 18 19 Research and Design learning Systems 4 6 8 9 10 11 12 14 15 16 18 19 Robotics workcell and equipment w Conveyor and Robotitic Arm 4 6 9 10 11 12 14 15 16 18 19 Rotational Molder with molds 4 6 8 9 10 11 12 14 15 16 17 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 14 </td <td></td> <td> </td> <td></td>																					
Research and Design learning Systems 4 6 6 1 12 16 18 Robotics workcell and equipment w Conveyor and Robotic Arm 4 6 9 10 11 12 16 18 18 Roll Forming Machine 4 6 9 10 11 12 14 15 16 18 19 Rotational Molder with molds 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Scale Vehicles/Components (Engines, Magley, Trucks, Planes, 1 2 3 4 5 6 7 8 9 10 11 12 <td></td>																					
Systems Image: Constraint of the system Image: Constraint of the system <thimage: consystem<="" th=""> Image: Consystem Im</thimage:>					4		6		8	9	10	11	12		14	15	16		18	19	20
Robotics workcell and equipment w Conveyor and Robotic Arm 4 6 9 10 11 12 13 16 18 19 Roll Forming Machine 4 6 9 10 11 12 13 16 18 19 Rotational Molder with molds 4 6 8 9 10 11 12 14 15 16 17 18 19 Rotational Molder with molds 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 RTF Planes - - - - - - - - 18 - Scale Vehicles/Components (Engines, Magley, Trucks, Planes, Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9	8 8				А		6						12				16		18		1
Conveyor and Roboitic Arm Image: Marking interval in the image: Marking interval in the image: Marking interval in the image: Marking interval int		1	-	-	4	-	0		-				14				10		10		
Roll Forming Machine Image: Constraint of the system Image: Constraint of the system <thimage: constraint="" of="" system<="" th="" the=""> <thimage:< td=""><td></td><td></td><td></td><td></td><td>4</td><td></td><td>6</td><td></td><td></td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td></td><td></td><td>16</td><td></td><td>18</td><td>19</td><td>1</td></thimage:<></thimage:>					4		6			9	10	11	12	13			16		18	19	1
Rotational Molder with molds 4 6 8 9 10 11 12 14 15 16 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 19 Router Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 RTF Planes Image: Components (Engines, Magley, Trucks, Planes, Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Scale Vehicles/Components (Engines, Magley, Trucks, Planes, Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Scroll Saw 1 2 3 4		1			-					<u> </u>				15	14	15		17			20
Router Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 RTF Planes Image: Components	Ũ	1			4		6		8	-											20
RTF Planes Image: Components (Engines, Maglev, Trucks, Planes, Watercraft, Spacecraft, etc) Image: Component Signature Ima		1	2	3		5	-	7						13				17		-	20
Scale Vehicles/Components (Engines, Maglev, Trucks, Planes, Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Screen Printing Equipment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Scroll Saw 1 2 3 4 6 9 10 11 12 14 15 16 17 18 19 Simple Machine Learning System 4 6 6 12 12 14 15 16 17 18 19 Solar Vehicle Learning System 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Simple Machine Learning System 1 2 3 4 5 6 7 8 9 10 1			-	5	-	5	5	ŕ	0	ĺ.	.0						10			./	20
(Engines, Maglev, Trucks, Planes, Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Screen Printing Equipment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Screen Printing Equipment 1 2 3 4 6 4 9 10 11 12 14 15 16 17 18 19 Simple Machine Learning System 4 6 4 6 4 12 4 15 16 17 18 19 Small Gas Engine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Small Gas Engine 1 2 3 4 5 6 7 8 9 10		1																	10		
Watercraft, Spacecraft, etc) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Screen Printing Equipment I 2 3 I <																					1
Scroll Saw 1 2 3 Image: Constraint of the system 9 10 11 12 14 15 16 17 18 19 Simple Machine Learning System Image: Constraint of the system Im	Watercraft, Spacecraft, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		18	19	20
Simple Machine Learning System 4 6 1 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 Solar Vehicle Learning System 4 4 4 1 12 12 14 15 16 17 18 19																					
Small Gas Engine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Solar Vehicle Learning System 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		1	2	3	<u> </u>	<u> </u>			<u> </u>	9	10	11	12		14	15	16	17	18	19	20
Solar Vehicle Learning System 4 12 18		<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>												I
	6	1	2	3		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		<u> </u>					L	L													
	Speed Radar Gun	<u> </u>	-		4	-	6	-	-	9	10	11	12		14		16	17	18	19	
Spot (resistance) Welder 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Spot (resistance) Welder	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Spray Booth (Portable or equiv)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Storage System (Project, Supplies,																				
Materials, etc.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Strip Heater	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Structural Tester (complete with																				
apparatus, instructional kit and																				Ì
stock)				4		6				10									19	20
Sustainable Energy Learning																				İ
System				4		6			9		11	12				16				
Table Saw	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Thickness Planer	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Vacuum Former (Thermoforming)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Vertical Hole Punch	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Vinyl Cutter				4		6		8	9	10	11	12		14	15	16		18	19	20
Vise system (wood and swivel																				
metal bench vices				4					9	10	11	12		14	15	16		18	19	20
Watercraft Testing Track 20'																				
Minimum								8	9	10	11	12	13					18		
Waterjet Cutting System									9	10	11	12		14	15	16		18	19	20
Wind generation experiment																				
systems																16				
Wind Tunnel				4		6			9	10	11	12								
Wood Lathe	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Work Benches				4		6			9	10	11	12	13	14	15	16	17	18	19	20

TOOLS (HAND/POWER/LAB)																				
Applied Science tools (Density Kits, Gravity Tester, Force Motion Tester, Optics, Laser Transmitter, Sound Test Equipment, Audio test equipment, etc.		2	3	4		6	7	8	9	10	11	12		14	15	16				
Barcode or similar scanner			5	-		0	,	0	/	10		12		14	15	10			19	
Biotechnology General Lab Equipment (Artificial Light Source, Planting Tool Set, Potting Trays, hot plate, microwave, beakers, flasks, graduated cylinders, petri dishes, box fan, etc.)															15				17	
Construction Tools (Wheelbarrows, Surveying tools, Form stakes, hammers, chalklines, belts, framing squares, shovels, hoes, trowels, floats, saw horses, extension cords, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Electronics Tools and kits (soldering irons, multimeters, motors, lamps, propane torch, wire, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Fabrication Measurement Tools (Dial calipers, micrometers, tri- squares, Framing Square, quick square, rulers, angle, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Fastener System (Screws, Bolts, Nails, Nuts, Washers, Brackets, Round and Flat Stock, Dowles, wire, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
General Chemistry Tools (selected bio-related activities)		2	5	-	5	0	,	0		10		12	15	14	15	10	17	10	17	20
Hand Drafting Equipment (Boards,							-	0	9			10			1.5	16	17		10	20
triangles, t-squares, etc) Measuring Devices (graphing calculators, Infrared head detectors, light meter, thermometers, digital scale, Gravity Tester, Heat Expansion Gage, Prism, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 19	20 20
Medical equipment (Stethoscope, Weight/Height Scale, Human Body Model, Blood Pressure Tester, Audio testing, etc)		2	3	4		6	7	8	9	10	11	12		14	15					
Misc Fabrication Power Tools (cordless drills, sanders, routers, recip saw, circular saw, jig saw, soldering irons, rotary engravers, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Misc Fabrication Tools (wood and metal chisels, files, wrenches, sockets, drill bits, nail/punch sets, hammers, clamps, screwdriver sets, vices, , hammers, punches, files,																				
wrenches, sockets, clamps, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Non-contact tachometer																		18		
Office Equipment (Scissors, paper cutters, rulers, staplers, CD storage, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Plastics Tools (strip heater, buffer,	1	2	5	4	5	0	/	0	,	10	11	12	15	14	15	10	17	10	19	20
welder, scrapers, etc)									9	10	11	12	13	14	15	16	17		19	
Pnuematic tools (stapler, brad nailer, finish nailer, framing nailer, etc.)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		19	
Safety Related Equipment (Flammable Storage Cabinets, Hearing protection, safety glasses and cabinet, lab coats, specialty gloves, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Sound Level Meter (Noise Pollution)															15					

HARDWARE	1																			
Classroom Student Project Server	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Classroom/Lab Sound System	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Color Laser Printer	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Desktop Computers with flat screen	1	2	3	4	3	0	/	0	9	10	11	12	15	14	15	10	17	18	19	20
monitors	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Digital Cameras with Tri-pods and	1	2	5	4	5	0	/	0	<i></i>	10	11	12	15	14	15	10	17	10	1)	20
Portable Lighting System	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Digital Video Recorder	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Electronic Presentation Board (i.e.					-				-										- /	
Smartboard or equiv)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Flatscreen HDTV 42" Minimum	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
GPS Units	1	2	5	4	5	0	/	0	<i></i>	10	11	12	15	14	15	10	17	18	1)	20
Instructor Laptop Computer	1	2	2	4	~		7	0	9	10		10	10	14	1.7	16	17	-	10	20
Laptop Computer Set with storage	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20
cart	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Laser Printer (Print presentations,	1	2	3	4	3	0	/	0	9	10	11	12	15	14	15	10	17	18	19	20
reports)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Projector for Whole Class	1	2	5	4	5	0	,	0		10	11	12	15	14	15	10	17	10	1)	20
Presentation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Scanner	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Student Response System	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Video Camcorders with Tri-pods	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Wide Format Printer	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Wireless Handheld Microphones		2	5	-	5	0	,	0		10		12	15	14	15	10	17	10	17	20
and Lapel Microphones	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
					-															
SOFTWARE																				
2D CAD	1	2	3					8	9	10	11	12	13	14	15	16	17		19	
3D Building Design such as Chief																				
Architect, or Revit						6														20
3D CAD such as Solidworks with																				
Solid Professor, Rhino, etc.		2		4		6		8	9	10	11	12	13	14	15	16	17		19	
Air Quality Analysis															15					
Animation Software (Alice,																				
Animation Master, etc)																	17			
Audio Editing/Production Software					5												17			-
Barcode generation software and																				
reading software.																			19	
Bridge Design Software such as																				
Westpoint Bridge Builder																		18		20
Building Information Modelling																				
(BIM) Software																				20
CAM Software such as																				
MasterCAM, CamWorks, or equiv																				
to produce G-code	<u> </u>		<u> </u>						<u> </u>										19	
Chemical Analysis for	1		1																	
Hydroponics, DNA															15					
Computer Software to enable the automatic control of a land based	1		1																	
transportation system																				
transportation system			1						I									18		

Computer Software to monitor the	1	1	1									1			1			1		
performance of land-based, water-																		10		
based, and air-based vehicles																		18		
Programmable Logic Control																				
software for motors, lights, sensors,																		10		
etc.																		18		l
Desktop Publishing Software such																				
as Illustrator, In-Design,					_		_	_									. –			
CorelDraw, Etc.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
EKG Analysis for Electrophoresis															15					L
Electrical circuit simulation such as																				
Electronic Circuit Designer, Digital																				
Works, TINA, Edison, etc.																16				
Electronic White Board Software	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Floor Planner Free		2	3	4			7	8	9	10	11	12	13	14	15			18		
Computer Game Development																				
Software such as Game Studio 3D																				1
authoring		2	3	4			7	8	9	10	11	12	13	14	15			18		
Internet Connection	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Office Software for word																				
processing, databases, spreadsheets,																				
presentations, etc)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Photo Manipulation Software such																				
as Photoshop or equiv				4		6	7	8	9	10		12	13	14	15	16	17	18		
Plant layout/simulation software																			19	
RobotC or equiv Programming																				
language for NXT and VEX		2	3	4			7	8	9	10	11	12	13	14	15			18		
Sim City Software				4																20
Sim Farm Software					5															
Sketchup from Google		2	3	4			7	8	9	10	11	12	13	14	15			18		
Smart Draw Visual Communication		-	5	Ċ			,	Ū		10			10		10			10		
Software		2	3	4			7	8	9	10	11	12	13	14	15			18		
Soil pH Analysis for waste		2	5	-			<i>'</i>	0		10		12	15	14	15			10		
management															15					
Statistical process analysis software.															15				19	
Vernier Software for Cultivation of		<u> </u>																	17	
plants and animals, Aquaponics															15					
Video Editing Software such as															15					
Adobe Premiere, Final Cut, i-																				
Movie, Studio, or Equiv.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Water Quality/Analysis Test Kits	1	-	5	-	5	0	,	0		10		12	15	14	15	10	17	10	17	20
for Aquaponics, Water quality															15					
Waterjet Software for OMAX															15					
Layout																			19	
Web 2.0 tools Free		2	3	4			7	8	9	10	11	12	13	14	15			18	17	
Web Design Software such as		-	5	-			,	0		10		12	15	14	15			10		
Dreamweaver w/flash or equiv.				4	5	6	7	8	9	10		12	13	14	15		17	18		
Dicaniweaver w/nash or equiv.	1	1	1	4	5	0	/	0	7	10		12	10	14	13		1/	10		

ACTIVITIES/ STANDARD	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Preparing and Presenting Projects (printed and oral)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Design - Market and Profit Project	1																		19	
Students will be assigned a specific contemporary product to research "backwards." Students are to develop a timeline of development for the product function, such as a cordless drill, tracing its history back to the bow and stick drill. Each student team will develop an illustrated presentation and report to be presented to the class.	1																			

		-		-	-	-	-	-		 -	-	-	-	-	 	
Extemporaneous Presentation - Participants give a three to five minute speech, fifteen minutes after having drawn a card on which a the characteristics of technology on it. Then a speech is written.	1															
Debating Technological Issues - Participants debate against a team/s on the characteristics and scope of technology. The teams are instructed on site to take either the pro or con side of the topic.	1															
Monitoring demand and consumption patterns: dorm/residence energy and water consumption data collection and reporting.		2	3	4	5					12	13				18	
Control and sensor systems: an environmental sensing & monitoring: temperature, wind speed, insulation, etc., various parameters in the aquatic environment		2													18	
Students (in teams) identify a common small household appliance and map the following for an illustrated formal presentation: Systems, sub-systems, materials used in fabrication of parts, identified trade-offs of materials, impact on disposal, constraints of product, energy impact, and the process of design and re- design of product.		2														
Essays on Technology - Participants conduct research in the core concepts of technology using the knowledge and personal insights gained from this research, write a persuasive essay.		2														
Appropriate Technology Design Problem		2														
Students will design and develop a scale model of a sustainable residential dwelling for a client. It will include b. PV, solar thermal, & wind systems (for wind especially - non-conventional, i.e., systems other than traditional horizontal-axis systems)			3	4			7								18	

Students will be assigned a "simple" product to re- develop with one or more innovative features. Output of this project will be freehand sketches of new concepts and a presentation to the class.		3										
Prepared Presentation - Participants deliver an oral presentation that includes audio and/or visual enhancement based on the technologies and the connections between technology and other fields of study		3										
Future Technology Teacher - Participants research and select three accredited colleges or universities that offer technology education or engineering technology teacher preparation as a major. Each participant must write a one page simulated college essay about the wish to become a teacher in either major. Participants also develop and present a lesson plan.		3										
Apollo 13 "Square Peg in Round Hole" Design Problem		3										
Historical Artifacts Re-Design Project			4	6	7							
Design a Civilization			4	6								
Ethics/Laws Debate RE: Technology			4	6								
Students will identify some of the changes in society as the product has changed over the years, including trade-offs, ethical considerations, and effects on other cultures.			4									
On Demand Video – Participants write, shoot, and edit a video about social, economic, and political effects of technology.			4									
Electronic Research and Experimentation - Participants research, plan, design, and construct an electronic device. Projects are evaluated on quality of research, ingenuity and complexity of the device, and effectiveness of the exhibit display.			4									

The study of alternative energy systems - Students will build working models of all these systems at various scales			5		7					16	18	
Bio-fuel production			5					 	 15	16		
Water quality			5						 15			
Alternative Fuels Project			5							16		
Student teams, using a given technology such as an air conditioner (HVAC) or a gas powered lawn mower, will research the positive and negative effects on the environment. Teams will present an illustrated demonstration of these effects to the class.			5									
E-Scrap recycling project			5									
Project on recycling landfill trash into energy (billion dollar secret on You-tube)			5									
Imaging Technology - Participants capture images and process photographic and digital prints for display that depict the current year's published theme. Students participate in an on-site event in which they record digital images and utilize multimedia software to prepare a storyboard/outline and media presentation of newsworthy TSA activities and events.			5									
Music Production - Participants produce a musical piece that is designed to be played during the national TSA conference opening or closing general sessions			5									
Local Pollution Study and Tech Survey			5									
Farming 101 an exercise in farm management			5									
Student teams, using a given technology such as an air conditioner (HVAC) or a gas powered lawn mower, will research the positive and negative effects on the environment of this technology on two or more societies other than the United States. Teams will present an illustrated demonstration of these effects to the class.				6								

Elecrronic ediquitte in email, texting, etc.			6									
Report on new injuries and health issues which occur because of new technologies			6									
Project on technological societal demands and adaptations			6									
Engineering Design - Participants work as part of a team to solve a design problem. Through use of a model/prototype, display, and design notebook, the team explains in detail how it has solved the problem and the solution's impact on society and the environment. Students then demonstrate the problem and solution in a timed presentation.			6									
Fashion Design - Participants research, develop and create garment designs, garment mock-ups, and portfolios that reflect the current year's published theme. Students participate in an on-site event in which they present their potential garment designs to the judges on a TSA runway.			6									
Students will be assigned a specific contemporary product to research "backwards" which will include the influence of their technology at each historical change in that technology. Students are to develop a timeline of development for the product function, such as a cordless drill, tracing its history back to the bow and stick drill. Each student team will develop an illustrated presentation and report to be presented to the class.				7								
Film - Participants develop a film that focuses on the influence of technology on history. Sound may accompany the film/video.				7								
Rube-Goldberg Challenges Participation in a Robotics competition such as FIRST First Tech Challenge, FIRST Robotics Challenge, VEX competition, Parallax or TETRIX					8	9 9	10			16	18	

		 _										
Students will participate in an Electrathon competition within their region. This is a design and build to include monitors for various parameters (acceleration, video, CO2, etc)				8	9	10					18	
Rocketry: Students will design and build rockets which incorporate sensors which monitor various parameters such as altitude, acceleration, etc.)				8	9	10					18	
Creating virtual models: Utilize PTC and AutoDesk competitions and include in other activities listed.				8	9		11					
Dragster Design - Participants design, produce working drawings for, and build a CO2-powered dragster.				8	9						18	
Mousetrap Car				8	9						18	
Computer-Aided Design (CAD), Architecture with Animation - Participants create representations, such as foundation and/or floor plans, and/or elevation drawings, and/or details of architectural ornamentation or cabinetry. Students may be expected to animate a presentation of their entry.				8	9							
Civil Engineering Project				8	9							
Students will develop a technological solution with at least three concepts, to a given problem using the design process, based on limited criteria and constraints.				8								
Technical Sketching and Application - Participants demonstrate their ability to solve on-site engineering graphics problems using standard drafting techniques.				8								
Computer-Aided Design (CAD), Engineering with Animation Participants create 3D computer model(s) of an engineering or machine object, such as a machine part, tool, device, or manufactured product. Students may be expected to animate a portion of their model.				8								

Students will incorporate engineering principles in the design process. Students will developfabric are model, mackup, and/or a prototype of their final solution. Nousetrap Boat /ul>												
During process of designing solution to design poblem, students will use various research and testing procedures to determine best possible solution. Image: Construction of the solution of the solution of the solution of the solution. Image: Construction of the solution of the solution of the solution of the solution. Image: Construction of the solution of the solution of the solution of the solution. Image: Construction of the solution of the solution of the solution of the solution. Image: Construction of the solution of the	design process. Students will develop/fabricate a model, mockup, and/or a prototype of				9							
solution to design problem, students will use various research and testing procedures to determine best possible solution. Re-Engineering Projects Transportation Modeling - Participants using only certain materials and following required specifications, design and produce a CO2-powered scale model of a vehicle that fits the annual design problem and that takes appearance and performance into consideration. Belectronic Game Design - Participants develop an E- rated game that focuses on the subject of their choice. Boat Design fullenge Technology Dare - Participants design, fabricate, and demonstrate the application and control of mechanical, fluid, and electrical energy principles to move balls with a pmeumatic flow. Evaluation is based on a demonstrate the application of mechanical, fluid, and electrical energy principles and a control of mechanical, fluid and electrical energy principles is an any effigit the application of mechanical, fluid and electrical energy principles with a pmeumatic flow. Evaluation is based on a demonstrate the application and that chouse the application of mechanical, fluid and electrical problem and control of mechanical. Thus, and electrical problem and control of mechanical. Thus, and the application and problem and control of mechanical. Thus, and electrical energy principles and control of mechanical. Thus, and the application and problem and control of mechanical. Thus, and the application and problem and control of mechanical. Thus, and the application of mechanical fluid and electrical problem and control of mechanical. Thus, and the application of mechanical control of mechanical. Thus, and the application and that the application of mechanical. Thus, and the application of the application	Mousetrap Boat				9							
Image: Consideration Modeling - Participants using only certain materials and following required specifications, design and produce a CO2-powered scale model of a vehicle that first the annual design problem and that takes appearance and performance into consideration. Image: Construct on the specification of their choice. Image: Construct on the specification of the specification of the specification of the application of the annual characteria. Image: Construct on the specification of the application of the a	solution to design problem, students will use various research and testing procedures to determine best					10						
Participants using only certain materials and following required specifications, design and produce a CO2-powered scale model of a vehicle that firs the annual design problem and that takes appearance and performance into consideration. Electronic Game Design - Participants develop an E- rated game that focuses on the subject of their choice. Boat Design Challenge Car Design Car Design Technology Dare - Participants design, fabricate, and demonstrate the application of mechanical, fluid, and electrical power by applying power and energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstrate the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles to move balls with a nubber band- powered model aircraft.	Re-Engineering Projects					10						
Participants develop an E- rated game that focuses on the subject of their choice. Boat Design Challenge Car Design Car D	Participants using only certain materials and following required specifications, design and produce a CO2-powered scale model of a vehicle that fits the annual design problem and that takes appearance and performance into					10						
Car Design Image: Ca	Participants develop an E- rated game that focuses on the					10						
Technology Dare - Participants design, fabricate, and demonstrate the application and control of mechanical, fluid, and electrical power by applying power and energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles, and craftsmanship. Image: Constraint on the application of the application of mechanical, fluid and electrical energy principles, and craftsmanship. Image: Constraint on the application of mechanical, fluid and electrical energy principles, and craftsmanship. Image: Constraint on the application of mechanical, fluid and electrical energy principles, and craftsmanship. Image: Constraint on the application of mechanical, fluid and electrical energy principles, and craftsmanship. Image: Constraint on the application of mechanical, fluid and electrical energy principles with a rubber band- powered model aircraft. Image: Constraint on the application of mechanical, fluid and electrical energy principles with a rubber band- powered model aircraft. Image: Constraint on the application of mechanical, fluid application of mechanical, fluid and electrical energy principles with a rubber band- powered model aircraft. Image: Constraint on the application of mechanical, fluid application of mechanical, fluid and electrical energy principles with a rubber band- powered model aircraft. Image: Constraint on the application of mechanical, fluid appl	Boat Design Challenge					10						
Participants design, fabricate, and demonstrate the application and control of mechanical, fluid, and electrical power by applying power and energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles, and craftsmanship. Flight Endurance - Participants analyze flight principles with a rubber band- powered model aircraft. Residential Maintenance	Car Design					10						
Participants analyze flight principles with a rubber band- powered model aircraft.	Participants design, fabricate, and demonstrate the application and control of mechanical, fluid, and electrical power by applying power and energy principles to move balls with a pneumatic flow. Evaluation is based on a demonstration of the application of mechanical, fluid and electrical energy principles, and craftsmanship.						11			16		
	Participants analyze flight principles with a rubber band-						11					
								12				

System Control Technology - Participants work as part of a team on site to develop a computer-controlled model- solution to a problem, typically one from an industrial setting. Teams analyze the problem, build a computer-controlled mechanical model, program the model, explain the program and mechanical features of the model- solution, and leave instructions for evaluators to operate the device.						12			16		
BalloonSat: A NASA sponsored event. Students will monitor flight tracking, near space sensing and package retrieval.						12				18	
Students will research and develop a documentation manual for the product they have designed and fabricated, to include maintenance and repair service, a parts list, and appropriate diagrams.						12					
Promotional Graphics - Participants develop and present a graphic design that can be used as a TSA recruitment tool and that includes the theme for the next year's conference.						12					
Engine maintenance						12					
Students will develop an environmental impact report their product will have from manufacturing to disposal.							13				
Cyberspace Pursuit - Participants are required to design, build and launch a web site that features the school's career and technology education program, the TSA chapter, and the chapter's ability to research topics pertaining to technology.							13				
Technology Bowl complete a written, objective test the an oral question/response, head- to-head team competition.							13				
Technological Forecasting							13				
Global warmingfact or junk science, impacts of technology							13				

Biomolecular Modeling: Utilize "Smart Teams from the Center for BioMolecular modeling.							14	15			
Students will be assigned a physical impairment which they will research, then design, model, and test a product solution addressing the impairment.							14				
Scientific and Technical Visualization (SCIVIZ) - Participants develop a visualization focusing on a medical technology subject or topic							14				
Medical Technology - Participants conduct research on a contemporary medical technology problem of their choosing, document their research, and create a display. The information gathered may be student-performed research or a re-creation or simulation of research performed by the scientific community. A model or prototype of the solution must be included in the display.							14				
Robot Surgery modeling							14				
Folk, native and alternative medicine project							14				
Vaccine Analysis							14				
Prosthetics Project							14				
Facility/workplace safety								15		19	20
Regulation & safety								15		19	20
Cultivation of plants and Animals: Hydroponics								15			
Cultivation of plants & animals: Aquaponics								15			
DNA electrophoresis								15			
Waste Management								15			
Bio-engineering: Physical Enhancement								15			
EKG								15			
The students will research, design and model a greenhouse capable of supplying fresh produce for a family of four annually. The greenhouse will be self- sustaining.								15			

	 		 r							
Agriculture and Biotechnology Design - Participants conduct research on a contemporary agriculture or related biotechnology problem of their choosing, document their research, and create a display. The information gathered may be student-performed research or a re-creation or simulation of research performed by the scientific community. If appropriate, a model or prototype of the solution may be included in the display.							15			
Desktop Publishing Participants develop a notebook that includes a tri- fold pamphlet, a three-column newsletter, and a poster then work to solve an on-site problem that demonstrates their abilities to use the computer to design, edit, and print materials for publication.							15			
Farm Implement Identification, selection, use, care and storage							15			
Organic vs Inorganic Gardening							15			
GMOs, what are they?							15			
Why more health problems today?							15			
Experiments on engine efficiency								16		
Experiments to determine the efficiency and cost of various fuel mixtures.								16		
Design and build a system to meet the specifications of a design problem in power and energy								16		
Students will design and develop a scale model hybrid system for a single family house using as many renewable energy sources as possible with an emergency back-up generator system.								16		
Creating energy efficient communities project								16		

Animatronics - Participants													16			
demonstrate knowledge of																
mechanical and control																
systems by designing,																
fabricating and controlling an																
animatronics device that will																
communicate, entertain,																
inform, demonstrate and/or																
illustrate a topic, idea, subject																
or concept. Sound, lights and																
a surrounding environment																
must accompany the device.																
City Power Grid Project													16			
Students will research,														17		
develop and deliver an																
advertising campaign with																
print, radio, and video																
promotion spots.																
Creating web pages														17		
Creating videos														17		
Digital photo editing														17		
Digital photo calling														- /		
Creating Animations														17		
Creating Ammatons														17		
Chapter Team - Participants				-	_		-							17		
														17		
take a written parliamentary																
procedures test then proceed																
to the next level where teams																
perform an opening																
ceremony, dispose of three																
items of business, and																
perform a closing ceremony																
within a specified time period.																
Career Comparisons –														17		
Participants thoroughly																
research various technology-																
related careers that are																
associated with one of the																
following technology areas:																
Biotechnology,																
Communications, Energy and																
Power, Engineering, Manufacturing, Medical																
Technology, Technology																
Education Teaching,																
Transportation, or																
Construction. After																
documenting the research,																
each student submits a cover																
letter and resume for the																
selected career and completes																
a formal job application the																
take part in an on-site mock																
interview.																
Design and build a computer			Τ	Τ	Τ	T	T								18	
controlled land-based																
transportation system																
<u>.</u>																
Design and build an efficient							\neg								18	
water-based transportation															-	
vehicle																
1	1	I I	1	1						1	1	1				

Design and build an efficient air-based transportation vehicle									18		
Students will research,		_							18		
develop and model a transportation system(s) that demonstrates the transportation of raw and									10		
stock materials to manufacturing facility(ies) and the distribution of the finished product developed in the Standards 8-11 projects,											
including the packaging of the product for shipping and retail sell.									10		
Report asking comparisons of different transportation technologies									18		
Competing in a super mileage challenge (google IMSTEA)									18		
Technology Problem Solving - Participants use problem solving skills and limited materials to develop a solution to a problem given on									18		
site									10		
Radio Controlled Transportation - Participants design, fabricate, test, and demonstrate the use of a radio-controlled vehicle that									18		
collects and distributes a load during a five minute demonstration. Evaluation is based on performance, vehicle											
craftsmanship, and documentation of design efforts.											
Ham Radio Project									18		
Fiber Optics Design BluePrint Reading					 	 	 	 	18 18		
Message Incription									18		
Transport History Model Analysis									18		
Quality control										19	20
Research										19	20
Design Portfolio (drawings, dimensioning, sketching, keeping engineering notebooks)										19	
Prototyping										19	
Fixture development										19	
Mass production										19	

Marketing										19	
Product service				 						19	
Design and produce a production system that incorporates automation										19	
Design and implement a quality inspection system consistent with statistical process control.										19	
Using the product developed in Standards 8-11, students will research, design, develop, and operate a manufacturing cell to fabricate the product (alternatively, a packaging process system for the product).										19	
Enterprise approach to teaching manufacturing										19	
Programming CNC Equipment					<u></u>					19	L
Creating problem based automated cells										19	
Manufacturing Prototype - Participants design and manufacture a prototype of a product and provide a description of how the product could be manufactured in a state-of- the-art American manufacturing facility.										19	
Structural Engineering - Participants work as part of a team, on site with supplied materials, to build a model of a structure that is destructively tested to determine design efficiency.										19	
Puzzle Projects - six piece burr, etc.										19	
Materials Analysis/stress testing	T									19	
Site Layout											20
Building Design and Construction											20
Alternative Shelter Design and Build	T										20
Construction Cost Estimating											20
Designing insulating panels											20
Structure design and testing											20

Students will research the various building systems used in the design and construction of a small structure (house, workshop, retail store, etc.). Upon completion of the research, the students will construct a ³ / ₄ " = 1'-0" scale model, beginning with the excavation and ending with the finished surfaces. Framing, wiring, HVAC, etc. will be included.										20
Solar Communities										20
City Planning using simulation software										20
Architectural Model - Participants develop a set of architectural plans and related materials for an annual architectural design challenge and construct an architectural model to accurately depict the design.										20
Construction Systems Participants complete a written test on general construction systems knowledge then demonstrate their knowledge by solving an on-site construction systems problem.										20
Electricity 101 Project										20
Plumbing 101 Project										20

APPENDIX E

Round 2 Letter to Participants

Andrew M. Klenke 1701 S. Broadway, W105b KTC Pittsburg State University Pittsburg, KS 66762 July 12, 2010

Mr. Survey Completer Technology Education Teacher 12345 Technology Lane Somewhere High School Somewhere, USA 12345

Dear Survey Completer:

Thank you for agreeing to participate in this study. I appreciate your involvement, professionalism, and the time you will spend completing this project. I will remind you that participation in this study is voluntary and no compensation is given for your participation. It should also be noted that only group responses will be reported and all personal information will remain confidential. Each participant will be issued a code number which will be located at the top of the returned survey instrument. All information for each participant will be referenced to that code throughout the Delphi process.

To refresh your memory, the purpose of the study is to determine what a contemporary technology education facility should have with regard to equipment, tools, software and hardware to teach a standards-based technology education program. To accomplish this, a Delphi technique will be used to arrive at a consensus among a group of selected experts in the field, of which you are a part of. To date, there has been no agreement on what a contemporary technology education facility should have for equipment, tools, software or hardware to meet all *Standards for Technological Literacy*; your group will help define those attributes.

This correspondence represents Round Two of a three round Delphi procedure. The information provided in Round 1 was reviewed and converged into this survey. The purpose of this round is to begin to build consensus of what tools, equipment, software and hardware needs would be necessary to teach a "standards based technology education curriculum" within each of the content standards. The standards can be accessed and reviewed electronically through the International Technology Education Association website, located at http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf. The on-line instrument will utilize a 5 point Likert scale to record your responses and can be found at the link listed at the end of this letter. There are four sections to the survey; equipment, tools, electronic hardware and software with each requiring a varied number of responses.

The first round was labor and time intensive; however, this round should take approximately 30 minutes to complete depending upon how fast you read.

Remember, for clarity, the facility has 3000 square feet and one technology education faculty to teach the *standards-based* curriculum. In essence, you are defining what a model technology education program in a small high school having only one teacher would need to teach to the standards.

Please record your responses on the website http://www.surveymonkey.com/s/GYJ83VP. If you have any questions, feel free to call or email. Please complete the survey no later than July 26th, 2010.

Sincerely,

Andrew MKlunk

Andrew Klenke Graduate Student, University of Arkansas

Michael K. Daugherty, PhD. Dissertation Chairperson University of Arkansas

Appendix F

Round Two Survey Instrument

TE FACILITY DELPHI ROUND 2												
1. EQUIPMENT												
which indicates your per	ception of how important t te that the numbers withi	he piece of equipme	ent is in a standards-ba									
1. Scanner (9,10),11,12,14,15,16,18,1	9,20)										
Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
2. Aerospace Er	ngineering Learning	J System (4,6)										
Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
3. Air Compress	sor with lines and a	cessories (1-20))									
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
4. Alternative Er	nergy Training Set v	vith Solar, Wind	, Hydroelectric, F	uel Cell, etc. (1-20)								
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
5. Arbor Press (1-20)											
Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
6. Audio Trainer	(17)											
Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
7. Automatic Pr	oduct Identification	System (19)										
Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
8. Band Saw (1-	20)											
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								

TE FACILITY DE	LPHI ROUND	2		
9. Belt/Disc Sand	er (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
10. Bench Grinde	er 8'' (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
11. Blower (4,6,9-	12, 14-16, 18-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
12. Book Binding	System (12,13, 17)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
13. Box and Pan	Brake (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
14. Braille Stylus,	Slate and Practice	e Cell (15)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
15. Bridge/Tower	Testing Equipmer	nt (1-20)		
Unimportant				
Of Little Importance				
Moderately Importan	t			
Very Important				
16. Buffing Whee	l (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
17. Catapult Lear	ning System (4,6)			
O Unimportant	Of Little Importance	Moderately Important	Important	Very Important

TE	FACILITY DE	LPHI ROUND	2		
	18. CIM/FMS Trair	ner (8-13, 16, 18, 19))		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	19. Civil Engineer	ing Learning Syst	em (4,6,11,19)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	20. Classroom Fu	rniture (1-20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	21. CNC Metal Lat	the with tooling (1-	-20)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	22. CNC Metal Mil	ling Machine with	tooling (1-20)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	23. CO2 Race Tra	ck with supplies (4	4,6, 9-11)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	24. Computer-bas	ed metrology equ	ipment (19)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	25. Drill Press (1-2	20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	26. Dust Collectio	n System (5HP Mi	nimum) to include	portable shop va	cs (1-20)
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	27. Dynomometer	· (16)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important

TΕ	28. Electricity/Electronics Electrical Equipment/Supplies including oscilloscope,												
	28. Electricity/Ele	ctronics Electrical	Equipment/Suppl	lies including osci	lloscope,								
	multimeters, func		robes, etc for AC/I	DC/Digital/Analog									
	(5,6,11,12,16,18,20	0)											
	Unimportant	Of Little Importance	Moderately Important	Important	Very Important								
	29. Environmenta	l Learning System	n (4,6,11)										
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	30. Filing System	/Cabinets (1-20)											
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	31. Flammable Ca	binet (1-20)											
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	32. Fluid Power T	raining System (4,	6,8-12, 15,16,18,19	9)									
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	33. Fuel Cell Lean	ing System to inc	lude Cars (4,11,12	,18)									
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	34. Gears ID Kits	or Equivalent (4,6,	9,12,14,15,18)										
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	35. Graphics Lear	ning Systems (4,6	i,12)										
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								
	36. Greenhouse f	or Bio-Tech/Bio-F	uel (15)										
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important								

TE FACILITY D	E FACILITY DELPHI ROUND 2					
37. Hydroponics	s, Aquaponics Equi	pment to include	Aquarium with	pump/filters for		
Cultivation of pl	ants and animals (1	5)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
38. Industrial Co	ontrols learning Sys	tem (4,6,11,12,10	6,1,20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
39. Injection Mo	lder (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
Train Set to incl	ransportation Syste ude Monorail, Forkl eams, Roadways, C	ifts, Monorail, El	evator, Crane, L			
Unimportant	Of Little Importance	Moderately Important	Important	Very Important		
41. Internal and	External Combusti	on Engines (16)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
42. Jointer (9-12	,14-16, 18-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
43. Lab Pro Was	ste Management Sys	stem (15)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
44. Laser Engra	44. Laser Engraver minimum 30watt with cutting table and rotary attachment (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
45. Laser Lab E	45. Laser Lab Equipment (4,6)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		

TE FACILITY D	ELPHI ROUND	2				
46. Laser Surve	ying and Site layout	Instruments (20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
47. Lego Minds	torms (4,6,12,16,18,1	9)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
48. Lithography	/ Equipment (17)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
49. Material Sto	ck including wood, r	netal, plastic s	upplies, etc. (1-20))		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
50. Materials ar	nd Processes Learni	ng System (4,6	,11,12,16,19,20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
51. Mechanical	Learning Systems (4	4,6,11,12,16,18	,19)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
52. Mechatroni (4,6,8-13, 15,16,	cs Engineering Desi 18,19)	gn Apps Syste	m to include mobi	le robotic systems		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
53. Metal Brake	(1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
54. Metal Cut-O	ff Saw (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
55. Metal Horiz	55. Metal Horizontal Band Saw (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		

TE FACILITY DE	TE FACILITY DELPHI ROUND 2					
56. Metal Lathe (1	1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
57. Metal Milling I	Machine (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
58. Metal Shear/R	coll (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
59. Metal Working	g Forging Furnace	(1-20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
60. Microscope v	vith Video Connect	tion (15)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
61. MIG Welder (1	-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
62. Multi-sander v	with oscillating spi	ndle/belt (1-20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
63. Oxygen/Acety	/line Welding/Cutti	ng Equipment (1-3	20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
64. Photovoltaic Cell Experiment System (16)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
65. Plasma Cutting and Routing Machine (9-12,14-16,18-20)						
O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		

Page 7

Important 67. PLC/Sensor Application Trainer (4, 9-13,19) Unimportant Of Little Importance Moderately Important Very Import 68. Pneumatics/Hydraulics Learning System (4,6,11,12,16,18) Unimportant Very Import 69. Portable Treadmill or Eliptical (with digital readout) Weight Set, Flexibility Tester, (3-7,13,14) Unimportant Of Little Importance Moderately Important Very Import 70. Power Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Import 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Uriportant Of Little Importance Moderately Important Very Import 72. Radial Arm Saw (19-20) Unimportant Of Little Importance Moderately Important Very Import 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Very Import Unimportant Of Little Importance Moderately Important Very Import	FACILITY D	ELPHI ROUND	2		
Important 67. PLC/Sensor Application Trainer (4, 9-13,19) Unimportant Of Little Importance Moderately Important 68. Pneumatics/Hydraulics Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important 69. Portable Treadmill or Eliptical (with digital readout) Weight Set, Flexibility Tester, (3-7,13,14) Unimportant Of Little Importance Moderately Important Very Important Of Little Importance Moderately Important Unimportant Of Little Importance Moderately Important	66. Plastics Ove	en (1-20)			
Unimportant Of Little Importance Moderately Important Important Very Important 68. Pneumatics/Hydraulics Learning System (4,6,11,12,16,18) Important Very Important 01 Unimportant Of Little Importance Moderately Important Important Very Important 69. Portable Treadmill or Eliptical (with digital readout) Weight Set, Flexibility Tester, (3-7,13,14) Important Very Important 01 Unimportant Of Little Importance Moderately Important Important Very Important 70. Power Miter Saw (1-20) Important Of Little Importance Moderately Important Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Important Very Important 01 Little Importance Moderately Important Important Very Important 72. Radial Arm Saw (19-20) Important Very Important Very Important 01 Little Importance Moderately Important Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Important Very Important 01 Unimportant Of Little Importance Moderately Important Important Very Important <th>Unimportant</th> <th>Of Little Importance</th> <th>•</th> <th>O Important</th> <th>Very Important</th>	Unimportant	Of Little Importance	•	O Important	Very Important
68. Pneumatics/Hydraulics Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Import 69. Portable Treadmill or Eliptical (with digital readout) Weight Set, Flexibility Tester, (3-7,13,14) Important Of Little Importance Moderately Important Very Import 70. Power Miter Saw (1-20) Important Of Little Importance Moderately Important Very Import 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Important Very Import 72. Radial Arm Saw (19-20) Important Of Little Importance Moderately Important Very Import 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Of Little Importance Moderately Important Very Import 74. Research and Design Learning Systems (4,6,12,16,18) Important Very Important Very Important	67. PLC/Sensor	Application Trainer	(4, 9-13,19)		
Unimportant Of Little Importance Moderately Important Very Important 69. Portable Treadmill or Eliptical (with digital readout) Weight Set, Flexibility Tester, (3-7,13,14) Important Of Little Importance Moderately Important Very Important 0 Unimportant Of Little Importance Moderately Important Very Important 70. Power Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Important 10. Unimportant Of Little Importance Moderately Important Very Important 11. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Important Very Important Very Important 12. Radial Arm Saw (19-20) Important Important Very Important Very Important 13. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Important Very Important 14. Unimportant Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as D	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important
	68. Pneumatics	/Hydraulics Learnin	g System (4,6,1	1,12,16,18)	
(3-7,13,14) Unimportant Of Little Importance Moderately Important Very Important 70. Power Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Unimportant Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Unimportant Of Little Importance Moderately Important Very Important	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important
Unimportant Of Little Importance Moderately Important Very Important 70. Power Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Important 10. Power, Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Important Very Important Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Important Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Important Very Important Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Important Very Important Very Important	69. Portable Tre	admill or Eliptical (v	vith digital read	out) Weight Set, F	lexibilty Tester, etc
Important 70. Power Miter Saw (1-20) Unimportant Of Little Importance Moderately Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Important Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Important Very Important Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Important Very Important Very Important	(3-7,13,14)				
Unimportant Of Little Importance Moderately Important Very Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Important Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Important Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Important Very Important Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Important Very Important Very Important	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important
Important 71. Power, Energy and Transportation Learning System (4,6,11,12,16,18) Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Unimportant Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Unimportant Of Little Importance Moderately Important Very Important	70. Power Miter	[•] Saw (1-20)			
Unimportant Of Little Importance Moderately Important Very Important 72. Radial Arm Saw (19-20) Unimportant Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Of Little Importance Moderately Important Very Important	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important
Important 72. Radial Arm Saw (19-20) Unimportant Of Little Importance Moderately Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important Very Important Vision Of Little Importance Moderately Important Very Important Very Important Very Important Of Little Importance Unimportant Of Little Importance Moderately Important Very Important Very Important	71. Power, Ene	rgy and Transportati	ion Learning Sy	/stem (4,6,11,12,1	6,18)
Unimportant Of Little Importance Moderately Important Very Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Of Little Importance Moderately Important Very Important	Unimportant	Of Little Importance	\smile		Very Important
Important 73. Rapid Prototyping Machine 8x8x10 Minimum 3D printer such as Dimension, Z-C (4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Of Little Importance Unimportant Of Little Importance Moderately Unimportant Of Little Importance Moderately	72. Radial Arm	Saw (19-20)			
(4,6, 8-12, 14-16, 18-20) Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Unimportant Of Little Importance Moderately Important Very Important	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important
Unimportant Of Little Importance Moderately Important Very Important 74. Research and Design Learning Systems (4,6,12,16,18) Unimportant Of Little Importance Moderately Important Very Important			x10 Minimum 3	D printer such as	Dimension, Z-Corp
74. Research and Design Learning Systems (4,6,12,16,18)	~	~			
Unimportant Of Little Importance Moderately Of Important Overy Important	Oriniportant		<u> </u>		U very important
	74. Research ar	nd Design Learning	Systems (4,6,1	2,16,18)	
	Unimportant	Of Little Importance	<u> </u>	O Important	Very Important

TE	TE FACILITY DELPHI ROUND 2					
	75. Robotics worl	kcell and equipme	nt w Conveyor an	d Robotic Arm (4,6	5,9-13,16,18,19)	
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	76. Roll Forming	Machine (9-12, 14-;	20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	77. Rotational Mo	lder with Molds (4,	,6,8-12,14-15,19)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	78. Router Table	or Shaper (1-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	79. Ready To Fly/	RTF Planes (18)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	80. Scale Vehicles	s/Components to i	nclude Engines, N	laglev, Trucks, Pla	anes, Watercraft,	
	Spacecraft, etc. C	an be used for ins	truction, demonst	ration or activities	s (1-20)	
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	81. Screen Printin	g Equipment (17)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	82. Scroll Saw (1-	20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	83. Simple Machine Learning System (4,6,12)					
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	84. Small Gas Eng	gine (1-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	

TE FACILITY	TE FACILITY DELPHI ROUND 2					
85. Solar Vehi	cle Learning System	(4,12,18)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
86. Speed Rad	dar Gun (4,6,9-12,14,1	6-19)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
87. Spot/Resi	stance Welder (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
88. Spray Boo	oth, Portable or equiva	alent (1-20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
89. Storage S	ystem for Projects, Su	ipplies, Materi	als, etc. (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
90. Strip Heat	er (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
91. Structural	Tester complete with	apparatus, in	struction kit and sto	ck (4,6,9,11,12,16)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
92. Sustainab	le Energy Learning Sy	/stem 4,6,9,11	,12,16)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
93. Table Saw	93. Table Saw (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
94. Thickness Planer (1-20)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		

ΤE	TE FACILITY DELPHI ROUND 2					
	95. Vacuum Form	er/Thermoformer	(1-20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	96. Vertical Hole I	Punch (1-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	97. Vinyl Cutter (4	,6,8-12,14-16,18-20))			
	Unimportant	Of Little Importance	Moderately Important	O Important	O Very Important	
	98. Vise System,	wood and metal (1	-20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	99. Watercraft Tes	sting Track, 20' Mir	nimum (8-13,18)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	100. Waterjet Cut	ting System (9-12,	14-16, 18-20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	101. Wind Genera	tion Experiment S	ystem (16)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	102. Wind Tunnel	(4,6,6-12,18)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	103. Wood Lathe	(1-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	104. Work Bench	es (4,6,9-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	

Page 11

TE FACILITY DELPHI ROUND 2

2. TOOLS

Below is a listing of the tools or groups of tools which were collected from the Round 1 survey. Please select the appropriate response which indicates your perception of how important the tool or group of tools is in a standards-based HS Technology Education lab. Please note that the numbers within the parenthesis indicate which standards were identified in the first survey with that particular tool or group of tools.

105. Applied So	105. Applied Science tools (Density Kits, Gravity Tester, Force Motion Tester, Optics,						
Laser Transmit	Laser Transmitter, Sound Test Equipment, Audio test equipment, etc. (2-4,6-12,14-16)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important			
106. Barcode o	r Similar Scanner (1	9)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important			
107. Biotechno	logy General Lab Ec	uipment to in	clude an artificial lig	ght source, planting			
	trays, hot plate, mi	crowave, beal	kers, flasks, graduat	ed cylinders, petri			
dishes, box fan	, etc. (15)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important			
108. Construct	ion Tools such as w	heelbarrows,	surveying tools, for	m stakes, hammers,			
chalklines, belt	s, framing squares.	shovels, hoes	, trowels, floats, sa	w horses, extension			
cords, etc. (1-2	••••	,	, , , , , , , , , , , , , , , , , , , ,				
Unimportant	Of Little Importance	Moderately Important		Very Important			
109. Electronic	s Tools and kits to ir	nclude solderi	ng irons, multimete	rs, motors, lamps,			
propane torch,	wire, components,	etc. (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important			
110. Fabrication	n Measurement Tool	Is such as dia	l calipers, micromet	ers, tri-squares,			
	quick square, rulers, angle, etc. (1-20)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important			

TE FACILITY DELPHI ROUND 2					
111. Fa	stener Su	pply to include scr	ews, bolts, nails, i	nuts, washers, bra	ckets, round and
flat sto	ck, dowels	s, wire, etc. (1-20)			
	nportant	Of Little Importance	Moderately Important	O Important	O Very Important
112. Ge	eneral Che	mistry Tools for se	elected bio-related	activities (15)	
O Unin	nportant	Of Little Importance	Moderately Important	O Important	O Very Important
	and Draftin 5-17,19,20	ng Tools such as b)	oards, triangles, t	-squares, template	es, etc. (4, 6-9,
	nportant	Of Little Importance	Moderately Important	O Important	Very Important
	-	evices such as gra ters, digital scale,			
	nportant	Of Little Importance	Moderately Important	O Important	Very Important
115. M	edical equi	ipment to include s	stethoscope, weig	ht/height scale, hi	uman body
model,	blood pre	ssure tester, audio	testing, etc. (2-4,	6-12,14,15)	
	nportant	Of Little Importance	Moderately Important	O Important	Very Important
116. Mi	isc Fabrica	ation Tools such as	s metal and wood	chisels, hammers	, punches, files,
wrench	nes, socke	ts, drill bits, clamp	s, vices, files, wre	nches, sockets, na	ail/punch sets,
hamme	ers, clamps	s, screwdriver sets	, vices, etc.(1-20)		
O Unin	nportant	Of Little Importance	Moderately Important	O Important	O Very Important
117. Mi	sc Fabrica	ation Power Tools	(cordless drills, sa	anders, routers, re	cip saw, circular
saw, jig	g saw, solo	dering irons, rotary	engravers, etc. (1	-20)	
	nportant	Of Little Importance	Moderately Important	O Important	O Very Important
118. No	on-contact	Tachometer (18)			
O Unin	nportant	Of Little Importance	Moderately Important	O Important	Very Important

ΤE	FACILITY DE	LPHI ROUND	2				
	119. Office Equipment such as scissors, paper cutters, rulers, staplers, CD storage, etc.						
	(1-20)						
	Unimportant	Of Little Importance	Moderately Important	Important	Very Important		
	120. Plastics Tool	ls such as a welde	r, scrapers, etc. (9)-17,19)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
	121. Pnuematic to 20)	ools such as a stap	oler, brad nailer, fii	nish nailer, framing	g nailer, etc. (1-		
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
	-	ed Equipment such		•	-		
	protection, safety	glasses and cabi	net, lab coats, apr	ons, specially glo	(1-20)		
	Unimportant	Of Little Importance	Moderately Important	() Important	Very Important		
	123. Sound Level	Meter for noise po	ollution monitoring	g (15)			
	Unimportant	Of Little Importance	Moderately Important	Important	Very Important		

TE FACILITY DELPHI ROUND 2

3. ELECTRONIC HARDWARE

Below is a listing of the electronic hardware which was collected from the Round 1 survey. Please select the appropriate response which indicates your perception of how important the listed electronic equipment is in a standards-based HS Technology Education lab. Please note that the numbers within the parenthesis indicate which standards were identified in the first survey with that particular electronic device.

124. Classroom Student Project Server (1-20)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
125. Classroom	/Lab Sound System	n (1-20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
126. Color Lase	r Printer (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
127. Desktop Co	omputers With Flat	Screen Monitors ((1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
128. Digital Can	neras with Tri-pods	and Portable Ligh	ting System (1-20)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
129. Digital Vide	eo Recorder (1-20)					
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
130. Electronic	Presentation Board	Could Be Smarth	oard or equiv. (1-	20)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		
131. Flatscreen HDTV 42'' Minimum (1-20)						
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important		

ΤE	TE FACILITY DELPHI ROUND 2					
	132. GPS Units (1	8				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	133. Instructor La	ptop Computer (1	-20)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	134. Laptop Com	puter Set with stor	age cart (1-20)			
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	135. Laser Printer	For Printing pres	entations and Rep	oorts (1-20)		
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	136. Projector for	Whole Class Pres	entation (1-20)			
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	137. Scanner (1-2	0)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	138. Student Res	ponse System (1-2	20)			
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	139. Video Camco	orders with Tri-poo	ds (1-20)			
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	140. Wide Format	Printer (1-20)				
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	
	141. Wireless Handheld Microphones and Lapel Microphones (1-20)					
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important	

Page 16

TE FACILITY DELPHI ROUND 2

4. SOFTWARE

Below is a listing of the software which was collected from the Round 1 survey. Please select the appropriate response which indicates your perception of how important the listed software is in a standards-based HS Technology Education lab. Please note that the numbers within the parenthesis indicate which standards were identified in the first survey with that particular software.

142. 2D CAD (1-20)				
Unimportant	Of Little Importance	Moderately Important	Important	Very Important
143. 3D Building Design such as Chief Architect, or Revit (6,20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
144. 3D CAD such as Solidworks with Solid Professor, Inventor, Rhino, etc. (2,4,6,8-				
17,19)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
145. Air Quality Analysis (15)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
146. Animation Software such as Alice, Animation Master, etc. (17)				
Unimportant	Of Little Importance	Moderately Important	Important	Very Important
147. Audio Editing/Production Software (5,17)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
148. Barcode generation software and reading software (19)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
149. Bridge Design Software such as Westpoint Bridge Builder (18,20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important

ΤE	FACILITY DE	LPHI ROUND	2		
	150. Building Info	rmation Modelling	(BIM) Software (2	0)	
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	151. CAM Softwar	re such as Master	CAM, CamWorks,	or equiv to produc	e G-code (19)
	O Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	152. Chemical An	alysis for Hydropo	onics, DNA (15)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	153. Computer Ga	ame Development	Software such as	Game Studio 3D a	authoring (2-4,7-
	15,18)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	154. Computer So	oftware to enable t	he automatic cont	rol of a land base	d transportation
	system (18)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	155. Computer So	oftware to monitor	the performance	of land-based, wat	er-based, and
	air-based vehicles	s (18)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	156. Programmab	le Logic Control s	oftware for motors	s, lights, sensors,	etc. (18)
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	157. Desktop Pub	lishing Software s	uch as Illustrator,	In-Design, CorelD)raw, Etc. (1-20)
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	158. EKG Analysi	s for Electrophore	sis (15)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important

TE FACILITY D	ELPHI ROUND	2		
159. Electrical c	ircuit simulation suc	ch as Electroni	c Circuit Designer	, Digital Works,
TINA, Edison, et	tc. (16)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
160. Electronic	White Board Softwa	re (1-20)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
161. Floor Plan	Software such as Fi	ree Floor Plann	ner (2-4,7-15,18)	
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
162. Internet Co	onnection (1-20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
163. Office Soft	ware for word proce	ssing, databas	es, spreadsheets,	presentations, etc.
(1-20)				
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
164. Photo Man	ipulation Software	such as Photos	hop or equiv (1-20	0)
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
165. Plant Layo	ut Simulation Softw	are (19)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
166. Robotics C	ontrol Graphics Ba	sed Software s	uch as RobotC or	equiv Programming
language for N	(T and VEX (2-4,7-1	5,18)		
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
167. Sim City So	oftware (4,20)			
Unimportant	Of Little Importance	Moderately Important	O Important	Very Important

TE	FACILITY DE	LPHI ROUND	2		
	168. Sim Farm So	ftware (5)			
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	169. Sketchup fro	m Google (2-4,7-1	5,18)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	170. Smart Draw	isual Communica	ation Software (2-4	,7-15,18)	
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	171. Soil pH Analy	sis Software for V	Vaste Managemen	it (15)	
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	172. Statistical Pr	ocess Analysis So	oftware (19)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	173. Vernier Softv	vare for Cultivation	n of plants and ani	mals, Aquaponics	s (15
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	174. Video Editing	g Software such as	s Adobe Premiere,	Final Cut, i-Movie	, Studio, or
	Equiv. (1-20)				
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	175. Water Quality	//Analysis Test Kit	s for Aquaponics,	Water quality (15))
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	176. Waterjet Soft	ware for OMAX La	yout (19)		
	Unimportant	Of Little Importance	Moderately Important	O Important	Very Important
	177. Web 2.0 tools	s Free (2-4,7-15,18))		
	Unimportant	Of Little Importance	Moderately Important	Important	Very Important

TE FACILITY D	ELPHI ROUND	2		
178. Web Desig	In Software such as	Dreamweaver	w/flash or equiv. (4	4-10,12-15,17,18)
Unimportant	Of Little Importance	Moderately Important	Important	Very Important
L				Page 21

APPENDIX G

Round Two Aggregate Data

ID NUMBER	004	007	012	003	008	006	001	005	011	002	010	600	STATI	STICS
GROUP	Р	A	Т	Р	Т	Р	Р	Р	Т	A	Т	т	MEAN	STANDARD DEVIATION
1 - Scanner	4	3	5	5	n	5	1	4	5	2	4	3	4.00	0.85
2 – Aerospace LS	4	3 2	5	5 4	3	5 4	4	4	3	3	4	3 2	3.25	0.85
3 – Air					-	-								
Compressor 4 – Alt Energy	4	3	5	5	5	5	4	5	5	2	4	4	4.25	0.97
Training Set	4	4	5	4	4	5	4	4	4	4	4	3	4.08	0.51
5 – Arbor Press	2	2	4	3	3	3	3	4	2	2	3	4	2.92	0.79
6 – Audio Trainer	3	2	4	4	3	4	4	3	3	2	4	2	3.17	0.83
7 – Auto Product ID System	3	3	2	3	2	4	4	4	4	2	3	3	3.08	0.79
8 – Band Saw	4	5	5	5	5	5	4	5	4	2	4	5	4.42	0.90
9 – Belt/Disc Sander	4	5	5	5	5	4	3	5	4	3	4	4	4.25	0.75
10 – Bench Grinder 8"	3	4	5	5	5	2	3	5	4	3	3	4	3.83	1.03
11 – Blower	2	3	2	5	3	5	4	4	3	3	4	4	3.50	1.00
12 – Book Binding System	1	2	3	1	2	2	3	3	3	2	3	3	2.33	0.78
13 – Box and Pan Brake	2	3	5	2	4	2	4	5	3	2	3	4	3.25	1.14
14 – Braille Stylus, slate, etc.	2	2	1	2	2	2	3	2	2	2	2	3	2.08	0.51
15 – Bridge/ Tower Tester	4	4	5	5	4	5	3	4	5	4	4	3	4.17	0.72
16 – Buffing Wheel	3	2	5	3	3	2	3	4	2	3	3	3	3.00	0.85
17 – Catapult LS	2	3	5	4	3	4	3	3	3	3	3	2	3.17	0.83
18 – CIM/FMS Trainer	4	3	5	5	4	5	3	4	4	4	4	3	4.00	0.74
19 – Civil Engineering LS	2	3	5	5	4	4	3	4	4	4	3	2	3.58	1.00
20 – Classroom Furniture	5	5	5	5	5	5	5	5	5	4	4	4	4.75	0.45
21 – CNC Metal Lathe & Tooling	4	4	4	5	5	3	4	5	4	3	3	4	4.00	0.74
22 – CNC Metal Mill & Tooling	4	5	4	5	5	3	4	5	4	3	3	4	4.08	0.79
23 – CO2 Race Track w/Supply	4	5	4	5	4	5	3	3	3	3	3	3	3.75	0.87
24 – Computer Metrology Equip	3	5	2	3	3	4	3	5	3	3	3	3	3.33	0.89
25 – Drill Press	4	3	5	5	5	5	4	5	5	3	4	5	4.42	0.79
26 – 5HP Dust Collection/Vacs	4	5	5	5	5	5	4	5	5	4	4	5	4.67	0.49
27 – Dyno- mometer	2	3	1	3	3	3	3	3	3	3	3	2	2.67	0.65
28 – Elect Equip w oscilloscope	3	5	5	5	5	5	4	5	5	4	4	4	4.50	0.67
29 – EnvironmentLS	4	3	5	4	4	4	4	4	2	3	3	3	3.73	0.65
30 – Filing System/Cabinets	4	5	5	4	4	5	4	4	5	3	4	4	4.25	0.62

Cabinet 4 5 5 5 5 5 5 5 5 5 5 4 4 4 3 5 5 4 4 4 4 3 4 2 3 3 4 2 3 3 4 4 3 3 4 3 3 3 3 3 3 </th <th>31 – Flammable</th> <th></th>	31 – Flammable														
Training system 2 4 5 5 5 4 4 4 4 3 4 2 3.83 1.103 Saf-Tele Cells 2 4 5 5 5 5 5 3 3 4 4 3 3.67 0.088 Site of Equiv 3 4 5 5 5 3 4 4 5 4 3	Cabinet	4	5	5	5	5	5	3	5	5	5	3	5	4.58	0.79
w.Cas. 2 4 5 5 4 4 4 4 2 3 4 3 3.67 0.088 ast - Gerapic 3 4 5 5 5 5 4 4 5 4 3 <td></td> <td>2</td> <td>4</td> <td>5</td> <td>5</td> <td>5</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td>3</td> <td>4</td> <td>2</td> <td>3.83</td> <td>1.03</td>		2	4	5	5	5	4	4	4	4	3	4	2	3.83	1.03
kts or Equive 3 4 4 5 5 5 4 5 3 4 4 4 4 4 3 3 4 4 4 5 4 3 4 4 4 3 3 4 4 4 3 3 4 4 4 4 3 <	33 – Fuel Cell LS w/Cars	2	4	5	5	4	4	4	4	2	3	4	3	3.67	0.98
3i-Groupbuse for Biotech/Fuel 4 5 3 4 4 4 4 3		3	4	5	5	5	5	4	5	3	3	4	4	4.17	0.83
ore Biochyruel 4 5 3 4 4 4 4 3 3 3 3 3.67 0.65 Aquaponic Equip 5 3 5 4 4 4 4 3	35 – Graphics LS	2	3	5	5	3	4	4	5	4	3	4	4	3.83	0.94
Aquagonic 5 3 5 4 4 4 3 3 3 2 3 3,5,8 0.90 38 - Industrial 3 4 5 5 3 4 4 4 4 3 2 3.75 0.87 39 - Injection 4 3 5 4 4 4 4 3 3 4 3.92 0.67 40 - Rokenbok Ining Transysty 2 3 5 3 4 4 4 3 3 4 3.17 1.03 41 - Internal & 4 4 3 3 4 2 2 5 4 3.08 1.24 43 - Lab Pro 4 4 3 3 4 2 3	for Biotech/Fuel	4	5	3	4	4	4	4	4	3	3	3	3	3.67	0.65
Contros LS 3 4 5 5 3 4 4 4 4 4 4 4 4 3 2 3.75 0.87 Molder 4 3 5 3 4 4 4 3 3 4 3.92 0.67 Molder 4 3 5 3 4 2 3 3 3 4 3.92 0.67 Molder 4 3 5 3 4 2 4 3 3 4 3.33 0.8 1.24 42-lohro 4 4 3 3 3 3 3 3 4 3	Aquaponic	5	3	5	4	4	4	4	3	3	3	2	3	3.58	0.90
39injection 4 3 5 4 4 4 4 5 4 3 3 4 3 32 3 33 4 33 33 4 33 33 4 33 33 4 33 33 33 4 33 33 4 33 33 4 33 33 4 33 33 4 33 33 4 33 33 4 33 33 33 4 33 <t< td=""><td></td><td>3</td><td>4</td><td>5</td><td>5</td><td>3</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>3</td><td>2</td><td>3.75</td><td>0.87</td></t<>		3	4	5	5	3	4	4	4	4	4	3	2	3.75	0.87
Image Trans Syster. 2 3 5 3 4 4 4 3 3 2 3 3.3.33 0.899 At - Internal & 1 3 5 3 4 2 4 3 3 3 4 3.17 1.03 42 - lob Pro 4 4 3 3 4 2 2 5 4 2 2 4 3.088 1.24 43 - lab Pro 4 4 3 3 4 2 3 3 3 2 4 3.088 1.24 43 - lab Pro 4 4 4 4 4 4 5 5 2 4 3 3.08 1.24 43 - lab Pro 3 3 5 5 4 5 5 2 4 3	39 – Injection	4	3	5	4	4	4	4	5	4	3	3	4	3.92	0.67
Ext Constraint 1 3 5 3 4 2 4 3 3 3 3 4 3.17 1.03 42 - Jointer 4 4 3 1 4 2 2 5 4 2 2 4 3.08 1.24 43 - Lab PO 4 4 3 3 4 2 3 3 3 2 4 3.08 1.24 Waste Mignit Sys 4 4 3 5 4 5 5 2 4 3 4.08 1.08 45 - Laser Engraver 5 3 5 5 4 5 5 4 3	Integ Trans Syst	2	3	5	3	4	4	4	4	3	3	2	3	3.33	0.89
43-Lab Pro 4 4 3 3 4 2 3 3 3 2 4 3.18 0.75 Waste Mgrit Sys 4 4 3 5 5 3 5 5 2 4 3 4.08 1.08 43-Laser Lagreer 3 3 5 5 3 5 4 4 4 5 5 2 4 3 4.08 1.08 45-Laser Lagreer 3 3 5 5 4 4 4 5 4 3		1	3	5	3	4	2	4	3	3	3	3	4	3.17	1.03
waste Mgmt Sys 4 4 3 3 4 2 3 3 2 4 3.18 0.75 dar -Mn 30wert 5 3 5 5 3 5 4 4 4 5 5 2 4 3 4.08 1.08 ds-Laser lab Gaule 3 3 5 4 4 4 4 5 2 4 3 4.08 1.08 df-Laser Gaule 2 3 5 5 4 4 4 4 5 4 3	42 – Jointer	4	4	3	1	4	2	2	5	4	2	2	4	3.08	1.24
Laser Engraver 5 3 5 5 3 5 4 4 5 5 2 4 3 4.08 1.08 Equip 3 3 5 4 4 4 4 5 4 3	Waste Mgmt Sys	4		4	3	3	4	2	3	3	3	2	4	3.18	0.75
$\begin{array}{c cl} \hline Form begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Laser Engraver	5	3	5	5	3	5	4	5	5	2	4	3	4.08	1.08
survey Equip 2 3 5 3 3 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <t< td=""><td></td><td>3</td><td>3</td><td>5</td><td>4</td><td>4</td><td>4</td><td>4</td><td>5</td><td>4</td><td>3</td><td>3</td><td>3</td><td>3.75</td><td>0.75</td></t<>		3	3	5	4	4	4	4	5	4	3	3	3	3.75	0.75
47-lego 3 3 5 5 4 5 3 4 5 3 4 3 3.92 0.90 Mindstorms 4 1 2 1 2 2 2 2 3 2 2 3 2 2.00 0.60 49-Material 5 5 5 5 5 5 4 5 5 4 3 2 2.000 0.60 9-Material 5 5 5 5 4 4 4 4 3 5 4.64 0.67 50-Material 4 4 5 5 4 4 4 4 4 3 2 3.92 0.79 51-Methanical 4 4 5 5 3 4 3 3 5 4 4 4 3 3.92 0.79 53-Metal 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 54-Metal		2	3	5	3	3	4	3		3	3	3	3	3.18	0.75
equip 1 2 1 2 2 2 2 3 2 2 3 2 2.00 0.60 49-Material 5 5 5 5 5 5 4 5 5 4 3 5 4.64 0.67 50-Material & 4 4 5 5 4 4 4 4 4 3 2 3.92 0.79 51-Mechanical 4 4 5 5 4 4 4 4 4 3 3.92 0.79 52-Mechanical 4 4 5 5 3 4 3 3 5 4 4 3 3.92 0.79 53-Metal 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 54-Metal Cut- 3 2 5 2 4 5 2 2 2 4 3.08 1.24 56-Metal 3 2 5	47 – Lego	3	3	5	5	4	5	3	4	5	3	4	3	3.92	0.90
Stock (various) 5 5 5 5 4 5 5 4 3 5 4.64 0.67 So-Material & Processes LS 4 4 5 5 4 4 4 4 4 3 2 3.92 0.79 S1-Mechanical LS 4 4 5 5 4 4 4 4 4 4 3 2 4.08 0.79 S2-Mechanonics LS 4 4 5 5 3 4 3 3 5 4 4 3 3.92 0.79 S3-Metal 3 4 5 5 3 4 2 4 5 2 2 4 3 3.92 0.79 S3-Metal 3 2 5 2 4 5 2 2 2 4 3.17 1.34 S4-Metal Stand 3 2 5 3 4 2 4 5 3 2 2 4 3.17 1.03 S5-Metal Band Sa-Metal Mil		1	2	1	2	2	2	2	3	2	2	3	2	2.00	0.60
50 - Matrial & Processes LS 4 4 5 5 4 4 4 4 4 4 3 2 3.92 0.79 51 - Mechanical LS 4 4 5 5 4 4 4 5 4 4 4 4 4 2 4.08 0.79 52 - Mechanical LS 4 4 5 5 3 4 3 3 5 4 4 3 3.92 0.79 53 - Metal Brake 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 54 - Metal Out- off Saw 3 2 5 2 4 5 2 2 2 4 3.08 1.24 54 - Metal Band 3 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 56 - Metal 4 2 5 3 4 2 4 3 2 2 4 3.17		5		5	5	5	5	4	5	5	4	3	5	4.64	0.67
LS 4 4 5 5 4 4 5 4 4 4 2 4.08 0.79 52-Mecharonics 4 4 5 5 3 4 3 3 5 4 4 3 3.92 0.79 53-Metal Brake 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 54-Metal Cut- off Saw 3 2 5 2 4 2 2 2 2 4 3.08 1.24 56-Metal Band 3 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 56-Metal Band 3 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 56-Metal Sam Horizontal 3 2 5 3 4 3 2 2 4 3.17 1.03 58-Metal Shear/Boll 3 4	50 – Material &	4	4	5	5	4	4	4	4	4	4	3	2	3.92	
LS 4 4 5 5 3 4 3 3 5 4 4 3 3.92 0.79 S3-Metal Brake 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 S4-Metal Cut- off Saw 3 2 5 2 4 2 4 5 2 2 2 4 3.17 1.34 S5-Metal Band Saw Horizontal 3 2 5 2 4 2 2 2 4 3.08 1.24 S6-Metal Lathe 4 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 S6-Metal Lathe 4 2 5 3 4 2 4 3 2 2 4 3.17 1.03 S8-Metal Shear/Roll 3 4 5 1 4 2 3 3 2 2 4 3.25 1.29 S9-Metal Forge Furnace <		4	4	5	5	4	4	4	5	4	4	4	2	4.08	0.79
Brake 3 4 5 1 4 2 4 5 2 2 2 4 3.17 1.34 54 - Metal Cut- off Saw 3 2 5 2 4 2 4 5 2 2 2 5 3.17 1.34 55 - Metal Lathe 3 2 5 2 4 2 4 5 2 2 2 4 3.08 1.24 56 - Metal Lathe 4 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 57 - Metal Mill 3 2 5 3 4 2 4 5 2 2 2 4 3.17 1.03 58 - Metal 3 4 5 1 4 2 4 5 3 2 2 4 3.17 1.03 59 - Metal 3 4 5 3 3 2 2 3 3 3.3 3.3.75 0.75 <		4	4	5	5	3	4	3	3	5	4	4	3	3.92	0.79
off Saw 3 2 5 2 4 2 4 5 2 2 2 5 3.17 1.34 55 - Metal Band Saw Horizontal 3 2 5 2 4 2 4 5 2 2 2 4 3.08 1.24 56 - Metal Lathe 4 2 5 3 4 2 4 5 2 2 2 4 3.08 1.24 56 - Metal Lathe 4 2 5 3 4 2 4 4 3 2 2 4 3.08 1.24 57 - Metal Mill 3 2 5 3 4 2 4 5 3 2 2 4 3.17 1.03 58 - Metal Shear/Roll 3 4 5 3 2 2 4 3.25 1.29 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 3 3 3.75 0.75 61 - MIG 3	Brake	3	4	5	1	4	2	4	5	2	2	2	4	3.17	1.34
Saw Horizontal 3 2 5 2 4 2 4 5 2 2 2 4 3.08 1.24 56 - Metal Lathe 4 2 5 3 4 2 4 5 2 2 2 2 4 3.08 1.24 57 - Metal Mill 3 2 5 3 4 2 4 4 3 2 2 4 3.08 1.24 57 - Metal Mill 3 2 5 3 4 2 4 4 3 2 2 4 3.17 1.03 58 - Metal Shear/Roll 3 4 5 1 4 2 4 5 3 2 2 4 3.17 1.03 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 3 3 3.75 0.75 61 - MIG 3 3 5 2 4 2 3 3 3 3.08 0.90		3	2	5	2	4	2	4	5	2	2	2	5	3.17	1.34
Lathe 4 2 5 3 4 2 4 5 2 2 2 4 3.25 1.22 57 - Metal Mill 3 2 5 3 4 2 4 4 3 2 2 4 3.17 1.03 58 - Metal Shear/Roll 3 4 5 1 4 2 4 5 3 2 2 4 3.17 1.03 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 4 3.25 1.29 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 3 3 2.50 1.17 60 - Microscope with video 4 3 5 4 3 4 4 3 3 3 3.75 0.75 61 - MIG Welder 3 3 5 5 4 3 4 5 4 3 3 3 3.08 0.900		3	2	5	2	4	2	4	5	2	2	2	4	3.08	1.24
S8 - Metal Shear/Roll 3 4 5 1 4 2 4 5 3 2 2 4 3.25 1.29 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 2 3 2.50 1.17 60 - Microscope with video 4 3 5 4 3 4 4 5 3 4 3 3 3.75 0.75 61 - MIG Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.08 0.90 62 - Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3.08 0.90 62 - Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3 3.75 0.97 63 - Weld/cut Oxy/Acetylene 3 2 5 5 4 4 3 4 3 3 3 </td <td></td> <td>4</td> <td>2</td> <td>5</td> <td>3</td> <td>4</td> <td>2</td> <td>4</td> <td>5</td> <td>2</td> <td>2</td> <td>2</td> <td>4</td> <td>3.25</td> <td>1.22</td>		4	2	5	3	4	2	4	5	2	2	2	4	3.25	1.22
Shear/Roll 3 4 5 1 4 2 4 5 3 2 2 4 3.25 1.29 59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 2 3 2.50 1.17 60 - Microscope with video 4 3 5 4 3 4 4 5 3 4 3 3 3.75 0.75 61 - MIG Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.08 0.90 62 - Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3.08 0.90 63 - Weld/cut Oxy/Acetylene 3 2 5 2 4 4 3 2 2 4 3.17 1.19 64 - Photovoltaic Cell Ls 3 5 5 5 4 4 3 4 3 3 3 3.82 0.87	57 – Metal Mill	3	2	5	3	4	2	4	4	3	2	2	4	3.17	1.03
59 - Metal Forge Furnace 1 2 5 1 4 2 3 3 2 2 2 3 2.50 1.17 60 - Microscope with video 4 3 5 4 3 4 4 5 3 4 3 3 3.75 0.75 61 - MIG Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.75 0.75 61 - MIG Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.08 0.90 62 - Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3.08 0.90 63 - Weld/cut Oxy/Acetylene 3 2 5 2 5 2 4 4 3 2 2 4 3.17 1.19 64 - Photovoltaic Cell Ls 3 5 5 5 4 4 3 4 3 3 3		3	4	5	1	4	2	4	5	З	2	2	4	3.25	1.29
with video 4 3 5 4 3 4 4 5 3 4 3 3 3.75 0.75 61-MIG Welder 3 3 5 2 4 2 3 4 3 3 3 3.75 0.75 61-MIG Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.08 0.90 62-Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3 3.08 0.90 63-Weld/cut Oxy/Acetylene 3 2 5 2 5 2 4 4 3 2 2 4 3.17 1.19 64- Photovoltaic Cell LS 3 5 5 5 4 4 3 4 3 3 3 3.82 0.87 65-Plasma System 4 3 3 3 3 3 3 3 3 3 3 3.08 0.51 3 <td>59 – Metal Forge Furnace</td> <td></td> <td>2</td> <td></td> <td>1</td> <td>4</td> <td>2</td> <td>3</td> <td></td> <td></td> <td></td> <td>2</td> <td>3</td> <td></td> <td></td>	59 – Metal Forge Furnace		2		1	4	2	3				2	3		
Welder 3 3 5 2 4 2 3 4 3 2 3 3 3.08 0.90 62 -Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3 3.08 0.90 62 -Multisander Oscillating 4 2 5 5 4 3 4 5 4 3 3 3 3.75 0.97 63 -Weld/cut Oxy/Acetylene 3 2 5 2 5 2 4 4 3 2 2 4 3.17 1.19 64 - -	60 – Microscope with video	4	3	5	4	3	4	4	5	3	4	3	3	3.75	0.75
Oscillating 4 2 5 5 4 3 4 5 4 3 3 3 3 3.75 0.97 63-Weld/cut Oxy/Acetylene 3 2 5 2 5 2 4 4 3 2 2 4 3.17 1.19 64- Photovoltaic Cell Ls 3 5 5 5 4 4 3 4 3 3 3 3.17 1.19 64- Photovoltaic Cell Ls 3 5 5 5 4 4 3 4 3 3 3 3.82 0.87 65- Plasma Cut/Routing System 4 3 3 3 3 3 3 3 4 3 2 3.08 0.51 66-Plastics 4 3 3 3 3 3 3 3 4 3 2 3.08 0.51	Welder	3	3	5	2	4	2	3	4	3	2	3	3	3.08	0.90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	2	5	5	4	3	4	5	4	3	3	3	 3.75	0.97
Photovoltaic Cell 3 5 5 4 4 3 4 3 3 3 3.82 0.87 65 - Plasma Cut/Routing System 4 3 3 3 3 3 3 3.82 0.87 66 - Plastics 4 3 3 3 3 3 4 3 2 3.08 0.51	Oxy/Acetylene	3	2	5	2	5	2	4	4	3	2	2	4	3.17	1.19
Cut/Routing System 4 3 3 3 3 3 3 3 4 3 2 3.08 0.51 66 - Plastics 4 2 5 5 2 2 3.08 0.51	Photovoltaic Cell LS	3	5	5	5	4	4	3	4	3		3	3	3.82	0.87
66-Plastics 4 2 5 5 2 2 4 4 4 2 2 2 2 2 2 0 00	Cut/ Routing	4	3	3	3	3	3	3	3	3	4	3	2	3.08	0.51
		4	3	5	5	3	3	4	4	4	3	2	3	3.58	0.90

67 DLC/Sonsor														
67 – PLC/Sensor App Trainer	3	4	5	5	3	5	4	4	3	3	3	2	3.67	0.98
68 – Pneumatic/ Hydraulic LS	3	4	5	5	4	4	4	4	4	4	4	2	3.92	0.79
69 – Fitness Equipment	4	2	3	1	2	3	3	3	3	4	2	3	2.75	0.87
70 – Power Miter Saw	4	5	5	5	5	5	4	5	5	3	3	5	4.50	0.80
71 – Power/ Energy/Trans LS	4	4	5	5	4	4	4	3	3	4	4	2	3.83	0.83
72 – Radial Arm Saw	3	3	3	1	4	1	2	5	4	3	3	4	3.00	1.21
73 –8x8x10 Min Rapid Prototype	5	3	5	5	4	5	3	5	4	4	4	4	4.25	0.75
74 – R&D LS	4	3	5	5	5	5	3	3	3	3	3	2	3.67	1.07
75 – Robotics Workcell	5	3	3	5	4	5	3	4	5	4	4	4	4.08	0.79
76 – Roll Forming Equip	3	1	5	3	2	1	3	5	2	3	2	3	2.75	1.29
77 – Rotational Molder w/molds	3	1	3	4	3	3	3	4	3	3	2	3	2.92	0.79
78 – Router Table/Shaper	4	3	5	3	3	3	4	5	3	3	3	4	3.58	0.79
79 - RTF Planes 80 – Scale Trans	2		5	4	3	4	3	3	3	1	2	2	2.91	1.14
Vehicles 81 - Screen	2	4	5	5	3	5	3		2	2	3	2	3.27	1.27
Print equipment	3	3	5	3	3	2	3	4	4	2	3	2	3.08	0.90
82 – Scroll Saw	4	3	5	5	5	4	4	5	3	2	3	5	4.00	1.04
83 – Simple Machines LS	3	2	5	5	4	5	4	5	3	2	4	2	3.67	1.23
84 – Small Gas Engines	2	3	5	3	4	2	3	3	3	2	3	3	3.00	0.85
85 – Solar Vehicle LS	4	3	5	5	4	4	3		3	3	2	2	3.45	1.04
86 – Speed Radar Gun	3	2	5	4	2		3	3	4	2	3	2	3.00	1.00
87 – Spot/Resist Welder	3	3	5	3	4	2	4	5	3	2	2	3	3.25	1.06
88 – Portable Spray Booth	4	4	5	5	3	1	4	5	3	3	2	3	3.50	1.24
89 – Project Storage System	5	5	5	5	4	5	4	5	5	4	4	5	4.67	0.49
90 - Strip Heater	3	3	5	5	3	4	4	5	4	3	2	3	3.67	0.98
91 – Structural Tester	4	4	5	5	3	5	4	5	4	4	4	3	4.17	0.72
92 – Sustainable Energy LS	4	4	5	5	4	5	3	3	3	4	3	2	3.75	0.97
93 – Table Saw	4	5	5	5	5	5	4	5	4	3	2	5	4.33	0.98
94 – Thickness Planer	4	3	5	1	3	2	4	5	2	2	2	3	3.00	1.28
95 – Vacuum/ Thermo Former	4	3	5	4	4	4	4		4	3	2	3	3.64	0.81
96 - Vertical Hole Punch	2	1	5	4	2	3	3	4	4	2	2	3	2.92	1.16
97 – Vinyl Cutter	3	3	5	4	2	3	4	4	4	3	4	2	3.42	0.90
98 – Vise System	5	5	5	5	5	4	4	5	4	3	2	5	4.33	0.98
99 – Watercraft Test Track 20'	4	3	5	4	3	4	3		3	3	3	3	3.45	0.69
100 – Waterjet Cutting System	4	2	3	3	2	4	3	2	2	2	2	2	2.58	0.79
101 – Wind Generation LS	4	3	5	4	4	5	3	3	3	3	3	2	3.50	0.90
102 – Wind Tunnel	4	3	5	5	4	5	3	5	4	4	3	3	4.00	0.85
103 – Wood Lathe	4	2	5	2	5	2	3	5	2	3	2	4	3.25	1.29
104 – Work Benches	5	5	5	5	5	5	4	5	4	4	3	5	4.58	0.67

405 A 11 I														
105 – Applied Science Tools	4	2	5	5	5	5	4	4	3	5	3	2	3.92	1.16
106 – Barcode Scanner (equiv)	3	3	3	4	3	5	3	5	4	3	3	2	3.42	0.90
107 – Biotech Gen Lab Equip	5	3	5	4	5	5	4	4		4	3	3	4.09	0.83
108 – Const. Tools	3	3	5	3	5	5	4	3	3	3	3	3	3.58	0.90
109 – Electron Tools	4	5	5	4	5	5	4	5	4	4	4	3	4.33	0.65
110 - Fabrication Msmt Tools	5	5	5	4	5	5	4	5	5	5	3	3	4.50	0.80
111 - Fastener Supply	5	5	5	4	5		4	5	4	4	3	5	4.45	0.69
112 - General Chem Tools	5	2	5	4	4	4	4	5	3	4	3	3	3.83	0.94
113 - Hand Draft Tools	3	1	5	4	4	4	3	1	2	4	4	3	3.17	1.27
114 - Measuring Devices	4	5	5	4	5	5	4	5	5	5	4	4	4.58	0.51
115 - Medical Equipment	4		5	4	4	4	4	3	3	3	3	2	3.55	0.82
116 - Misc Tools Fabrication	5	5	5	4	5	5	4	5	5	4	4	4	4.58	0.51
117 – Misc Fab Power Tools	5	5	5	4	5	4	4	5	5	4	4	4	4.50	0.52
118-Tachometer Non Contact	3	4	5	3	3	2	3	2	2	3	2	3	2.92	0.90
119-Office Equipment	5	5	5	5	5		4	5	5	4	4	3	4.55	0.69
120-Plastic Tools	4	3	5	4	4	4	4	5	4	3	3	3	3.83	0.72
121 – Pneumatic Tools	4	4	5	4	4	3	4	3	4	3	3	3	3.67	0.65
122 – Safety Equipment	5	5	5	5	5	5	4	5	5	5	3	5	4.75	0.62
123 – Sound Level Meter	4	3	5	4	3	4	3	4	4	4	3	3	3.67	0.65
124 – Classroom Project Server	4	3	4	4	3	5	4	5	5	5	4	4	4.17	0.72
125- Classroom/ Lab Sound Sys	5	2	5	4	3	3	4	5	5	2	4	3	3.75	1.14
126 – Color Laser Printer	4	4	5	5	3	5	4	5	5	3	4	3	4.17	0.83
127 – Dektop Computer	5	4	5	5	4	5	4	5	5	5	5	2	4.50	0.90
128- Dig Camera Tripods/lights	4	4	5	5	3	5	4	5	5	3	5	2	4.17	1.03
129 –Digital Video Recorder	4	4	5	5	З	5	4	5	5	З	5	4	4.33	0.78
130 – Elect Present Board	4	2	5	3	4	5	4	5	4	5	5	4	4.17	0.94
131 – 42″ min HDTV	3	4	5	4	4	5	4	5	3	3	5	2	3.92	1.00
132 – GPS Units	3	4	5	4	3	5	3	4	3	4	4	3	3.75	0.75
133 – Instructor Laptop Comp	5	4	5	5	5	5	4	5	5	4	4	5	4.67	0.49
134 – Laptop Comp Set/Cart	4	4	5	5	4	5	3	4	4	4	4	4	 4.17	0.58
135 – Laser Printer	5	4	5	5	4	5	4	5	5	5	5	3	 4.58	0.67
136 – Projector	5	5	5	5	5	5	4	5	5	5	4	3	4.67	0.65
137 – Scanner	5	4	5	5	4	5	3	5	5	3	4	3	4.25	0.87
138 – Student Response Syst	5	2	3	4	2	5	3	3	4	3	3	3	 3.33	0.98
139 – Video Camcoders	4	4	5	5	3	5	4	5	5	2	4	4	4.17	0.94
140 – Wide Format Printer	3	4	5	4	4	5	3	5	5	3	3	3	3.92	0.90
141 – Wireless Microphones	3	2	5	4	2	5	3	4	4	2	3	3	3.33	1.07

142 – 2D CAD	4	3	5	5	5	4	3	3	3	3	4	2	3.67	0.98
143 – 3D Arch	-										-			
Building Design	4	5	5	5	5	5	3	5	5	5	3	3	4.42	0.90
144 – 3D CAD 145 – Air Quality	5	5	5	5	5	5	3	5	5	5	4	4	4.67	0.65
Analysis Softwr 146 – Animation	4	3	4	4	3		3	4	3	3	3	3	3.36	0.50
Software	4	3	5	4	4	5	3	4	4	2	3	3	3.67	0.89
147- Audio Edit/ Prod. Software	4	4	5	4	3	5	4	4	4	2	4	3	3.83	0.83
148 – Barcode Gen Software	3	4	3	З	3	5	З	5	4	3	З	2	3.42	0.90
149 – Bridge Design Software	4	4	5	4	5	5	3	4	4	3	4	3	4.00	0.74
150 – BIM	3	4	4	4	3	5	3	4	3	3	3	3	3.50	0.67
Software 151 – CAM		•		-	5			5						
Software 152 – Chem	5	4	2	5		5	3		5	4	4	3	4.17	1.03
Analysis Softwr 153-Game Dev	5	4	4	4	3	5	3	5	3	4	3	3	3.83	0.83
Software	4		5	4	3	5	3	4	4	2	3	3	3.64	0.92
154 - Land Based Auto Cntrl	3	3	5	4	3	5	3	5	4	3	3	3	3.67	0.89
155- Mon Sftwr Land Base Trns	4	3	5	4	3	5	3	5	3	3	3	3	3.67	0.89
156 – PLC Software	3	4	5	4	5	5	3	5	4	4	4	4	4.17	0.72
157 – Desktop Pub Software	5	4	5	5	4	5	4	5	5	3	4	3	4.33	0.78
158 – EKG	4	2	3	4	3	4	3	4	3	3	2	2	3.08	0.79
Analysis Softwr 159 – Elec	-					4		5		_				
Circuit Software 160 – White	3	4	5	4	4		3		5	4	4	3	4.00	0.77
Board Software 161 – Floor Plan	4	2	5	4	3	5	4	4	4	4	3	3	3.75	0.87
Software 162 – Internet	4	4	5	4	3	5	3	3	4	2	3	3	3.58	0.90
Connection	5	5	5	5	5	5	5	5	5	5	5	5	5.00	0.00
163 - MS Office Software (equiv)	5	5	5	5	5	5	4	5	5	4	4	4	4.67	0.49
164 –Photoshop or equiv	4	5	5	5	4	5	4	5	5	4	4	4	4.50	0.52
165 – Plant layout software	3	3	4	4	3	5	3	3	3	3	3	2	3.25	0.75
166 – Robot Control Softwr	4	3	3	5	3	5	3	5	4	4	4	3	3.83	0.83
167 – Sim City	3	2	3	3	3	5	3	2	3	2	3	2	2.83	0.83
Software 168 – Sim Farm	3	2	3	3	3	5	3	2	3	2	2	2	2.75	0.87
Software 169 – Google		5	5		5	5		2			3			
Sketchup 170 – Smart	4			4			3		4	2		4	3.83	1.11
Draw Software 171 – Soil pH	3	2	2	4	3	5	3	2	4	2	3	3	3.00	0.95
Software 172 – Stat	4	2	5	3	3	4	3	4	3	3	2	2	3.17	0.94
Process Softwr	4	3	2	3	3	5	3	5	3	4	2	3	3.33	0.98
173 – Vernier Software	5	4	5	3	3	4	4	5	3	4	2	3	3.75	0.97
174 – Video Editing Software	4	5	5	4	4	5	4	5	4	2	4	4	 4.17	0.83
175 – Water Quality Software	5	3	5	4	3	4		5	3	4	2	3	 3.73	1.01
176 – Waterjet Software	4		2	3	3	4	3	2	2	3	2	2	2.73	0.79
177 - Web 2.0	4	2	3	3	3	5	3	5	3	2	3	5	3.42	1.08
Tools Free 178 – Web								5						
Design Software	4	5	5	5	4	4	3	5	4	2	4	2	3.92	1.08

APPENDIX H

Round 3 Letter to Participants

Andrew M. Klenke 1701 S. Broadway, W105b KTC Pittsburg State University Pittsburg, KS 66762 July 12, 2010

Mr. Survey Completer Technology Education Teacher 12345 Technology Lane Somewhere High School Somewhere, USA 12345

Dear Survey Completer:

Thank you for agreeing to participate in hopefully the final survey in this study. It should be the final survey unless directed by my dissertation committee to do something else, although I don't expect that at this time. I appreciate the time you have given during this process. I will remind you that participation in this study is voluntary and no compensation is given for your participation. It should also be noted that only group responses will be reported and all personal information will remain confidential. Each participant will be issued a code number which will be located at the top of the returned survey instrument. All information for each participant will be referenced to that code throughout the Delphi process.

This correspondence represents Round three of the Delphi procedure. The information provided in Round 2 was reviewed and basic statistics were calculated and placed into this survey. The purpose of this round is to *build consensus* of what tools, equipment, software and hardware needs would be necessary to teach a "standards based technology education curriculum" within each of the Technology Education content standards. (http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf)

The on-line instrument is similar to round two and can be found at the link listed at the end of this letter. The major difference in this survey and round two is that the following descriptive statistics are incorporated into the third survey.

Mean: Statistical average of all responses from the group.

Standard Deviation: how spread the data is. A larger standard deviation means there is more variance on the answers, while a smaller number indicates that the group responses were similar and that the group was in agreement with the marking of an item.

Here are two examples of the type of information you will see on the survey followed by an explanation.

01 Space Shuttle Console Group Mean 3.25-----Your Response 1-----Standard Deviation 1.34

02 Mars Rover Group Mean 4.05-----Your Response 3-----Standard Deviation .47

The information in example 01 indicates that as a group the Space Shuttle Console is a moderately important item to have in a Technology Education lab. However, the standard deviation shows that there a large spread in the answers, meaning that the group does not agree to the importance of this item. In example 02, the group has a much stronger agreement on the importance of having a Mars Rover in the lab, as the standard deviation is much smaller. In either case, you would either agree or disagree with the results. If you agree with the group, your answer would move toward the mean. In example 01, you would select 3 or moderately important; while in the second example, you would select 4 or important. If you disagree with the group, you would continue to answer the question as you think the item should be marked.

It is important that you review the provided statistical information before responding to each of the questions.

This round should take approximately 30 minutes to complete depending upon how fast you read.

Remember, for clarity, the facility has 3000 square feet and one technology education faculty to teach the *standards-based* curriculum. In essence, you are defining what a model technology education program in a small high school having only one teacher would need to teach to the standards.

Please record your responses on the website http://www.surveymonkey.com/s/ABC123. If you have any questions, feel free to call or email. Please complete the survey no later than August 24th, 2010.

Sincerely,

Andrew MKlunk

Andrew Klenke Graduate Student, University of Arkansas

Michael K. Daugherty, PhD. Dissertation Chairperson University of Arkansas

APPENDIX I

Round 3 Survey Instrument (only first page shown to save space)

001 TE FACILITY DELPHI ROUND 3

1. EQUIPMENT

Below is an updated survey from the Round 2. Review the mean and standard deviation for each question derived from round 2 responses. As a quick review, the mean is the mathematical average, while the standard deviation is how spread the data is. A larger standard deviation means there is more variance on the answers, while a smaller number indicates that group answers were closer to being the same. This statistical information will allow you to see how others have responded in the round 2 survey and give you an opportunity to revise your response in order to form a consensus, as a group, on each particular piece of equipment.

* 1. Scanner (9,10, GROUP MEAN 4.	11,12,14,15,16,18,1 00YOUR RESP		ARD DEVIATION	.85
(1) Unimportant	(2) Little Importance	(3) Moderately Important	[4] Important	(5) Very Important
* 2. Aerospace Eng	gineering Learning	J System (4,6)		
GROUP MEAN 3.	22YOUR RESP	ONSE 4STANE	ARD DEVIATION	.97
(1) Unimportant	(2) Little Importance	[3] Moderately Important	[4] Important	(5) Very Important
* 3. Air Compresso	or with lines and ad	cessories (1-20)		
GROUP MEAN 4.	25YOUR RESP	ONSE 4STANE	OARD DEVIATION	.97
(1) Unimportant	(2) Little Importance	(3) Moderately Important	[4] Important	(IS) Very Important
* 4. Alternative End	ergy Training Set w	vith Solar, Wind, H	vdroelectric, Fuel	Cell, etc. (1-20)
	08YOUR RESP		-	
(1) Unimportant	(2) Little Importance	(3) Moderately Important	(4) Important	(5) Very Important
* 5. Arbor Press (1	-20)			
GROUP MEAN 2.	92YOUR RESP	ONSE 3STANE	OARD DEVIATION	.79
(1) Unimportant	(2) Little Importance	(3) Moderately Important	(4) Important	(5) Very Important
* 6. Audio Trainer	(17)			
GROUP MEAN 3.	17YOUR RESP	ONSE 4STANE	ARD DEVIATION	.83
(1) Unimportant	(2) Little Importance	(3) Moderately Important	(4) Important	(5) Very Important

APPENDIX J

Round 3 Aggregate Data

ID NUMBER	007	002	001	003	004	900	005	012	011	008	010	600	STAT	ISTICS
GROUP	A	A	Ρ	Ρ	Ρ	Ρ	Ρ	Т	Т	Т	т	Т	MEAN	STANDARD DEVIATION
1 - Scanner	4	4	4	4	4	5	4	5	4	4	4	3	4.08	0.51
2 – Aerospace LS	3	3	4	3	3	4	3	4	3	3	3	2	3.17	0.58
3 – Air Compressor	4	4	4	5	4	5	5	5	5	4	4	4	4.42	0.51
4 – Alt Energy Training Set	4	4	4	4	4	5	4	4	4	4	4	3	4.00	0.43
5 – Arbor Press	2	2	3	3	2	2	3	3	2	3	3	3	2.58	0.51
6 – Audio Trainer	2	3	3	3	3	3	3	4	3	3	4	2	3.00	0.60
7 – Auto Product	3	3	3	3	3	4	3	3	4	3	3	3	3.17	0.39
ID System 8 – Band Saw	5	4	4	5	4	4	4	5	4	5	4	5	4.42	0.51
9 – Belt/Disc Sander	5	4	4	5	4	4	4	5	4	5	4	4	4.33	0.49
10 – Bench	4	4	4	4	4	3	4	5	4	5	3	4	4.00	0.60
Grinder 8" 11 – Blower	3	3	4	3	3	4	3	3	3	3	3	4	3.25	0.45
12 – Book	2	2	3	2	2	2	3	3	3	2	2	2	2.33	0.49
Binding System 13 – Box and	3	3	4	3	3	3	4	5	3	3	3	4	3.42	0.67
Pan Brake 14 – Braille	2	2	2	2	2	2	2	2	2	2	2	2	2.00	0.00
Stylus, slate, etc. 15 – Bridge/														
Tower Tester 16 – Buffing	4	4	4	4	4	4	4	5	5	4	4	3	4.08	0.51
Wheel	3	3	3	3	3	2	4	4	2 3	3	3	3	3.00	0.60
17 – Catapult LS 18 – CIM/FMS	3	3	3	3	3	4	3	4		3	3	2	3.08	0.51
Trainer 19 – Civil	3	4	4	4	4	4	4	4	4	4	4	3	3.83	0.39
Engineering LS 20 – Classroom	3	4	4	4	3	4	3	4	4	4	3	2	3.50	0.67
Furniture 21 – CNC Metal	5	5	5	5	5	5	5	5	5	5	4	4	4.83	0.39
Lathe & Tooling 22 – CNC Metal	4	4	4	4	4	4	4	5	4	4	3	4	4.00	0.43
Mill & Tooling	5	4	4	4	4	4	4	5	4	4	3	4	4.08	0.51
23 – CO2 Race Track w/Supply	5	3	3	3	4	4	3	5	3	4	3	3	3.58	0.79
24 – Computer Metrology Equip	4	3	3	3	3	3	4	3	3	3	3	3	3.17	0.39
25 – Drill Press	5	4	4	5	4	4	4	5	5	5	4	5	4.50	0.52
26 – 5HP Dust Collection/Vacs	5	4	4	5	5	5	5	5	5	5	4	5	4.75	0.45
27 – Dyno- mometer	3	3	3	3	2	3	3	2	3	3	3	2	2.75	0.45
28 – Elect Equip w oscilloscope	5	4	4	5	4	5	4	5	5	5	4	4	4.50	0.52
29 – EnvironmentLS	3	4	4	4	4	4	4	4	4	4	4	3	3.83	0.39
30 – Filing System/Cabinets	4	4	4	4	4	5	4	5	5	4	4	4	4.25	0.45

	1					1							1	
31 – Flammable Cabinet	5	5	4	5	4	5	5	5	5	5	3	5	4.67	0.65
32 – Fluid Power Training System	4	3	4	4	3	4	3	5	4	4	4	2	3.67	0.78
33 – Fuel Cell LS w/Cars	4	3	4	4	3	4	3	5	2	4	4	3	3.58	0.79
34 – Gears ID Kits or Equiv	4	4	4	4	4	4	4	5	3	4	4	4	4.00	0.43
35 – Graphics LS	4	3	4	4	3	4	4	5	4	4	4	4	3.92	0.51
36 – Greenhouse for Biotech/Fuel	4	3	4	4	4	4	3	4	3	4	3	3	3.58	0.51
37 –Hydroponics Aquaponic Equip	3	3	4	3	5	3	3	5	3	4	3	3	 3.50	0.80
38 – Industrial Controls LS	4	4	4	4	3	3	4	5	4	4	3	3	3.75	0.62
39 – Injection Molder	4	4	4	4	4	4	4	5	4	4	4	4	4.08	0.29
40 – Rokenbok Integ Trans Syst	3	3	4	3	3	3	3	4	3	3	3	3	 3.17	0.39
41 – Internal & Ext Cobust Engin	3	3	3	3	2	3	3	4	3	3	3	3	3.00	0.43
42 – Jointer	3	3	3	2	4	3	3	3	4	3	3	3	3.08	0.51
43 – Lab Pro Waste Mgmt Sys	3	3	3	3	4	3	3	3	3	3	3	4	3.17	0.39
44 – Min 30watt Laser Engraver	5	4	4	4	5	4	4	5	4	4	4	3	4.17	0.58
45 – Laser Lab Equip	3	4	4	4	4	3	4	4	4	4	3	3	3.67	0.49
46 – Laser Survey Equip	3	3	3	3	3	3	3	4	3	3	3	3	3.08	0.29
47 – Lego Mindstorms	3	4	4	4	4	4	4	5	4	4	4	3	3.92	0.51
48 – Lithography equip	2	2	2	2	2	2	2	2	2	2	3	2	2.08	0.29
49 – Material Stock (various)	5	4	4	5	5	5	5	5	5	5	3	5	4.67	0.65
50 – Material & Processes LS	4	4	4	5	4	3	4	5	4	4	3	2	3.83	0.83
51 – Mechanical LS	4	4	4	4	4	4	4	5	4	4	4	2	3.92	0.67
52–Mecharonics LS	4	4	4	4	4	4	4	5	5	4	4	З	4.08	0.51
53 – Metal Brake	З	З	4	3	3	3	4	5	2	3	2	4	3.25	0.87
54 – Metal Cut- off Saw	3	3	3	2	3	3	3	5	2	3	3	4	3.08	0.79
55 – Metal Band Saw Horizontal	3	3	З	2	З	3	З	5	2	3	2	4	3.00	0.85
56 – Metal Lathe	3	3	4	3	3	2	3	5	2	4	2	4	3.17	0.94
57 – Metal Mill	3	3	4	4	3	2	3	5	3	4	2	4	 3.33	0.89
58 – Metal Shear/Roll	3	3	4	2	3	2	4	5	3	3	2	4	 3.17	0.94
59 – Metal Forge Furnace	2	2	3	2	2	2	2	3	2	3	2	3	2.33	0.49
60 – Microscope with video	3	4	4	4	4	3	4	4	3	4	3	3	3.58	0.51
61 – MIG Welder	3	3	3	3	3	3	3	4	3	3	3	3	3.08	0.29
62 –Multisander Oscillating	4	3	4	4	4	4	4	5	4	4	3	3	3.83	0.58
63 –Weld/cut Oxy/Acetylene	3	3	3	2	3	2	3	5	3	3	3	3	3.00	0.74
64 –Photovoltaic Cell LS	4	4	4	4	3	3	4	5	3	4	3	3	3.67	0.65
65 – Plasma Cut/ Routing System	3	4	3	3	3	3	3	3	3	3	3	2	 3.00	0.43
66 – Plastics Oven	4	3	4	4	4	3	3	5	4	4	3	3	 3.67	0.65
67 – PLC/Sensor App Trainer	4	3	4	4	3	4	4	5	3	4	3	2	 3.58	0.79

	1	1		1	1	1	1		1	1	1	1		
68 – Pneumatic/ Hydraulic LS	4	4	4	4	4	4	4	5	4	4	4	2	3.92	0.67
69 – Fitness Equipment	2	4	3	2	4	2	3	3	3	3	2	3	2.83	0.72
70 – Power Miter Saw	5	4	4	5	4	4	5	5	5	5	4	5	 4.58	0.51
71 – Power/	4	4	4	4	4	4	4	4	3	4	4	2	3.75	0.62
Energy/Trans LS 72 – Radial Arm		-	3	3	-	-	-	3		-	-	3		
Saw 73 –8x8x10 Min	3	3			3	2	4		4	3	3		3.08	0.51
Rapid Prototype	5	4	4	4	5	4	5	5	4	4	4	4	4.33	0.49
74 – R&D LS 75 – Robotics	3	3	3	4	4	4	4	4	4	4	3	2	3.50	0.67
Workcell 76 – Roll	5	4	3	4	4	4	4	3	4	4	4	4	3.92	0.51
Forming Equip	1	3	3	3	3	2	3	5	2	3	2	3	2.75	0.97
77 – Rotational Molder w/molds	3	3	3	3	3	3	3	3	3	3	2	3	2.92	0.29
78 – Router Table/Shaper	2	3	4	4	4	4	4	5	3	4	3	3	3.58	0.79
79 - RTF Planes	3	3	3	3	3	2	2	5	3	3	2	2	2.83	0.83
80 – Scale Trans Vehicles	3	3	3	4	3	4	3	5	3	3	3	2	3.25	0.75
81 - Screen Print equipment	3	3	3	3	3	3	3	5	3	3	3	2	3.08	0.67
82 – Scroll Saw	4	4	4	4	4	4	4	5	4	4	3	5	 4.08	0.51
83 – Simple Machines LS	2	3	4	4	4	4	4	5	3	4	4	2	3.58	0.90
84 – Small Gas Engines	3	3	3	3	2	3	3	4	3	3	3	3	3.00	0.43
85 – Solar	3	3	3	4	4	3	4	4	3	3	3	2	3.25	0.62
Vehicle LS 86 – Speed	3	3	3	3	3	3	3	4	3	3	3	2		
Radar Gun 87 – Spot/Resist								-					 3.00	0.43
Welder 88 – Portable	3	3	4	4	3	3	4	5	3	3	2	3	 3.33	0.78
Spray Booth 89 – Project	4	3	4	4	4	2	4	5	4	4	3	3	 3.67	0.78
Storage System	5	4	4	5	5	5	5	5	5	5	5	5	 4.83	0.39
90 - Strip Heater 91 – Structural	4	3	4	4	4	4	4	5	4	4	3	3	3.83	0.58
Tester	4	4	4	4	4	4	4	5	4	4	4	3	4.00	0.43
92 – Sustainable Energy LS	4	4	4	4	4	4	3	5	3	4	3	2	3.67	0.78
93 – Table Saw	4	4	4	5	4	4	4	5	4	5	3	5	4.25	0.62
94 – Thickness Planer	3	3	3	2	4	3	3	5	2	3	2	3	3.00	0.85
95 – Vacuum/ Thermo Former	4	3	4	4	4	4	4	5	4	4	3	3	3.83	0.58
96 - Vertical Hole Punch	2	3	3	3	2	2	3	3	4	3	2	3	2.75	0.62
97 – Vinyl Cutter	3	3	4	3	3	3	4	5	4	3	4	2	3.42	0.79
98 – Vise System	5	4	4	5	5	4	5	5	4	5	3	5	4.50	0.67
99 – Watercraft Test Track 20'	3	3	3	4	4	3	4	4	3	3	3	3	3.33	0.49
100 – Waterjet Cutting System	2	3	3	3	3	3	2	3	2	2	2	2	2.50	0.52
101 – Wind	3	3	3	4	4	4	3	5	3	4	3	2	 3.42	0.79
Generation LS 102 – Wind	4	4	4	4	4	5	4	5	4	4	3	4	 4.08	0.51
Tunnel 103 – Wood		-	-	-	-		-		-	-				
Lathe 104 – Work	3	3	3	2	4	3	4	4	3	4	2	4	 3.25	0.75
Benches	5	4	4	5	5	5	5	5	4	5	4	5	4.67	0.49

	1	1				1				1					
105 – Applied Science Tools	4	5	4	4	4	4	4	4	4	4	4	2		3.92	0.67
106 – Barcode	3	3	3	4	3	4	4	3	4	3	3	2		3.25	0.62
Scanner (equiv) 107 – Biotech						-									
Gen Lab Equip 108 – Const.	3	4	4	4	5	4	4	5	4	4	3	3		3.92	0.67
Tools	3	3	4	4	3	4	3	5	3	4	3	3		3.50	0.67
109 – Electron Tools	4	4	4	4	4	4	4	5	4	4	4	3		4.00	0.43
110 - Fabrication Msmt Tools	5	5	4	5	5	5	5	5	5	5	4	4		4.75	0.45
111 - Fastener Supply	5	4	4	5	5	4	5	5	4	5	4	5		4.58	0.51
112 - General Chem Tools	3	4	4	4	5	4	4	4	4	4	3	4		3.92	0.51
113 - Hand Draft Tools	3	4	3	3	3	3	2	5	3	3	4	3		3.25	0.75
114 - Measuring Devices	5	5	4	5	5	5	5	5	5	5	4	4		4.75	0.45
115 - Medical	3	3	4	3	4	3	3	4	3	4	3	2		3.25	0.62
Equipment 116 - Misc Tools	5	4	4	5	5	4	5	5	5	5	4	4	<u> </u>	4.58	0.51
Fabrication 117 – Misc Fab		-									-	-			
Power Tools 118-Tachometer	5	4	4	5	5	4	5	5	5	5	4	4		4.58	0.51
Non Contact 119-Office	3	3	3	3	3	3	3	4	2	3	2	3		2.92	0.51
Equipment	5	4	4	5	5	5	5	5	5	5	4	4		4.67	0.49
120-Plastic Tools	4	4	4	4	4	3	4	5	4	4	3	3		3.83	0.58
121 – Pneumatic Tools	4	4	4	4	4	3	4	5	4	4	3	3		3.83	0.58
122 – Safety Equipment	5	5	4	5	5	5	5	5	5	5	4	5		4.83	0.39
123 – Sound Level Meter	4	4	4	4	4	4	4	5	4	4	3	3		3.92	0.51
124 – Classroom Project Server	4	5	4	4	4	4	5	4	5	4	4	4		4.25	0.45
125- Classroom/ Lab Sound Sys	3	3	4	4	4	4	4	5	5	4	4	3		3.92	0.67
126 – Color Laser Printer	4	4	4	4	4	5	4	5	5	4	5	4		4.33	0.49
127 – Dektop Computer	4	5	4	5	5	5	5	5	5	5	5	2		4.58	0.90
128- Dig Camera Tripods/lights	4	4	4	4	4	4	4	5	5	4	5	2		4.08	0.79
129 –Digital	4	4	4	4	4	4	4	5	5	4	5	4		4.25	0.45
Video Recorder 130 – Elect	-	-	-	-		-	-			-		-			
Present Board 131 – 42" min	3	5	4	4	4	4	4	5	4	4	5	4		4.17	0.58
HDTV	4	4	4	4	4	4	4	5	4	4	5	2		4.00	0.74
132 – GPS Units 133 – Instructor	4	4	3	4	4	4	4	5	4	4	4	3		3.92	0.51
Laptop Comp 134 – Laptop	5	4	4	5	5	5	5	5	5	5	5	5		4.83	0.39
Comp Set/Cart	4	4	4	4	4	4	4	5	4	4	4	4		4.08	0.29
135 – Laser Printer	5	5	4	5	5	5	5	5	5	5	5	3		4.75	0.62
136 – Projector	5	5	4	5	5	5	5	5	5	5	4	3		4.67	0.65
137 – Scanner	4	4	4	5	5	5	4	5	5	4	4	3		4.33	0.65
138 – Student Response Syst	3	3	3	3	4	3	3	4	4	3	3	3		3.25	0.45
139 – Video Camcoders	4	4	4	4	4	4	4	5	5	4	4	4		4.17	0.39
140 – Wide Format Printer	4	4	4	4	4	4	4	4	5	4	4	3		4.00	0.43
141 – Wireless	3	3	3	3	3	4	3	4	3	3	3	3	I	3.17	0.39
Microphones	5	J				-				5				5.17	0.55

r		1		1		1				1		1			
142 – 2D CAD	4	3	3	4	4	3	3	4	4	4	3	2		3.42	0.67
143 – 3D Arch Building Design	4	5	4	5	4	4	5	5	5	4	4	3		4.33	0.65
144 – 3D CAD	5	5	4	5	5	5	5	5	5	5	4	4		4.75	0.45
145 – Air Quality Analysis Softwr	3	3	3	3	3	4	4	4	3	3	3	3		3.25	0.45
146 – Animation Software	3	3	3	4	4	4	4	4	4	4	3	3		3.58	0.51
147- Audio Edit/	4	3	4	4	4	4	4	4	4	4	4	3		3.83	0.39
Prod. Software 148 – Barcode	3	3	3	3	3	3	4	4	4	3	3	2		3.17	0.58
Gen Software 149 – Bridge							-		-						
Design Software 150 – BIM	4	4	4	4	4	4	4	5	4	4	4	3		4.00	0.43
Software 151 – CAM	4	3	3	4	4	4	3	4	3	3	3	3		3.42	0.51
Software 152 – Chem	4	4	4	5	4	4	4	4	5	4	4	3		4.08	0.51
Analysis Softwr 153-Game Dev	4	4	4	4	5	4	4	4	3	4	3	3		3.83	0.58
Software	4	4	3	4	4	4	4	5	4	4	3	3		3.83	0.58
154 - Land Based Auto Cntrl	3	3	3	4	3	4	4	4	4	4	3	3		3.50	0.52
155- Mon Sftwr Land Base Trns	3	3	3	4	4	4	4	4	3	4	3	3		3.50	0.52
156 – PLC Software	4	4	4	4	4	4	4	5	4	4	4	4		4.08	0.29
157 – Desktop Pub Software	4	4	4	5	5	4	5	5	5	4	5	3		4.42	0.67
158 – EKG Analysis Softwr	3	3	3	3	4	3	3	3	3	3	2	2		2.92	0.51
159 – Elec Circuit Software	4	4	4	4	4	4	4	5	5	4	4	3		4.08	0.51
160 – White Board Software	3	4	4	4	4	4	4	5	4	3	3	3		3.75	0.62
161 – Floor Plan	4	3	3	4	4	4	3	4	4	4	3	3		3.58	0.51
Software 162 – Internet	5	5	5	5	5	5	5	5	5	5	5	5		5.00	0.00
Connection 163 - MS Office															
Software (equiv) 164 – Photoshop	5	5	4	5	5	5	5	5	5	5	4	4		4.75	0.45
or equiv 165 – Plant	5	4	4	5	4	4	5	5	5	4	4	4		4.42	0.51
layout software 166 – Robot	3	3	3	4	3	4	3	4	3	3	3	2		3.17	0.58
Control Softwr	3	4	3	4	4	4	4	4	4	4	4	3		3.75	0.45
167 – Sim City Software	2	2	3	3	3	4	2	3	3	3	3	2		2.75	0.62
168 – Sim Farm Software	2	2	3	3	3	3	2	3	3	3	2	2		2.58	0.51
169 – Google Sketchup	4	2	З	4	4	4	3	5	4	4	3	4		3.67	0.78
170 – Smart Draw Software	3	3	3	3	3	4	3	3	4	3	3	3		3.17	0.39
171 – Soil pH Software	3	3	3	3	4	3	3	4	3	3	2	2		3.00	0.60
172 – Stat Process Softwr	3	4	3	3	4	4	3	3	3	3	2	3		3.17	0.58
173 – Vernier	4	4	4	4	4	4	4	4	3	4	2	3	ļ	3.67	0.65
Software 174 – Video	5	4	4	4	4	5	4	5	4	4	5	4		4.33	0.05
Editing Software 175 – Water		-	-	-	-					-		-			
Quality Software 176 – Waterjet	2	4	4	4	4	4	4	4	4	4	2	3		3.58	0.79
Software															
	2	3	3	3	3	3	2	3	2	3	2	2		2.58	0.51

177 - Web 2.0 Tools Free	3	3	3	4	3	4	4	3	3	3	3	5	3.42	0.67
178 – Web Design Software	4	4	3	4	4	4	4	5	4	4	4	2	3.83	0.72

APPENDIX K

Round 3 ANOVA Data

		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.117	2	.058	.188	.832
1 - Scanner	Within Groups	2.800	9	.311		
	Total	2.917	11			
	Between Groups	.467	2	.233	.656	.542
2 – Aerospace LS	Within Groups	3.200	9	.356		
	Total	3.667	11			
	Between Groups	.517	2	.258	.969	.416
3 – Air Compressor	Within Groups	2.400	9	.267		
	Total	2.917	11			
	Between Groups	.400	2	.200	1.125	.366
4 – Alt Energy Training Set	Within Groups	1.600	9	.178		
5	Total	2.000	11			
	Between Groups	.917	2	.458	2.062	.183
5 – Arbor Press	Within Groups	2.000	9	.222		
	Total	2.917	11			
	Between Groups	.700	2	.350	.955	.421
6 – Audio Trainer	Within Groups	3.300	9	.367		
	Total	4.000	11			
7 – Auto	Between Groups	.067	2	.033	.188	.832
Product ID	Within Groups	1.600	9	.178		
System	Total	1.667	11			
	Between Groups	.417	2	.208	.750	.500
8 – Band Saw	Within Groups	2.500	9	.278		
	Total	2.917	11			
	Between Groups	.167	2	.083	.300	.748
9 – Belt/Disc Sander	Within Groups	2.500	9	.278		
	Total	2.667	11			
	Between Groups	.400	2	.200	.500	.622
10 – Bench Grinder 8"	Within Groups	3.600	9	.400		
	Total	4.000	11			
	Between Groups	.250	2	.125	.562	.589
11 – Blower	Within Groups	2.000	9	.222		
	Total	2.250	11			

12 – Book	Between Groups	.267	2	.133	.500	.622
Binding System	Within Groups	2.400	9	.267		
System	Total	2.667	11			
	Between Groups	.517	2	.258	.528	.607
13 – Box and Pan Brake	Within Groups	4.400	9	.489		
	Total	4.917	11			
14 – Braille	Between Groups	.000	2	.000		
Stylus, slate,	Within Groups	.000	9	.000		
etc.	Total	.000	11			
	Between Groups	.117	2	.058	.188	.832
15 – Bridge/ Tower Tester	Within Groups	2.800	9	.311		
	Total	2.917	11			
	Between Groups	.000	2	.000	.000	1.000
16 – Buffing Wheel	Within Groups	4.000	9	.444		
	Total	4.000	11			
	Between Groups	.117	2	.058	.188	.832
17 – Catapult LS	Within Groups	2.800	9	.311		
20	Total	2.917	11			
	Between Groups	.367	2	.183	1.269	.327
18 – CIM/FMS Trainer	Within Groups	1.300	9	.144		
- Turior	Total	1.667	11			
19 – Civil	Between Groups	.100	2	.050	.092	.913
Engineering	Within Groups	4.900	9	.544		
LS	Total	5.000	11			
20 –	Between Groups	.467	2	.233	1.750	.228
Classroom	Within Groups	1.200	9	.133		
Furniture	Total	1.667	11			
21 – CNC	Between Groups	.000	2	.000	.000	1.000
Metal Lathe &	Within Groups	2.000	9	.222		
Tooling	Total	2.000	11			
22 – CNC	Between Groups	.417	2	.208	.750	.500
Metal Mill &	Within Groups	2.500	9	.278		
Tooling	Total	2.917	11			
23 – CO2	Between Groups	.517	2	.258	.363	.705
Race Track	Within Groups	6.400	9	.711		
w/Supply	Total	6.917	11			
24 –	Between Groups	.367	2	.183	1.269	.327
Computer Metrology	Within Groups	1.300	9	.144		

Equip	Total	1.667	11			
	Between Groups	.900	2	.450	1.929	.201
25 – Drill Press	Within Groups	2.100	9	.233		
	Total	3.000	11			
26 – 5HP Dust	Between Groups	.150	2	.075	.321	.733
Collection/Vac	Within Groups	2.100	9	.233		
S	Total	2.250	11			
	Between Groups	.250	2	.125	.562	.589
27 – Dyno- mometer	Within Groups	2.000	9	.222		
	Total	2.250	11			
28 – Elect	Between Groups	.100	2	.050	.155	.859
Equip w	Within Groups	2.900	9	.322		
oscilloscope	Total	3.000	11			
29 –	Between Groups	.367	2	.183	1.269	.327
EnvironmentL	Within Groups	1.300	9	.144		
S	Total	1.667	11			
30 – Filing	Between Groups	.250	2	.125	.563	.589
System/Cabin	Within Groups	2.000	9	.222		
ets	Total	2.250	11			
31 –	Between Groups	.267	2	.133	.273	.767
Flammable Cabinet	Within Groups	4.400	9	.489		
Cabinet	Total	4.667	11			
32 – Fluid	Between Groups	.167	2	.083	.115	.892
Power Training	Within Groups	6.500	9	.722		
System	Total	6.667	11			
	Between Groups	.017	2	.008	.011	.989
33 – Fuel Cell LS w/Cars	Within Groups	6.900	9	.767		
	Total	6.917	11			
04 Octave ID	Between Groups	.000	2	.000	.000	1.000
34 – Gears ID Kits or Equiv	Within Groups	2.000	9	.222		
	Total	2.000	11			
	Between Groups	.817	2	.408	1.750	.228
35 – Graphics LS	Within Groups	2.100	9	.233		
	Total	2.917	11			
36 –	Between Groups	.417	2	.208	.750	.500
Greenhouse	Within Groups	2.500	9	.278		
for Biotech/Fuel	Total	2.917	11			

37 –	Between Groups	.600	2	.300	.422	.668
Hydroponics Aquaponic	Within Groups	6.400	9	.711		
Equip	Total	7.000	11			
	Between Groups	.250	2	.125	.281	.761
38 – Industrial Controls LS	Within Groups	4.000	9	.444		
	Total	4.250	11			
	Between Groups	.117	2	.058	.656	.542
39 – Injection Molder	Within Groups	.800	9	.089		
	Total	.917	11			
40 -	Between Groups	.067	2	.033	.188	.832
Rokenbok Integ Trans	Within Groups	1.600	9	.178		
Syst	Total	1.667	11			
41 – Internal &	Between Groups	.400	2	.200	1.125	.366
Ext Cobust	Within Groups	1.600	9	.178		
Engin	Total	2.000	11			
	Between Groups	.117	2	.058	.188	.832
42 – Jointer	Within Groups	2.800	9	.311		
	Total	2.917	11			
43 – Lab Pro	Between Groups	.067	2	.033	.188	.832
Waste Mgmt	Within Groups	1.600	9	.178		
Sys	Total	1.667	11			
44 – Min	Between Groups	.367	2	.183	.500	.622
30watt Laser	Within Groups	3.300	9	.367		
Engraver	Total	3.667	11			
45 1	Between Groups	.167	2	.083	.300	.748
45 – Laser Lab Equip	Within Groups	2.500	9	.278		
	Total	2.667	11			
10 1	Between Groups	.117	2	.058	.656	.542
46 – Laser Survey Equip	Within Groups	.800	9	.089		
	Total	.917	11			
47	Between Groups	.417	2	.208	.750	.500
47 – Lego Mindstorms	Within Groups	2.500	9	.278		
	Total	2.917	11			
48 –	Between Groups	.117	2	.058	.656	.542
Lithography	Within Groups	.800	9	.089		
equip	Total	.917	11			
49 – Material Stock	Between Groups	.167	2	.083	.167	.849
(various)	Within Groups	4.500	9	.500		

	Total	4.667	11			
50 – Material	Between Groups	.467	2	.233	.292	.754
& Processes	Within Groups	7.200	9	.800		
LS	Total	7.667	11			
51 –	Between Groups	.117	2	.058	.109	.898
Mechanical	Within Groups	4.800	9	.533		
LS	Total	4.917	11			
52–	Between Groups	.117	2	.058	.188	.832
Mecharonics	Within Groups	2.800	9	.311		
LS	Total	2.917	11			
	Between Groups	.250	2	.125	.141	.871
53 – Metal Brake	Within Groups	8.000	9	.889		
	Total	8.250	11			
	Between Groups	.917	2	.458	.688	.527
54 – Metal Cut-off Saw	Within Groups	6.000	9	.667		
	Total	6.917	11			
55 – Metal	Between Groups	.400	2	.200	.237	.794
Band Saw	Within Groups	7.600	9	.844		
Horizontal	Total	8.000	11			
	Between Groups	.467	2	.233	.228	.800
56 – Metal Lathe	Within Groups	9.200	9	1.022		
	Total	9.667	11			
	Between Groups	.667	2	.333	.375	.698
57 – Metal Mill	Within Groups	8.000	9	.889		
	Total	8.667	11			
	Between Groups	.467	2	.233	.228	.800
58 – Metal Shear/Roll	Within Groups	9.200	9	1.022		
	Total	9.667	11			
59 – Metal	Between Groups	.667	2	.333	1.500	.274
Forge	Within Groups	2.000	9	.222		
Furnace	Total	2.667	11			
60 –	Between Groups	.417	2	.208	.750	.500
Microscope	Within Groups	2.500	9	.278		
with video	Total	2.917	11			
	Between Groups	.117	2	.058	.656	.542
61 – MIG	Within Groups	.800	9	.089		
Welder	Total	.917	11			

62 –	Between Groups	.367	2	.183	.500	.622
Multisander	Within Groups	3.300	9	.367		
Oscillating	Total	3.667	11			
	Between Groups	1.600	2	.800	1.636	.248
63 –Weld/cut Oxy/Acetylene	Within Groups	4.400	9	.489		
, ,	Total	6.000	11			
64 –	Between Groups	.267	2	.133	.273	.767
Photovoltaic	Within Groups	4.400	9	.489		
Cell LS	Total	4.667	11			
65 – Plasma	Between Groups	.700	2	.350	2.423	.144
Cut/ Routing	Within Groups	1.300	9	.144		
System	Total	2.000	11			
	Between Groups	.167	2	.083	.167	.849
66 – Plastics Oven	Within Groups	4.500	9	.500		
	Total	4.667	11			
67 –	Between Groups	.417	2	.208	.288	.756
PLC/Sensor	Within Groups	6.500	9	.722		
App Trainer	Total	6.917	11			
68 –	Between Groups	.117	2	.058	.109	.898
Pneumatic/	Within Groups	4.800	9	.533		
Hydraulic LS	Total	4.917	11			
	Between Groups	.067	2	.033	.054	.948
69 – Fitness Equipment	Within Groups	5.600	9	.622		
	Total	5.667	11			
	Between Groups	.417	2	.208	.750	.500
70 – Power Miter Saw	Within Groups	2.500	9	.278		
	Total	2.917	11			
71 – Power/	Between Groups	1.050	2	.525	1.477	.279
Energy/Trans	Within Groups	3.200	9	.356		
LS	Total	4.250	11			
	Between Groups	.117	2	.058	.188	.832
72 – Radial Arm Saw	Within Groups	2.800	9	.311		
	Total	2.917	11			
73 –8x8x10	Between Groups	.167	2	.083	.300	.748
Min Rapid	Within Groups	2.500	9	.278		
Prototype	Total	2.667	11			
74 – R&D LS	Between Groups	1.000	2	.500	1.125	.366
	Within Groups	4.000	9	.444		

	Total	5.000	11			
	Between Groups	.817	2	.408	1.750	.228
75 – Robotics Workcell	Within Groups	2.100	9	.233		
	Total	2.917	11			
"	Between Groups	1.450	2	.725	.741	.503
76 – Roll Forming Equip	Within Groups	8.800	9	.978		
0 1 1	Total	10.250	11			
77 –	Between Groups	.117	2	.058	.656	.542
Rotational Molder	Within Groups	.800	9	.089		
w/molds	Total	.917	11			
	Between Groups	3.217	2	1.608	3.912	.060
78 – Router Table/Shaper	Within Groups	3.700	9	.411		
•	Total	6.917	11			
	Between Groups	.467	2	.233	.292	.754
79 - RTF Planes	Within Groups	7.200	9	.800		
	Total	7.667	11			
80 – Scale	Between Groups	.250	2	.125	.187	.832
Trans	Within Groups	6.000	9	.667		
Vehicles	Total	6.250	11			
81 - Screen	Between Groups	.117	2	.058	.109	.898
Print	Within Groups	4.800	9	.533		
equipment	Total	4.917	11			
-	Between Groups	.117	2	.058	.188	.832
82 – Scroll Saw	Within Groups	2.800	9	.311		
	Total	2.917	11			
	Between Groups	3.217	2	1.608	2.539	.134
83 – Simple Machines LS	Within Groups	5.700	9	.633		
	Total	8.917	11			
	Between Groups	.400	2	.200	1.125	.366
84 – Small Gas Engines	Within Groups	1.600	9	.178		
0	Total	2.000	11			
	Between Groups	1.050	2	.525	1.477	.279
85 – Solar Vehicle LS	Within Groups	3.200	9	.356		
	Total	4.250	11			
	Between Groups	.000	2	.000	.000	1.000
86 – Speed	Within Groups	2.000	9	.222		
Radar Gun	Total	2.000	11			

87 –	Between Groups	.667	2	.333	.500	.622
Spot/Resist	Within Groups	6.000	9	.667		
Welder	Total	6.667	11			
	Between Groups	.167	2	.083	.115	.892
88 – Portable Spray Booth	Within Groups	6.500	9	.722		
	Total	6.667	11			
89 – Project	Between Groups	.367	2	.183	1.269	.327
Storage	Within Groups	1.300	9	.144		
System	Total	1.667	11			
	Between Groups	.367	2	.183	.500	.622
90 - Strip Heater	Within Groups	3.300	9	.367		
	Total	3.667	11			
91 –	Between Groups	.000	2	.000	.000	1.000
Structural	Within Groups	2.000	9	.222		
Tester	Total	2.000	11			
92 –	Between Groups	.667	2	.333	.500	.622
Sustainable	Within Groups	6.000	9	.667		
Energy LS	Total	6.667	11			
	Between Groups	.250	2	.125	.281	.761
93 – Table Saw	Within Groups	4.000	9	.444		
	Total	4.250	11			
94 –	Between Groups	.000	2	.000	.000	1.000
Thickness	Within Groups	8.000	9	.889		
Planer	Total	8.000	11			
95 – Vacuum/	Between Groups	.367	2	.183	.500	.622
Thermo	Within Groups	3.300	9	.367		
Former	Total	3.667	11			
	Between Groups	.550	2	.275	.669	.536
96 - Vertical Hole Punch	Within Groups	3.700	9	.411		
	Total	4.250	11			
oz	Between Groups	.517	2	.258	.363	.705
97 – Vinyl Cutter	Within Groups	6.400	9	.711		
	Total	6.917	11			
	Between Groups	.100	2	.050	.092	.913
98 – Vise System	Within Groups	4.900	9	.544		
-	Total	5.000	11			
99 – Watercraft	Between Groups	.667	2	.333	1.500	.274
Test Track 20'	Within Groups	2.000	9	.222		

	Total	2.667	11			
100 – Waterjet Cutting	Between Groups	.900	2	.450	1.929	.201
	Within Groups	2.100	9	.233		
System	Total	3.000	11			
101 – Wind	Between Groups	.517	2	.258	.363	.705
Generation	Within Groups	6.400	9	.711		
LS	Total	6.917	11			
	Between Groups	.117	2	.058	.188	.832
102 – Wind Tunnel	Within Groups	2.800	9	.311		
	Total	2.917	11			
	Between Groups	.250	2	.125	.187	.832
103 – Wood Lathe	Within Groups	6.000	9	.667		
	Total	6.250	11			
	Between Groups	.167	2	.083	.300	.748
104 – Work Benches	Within Groups	2.500	9	.278		
	Total	2.667	11			
	Between Groups	1.217	2	.608	1.480	.278
105 – Applied Science Tools	Within Groups	3.700	9	.411		
	Total	4.917	11			
106 –	Between Groups	1.050	2	.525	1.477	.279
Barcode Scanner	Within Groups	3.200	9	.356		
(equiv)	Total	4.250	11			
107 – Biotech	Between Groups	.817	2	.408	.896	.442
Gen Lab	Within Groups	4.100	9	.456		
Equip	Total	4.917	11			
	Between Groups	.600	2	.300	.614	.563
108 – Const. Tools	Within Groups	4.400	9	.489		
	Total	5.000	11			
	Between Groups	.000	2	.000	.000	1.000
109 – Electron Tools	Within Groups	2.000	9	.222		
	Total	2.000	11			
110 -	Between Groups	.250	2	.125	.563	.589
Fabrication	Within Groups	2.000	9	.222		
Msmt Tools	Total	2.250	11			
	Between Groups	.017	2	.008	.026	.975
111 - Fastener	Within Groups	2.900	9	.322		
Supply	Total	2.917	11			

112 - General Chem Tools	Between Groups	.817	2	.408	1.750	.228
	Within Groups	2.100	9	.233		
	Total	2.917	11			
	Between Groups	1.750	2	.875	1.750	.228
113 - Hand Draft Tools	Within Groups	4.500	9	.500		
	Total	6.250	11			
114 -	Between Groups	.250	2	.125	.563	.589
Measuring Devices	Within Groups	2.000	9	.222		
Devices	Total	2.250	11			
	Between Groups	.250	2	.125	.281	.761
115 - Medical Equipment	Within Groups	4.000	9	.444		
	Total	4.250	11			
116 - Misc	Between Groups	.017	2	.008	.026	.975
Tools	Within Groups	2.900	9	.322		
Fabrication	Total	2.917	11			
117 – Misc	Between Groups	.017	2	.008	.026	.975
Fab Power	Within Groups	2.900	9	.322		
Tools	Total	2.917	11			
118-	Between Groups	.117	2	.058	.188	.832
Tachometer	Within Groups	2.800	9	.311		
Non Contact	Total	2.917	11			
	Between Groups	.167	2	.083	.300	.748
119-Office Equipment	Within Groups	2.500	9	.278		
- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Total	2.667	11			
	Between Groups	.067	2	.033	.083	.921
120-Plastic Tools	Within Groups	3.600	9	.400		
	Total	3.667	11			
121 –	Between Groups	.067	2	.033	.083	.921
Pneumatic	Within Groups	3.600	9	.400		
Tools	Total	3.667	11			
	Between Groups	.067	2	.033	.188	.832
122 – Safety Equipment	Within Groups	1.600	9	.178		
1	Total	1.667	11			
	Between Groups	.117	2	.058	.188	.832
123 – Sound Level Meter	Within Groups	2.800	9	.311		
	Total	2.917	11			
124 –	Between Groups	.150	2	.075	.321	.733
Classroom Project Server		2.100	9	.233		

	Total	2.250	11			
125- Classroom/ Lab Sound	Between Groups	2.117	2	1.058	3.402	.079
	Within Groups	2.800	9	.311		
Sys	Total	4.917	11			
	Between Groups	.667	2	.333	1.500	.274
126 – Color Laser Printer	Within Groups	2.000	9	.222		
	Total	2.667	11			
	Between Groups	.417	2	.208	.221	.806
127 – Dektop Computer	Within Groups	8.500	9	.944		
	Total	8.917	11			
128- Dig	Between Groups	.117	2	.058	.077	.926
Camera	Within Groups	6.800	9	.756		
Tripods/lights	Total	6.917	11			
129 –Digital	Between Groups	1.050	2	.525	3.937	.059
Video	Within Groups	1.200	9	.133		
Recorder	Total	2.250	11			
	Between Groups	.467	2	.233	.656	.542
130 – Elect Present Board	Within Groups	3.200	9	.356		
	Total	3.667	11			
	Between Groups	.000	2	.000	.000	1.000
131 – 42" min HDTV	Within Groups	6.000	9	.667		
	Total	6.000	11			
	Between Groups	.117	2	.058	.188	.832
132 – GPS Units	Within Groups	2.800	9	.311		
	Total	2.917	11			
133 –	Between Groups	.367	2	.183	1.269	.327
Instructor	Within Groups	1.300	9	.144		
Laptop Comp	Total	1.667	11			
134 – Laptop	Between Groups	.117	2	.058	.656	.542
Comp Set/Cart	Within Groups	.800	9	.089		
Sel/Call	Total	.917	11			
	Between Groups	.250	2	.125	.281	.761
135 – Laser Printer	Within Groups	4.000	9	.444		
	Total	4.250	11			
	Between Groups	.667	2	.333	.750	.500
136 –	Within Groups	4.000	9	.444		
Projector	Total	4.667	11			

137 – Scanner	Between Groups	.667	2	.333	.750	.500
	Within Groups	4.000	9	.444		
	Total	4.667	11			
138 – Student	Between Groups	.250	2	.125	.562	.589
Response	Within Groups	2.000	9	.222		
Syst	Total	2.250	11			
	Between Groups	.467	2	.233	1.750	.228
139 – Video Camcoders	Within Groups	1.200	9	.133		
	Total	1.667	11			
	Between Groups	.000	2	.000	.000	1.000
140 – Wide Format Printer	Within Groups	2.000	9	.222		
	Total	2.000	11			
141 –	Between Groups	.067	2	.033	.188	.832
Wireless	Within Groups	1.600	9	.178		
Microphones	Total	1.667	11			
	Between Groups	.017	2	.008	.015	.985
142 – 2D CAD	Within Groups	4.900	9	.544		
	Total	4.917	11			
143 – 3D Arch	Between Groups	.167	2	.083	.167	.849
Building	Within Groups	4.500	9	.500		
Design	Total	4.667	11			
	Between Groups	.250	2	.125	.563	.589
144 – 3D CAD	Within Groups	2.000	9	.222		
	Total	2.250	11			
145 – Air	Between Groups	.250	2	.125	.562	.589
Quality Analysis	Within Groups	2.000	9	.222		
Softwr	Total	2.250	11			
146 –	Between Groups	.917	2	.458	2.062	.183
Animation	Within Groups	2.000	9	.222		
Software	Total	2.917	11			
147- Audio	Between Groups	.367	2	.183	1.269	.327
Edit/ Prod.	Within Groups	1.300	9	.144		
Software	Total	1.667	11			
148 –	Between Groups	.067	2	.033	.083	.921
Barcode Gen	Within Groups	3.600	9	.400		
Software	Total	3.667	11			
149 – Bridge	Between Groups	.000	2	.000	.000	1.000
Design Software	Within Groups	2.000	9	.222		-

	Total	2.000	11			
150 – BIM Software	Between Groups	.417	2	.208	.750	.500
	Within Groups	2.500	9	.278		
	Total	2.917	11			
	Between Groups	.117	2	.058	.188	.832
151 – CAM Software	Within Groups	2.800	9	.311		
	Total	2.917	11			
152 – Chem	Between Groups	1.667	2	.833	3.750	.065
Analysis	Within Groups	2.000	9	.222		
Softwr	Total	3.667	11			
	Between Groups	.067	2	.033	.083	.921
153-Game Dev Software	Within Groups	3.600	9	.400		
	Total	3.667	11			
154 - Land	Between Groups	.600	2	.300	1.125	.366
Based Auto	Within Groups	2.400	9	.267		
Cntrl	Total	3.000	11			
155- Mon	Between Groups	1.000	2	.500	2.250	.161
Sftwr Land	Within Groups	2.000	9	.222		
Base Trns	Total	3.000	11			
	Between Groups	.117	2	.058	.656	.542
156 – PLC Software	Within Groups	.800	9	.089		
	Total	.917	11			
157 –	Between Groups	.517	2	.258	.528	.607
Desktop Pub	Within Groups	4.400	9	.489		
Software	Total	4.917	11			
158 – EKG	Between Groups	.917	2	.458	2.063	.183
Analysis Softwr	Within Groups	2.000	9	.222		
Solim	Total	2.917	11			
159 – Elec	Between Groups	.117	2	.058	.188	.832
Circuit Software	Within Groups	2.800	9	.311		
Soliwale	Total	2.917	11			
160 – White	Between Groups	.550	2	.275	.669	.536
Board Software	Within Groups	3.700	9	.411		
	Total	4.250	11			
161 – Floor Plan Software	Between Groups	.017	2	.008	.026	.975
eennaro	Within Groups	2.900	9	.322		
	Total	2.917	11			

162 – Internet Connection	Between Groups	.000	2	.000		
	Within Groups	.000	9	.000		
	Total	.000	11			
163 - MS Office	Between Groups	.250	2	.125	.563	.589
Software	Within Groups	2.000	9	.222		
(equiv)	Total	2.250	11			
164 –	Between Groups	.017	2	.008	.026	.975
Photoshop or equiv	Within Groups	2.900	9	.322		
equiv	Total	2.917	11			
165 – Plant	Between Groups	.467	2	.233	.656	.542
layout	Within Groups	3.200	9	.356		
software	Total	3.667	11			
	Between Groups	.150	2	.075	.321	.733
166 – Robot Control Softwr	Within Groups	2.100	9	.233		
	Total	2.250	11			
	Between Groups	1.450	2	.725	2.330	.153
167 – Sim City Software	Within Groups	2.800	9	.311		
, ,	Total	4.250	11			
168 – Sim	Between Groups	.917	2	.458	2.062	.183
Farm	Within Groups	2.000	9	.222		
Software	Total	2.917	11			
	Between Groups	1.467	2	.733	1.269	.327
169 – Google Sketchup	Within Groups	5.200	9	.578		
	Total	6.667	11			
170 – Smart	Between Groups	.067	2	.033	.188	.832
Draw	Within Groups	1.600	9	.178		
Software	Total	1.667	11			
	Between Groups	.400	2	.200	.500	.622
171 – Soil pH Software	Within Groups	3.600	9	.400		
	Total	4.000	11			
172 – Stat	Between Groups	1.167	2	.583	2.100	.178
Process	Within Groups	2.500	9	.278		
Softwr	Total	3.667	11			
	Between Groups	1.867	2	.933	3.000	.100
173 – Vernier Software	Within Groups	2.800	9	.311		
Contraito	Total	4.667	11			
174 – Video	Between Groups	.167	2	.083	.300	.748
Editing Software	Within Groups	2.500	9	.278		

	Total	2.667	11			
	TULAI	2.007	11			
175 – Water	Between Groups	1.717	2	.858	1.486	.277
Quality	Within Groups	5.200	9	.578		
Software	Total	6.917	11			
176 –	Between Groups	.417	2	.208	.750	.500
Waterjet	Within Groups	2.500	9	.278		
Software	Total	2.917	11			
177 - Web	Between Groups	.517	2	.258	.528	.607
2.0 Tools	Within Groups	4.400	9	.489		
Free	Total	4.917	11			
178 – Web Design Software	Between Groups	.067	2	.033	.054	.948
	Within Groups	5.600	9	.622		
	Total	5.667	11			